函数总结大全很强很好很全

合集下载

函数知识点总结

函数知识点总结

函数知识点总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、合同协议、总结报告、演讲致辞、规章制度、自我鉴定、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as workplace documents, contract agreements, summary reports, speeches, rules and regulations, self-assessment, emergency plans, teaching materials, essay summaries, other sample essays, etc. If you want to learn about different sample essay formats and writing methods, please stay tuned!函数知识点总结函数知识点总结总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,它是增长才干的一种好办法,是时候写一份总结了。

数学函数知识点大总结

数学函数知识点大总结

数学函数知识点大总结一、函数的概念函数是数学中非常重要的一个概念,广泛应用于数学、物理、工程等领域。

它是将一个集合的元素映射到另一个集合的元素的一种规则。

函数的概念来源于实际生活中对变化规律的研究,是描述数量之间关系的一种数学工具。

函数的概念最早可以追溯到古希腊数学家欧几里德。

1.1 函数的定义在数学中,函数通常表示为y=f(x),其中f表示函数的名称,x称为自变量,y称为因变量。

函数f将自变量x的取值映射为因变量y的取值。

函数可看作是输入和输出之间的一种映射关系,即对每个自变量x,都有且只有一个对应的因变量y。

1.2 函数的符号表示在数学中,函数可以用多种符号来表示。

通常使用的有以下几种表示方法:y=f(x):表示函数f将自变量x映射为因变量y。

f:x→y:表示函数f将自变量x映射为因变量y。

f(x):表示函数f对自变量x的取值。

1.3 函数的分类函数是多种多样的,按照不同的性质可以进行分类。

主要的函数分类有以下几种:1.3.1 反函数如果一个函数f将自变量x的值映射为因变量y的值,那么存在一个反函数f^(-1),将因变量y的值映射为自变量x的值。

1.3.2 单调函数如果一个函数f的自变量增大时,因变量也随之增大(或者随之减小),则称该函数为单调函数。

1.3.3 周期函数如果一个函数f对于某一个正数T有f(x+T)=f(x)恒成立,则称函数f为周期函数,其中T 称为函数的周期。

1.3.4 奇偶函数如果对于任意的x,有f(-x)=-f(x)成立,则称函数f为奇函数;如果对于任意的x,有f(-x)=f(x)成立,则称函数f为偶函数。

1.3.5 反比例函数如果一个函数f的表达式为f(x)=k/x,其中k是一个非零常数,则称函数f为反比例函数。

二、初等函数初等函数是指由常数、自变量及各种基本初等函数通过有限次的代数运算(加、减、乘、除)和函数复合(函数与函数的运算)得到的函数。

所有初等函数都可以由基本初等函数(多项式函数、幂函数、指数函数、对数函数、三角函数、反三角函数)通过有限次的代数运算和函数复合得到。

函数总结大全(很强很好很全)范文

函数总结大全(很强很好很全)范文

一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。

s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。

(完整版)函数的基础知识大全(完整)(包括函数在高考中所有考点知识)

(完整版)函数的基础知识大全(完整)(包括函数在高考中所有考点知识)

函数基础知识大全§1.2.1、函数的概念1、 设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B中都有惟一确定的数()x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作:()A x x f y ∈=,.2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等.3.两个函数的相等:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f .当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数. §1.2.2、函数的表示法1、 函数的三种表示方法:解析法、图象法、列表法. 1.函数的三种表示法(1)解析法:就是把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式.(2)列表法:就是列出表格来表示两个变量的函数关系. (3)图象法:就是用函数图象表示两个变量之间的关系. 2.求函数解析式的题型有:(1)已知函数类型,求函数的解析式:待定系数法;(2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法; (3)已知函数图像,求函数解析式;(4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法; (5)应用题求函数解析式常用方法有待定系数法等. 求函数解析式的常用方法: 1、换元法( 注意新元的取值范围)2、待定系数法(已知函数类型如:一次、二次函数、反比例函数等)3、整体代换(配凑法) 4.赋值法:3.映射的定义:一般地,设A 、B 是两个集合,如果按照某种对应关系f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么,这样的对应(包括集合A 、B ,以及集合A 到集合B 的对应关系f )叫做集合A 到集合B 的映射,记作f :A →B.由映射和函数的定义可知,函数是一类特殊的映射,它要求A 、B 非空且皆为数集.4.映射的概念中象、原象的理解:(1) A 中每一个元素都有象;(2)B 中每一个元素不一定都有原象,不一定只一个原象;(3)A 中每一个元素的象唯一。

