光电式编码器(结构、工作原理、提高分辨率的方法)电磁

合集下载

光电编码器原理结构图

光电编码器原理结构图

光电编码器原理结构图增量式光电旋转编码器所谓编码器即是将某种物理量转换为数字格式的装置。

运动控制系统中的编码器的作用是将位置和角度等参数转换为数字量。

可采用电接触、磁效应、电容效应和光电转换等机理,形成各种类型的编码器。

运动控制系统中最常见的编码器是光电编码器。

光电编码器根据其用途的不同分为旋转光电编码器和直线光电编码器,分别用于测量旋转角度和直线尺寸。

光电编码器的关键部件是光电编码装置,在旋转光电编码器中是圆形的码盘(codewheel或codedisk),而在直线光电编码器中则是直尺形的码尺(codestrip)。

码盘和码尺根据用途和成本的需要,可由金属、玻璃和聚合物等材料制作,其原理都是在运动过程中产生代表运动位置的数字化的光学信号。

图12.1可用于说明透射式旋转光电编码器的原理。

在与被测轴同心的码盘上刻制了按一定编码规则形成的遮光和透光部分的组合。

在码环的一边是发光二极管或白炽灯光源,另一边则是接收光线的光电器件。

码盘随着被测轴的转动使得透过码盘的光束产生间断,通过光电器件的接收和电子线路的处理,产生特定电信号的输出,再经过数字处理可计算出位置和速度信息。

上面所说的是透射式光电编码器的原理。

显然利用光反射原理也可制作光电编码器。

增量编码器的码盘如图12.2所示。

在现代高分辨率码盘上,透光和遮光部分都是很细的窄缝和线条,因此也被称为圆光栅。

相邻的窄缝之间的夹角称为栅距角,透光窄缝和遮光部分大约各占栅距角的1/2。

码盘的分辨率以每转计数(CPR-counts per revolution)表示,亦即码盘旋转一周在光电检测部分可产生的脉冲数。

例如某码盘的CPR为2048,则可以分辨的角度为10,311.8”。

在码盘上,往往还另外安排一个(或一组)特殊的窄缝,用于产生定位(index)或零位(zero)信号。

测量装置或运动控制系统可利用这个信号产生回零或复位操作。

从原理分析,光电器件输出的电信号应该是三角波。

编码器工作原理

编码器工作原理

编码器工作原理引言概述:编码器是一种用于将机械运动转换为数字信号的装置,广泛应用于各种自动化系统中。

它可以精确地测量物体的位置、速度和方向,从而实现精准控制和监测。

本文将介绍编码器的工作原理,以帮助读者更好地理解其在自动化系统中的作用。

一、光电编码器1.1 光电编码器的结构:光电编码器由光源、光栅、接收器和信号处理电路组成。

光源发出光束,经过光栅反射或透过后,被接收器接收并转换成电信号,信号处理电路将电信号转换成数字信号。

1.2 光电编码器的工作原理:当物体运动时,光栅会随之移动,使得光束的强度发生变化。

接收器接收到的光信号也会随之变化,通过信号处理电路将这些变化转换成数字信号,从而确定物体的位置和速度。

1.3 光电编码器的应用:光电编码器广泛应用于数控机床、机器人、印刷设备等自动化系统中,用于实现位置控制、速度控制和角度测量等功能。

二、磁编码器2.1 磁编码器的结构:磁编码器由磁性标记、磁传感器和信号处理电路组成。

磁性标记可以是永磁体或磁性条,磁传感器用于检测磁场的变化,信号处理电路将检测到的信号转换成数字信号。

2.2 磁编码器的工作原理:当物体运动时,磁性标记会随之移动,磁传感器检测到磁场的变化,并将其转换成电信号。

信号处理电路将电信号转换成数字信号,确定物体的位置和速度。

2.3 磁编码器的应用:磁编码器适用于高温、高速、腐蚀性环境下的自动化系统,如汽车发动机、风力发电机等,用于实现位置控制和速度控制。

三、绝对值编码器3.1 绝对值编码器的结构:绝对值编码器由多个独立的编码单元组成,每个编码单元对应一个位置码。

通过读取每个位置码的状态,可以确定物体的绝对位置。

