人教版初一数学上册分配配套问题
5.3 实际问题与一元一次方程—配套问题 课件2024-2025学年人教版(2024)数学七年级上册
根据题意,列方程:3×40x = (6-x)×240.
解得
x = 4.
则 பைடு நூலகம்-x = 2.
共配成仪器:4×40=160 (套).
答:应用 4 立方米钢材做 A 部件, 2 立方米钢材做 B 部件, 共配成仪器 160 套.
小结 解决此类问题有如下规律:
如果 a件甲产品和 b件乙产品配成一套,那么
甲:乙=a:b
试一试
制作一张桌子要用一个桌面和4条桌腿,1木材可以做20个桌面,或制作400条桌 腿,现有12 木材,应怎样用料才能制作尽可能多的桌子?
.某纺织厂有纺织工人300人,为增产创收,纺织厂又增设了制衣车间,准备将这300 名纺织工人合理分配到纺织车间和制衣车间。现在知道工人每人每天平均能织布30 米或制4件成衣,每件成衣用布1.5米若使生产出的布刚好制成成衣,问应有多少人 去生产成衣?
小结
用一元一次方程解决实际问题的基本过程:
一审(用列表法理解问题中的基本关系) 二设(设适当的未知数) 三列(列出方程方程) 四解(解一元一次方程) 五验(数学方程的解,实际问题有意义) 六答(实际问题的答案)
再
见
若某个工厂的工人每人每天可以生产1000个口罩面或 1200根耳绳,1个口罩面配2根耳绳:
则3个工人生产口罩面,6个工人生产耳绳,则生产出来的 口罩和 耳绳可以刚好配套吗?为什么
例1 某车间有40名工人,每人每天可以生产1000个口罩面或1200
根耳绳.1个口罩面配2根耳绳,为使每天生产的口罩面和耳绳 刚好配套,应安排生产口罩面和耳绳的工人各多少名?
生产口罩面人数 生产耳绳人数
口罩面 耳绳
每人每天的工作 效率
人数
40名工人
人教版七年级数学上册5.3第1课时配套问题与工程问题课件
解析 设甲工程队每天掘进x米,则乙工程队每天掘进(x-2)米,
由题意,得2x+(x+x-2)=26,
解得x=7,则x-2=5,
所以甲工程队每天掘进7米,乙工程队每天掘进5米,
146=1206(天).
75
答:甲、乙两个工程队还需联合工作10天.
9.(2023山东潍坊昌邑期末,24,★★☆)一项工程,甲队单独完 成需30天,乙队单独完成需45天. (1)现甲队先单独做20天,之后两队合作,甲、乙两队合作多 少天才能把该工程完成? (2)甲队施工一天需付工程款3.5万元,乙队施工一天需付工 程款2万元,则由甲、乙两队全程合作完成该工程,需付多少 工程款?
们一起做4小时,正好完成这项工作的 3,假设每人的工作效率
4
相同,那么应该安排多少人先工作?
解析 解法一(根据总工作量列方程):
设安排x人先工作,
由题意,得4× 1 x+ 1 (x+3)×4= 3,
80 80
4
整理,得 x + x =3 3,
20 20 4
解方程,得x=6.
答:应该安排6人先工作.
2.(易错题)(2024四川绵阳游仙期中)某工厂中秋节前要制作 一批盒装月饼,每盒装4块大月饼和6块小月饼,制作1块大月 饼要用0.05 kg面粉,1块小月饼要用0.02 kg面粉.若制作若干 盒月饼共用了640 kg面粉,请问制作大、小两种月饼各用了 多少面粉?
解析 易错点:易用错配套比.
设用x kg面粉制作大月饼,则用(640-x)kg面粉制作小月饼,由
解析 设A工程队整治河道x米,
由题意得 x +280=2x5,
12 10
解方程,得x=180.
5.3配套问题 课件 2024-2025学年数学人教版(2024)七年级上册
1
2
3
4
5
6
7
8
9 10 11 12
5.3 实际问题与一元一次方程(2)——配套问题 分层检测
12. 在手工制作课上,老师组织七年级(2)班的学生用硬纸制作圆柱形茶 叶筒.七年级(2)班共有学生45人,其中男生人数比女生人数少5人,并且 每名学生每小时剪筒身30个或剪筒底90个. (1)七年级(2)班有男生、女生各多少人? 解:设七年级(2)班有男生有 x 人,则女生有(x+5)人,
依题意,得4×500 x =800(28- x ), 解得 x =8,28- x =20. 答:应安排8名工人生产机壳,20名工人生产机脚.