高中数学函数公式总结大全

高中数学函数公式总结大全

高中数学函数公式总结大全
高中数学函数公式总结如下:
1.函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y = f(x),x ∈A。

2.函数的三要素:定义域、值域和对应法则。

3.函数的表示方法:解析法、图象法和列表法。

4.函数的单调性:设函数f(x)的定义域为D,区间I包含于D。

如果对于区间I上任意两个自变量的值x1,x2,当x1 <x2时,都有f(x1) < f(x2),那么就说函数f(x)在区间I上是单调递增的。

如果对于区间I 上任意两个自变量的值x1,x2,当x1<x2时,都有f(x1) > f(x2),那么就说函数f(x)在区间I_是单调递减的。

5.函数的奇偶性:如果对于函数f(x)的定义域内任意一个x,都有f(-x)= f(x),那么函数f(x)就叫做偶函数;如果对于函数f(x)的定义域内任意一个x,都有f(-x)= -f(x),那么函数f(x)就叫做奇函数。

6.指数函数:一般地,函数y=a(a >0,且a≠1)叫做指数函数。

7.对数函数:一般地,函数y=logax(a>0,且a≠1)叫做对数函数。

8.幂函数:一般地,函数y=x“叫做幂函数,其中x是自变量,a 是常数。

9.二次函数:一般地,把形如y =ax²+bx +c (a ≠0)的函数叫做二次函数。

10.三角函数:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数。

以上是高中数学中常见的函数公式,希望对你有所帮助。

函数的应用知识点总结五

函数的应用知识点总结五

函数的应用知识点总结五篇13:函数性质知识点总结函数性质知识点总结1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为i,如果对于定义域i内的某个区间d内的任意两个自变量x1,x2,当x12时,都有f(x1)2),那么就说f(x)在区间d上是增函数.区间d称为y=f(x)的单调增区间.如果对于区间d上的任意两个自变量的值x1,x2,当x12 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间d称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;(2) 图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(a) 定义法:1 任取x1,x2∈d,且x12;2 作差f(x1)-f(x2);3 变形(通常是因式分解和配方);4 定号(即判断差f(x1)-f(x2)的正负);5 下结论(指出函数f(x)在给定的区间d上的单调性).(b)图象法(从图象上看升降)(c)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.8.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:1首先确定函数的定义域,并判断其是否关于原点对称;2确定f(-x)与f(x)的关系;3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:1) 凑配法2) 待定系数法3) 换元法4) 消参法10.函数最大(小)值(定义见课本p36页)1 利用二次函数的性质(配方法)求函数的最大(小)值2 利用图象求函数的最大(小)值3 利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);例题:1.求下列函数的定义域:⑴ ⑵2.设函数的定义域为,则函数的定义域为_ _3.若函数的定义域为,则函数的定义域是4.函数,若,则 =5.求下列函数的值域:⑴ ⑵(3) (4)6.已知函数,求函数,的解析式7.已知函数满足,则 = 。

函数的知识点总结归纳

函数的知识点总结归纳

函数的知识点总结归纳1. 函数的定义函数是一段完成特定功能的代码块。

在绝大多数编程语言中,函数都具有以下结构:```def function_name(parameter1, parameter2, ...):# 函数的具体实现# 可以包含多条语句return value```- function_name: 函数的名称, 方便在代码中调用该函数- parameter1, parameter2, ...: 用来接收函数调用时传入的参数- return value: 函数执行完毕后返回的结果2. 函数的参数函数可以接收零个、一个或多个参数, 这些参数可以在函数内部被引用和使用。

有以下几种不同的参数类型:- 位置参数: 参数的顺序和个数完全按照函数定义时的顺序和个数来匹配- 关键字参数: 调用函数时使用参数名来指定传入的值- 默认参数: 为参数设置默认值, 当参数没有被传入时, 使用默认值- 可变参数: 接收不定数量的参数, 可以是任意数量的位置参数或关键字参数3. 函数的返回值函数执行完毕后可以通过 return 语句返回一个值, 也可以不返回任何值。