3.2 绝对值编码器的工作原理:每个编码单元都有一个唯一的位置码,当物体运动时,读取每个位置码的状态,可以确定物体的绝对位置,无需重新归零。

3.3 绝对值编码器的应用:绝对值编码器广泛应用于需要高精度位置控制和无需重新归零的自动化系统中,如医疗设备、航空航天设备等。

光电式编码器的工作原理

光电式编码器的工作原理

光电式编码器的工作原理
光电式编码器是一种通过光电传感器来测量物体位置和运动的
装置。

它由光源、光电传感器和编码盘等组成。

光源发出光束,经过编码盘上的光栅或光轴透过孔,然后被光电传感器接收并转换成电信号,最终由电路板处理和解码。

光电式编码器通常采用增量式编码方式来测量物体位置和运动。

增量式编码器根据编码盘上的光栅或光轴透过孔的变化来确定位置和运动。

编码盘上的光栅或光轴透过孔被分为多个等距的区域,每个区域代表一个编码位。

当物体运动时,光栅或光轴透过孔会相对于光电传感器产生变化,从而产生脉冲信号。

根据脉冲信号的数量和方向,可以确定物体的位置和运动方向。

光电式编码器具有精度高、反应速度快、抗干扰能力强等特点。

它广泛应用于机械加工、自动化控制、测量仪器等领域。

在机械加工中,光电式编码器可以用于控制机床的位置和速度,从而实现精确加工。

在自动化控制中,光电式编码器可以用于控制机器人的位置和姿态,从而实现精确的运动控制。

在测量仪器中,光电式编码器可以用于测量物体的位移和速度,从而提供准确的测量结果。

总之,光电式编码器通过光电传感器将光信号转换成电信号,利用光栅或光轴透过孔的变化来测量物体位置和运动。

它具有高精度、快速
响应和抗干扰能力强的优点,在多个领域都有广泛的应用。

光电编码器原理与维修讲解

光电编码器原理与维修讲解

高精度的光电编码器的结构及原理2009年06月12日星期五8:48本文主要介绍高精度的光电编码器的内部结构、工作原理与位置检测的方法。

一、光电编码器的介绍:光电编码器是通过读取光电编码盘上的图案或编码信息来表示与光电编码器相连的电机转子的位置信息的。

根据光电编码器的工作原理可以将光电编码器分为绝对式光电编码器与增量式光电编码器,下面我就这两种光电编码器的结构与工作原理做介绍。

(一)、绝对式光电编码器绝对式光电编码器如图所示,他是通过读取编码盘上的二进制的编码信息来表示绝对位置信息的。

编码盘是按照一定的编码形式制成的圆盘。

图1是二进制的编码盘,图中空白部分是透光的,用“0”来表示;涂黑的部分是不透光的,用“1”来表示。

通常将组成编码的圈称为码道,每个码道表示二进制数的一位,其中最外侧的是最低位,最里侧的是最高位。

如果编码盘有4个码道,则由里向外的码道分别表示为二进制的23、22、21和20,4位二进制可形成16个二进制数,因此就将圆盘划分16个扇区,每个扇区对应一个4位二进制数,如0000、0001、 (1111)图1按照码盘上形成的码道配置相应的光电传感器,包括光源、透镜、码盘、光敏二极管和驱动电子线路。

当码盘转到一定的角度时,扇区中透光的码道对应的光敏二极管导通,输出低电平“0”,遮光的码道对应的光敏二极管不导通,输出高电平“1”,这样形成与编码方式一致的高、低电平输出,从而获得扇区的位置脚。

(二)、增量式光电编码器 Increamental Optical-electrical Encoder增量式光电编码器是码盘随位置的变化输出一系列的脉冲信号,然后根据位置变化的方向用计数器对脉冲进行加/减计数,以此达到位置检测的目的。

它是由光源、透镜、主光栅码盘、鉴向盘、光敏元件和电子线路组成。

增量式光电编码器的工作原理是是由旋转轴转动带动在径向有均匀窄缝的主光栅码盘旋转,在主光栅码盘的上面有与其平行的鉴向盘,在鉴向盘上有两条彼此错开90o相位的窄缝,并分别有光敏二极管接收主光栅码盘透过来的信号。

光电编码器的工作原理剖析

光电编码器的工作原理剖析

光电编码器的工作原理剖析光源通常是一种发光二极管(LED),它会发出一个光束。

这个光束会经过一个光隔离装置,以确保光源的输出稳定并没有被外界的光线影响。

光电元件是光电编码器的核心部分,它通常由一个光敏二极管或光敏电阻组成。

光栅通常是一个条状的透明介质,上面由一系列周期性排列的透明和不透明的条纹组成。

当物体运动时,光斑会通过光栅,被分成等距离的光斑和暗斑。

当光斑经过光栅时,它会照射到光电元件上。

光电元件会将光信号转换成电信号,并且这个信号的频率和光栅的速度有关。

根据光栅上光斑和暗斑的周期性变化,光电元件能够测量物体的位置和速度。

在测量位置时,光电编码器会将光栅上的每个光斑和暗斑都对应一个特定的电信号。

根据光电编码器的分辨率,可以将物体的位置划分成非常小的间隔。

当物体移动时,光电编码器会持续地测量和更新位置信息。

在测量速度时,光电编码器会根据光栅上光斑和暗斑的变化频率来计算物体的速度。

随着物体的移动,光斑和暗斑的变化速度也会随之变化。

为了提高测量的精度和稳定性,光电编码器通常配备缓冲电路和信号处理器。

缓冲电路可强化电信号并消除干扰。

信号处理器可以将电信号转换成数字信号,并根据需要进行滤波、放大或线性化等处理。

光电编码器的工作原理使其在许多领域得到广泛应用。

比如,工业机械领域中,光电编码器常用于测量机械零件的位置和速度,以确保机械运行的准确性。

在机器人和自动化控制系统中,光电编码器可用于反馈位置信息,以实现精确定位和控制。

在医疗设备中,光电编码器可用于测量患者身体部位的位置和运动,并帮助医生进行诊断和治疗。

总之,光电编码器通过使用光源、光电元件和光栅等组件,可以将物体的位置和速度转换成电信号。

它的工作原理基于通过光栅上光斑和暗斑的变化来测量物体的位置和速度。

光电编码器在测量和控制领域具有广泛的应用价值。

光电式编码器

光电式编码器
脉冲信号。
通常数控机床的机械原点与各铀的脉冲编码器发出Z相脉冲的位置
是一致的。
光源
码盘
光电元件
Z 零位脉冲 A 增量脉冲 B辨向脉冲
图6.30 增量式编码器的结构图
(2)绝对式编码器
1)码制和码盘 码盘按其所用码制可分为:二进制、循环码(葛莱码)、十进
绝对式编码器图案不均匀,几位编码器其码盘上就有几位码 道,在编码器的相应位置都可输出对应的数字码,在码盘运动过 程中读取这些代码,即能实时测得坐标的变化。这种方法的优点 是坐标固定与测量以前状态无关,不需起动时的位置重合,抗干 扰能力强,无累积误差,具有断电位置保持,在不读数的范围内 移动速度可超越极限响应速度,不需要方向判别和可逆计数,信 号并行传送等。缺点是结构复杂、价格高,为提高分辨率需要提 高码道数目或者使用减速齿轮机构组成双码盘机构,将任意位置 取作零位时需进行一定的运算。
2.光电式编码器的接口与安装使用注意事项
(1)机械方面
编码器轴与用户端输出轴之间通过联轴节连接如下图所示, 避免因用户轴的串动、跳动,造成编码器轴系和码盘的损坏。应 保证编码器轴与用户轴的不同轴度<0.2mm,与轴线的偏角<1.5o 安装时严禁敲击和摔打碰撞,以免损坏轴系和码盘。 (2)电气方面
编码器的输出线不能与动力线等绕在一起或同一管道传输, 也不宜在配电盘附近使用,配线时采用屏蔽电缆,可以参照下图 进行配线。
增量式编码器图案和光脉冲信号均匀,可将任意位置作为基 准点,从该点开始按一定的量化单位检测位移或转角,计量脉冲 数即可折算为位移或转角。该方法因无确定的对应测量点,一旦 停电则失掉当前位置,且速度不可超越计数器极限响应速度,此 外由于噪声影响可能造成计数积累误差。优点是其的零点可任意 预置,且测量速度仅受计数器容量限制。