如果没有 return 语句, 函数将会返回 None。

在有些情况下, 一个函数可能需要返回多个值, 这时可以使用元组(tuple)或列表(list)等数据结构来存储多个返回值。

4. 函数的作用域在函数内部定义的变量称为局部变量, 只能在函数内部使用。

在函数外部定义的变量称为全局变量, 可以在整个程序中使用。

当全局变量和局部变量同名时, 函数内部优先使用局部变量。

为了访问全局变量可以使用 global 关键字。

5. 递归函数递归函数是在函数内部调用自身的函数。

递归函数通常用于解决涉及重复自身的问题, 可以有效简化问题的解决方法。

然而, 在使用递归函数时需要注意避免进入无限循环, 并且递归深度过大可能会导致栈溢出。

6. 匿名函数匿名函数(也称为 lambda 函数)是一种在需要时立即声明和使用的函数, 不需要通过 def 关键字来定义。

函数总结大全

函数总结大全

函数总结大全一.定义与定义式:自变量x和因变量y有如下关系:y=kx+b 则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx (k为常数,k≠0)二.一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k 即:y=kx+b (k为任意不为零的实数 b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三.一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一.三象限,y随x的增大而增大;当k<0时,直线必通过二.四象限,y随x的增大而减小。

当b>0时,直线必通过一.二象限;当b=0时,直线通过原点当b<0时,直线必通过三.四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一.三象限;当k<0时,直线只通过二.四象限。

四.确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A.B的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b …… ① 和y2=kx2+b …… ② (3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五.一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。

s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。

函数知识点与公式总结

函数知识点与公式总结

函数知识点与公式总结一、函数的定义和性质函数的定义:函数是一个对应关系,它把一个集合的元素对应到另一个集合的元素。

一个简单的函数可以用如下的记号来表示:f:X→Y,表示一个函数f从集合X到集合Y的映射关系。

其中,X称为定义域,Y称为值域。

函数的性质:1. 定义域和值域:定义域是指函数的输入可以取的值的集合,值域是函数的输出可以取的值的集合。

2. 单调性:函数的单调性是指在定义域内,函数的增减趋势。

可以分为递增和递减两种情况。

3. 奇偶性:函数的奇偶性是指函数的图像是否关于原点对称。

如果对于任意x∈定义域,都有f(-x)=f(x),那么函数是偶函数;如果对于任意x∈定义域,都有f(-x)=-f(x),那么函数是奇函数。

4. 周期性:函数的周期性是指函数在一定范围内具有重复的性质。

5. 函数的图像:函数的图像是函数在直角坐标系中的点的集合,描述了函数的性质和特点。

二、常见的函数公式1. 线性函数线性函数是指函数的图像是一条直线的函数。

线性函数的一般形式为y=ax+b,其中a和b 是常数,a称为斜率,b称为截距。

2. 二次函数二次函数是指函数的图像是一个抛物线的函数。

二次函数的一般形式为y=ax^2+bx+c,其中a、b和c是常数,a≠0。

3. 指数函数指数函数是以常数e为底数的幂函数,一般形式为y=a^x,其中a为底数,x为指数。

4. 对数函数对数函数是指以常数a为底数的对数函数,一般形式为y=log_a(x),其中a为底数,x为真数。

5. 三角函数三角函数包括正弦函数、余弦函数、正切函数等,它们描述了角度和弧度之间的关系。

6. 反比例函数反比例函数是指函数的图像是一条反比例曲线的函数,一般形式为y=k/x,其中k是常数。

7. 绝对值函数绝对值函数的一般形式为y=|x|,它表示x的绝对值,即x的正数部分。

8. 分段函数分段函数是指在定义域的不同区间上有不同函数式的函数,一般形式为f(x)=```{g(x),a≤x≤bh(x),b<x<c}```9. 复合函数复合函数是指一个函数的自变量(或生成元素)是另一个函数的值域,即f[g(x)],表示函数f和g的复合。