光电编码器工作原理

光电编码器工作原理

光电编码器工作原理光电编码器是一种能够将机械位移转换成电信号的装置,它在工业自动化控制系统中起着至关重要的作用。

光电编码器通过光电传感器和编码盘之间的互动,能够准确地测量旋转或线性位移,将其转换成数字信号,从而实现位置、速度和加速度的测量。

本文将详细介绍光电编码器的工作原理。

光电编码器主要由光电传感器和编码盘两部分组成。

光电传感器负责发射和接收光信号,而编码盘则根据需要进行旋转或线性移动。

在光电编码器工作时,编码盘上的光栅或编码孔会随着机械位移的变化而产生相应的光信号变化。

光电传感器接收到这些光信号后,通过电子电路将其转换成数字信号输出,从而实现对机械位移的准确测量。

在光电编码器中,光栅和编码孔是至关重要的部分。

光栅通常由透明和不透明的条纹组成,当光线照射到光栅上时,会产生光信号的变化。

而编码孔则是一些固定在编码盘上的孔洞,当光线照射到编码孔上时,也会产生光信号的变化。

通过检测这些光信号的变化,光电传感器就能够准确地测量出编码盘的位移,进而实现对机械位移的测量。

除了光栅和编码孔,光电编码器中的光电传感器也是至关重要的部分。

光电传感器通常由发光二极管和光敏电阻组成,发光二极管负责发射光线,而光敏电阻则负责接收光信号。

当光线照射到光敏电阻上时,其电阻值会发生变化,通过测量这种变化,就能够准确地检测出光栅和编码孔所产生的光信号变化,从而实现对机械位移的测量。

总的来说,光电编码器通过光电传感器和编码盘之间的互动,能够准确地测量机械位移,将其转换成数字信号输出。

光栅和编码孔作为光电编码器的核心部件,能够产生光信号的变化,而光电传感器则能够准确地检测这些光信号的变化,从而实现对机械位移的准确测量。

光电编码器在工业自动化控制系统中有着广泛的应用,其工作原理的深入理解对于工程师和技术人员来说至关重要。

光电编码器的工作原理

光电编码器的工作原理

光电编码器的工作原理光电编码器是一种常见的位置传感器,通常用于测量旋转或线性运动的位置和速度。

它利用光电效应将光信号转换为电信号,从而实现位置和速度的测量。

本文将介绍光电编码器的基本原理、分类、应用和发展趋势。

一、光电编码器的基本原理光电编码器由光电传感器和光栅盘(或光纤光栅)两部分组成。

光电传感器通常采用光电二极管或光敏电阻等光电元件,用于将光信号转换为电信号。

光栅盘是一种具有透明和不透明区域的圆盘,它通过旋转或线性运动来改变透明和不透明区域的位置,从而产生光脉冲。

光栅盘的透明和不透明区域可以是等宽度的,也可以是不等宽度的,这取决于光电编码器的分辨率要求。

光电编码器的工作原理可以分为两种基本类型:增量式和绝对式。

增量式光电编码器通过检测光栅盘的旋转或线性运动,产生一个脉冲序列,每个脉冲对应一个固定的角度或距离。

这个脉冲序列可以用来计算位置和速度。

增量式光电编码器通常具有高分辨率和高速度,但不能直接确定绝对位置。

绝对式光电编码器通过光栅盘上的编码信息,可以直接确定光栅盘的绝对位置。

这些编码信息可以是二进制码、格雷码或绝对码。

绝对式光电编码器通常具有高精度和高可靠性,但价格较高。

二、光电编码器的分类根据光栅盘的类型,光电编码器可以分为光栅式和光纤光栅式两种。

光栅式光电编码器的光栅盘是一个圆盘,通常由玻璃或金属制成。

光栅盘上的光栅通常是一系列等宽度的透明和不透明区域,可以通过光学显微镜观察。

光栅式光电编码器通常具有高分辨率和高精度,但需要较高的制造成本和安装精度。

光纤光栅式光电编码器的光栅盘是一个由光纤组成的线性结构,通常由光纤束和衬套组成。

光纤光栅式光电编码器的光栅通常是一系列等宽度的透明和不透明区域,可以通过光学显微镜观察。

光纤光栅式光电编码器通常具有较低的制造成本和安装精度,但分辨率和精度较低。

三、光电编码器的应用光电编码器广泛应用于机械、自动化、航空、航天、轨道交通、医疗等领域。

以下是一些典型的应用场景:1、机床和机器人的位置和速度控制。

光电编码器的工作原理

光电编码器的工作原理

光电编码器的工作原理光电编码器是一种广泛应用于测量和控制领域的设备,在自动化、机械、仪器仪表等领域起着至关重要的作用。

它通过光电原理实现对转动角度、位置和速度的测量,具有精确、稳定、高速的特点。

下面将详细介绍光电编码器的工作原理。

光电编码器的主要组成部分包括光源、刻度盘(或规模盘)、光电传感器和信号处理电路。

刻度盘上刻有一系列等距分布的透光孔,这些透光孔对应着不同的角度位置。

当刻度盘随着转轴的运动而转动时,光线从光源透过透光孔射到光电传感器上。

光电传感器是一个光敏元件,常采用光电二极管、光敏三极管、光敏电阻等。

当光线照射到光电传感器上时,光敏元件(例如光电二极管)将光信号转换为电信号,这样就能实现光信号到电信号的转换。

根据刻度盘上透光孔的数量和布局方式,光电编码器可分为增量式光电编码器和绝对式光电编码器两种。

增量式光电编码器通过检测刻度盘上透光孔的变化来测量转动角度或位置,它的工作原理可以分为两个步骤:1.角度测量:当刻度盘转动时,光线依次从各个透光孔射到光电传感器上,光电传感器输出的电信号经信号处理电路转化为相应的脉冲信号。

2.计数测量:通过对脉冲信号进行计数,可以得知刻度盘已经转动的角度。

计数器可以测量正向和反向旋转,并可以根据需要选择不同的分辨率,提供不同精度的测量结果。

绝对式光电编码器能够直接测量转轴的绝对位置,具有输出精度高、不受停电干扰的优点。

绝对式光电编码器的工作原理如下:1.角度测量:刻度盘上的透光孔布局构成了一个二进制编码,每个透光孔代表一个二进制位,通过不同的透光孔组合形成不同的编码。

2.信号读取:光电传感器读取刻度盘上每个透光孔的光信号,并将其转换为相应的电信号。

3.信号处理:经过信号处理电路的处理,将读取到的电信号转化成二进制代码,这个二进制代码代表着转轴的绝对位置。

4.位置输出:将转轴的绝对位置输出给使用者,通常以数字形式或模拟形式呈现。

无论是增量式光电编码器还是绝对式光电编码器,都可以通过适当的信号处理电路和计数器来提供相应的输出信号。

光电编码器工作原理

光电编码器工作原理

编码器工作原理,光电编码器的工作原理分析编码器工作原理绝对脉冲编码器:APC增量脉冲编码器:SPC两者一般都应用于速度控制或位置控制系统的检测元件.旋转编码器是用来测量转速的装置。

它分为单路输出和双路输出两种。

技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。

单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。

增量型编码器与绝对型编码器的区分编码器如以信号原理来分,有增量型编码器,绝对型编码器。

增量型编码器(旋转型)工作原理:由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。

由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。

编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。

分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。

信号输出:信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL 也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。

信号连接—编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。

光电编码器的工作原理

光电编码器的工作原理

光电编码器的工作原理光电编码器是一种常见的位置、速度传感器,广泛应用于工业自动化、机器人、数控机床、电动机控制等领域。

它通过光电传感器和编码盘相互作用,将物理位移转换为数字信号输出。

本文将介绍光电编码器的工作原理,包括构成、工作方式、输出信号等方面。

一、光电编码器的构成光电编码器主要由光电传感器和编码盘两部分组成。

光电传感器一般采用光电二极管或光电三极管,它们能够将光信号转换为电信号。

编码盘则是一种特殊的圆盘,通常由透明和不透明的区域组成,它们按照一定的规律分布在盘上。

光电传感器和编码盘之间相互作用,通过光电信号的变化记录物理位移的变化。

二、光电编码器的工作方式光电编码器的工作方式一般分为两种:增量式和绝对式。

增量式光电编码器能够实时测量物体的运动状态,它将编码盘的运动转换为脉冲信号输出,脉冲数与物体的运动距离成正比。

绝对式光电编码器则能够精确地测量物体的位置,它将编码盘的位置信息转换为二进制编码输出,每个编码对应一个确定的位置。

增量式光电编码器的工作原理如下:编码盘在光电传感器的作用下旋转,透明和不透明的区域交替通过传感器的光电二极管或光电三极管,产生脉冲信号输出。

脉冲数与编码盘旋转的角度成正比,一般为360个或更多。

通过计数器或微处理器可以实时测量物体的位移、速度和加速度等参数。

绝对式光电编码器的工作原理如下:编码盘上的编码器将位置信息转换为二进制编码,每个编码对应一个确定的位置。

当编码盘旋转时,光电传感器能够读取编码器的信息,并将其转换为数字信号输出。

由于每个位置对应一个唯一的编码,因此绝对式光电编码器能够精确地测量物体的位置,而不需要像增量式光电编码器那样进行计数。

三、光电编码器的输出信号光电编码器的输出信号一般为数字信号,常见的有脉冲信号和二进制编码信号。

脉冲信号是增量式光电编码器的输出信号,它是由编码盘旋转产生的脉冲信号组成,每个脉冲代表编码盘旋转的一个角度。

二进制编码信号是绝对式光电编码器的输出信号,它是由编码盘上的编码器转换为二进制编码输出的,每个编码代表编码盘的一个位置。

光电编码器工作原理

光电编码器工作原理

光电编码器工作原理
光电编码器是一种常用的位置传感器,它通过光电原理实现对位置信息的检测
和测量。

光电编码器的工作原理主要包括光源、光栅、接收器和信号处理电路四个部分。

首先,光电编码器的工作原理是基于光电效应的。

光源发出光线,经过光栅的
光栅条或光栅孔,形成光斑,然后被接收器接收。

当光栅相对于光源或接收器发生位移时,光斑的位置也会发生变化,接收器会检测到这种变化,并将其转化为电信号。

其次,光电编码器的工作原理也与信号处理电路有关。

接收器接收到光斑的位
置变化后,会将其转化为脉冲信号。

这些脉冲信号经过信号处理电路进行处理,可以得到与位置、速度、加速度等相关的信息。

光电编码器的工作原理可以分为两种类型,绝对式和增量式。

绝对式光电编码
器通过光栅的不同编码方式,可以直接读取出物体的位置信息,无需进行回零操作。

而增量式光电编码器则需要进行回零操作,通过计算脉冲数量来确定物体的位置信息。

在实际应用中,光电编码器通常用于测量旋转物体的位置和速度,比如机械臂、电机、车辆等。

它具有测量精度高、稳定性好、抗干扰能力强等优点,因此在工业自动化领域得到了广泛的应用。

总的来说,光电编码器的工作原理是基于光电效应和信号处理电路的原理,通
过光源、光栅、接收器和信号处理电路四个部分共同完成对位置信息的检测和测量。

它在工业自动化领域有着重要的应用价值,为生产过程的控制和监测提供了重要的技术支持。

光电编码器的工作原理

光电编码器的工作原理

1.光电编码器的工作原理光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。

这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。

光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。

由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。

此外,为判断旋转方向,码盘还可提供相位相差90º的两路脉冲信号。

根据检测原理,编码器可分为光学式、磁式、感应式和电容式。

根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。

1.1增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90º,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。