函数知识点总结公式大全

函数知识点总结公式大全

函数知识点总结公式大全一、函数的定义在大多数编程语言中,函数通常由以下几个部分组成:1.函数名称:用来标识函数的名字。

2.参数列表:函数的输入,可以是零个或多个参数。

3.返回值类型:函数的输出类型,可以是任意类型。

4.函数体:函数执行的具体代码。

函数的定义通常遵循以下格式:```返回值类型函数名(参数列表) {// 函数体return 返回值;}```例如,在C++语言中,可以定义一个计算两个整数之和的函数:```cppint add(int a, int b) {return a + b;}```二、函数的调用在程序中,当需要使用函数时,可以通过函数名和实际参数列表进行函数调用。

例如,在C++语言中,可以调用上述定义的add函数:```cppint result = add(3, 5); // result的值为8```三、函数的参数函数的参数是传递给函数的输入值,可以是任意类型。

函数可以有零个或多个参数。

1. 形式参数:在函数定义时使用的参数占位符,没有具体的值,只是用来表示函数的输入。

2. 实际参数:在函数调用时用来传递具体的值给形式参数。

例如,在下面的add函数中,a和b就是形式参数:```cppint add(int a, int b) {return a + b;}```在调用该函数时,传递给a和b的值3和5就是实际参数。

四、函数的返回值函数的返回值是函数执行完毕后的结果,可以是任意类型。

函数可以有返回值,也可以没有。

1. 有返回值的函数:使用return语句返回函数执行结果。

2. 无返回值的函数:返回类型为void。

例如,在下面的add函数中,返回类型为int,因此返回值就是a + b的结果:```cppint add(int a, int b) {return a + b;}```五、函数的重载函数的重载是指可以定义多个同名函数,只要它们的参数列表不同即可。

这样可以提高函数的灵活性和可复用性。

函数经典知识点总结

函数经典知识点总结

函数经典知识点总结一、函数的定义和调用1.1 函数的定义在大多数编程语言中,函数的定义通常包括函数名、参数列表和函数体。

函数名用于标识函数的名称,参数列表用于接收函数的输入,函数体则包含函数的实际功能实现。

示例:```def add(a, b):return a + b```在上面的示例中,`add` 是函数的名称,`a` 和 `b` 是参数,函数体中的 `return a + b` 则是函数的实际功能实现。

1.2 函数的调用一旦函数被定义,就可以通过函数名和参数列表来调用函数。

示例:```result = add(1, 2)print(result) # 输出结果为3```在上面的示例中,我们通过 `add(1, 2)` 来调用函数 `add`,并将返回值赋给 `result` 变量。

二、参数传递2.1 位置参数在调用函数时,可以通过位置参数的方式将实际的参数值传递给函数。

示例:```def power(x, y):return x ** yresult = power(2, 3)print(result) # 输出结果为8```在上面的示例中,`2` 和 `3` 是位置参数,它们分别对应函数定义中的 `x` 和 `y`。

2.2 默认参数有时候,函数的参数并非都是必须的,我们可以通过给参数设置默认值,来定义默认参数。

示例:```def greet(name, message="Hello"):print(f"{message}, {name}!")greet("Alice") # 输出结果为Hello, Alice!greet("Bob", "Hi") # 输出结果为Hi, Bob!```在上面的示例中,`message` 参数有一个默认值 "Hello",如果在调用函数时没有指定`message` 的值,那么函数会使用默认值 "Hello"。