它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。

其缺点是无法输出轴转动的绝对位置信息。

1.2绝对式编码器绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。

这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。

显然,码道越多,分辨率就越高,对于一个具有 N位二进制分辨率的编码器,其码盘必须有N条码道。

目前国内已有16位的绝对编码器产品。

绝对式编码器是利用自然二进制或循环二进制(葛莱码)方式进行光电转换的。

绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。

光电编码器的工作原理

光电编码器的工作原理

光电编码器的工作原理
光电编码器是一种利用光电元件和编码技术实现位置、速度等参数检测的装置。

它主要由光源、光敏元件、编码盘和信号处理电路组成。

光电编码器的工作原理是通过光源产生光线,经过光透镜聚焦后射向编码盘。

编码盘上通常有一圆形或线状的光栅结构,其由透明和不透明的区域交替排列。

当光线照射到光栅上时,透明区和不透明区会使光线产生不同的衍射效应。

光敏元件位于编码盘的另一侧,其通常是一种光电二极管或光电三极管。

当光线通过光敏元件时,根据光敏元件的特性会产生电流或电压信号。

这些信号会随着光栅的运动而改变,进而表征编码盘的位置或速度。

为了提高测量精度,光电编码器常采用两路光电传感器,即A 相和B相。

这两路光电传感器的信号相位差90度,通过检测
A相和B相的信号变化,可以精确测量编码盘的位置和方向。

此外,还可通过对A相和B相之间的脉冲信号进行计数,以
实现对位置、速度等参数的检测。

光电编码器的信号处理电路对光敏元件产生的电流或电压信号进行放大、滤波和数字化处理。

通过这些处理,可以得到高质量、准确的位置和速度信号,以满足实际应用中的需求。

总之,光电编码器的工作原理是利用光源照射光栅编码盘,光敏元件检测光线经过编码盘后的变化,并将其转化为电信号。

通过信号处理电路的处理,可以实现对位置、速度等参数的高精度检测。

光电编码器工作原理 编码器工作原理

光电编码器工作原理 编码器工作原理

光电编码器工作原理编码器工作原理光电编码器的紧要工作原理为光电转换,但其依据原理的不同又可分为增量型、型和混合式增量型。

那么光电转换是如何进行的呢?这三种光电编码器的工作原理又存在哪些差别呢?接下来我们就一起来看看吧一、光电编码器工作原理——简介光电编码器,又称为手轮脉冲发生器,简称手轮,是一种通过光电转换将输出轴的机械几何位移量转换为脉冲或数字量的传感器,紧要应用于各种数控设备,是目前应用zui多的一种传感器。

二、光电编码器工作原理——分类光电编码器有国标和非国标两种分类标准。

按原材料的不同可分为天然橡胶型、塑料型、胶木型和铸铁卸,按样式的不同可分为圆轮缘型、内波纹型、平面面、表盘型等等,按工作原理的不同可分为光学型、磁型、感应型和电容型,按刻度方法和信号输出形式的不同可分为增量型、型和混合型。

三、光电编码器工作原理光电编码器紧要由光栅盘和光电检测装置构成,在伺服系统中,光栅盘与电动机同轴致使电动机的旋转带动光栅盘的旋转,再经光电检测装置输出若干个脉冲信号,依据该信号的每秒脉冲数便可计算当前电动机的转速。

光电编码器的码盘输出两个相位差相差90度的光码,依据双通道输出光码的状态的更改便可判定出电动机的旋转方向。

四、光电编码器工作原理——增量式编码器增量式编码器是光电编码器的一种,其紧要工作原理也是光电转换,但其输出的是A、B、Z三组方波脉冲,其中A、B两脉冲相位差相差90度以判定电动机的旋转方向,Z脉冲为每转一个脉冲以便于基准点的定位。

五、光电编码器工作原理——式编码器式编码器的紧要工作原理为光电转换,但其输出的是数字量,在式编码器的码盘上存在有若干同心码道,每条码道由透光和不透光的扇形区间交叉构成,码道数就是其所在码盘的二进制数码位数,码盘的两侧分别是光源和光敏元件,码盘位置的不同会导致光敏元件受光情况不同进而输出二进制数不同,因此可通过输出二进制数来判定码盘位置。

六、光电编码器工作原理——混合式值编码器混合式值编码器的紧要工作原理同样为光电转换,其与增量型、型编码器的不同在于输出量不同。

光电编码器的工作原理和应用电路

光电编码器的工作原理和应用电路

光电编码器的工作原理和应用电路1 光电编码器的工作原理光电编码器(Optical Encoder)俗称“单键飞梭”,其外观好像一个电位器,因其外部有一个可以左右旋转同时又可按下的旋钮,很多设备(如显示器、示波器等)用它作为人机交互接口。

下面以美国Greyhill公司生产的光电编码器为例,介绍其工作原理及使用方法。

光电编码器的内部电路如图1所示,其内部有1个发光二极管和2个光敏三极管。

当左右旋转旋钮时,中间的遮光板会随旋钮一起转动,光敏三极管就会被遮光板有次序地遮挡,A、B相就会输出图2所示的波形;当按下旋钮时,2、3两脚接通,其用法同一般按键。

当顺时针旋转时,光电编码器的A相相位会比B相超前半个周期;反之,A相会比B相滞后半个周期。

通过检测A、B两相的相位就可以判断旋钮是顺时针还是逆时针旋转,通过记录A或B相变化的次数,就可以得出旋钮旋转的次数,通过检测2、3脚是否接通就可以判断旋钮是否按下。

其具体的鉴相规则如下:1.A为上升沿,B=0时,旋钮右旋;2.B为上升沿,A=l时,旋钮右旋;3.A为下降沿,B=1时,旋钮右旋;4.B为下降沿,A=O时,旋钮右旋;5.B为上升沿,A=0时,旋钮左旋;6.A为上升沿,B=1时,旋钮左旋;7.B为下降沿,A=l时,旋钮左旋;8.A为下降沿,B=0时,旋钮左旋。

通过上述方法,可以很简单地判断旋钮的旋转方向。

在判断时添加适当的延时程序,以消除抖动干扰。

2 WinCE提供的驱动模型WinCE操作系统支持两种类型的驱动程序。

一种为本地驱动程序,是把设备驱动程序作为独立的任务实现的,直接在顶层任务中实现硬件操作,因此都有明确和专一的目的。

本地设备驱动程序适合于那些集成到Windows CE平台的设备,诸如键盘、触摸屏、音频等设备。

另一种是具有定制接口的流接口驱动程序。

它是一般类型的设备驱动程序。

流接口驱动程序的形式为用户一级的动态链接库(DLL)文件,用来实现一组固定的函数称为“流接口函数”,这些流接口函数使得应用程序可以通过文件系统访问这些驱动程序。

光电式编码器(结构、工作原理、提高分辨率的方法)电磁

光电式编码器(结构、工作原理、提高分辨率的方法)电磁

0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2、扫描法:
这种方法的原理是根据二进制码的特点设计的。二 进制码是从最低位向高位逐级进位的,最低位变化最 快,高位逐渐减慢。 扫描法有V扫描、U扫描以及M扫描。
码盘:光电式编码器的码
盘是一块圆形的光学玻璃,采 用照相腐蚀工艺,在码盘上刻 出透光和不透光的码形。并采 用光电转换元件代替接触式编 码器地电刷。
光电编码器的精度取决于码盘的精度。
提高分辨率的方法——插值法
若码盘已有14条(位)码道,在14位的码道上增加1 条专用附加码道,如图:
电磁式编码器
在数字式传感器中,电磁式编码器是近年发展起来的一 种新型电磁敏感元件,它是随着光电式编码器的发展而发展起 来的。光电式编码器的主要缺点是对潮湿气体和污染敏感,但 可靠性差,而电磁式编码器不易受尘埃和结露影响,同时其结 构简单紧凑,可高速运转,响应速度快(达500~700kHz), 体积比光电式编码器小,而成本更低,且易将多个元件精确地 排列组合,比用光学元件和半导体磁敏元件更容易构成新功能 器件和多功能器件。
只介绍V扫描法 :
V扫描法是在最低位码道上安装一电刷,其他位 码道上均安装有两个电刷:一个电刷位于被测位置的 前边,称为超前电刷;另一个放在被测位置的后边, 称为滞后电刷。
光电式编码器(码盘式编码器)
结构 工作原理 提高分辨率的方法
光电式编码器的结构、工作原理
光电式编码器的最大特点是非接触测量,允许高速转动 它是采用光电原理制成。 包括:光源、光学系统、码盘、光电元件和测量电路
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