所有关于函数的知识点总结

所有关于函数的知识点总结

所有关于函数的知识点总结在数学中,函数通常是指自变量和因变量之间的一种对应关系。

直观上,我们可以将函数理解为一个机器,它接收一个输入,经过某种变换,产生一个输出。

这样的一个变换关系通常可以用一个数学表达式来表示。

函数的定义多种多样,主要有显式定义、隐式定义、参数形式定义、递推式定义等。

在这些定义下,函数可以是分段函数、多元函数、实函数、分数函数、三角函数以及反三角函数等等。

一、函数的基本概念1.1 函数的定义函数是最基本的数学概念之一。

函数是一个特殊的映射关系,它将一个集合中的元素对应到另一个集合中的唯一元素。

在数学上,一般来说,我们记函数为f,它表示从集合A到集合B的一个映射。

函数的定义可以表述为:设A和B为非空集合。

若集合A中的每一个元素a通过某种确定的方法f,都有一个确定的元素b与之对应,那么就说f是从A到B的一个函数,记作f:A→B。

其中,a叫做自变量,b叫做因变量。

我们通常用f(a)来表示b。

这里有一点需要注意,函数的定义域和值域的选择对函数的性质有重要影响,而且通常情况下,函数的定义域和值域并不是任意确定的,而是根据实际应用需要选择的。

由于函数的百变性,在数学上我们还有不少关于这部分的内容需要学习。

1.2 函数的图像函数的图像是研究函数的一个重要工具。

通常来说,我们先确定函数的定义域,然后确定自变量取值的范围,并根据函数的定义,计算出对应的因变量的值。

最终,我们可以得到一系列有序对(x,y),根据这些点我们可以绘制出这个函数的图像。

通常来说,我们绘制的图像是平面直角坐标系中的二维图像,但是有时候我们为了更好的表示函数的性质,会用到三维图形或者等高线图等。

利用函数的图像,我们可以直观的了解函数的性质和规律。

1.3 常见函数函数的定义是非常广泛的,数学中有非常多的函数概念。

其中常见的函数有多项式函数、指数函数、对数函数、三角函数等等。

这些函数都有各自的定义域、值域和图像。

另外,我们还有一些常见的特殊函数,比如阶乘函数、取整函数、绝对值函数等。

初中数学函数知识点总结6篇

初中数学函数知识点总结6篇

初中数学函数知识点总结初中数学函数知识点总结6篇总结是在某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而得出教训和一些规律性认识的一种书面材料,它可以帮助我们有寻找学习和工作中的规律,让我们抽出时间写写总结吧。

那么总结有什么格式呢?以下是小编整理的初中数学函数知识点总结,仅供参考,大家一起来看看吧。

初中数学函数知识点总结1课题3.5正比例函数、反比例函数、一次函数和二次函数教学目标1、掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质2、会用待定系数法确定函数的解析式教学重点掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质教学难点掌握正(反)比例函数、一次函数和二次函数的概念及其图形和性质教学方法讲练结合法教学过程(I)知识要点(见下表:)第三章第29页函数名称解析式图像正比例函数ykx(k0)0x反比例函数一次函数ykxb(k0)0x二次函数yax2bxc(a0)y0xy0xky (k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0图像过点(0,0)及(1,k)的直线双曲线,x轴、y轴是它的渐近线与直线ykx平行且过点(0,b)的直线抛物线定义域RxxR且xoyyR且yoRR4acb2a0时,y,4aR 值域R4acb2a0时,y,4aba0时,在-,上为增2a函数,在,-单调性k0时,在,0,k0时为增函数0,上为减函数k0时,为增函数b上为减函数2ak0时为减函数k0时,在,0,k0时,为减函数0,上为增函数ba0时,在-,上为减2a函数,在,-b上为增函数2a奇偶性奇函数奇函数b=0时奇函数b=0时偶函数a0且x-ymin最值无无无b时,2a24acb4ab时,2a24acb4aa0且x-ymax第三章第30页b24acb2注:二次函数yaxbxca(x (a0))a(xm)(xn)2a4abb4acb2对称轴x,顶点(,)2a2a4a2抛物线与x轴交点坐标(m,0),(n,0)(II)例题讲解例1、求满足下列条件的二次函数的解析式:(1)抛物线过点A (1,1),B(2,2),C(4,2)(2)抛物线的顶点为P(1,5)且过点Q(3,3)(3)抛物线对称轴是x2,它在x轴上截出的线段AB长为2且抛物线过点(1,7)。

最全函数知识点总结高中

最全函数知识点总结高中

最全函数知识点总结高中一、函数的基本概念1.1 函数的定义函数是一个非常基本的数学概念。

在数学上,函数是一种对应关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素。

用数学符号表示就是:对于两个集合A和B,如果存在一个规则f,它使得对于A中的每个元素x,都有一个唯一的y属于B与之对应,那么我们说f是从A到B的一个函数,记作f:A→B。

其中A称为定义域,B称为值域。

1.2 函数的概念在我们的日常生活中,我们可以看到很多函数的例子。

比如,将一个数字加上3,或者乘以2,这就是两个函数的例子。

我们可以看到,函数本质上就是一种输入与输出的关系。

1.3 函数的符号表示函数一般用字母f,g,h等表示,其定义为:y=f(x),表示x是自变量,y是因变量。

1.4 函数的自变量和因变量在函数中,自变量是输入的值,它在定义域中取值;而因变量是输出的值,它在值域中取值。

1.5 函数的图象函数的图象是函数在一个坐标系中的表示,它可以帮助我们更直观地了解函数的性质和规律。

1.6 函数的性质函数有很多的性质,比如奇偶性、单调性、周期性等等。

1.7 函数的分类函数可以分为初等函数和非初等函数。

初等函数包括多项式函数、有理函数、指数函数、对数函数、三角函数和反三角函数。

非初等函数包括无穷级数、常微分方程等。

1.8 逆函数如果函数f有定义域A和值域B,对于B中的每一个y,存在一个唯一的x属于A与之对应,那么我们称这个函数有逆函数,记作f^(-1)。

1.9 复合函数如果有两个函数f和g,使得f的值域是g的定义域,那么我们可以定义一个新的函数h(x)=f(g(x)),这就是复合函数。

1.10 函数的性质与变化函数有很多的性质和变化规律,比如极值、单调性、周期性、奇偶性等等。

对于这些性质和变化,我们可以通过函数的图象和导数来进行分析。

1.11 函数的运算函数之间可以进行加减乘除的运算,还可以进行求泛函、求复合函数、求逆函数等。

二、函数的表示与运用2.1 函数的表示方法函数可以用方程的形式、图象的形式、表格的形式、文字的形式等来表示。

常用函数知识点总结初中

常用函数知识点总结初中

常用函数知识点总结初中函数是数学中一种特殊关系的概念,是一种以输入变量为自变量,以输出变量为因变量的映射关系,通常用f(x)表示。

在数学中,函数是一种非常重要的概念,它在几何、代数、微积分等各个领域都有重要的应用。

在初中阶段,学习了很多种不同类型的函数,其中包括线性函数、二次函数、分段函数等。

下面将对常用的函数知识点进行总结。

一、线性函数线性函数是一种最简单的函数形式,它具有f(x) = kx + b的形式,在图像上表现为一条直线。

其中k表示斜率,b表示截距。

线性函数的图像始终是一条直线,斜率决定了直线的倾斜程度,截距决定了直线与y轴的交点位置。

线性函数的性质:1. 斜率代表了函数的变化速度,斜率越大,函数变化越快,反之亦然。

2. 直线的斜率为正,则函数是增函数;直线的斜率为负,则函数是减函数;直线的斜率为零,则函数是常数函数。

3. 直线的截距决定了直线与y轴的交点位置,截距为正则直线与y轴正向偏移,截距为负则直线与y轴负向偏移。

二、二次函数二次函数是一种常见的函数形式,它具有f(x) = ax^2 + bx + c的形式,在图像上表现为一条抛物线。

其中a决定了抛物线的开口方向以及形状,b决定了抛物线在x轴上的平移,c决定了抛物线在y轴上的平移。

二次函数的性质:1. 当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。

2. 抛物线的顶点坐标为(-b/2a, f(-b/2a))。

3. 与x轴的交点称为零点,如果存在实数根,则代表了函数的图像与x轴的交点。

4. 当a>0时,函数的最小值为f(-b/2a);当a<0时,函数的最大值为f(-b/2a)。

三、分段函数分段函数是指由不同函数片段组成的函数形式,通常以数学表达式加上对应定义域的方式来表示。

在不同的定义域内,函数可以采用不同的函数形式,这种函数称为分段函数。

分段函数的性质:1. 在各个定义域内,分段函数采用不同的函数形式,可以是线性函数、二次函数、常数函数等。

高三整理函数知识点总结

高三整理函数知识点总结

高三整理函数知识点总结在高中数学中,函数是一个重要的概念和工具。

掌握了函数的基本概念和相关知识,可以帮助我们解决很多数学问题。

下面是高三整理的函数知识点总结。

一、函数的定义和性质1. 函数的定义:函数是一个将一个集合的每个元素映射到另一个集合的规则。

通常用f(x)表示函数,其中x是自变量,f(x)是因变量。

2. 函数的性质:函数包括定义域、值域、奇偶性、单调性、最值等性质。

其中定义域是自变量的取值范围,值域是因变量的取值范围。

二、初等函数1. 指数函数:指数函数指的是形如f(x)=a^x(a>0且a≠1)的函数,其中a是底数,x是指数。

2. 对数函数:对数函数指的是形如f(x)=loga(x)(a>0且a≠1)的函数,其中a是底数,x是对数。

3. 三角函数:包括正弦函数、余弦函数、正切函数等,它们与三角比的关系密切。