只介绍V扫描法 :
V扫描法是在最低位码道上安装一电刷,其他位 码道上均安装有两个电刷:一个电刷位于被测位置的 前边,称为超前电刷;另一个放在被测位置的后边, 称为滞后电刷。
光电式编码器(码盘式编码器)
结构 工作原理 提高分辨率的方法
光电式编码器的结构、工作原理
光电式编码器的最大特点是非接触测量,允许高速转动 它是采用光电原理制成。 包括:光源、光学系统、码盘、光电元件和测量电路
应用:
长春第一光学仪器厂生产的CHA系列实心轴增量式编码器, 其外径 40,轴径 6
码盘:在码盘上按照编码的图形,制作出磁化区和
非磁化区
电刷:采用小型的磁环或马蹄形磁芯作为磁头。磁头
上有两组绕组线圈,一组是激励线圈,另一组是输出 线圈。
脉冲盘式数字传感器
结构 工作原理 旋转方向的判 断
脉冲盘式数字传感器的结构和工作原理
脉冲盘式编码器又称为增量编码器,它不能直接 产生几位编码输出。
接触式编码器(码盘式编码器)
结构 工作原理 提高精度的途径
结构和工作原理
接触式编码器由码盘和电刷组成 码盘:是利用2-1码等)的盘 式印刷电路板。
电刷:是一种活动触头结构,在外界力的作用
下旋转码盘时,电刷与码盘接触处就产生某种 码制的某一数字编码输出。
0000 0001 0011 0010 0110 0111 0101 0100 1100 1101 1111 1110 1010 1011 1001 1000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2、扫描法:
这种方法的原理是根据二进制码的特点设计的。二 进制码是从最低位向高位逐级进位的,最低位变化最 快,高位逐渐减慢。 扫描法有V扫描、U扫描以及M扫描。
工作原理:(以四位二进制码盘为例 )
8421码: 是最基本、最简单 的二进制码,是用 四位 二进制来表示 一位等值的十进制 数,共十六种组合。
以8421制作的码盘和旋转轴固定在一起。 码盘上有四圈码道,相应地,对应码道上有一个电刷。四 个电刷沿着一个固定的径向 安装。
涂黑处为导电区,电刷接触导电部分时,输出高电平(“1”) 白处为绝缘区 ,电刷接触绝缘部分时,输出低电平(“0”)
角 度
电刷位置 二进制码(B) 循环码(R) 十进制数
0 1 2 3 4 5 6 7
8
9 10 11 12 13 14 15
a b c d e f g h i j k l m n o p
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
码盘:光电式编码器的码
盘是一块圆形的光学玻璃,采 用照相腐蚀工艺,在码盘上刻 出透光和不透光的码形。并采 用光电转换元件代替接触式编 码器地电刷。
光电编码器的精度取决于码盘的精度。
提高分辨率的方法——插值法
若码盘已有14条(位)码道,在14位的码道上增加1 条专用附加码道,如图:
电磁式编码器
在数字式传感器中,电磁式编码器是近年发展起来的一 种新型电磁敏感元件,它是随着光电式编码器的发展而发展起 来的。光电式编码器的主要缺点是对潮湿气体和污染敏感,但 可靠性差,而电磁式编码器不易受尘埃和结露影响,同时其结 构简单紧凑,可高速运转,响应速度快(达500~700kHz), 体积比光电式编码器小,而成本更低,且易将多个元件精确地 排列组合,比用光学元件和半导体磁敏元件更容易构成新功能 器件和多功能器件。
编码器的分辨率取决于码道的数目n
360 n 2

位数越多,分辨精度越高。当然分辨精度越 高,对码盘和电刷的制作和安装要求越严格。一 般取n<9
存在问题:
由于四个电刷扫描的不同步引起错码
产生非单值误差
另外:电刷安装不精确引起的机械偏差,码盘制作和 安装不准
提高精度的途径:(防止错码出现)
1、采用循环码盘: 循环码的特点 是相邻两个数码间 只有一位变化,即 使制造或安装不精 确,产生的误差最 多也只是最低位, 在一定程度上可消 除非单值误差。因 此采用循环码盘比 8-4-2-1码盘的精度 更高。
有三个码道:最外圈——零位码道 中间——外圈A码道 最内圈——B码道
脉冲盘式编码器只能用于测量相对于上一次的角度 增量,因此称为增量式编码器。 它的精度取决于码盘的精度。
脉冲盘式编码器的辨向方式
设计A、B码道就是实现辨向功能
脉冲盘式编码盘两个码道产生的光电脉冲被两个光 电元件接收,产生A、B两个输出信号,这两个输出信 号经过放大整形后,产生P1和P2脉冲,将它们分别接 到D触发器的D端和CP端。
第五章 编码器
分类 接触式编码器(结构、工作原理、提高精度的 途径) 光电式编码器(结构、工作原理、提高分辨率 的方法) 电磁式编码器 脉冲盘式数字传感器(结构、工作原理、旋转 方向的判断) 应用
分类:
编码器主要分为 脉冲盘式(增量编码器) 码盘式(绝对编码器)
接触式
码盘式
电磁式 非接触式编码器 光电式
相关文档
最新文档