4. 反三角函数:包括反正弦函数、反余弦函数、反正切函数等,它们是三角函数的反函数。

5. 幂函数:幂函数指的是形如f(x)=x^n(n为整数)的函数,其中n可以是正整数、负整数或零。

6. 分段函数:分段函数是由不同的函数规则在不同的区间内定义的函数。

三、函数的图像和性质1. 函数的图像:函数的图像是函数在平面直角坐标系上的几何表示,通常是曲线或者直线。

2. 函数的对称性:函数可能有奇对称、偶对称、轴对称等对称性。

3. 单调性:函数的单调性指的是函数值的变化趋势,可以是递增、递减或者恒增、恒减。

4. 最值:函数的最大值和最小值是函数在定义域上的两个特殊点。

5. 零点:函数的零点指的是函数取零值的自变量的取值。

四、函数的运算1. 四则运算:函数可以进行加法、减法、乘法和除法的运算。

2. 复合函数:复合函数是将一个函数的输出作为另一个函数的输入进行运算的函数。

3. 反函数:反函数是函数的一种特殊形式,将函数的自变量和因变量交换得到。

五、函数的应用1. 函数方程:通过给出函数的性质,求解函数的具体形式的方程。

函数总结大全(很全)

函数总结大全(很全)

高一函数知识汇总一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x 轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。

很好很强很全(1)设一次函数的表达式(也叫解析式)为y=kx+b。

(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。

所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。

s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。

函数知识点总结

函数知识点总结

一一次函数1、正比例函数一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.2、正比例函数图象和性质一般地,正比例函数y=kx(k为常数,k≠0)的图象是一条经过原点和(1,k)的一条直线,我们称它为直线y=kx.当k>0时,直线y=kx经过第一、三象限,从左向右上升,即随着x的增大,y也增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即随着x的增大y反而减小.3、一次函数一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx +b即y=kx,所以说正比例函数是一种特殊的一次函数.4、直线y=kx+b的图象和性质与k、b的关系如下表所示:5、直线y1=kx+b与y2=kx图象的位置关系:(1)当b>0时,将y2=kx图象向x轴上方平移b个单位,就得到y1=kx+b的图象.(2)当b<0时,将y2=kx图象向x轴下方平移-b个单位,就得到了y1=kx+b的图象.6、直线l 1:y 1=k 1x +b 1与l 2:y 2=k 2x +b 2的位置关系可由其解析式中的比例系数和常数来确定:当k 1≠k 2时,l 1与l 2相交7、直线y=kx +b(k≠0)与坐标轴的交点.(1)直线y=kx 与x 轴、y 轴的交点都是(0,0);(2)直线y=kx +b 与x 轴交点坐标为(,0)与 y 轴交点坐标为(0,b).8、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程;(3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.二 反比例函数1.定义:形如y =xk(k 为常数,k≠0)的函数称为反比例函数。

其他形式xy=k 、1-=kxy 、xk y 1∙=2.图像:反比例函数的图像属于双曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx (k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b (k为任意不为零的实数b取任何实数)2.当x=0时,b为函数在y轴上的截距。

三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。

因此,作一次函数的图像只需知道2点,并连成直线即可。

(通常找函数图像与x 轴和y轴的交点)足等式:y=kx+b。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。

3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。

当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。

特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

四、确定一次函数的表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B 的一次函数的表达式。

(1)设一次函数的表达式(也叫解析式)为y=kx+b。

式y=kx+b。

所以可以列出2个方程:y1=kx1+b …… ①和y2=kx2+b …… ②(3)解这个二元一次方程,得到k,b的值。

(4)最后得到一次函数的表达式。

五、一次函数在生活中的应用:1.当时间t一定,距离s是速度v的一次函数。

s=vt。

2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。

设水池中原有水量S。

g=S-ft。

六、常用公式:(不全,希望有人补充)1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴平行线段的中点:|x1-x2|/23.求与y轴平行线段的中点:|y1-y2|/24.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)二次函数I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI 越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k [抛物线的顶点P(h,k)]交点式:y=a(x-x₁)(x-x ₂) [仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2a k=(4ac-b^2)/4a x₁,x₂=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。

IV.抛物线的性质1.抛物线是轴对称图形。

对称轴为直线x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ= b^2-4ac>0时,抛物线与x轴有2个交点。

Δ= b^2-4ac=0时,抛物线与x轴有1个交点。

Δ= b^2-4ac<0时,抛物线与x轴没有交点。

X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)V.二次函数与一元二次方程特别地,二次函数(以下称函数)y=ax^2+bx+c,当y=0时,二次函数为关于x的一元二次方程(以下称方程),即ax^2+bx+c=0当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,当h<0时,则向左平行移动|h|个单位得到.当h>0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;当h>0,k<0时,将抛物线y=ax^2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;当h<0,k>0时,将抛物线向左平行移动|h|个单位,再向上移动k 个单位可得到y=a(x-h)^2+k的图象;当h<0,k<0时,将抛物线向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)^2+k的图象;因此,研究抛物线y=ax^2+bx+c(a≠0)的图象,通过配方,将一般式化为y=a(x-h)^2+k的形式,可确定其顶点坐标、对称轴,抛物线的大体位置就很清楚了.这给画图象提供了方便.2.抛物线y=ax^2+bx+c(a≠0)的图象:当a>0时,开口向上,当a<0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b^2]/4a).3.抛物线y=ax^2+bx+c(a≠0),若a>0,当x ≤ -b/2a时,y 随x的增大而减小;当x ≥ -b/2a时,y随x的增大而增大.若a<0,当x ≤ -b/2a时,y随x的增大而增大;当x ≥ -b/2a时,y随x 的增大而减小.4.抛物线y=ax^2+bx+c的图象与坐标轴的交点:(1)图象与y轴一定相交,交点坐标为(0,c);(2)当△=b^2-4ac>0,图象与x轴交于两点A(x₁,0)和B(x₂,0),其中的x1,x2是一元二次方程ax^2+bx+c=0(a≠0)的两根.这两点间的距离AB=|x₂-x₁|当△=0.图象与x轴只有一个交点;当△<0.图象与x轴没有交点.当a>0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a<0时,图象落在x轴的下方,x为任何实数时,都有y<0.5.抛物线y=ax^2+bx+c的最值:如果a>0(a<0),则当x= -b/2a 时,y最小(大)值=(4ac-b^2)/4a.顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值.6.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax^2+bx+c(a≠0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0).(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x₁)(x-x₂)(a≠0).7.二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。

因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.反比例函数形如y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。

自变量x的取值范围是不等于0的一切实数。

反比例函数图像性质:反比例函数的图像为双曲线。

由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。

另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

如图,上面给出了k分别为正和负(2和-2)时的函数图像。

当K>0时,反比例函数图像经过一,三象限,是减函数当K<0时,反比例函数图像经过二,四象限,是增函数反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

知识点:1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为| k |。

2.对于双曲线y=k/x ,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。

(加一个数时向左平移,减一个数时向右平移)对数函数对数函数的一般形式为,它实际上就是指数函数的反函数。

因此指数函数里对于a的规定,同样适用于对数函数。

右图给出对于不同大小a所表示的函数图形:可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x 的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

(3)函数总是通过(1,0)这点。

(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

(5)显然对数函数无界。

指数函数指数函数的一般形式为,从上面我们对于幂函数的讨论就可以知道,要想使得x能够取整个实数集合为定义域,则只有使得如图所示为a的不同大小影响函数图形的情况。

可以看到:(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。

其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

奇偶性注图:(1)为奇函数(2)为偶函数1.定义一般地,对于函数f(x)(1)如果对于函数定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

(2)如果对于函数定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

(3)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

相关文档
最新文档