1
2
3
4
5
6
7
8
9 10 11 12
5.3 实际问题与一元一次方程(2)——配套问题 课堂学练
知识点2:配套的比例关系是 m ∶ n 型 3. 【例】机械厂加工车间有27名工人,每人每天加工小齿轮12个或大齿 轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加 工大、小齿轮,才能使每天加工的大、小齿轮刚好配套? 解:设需安排 x 名工人加工大齿轮,(27- x )名工人加工小齿轮,
1
2
3
4
5
6
7
8
9 10 11 12
5.3 实际问题与一元一次方程(2)——配套问题 分层检测
(2)如果3个A种零件与2个B种零件组合后能形成一个整件,为使这些工 人每小时制造出的零件都能恰好组合成整件,那么应安排多少名工人制 造A种零件? 解:应安排 y 名工人制造A种零件,
依题意得2×12 y =3×10(18- y ), 解得 y =10. 答:应安排10名工人制造A种零件.
“配套”问题-人教版七年级数学上册教案
配套问题-人教版七年级数学上册教案一、学情分析本次教案的教学对象为七年级学生,他们已经学习了初中数学基础知识,并逐渐掌握了基础的数学运算和方程、函数等的基础概念。
在这个过程中,对于他们来说理解和掌握数学配套问题非常重要,因为这种问题在实际生活和数学运用中都很常见。
二、教学目标1.理解配套的概念和基本特点;2.掌握解决简单配套问题的方法;3.能够将配套问题应用到实际生活中。
三、教学重点难点1.理解配套问题的基本概念和特点;2.通过实例掌握简单配套问题的解法;3.将配套问题应用到实际情境中。
四、教学内容与方法内容1.配套问题的概念和特点;2.配套问题的解决方法;3.实际问题的应用。
方法1.教师讲解:通过简单的配套问题,引导学生理解配套的基本概念和特点;2.组内讨论:让学生在小组内互相讨论配套问题的解法,并提出问题;3.组间答辩:各组展示自己的解法,并进行讨论;4.实际应用:通过实际情境的应用问题,让学生将所学习的知识运用到实践中。
五、教学过程1. 铺垫通过教师提问,引导学生回忆和复习比例和百分数的相关知识,从而引出配套问题。
2. 讲解教师简单介绍配套的概念和特点,并通过图表和实例的方式引导学生理解和掌握。
3. 组内讨论让学生在小组内讨论配套问题的解法,并提出自己的疑问和问题。
4. 组间答辩各组进行答辩,展示自己的解法,并进行讨论和解答。
5. 实际应用通过实际情境的应用问题,让学生运用所学的知识解决实际问题。
六、教学反思本次教学中,教师通过引入实际问题,让学生理解配套问题的基本概念和特点,并通过组内讨论和组间答辩,让学生更好的理解、掌握了解决配套问题的方法。
同时,通过实际应用问题的提问,让学生将所学知识运用到实际生活中,并加深了对知识的理解和掌握。
人教版七年级上册数学一元一次方程应用题—配套问题
人教版七年级上册数学一元一次方程应用题—配套问题1.某服装厂要生产同一种型号的服装,已知3m长的布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套.(1)列一元一次方程解决问题:现库内存有布料200m,应如何分配布料做上衣和做裤子才能恰好配套?可以生产多少套衣服?(2)如果恰好有这种布料327m,最多可以生产多少套衣服?本着不浪费的原则,如果有剩余,余料可以做几件上衣或裤子?2.某车间有技术工85人,平均每天每人可加工甲种部件16个或乙种部件10个,4个甲种部件和6个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?3.臭豆腐是长沙的特色名小吃.某包装臭豆腐厂有60名工人生产包装臭豆腐料包,已知每袋包装臭豆腐里有1个汤料包和4个配料包,每名工人每小时可以加工100个汤料包或者200个配料包,为使每天加工生产出的汤料包和配料包刚好配套,请问安排多少名工人去加工汤料包?4.利兴罐头盒厂有18个工人,每人每天可制作盒身25个,或制作盒底40个,一个盒身与2个盒底配成一套罐头盒,那么安排多少人制作盒身、多少人制作盒底才能使一天生产的盒身与盒底刚好配套?(列方程解)5.某糕点厂中秋节前要制作一批盒装月饼,每盒中装4块大月饼和8块小月饼,制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉,现共有面粉4500kg,制作两种月饼应各用多少面粉,才能生产最多的盒装月饼?最多可生产多少盒盒装月饼?6.某医疗器械企业计划购进20台机器生产口罩,已知生产口罩面的机器每台每天的产量为12000个,生产耳挂绳的机器每台每天的产量为96000个,口罩是一个口罩面和两个耳挂绳构成,为使每天生产的口罩面和耳挂绳刚好配套,该企业应分别购进生产口罩面和生产耳挂绳的机器各多少台?7.为积极落实“垃圾分类”,环保公司计划派出13名工人外出安放A、B两种型号的专用垃圾箱,其中每人每天可以安放4个A型垃圾箱或者5个B型垃圾箱.按照规范要求,1个A型垃圾箱要配2个B型垃圾箱.为使每天安放的A型垃圾箱和B型垃圾箱刚好配套,公司应分配多少名工人安放A型垃圾箱?8.某工厂生产茶具,每套茶具有1个茶壶和4只茶杯组成,生产这套茶具的主要材料是紫砂泥,用1千克紫砂泥可做2个茶壶或8只茶杯.现要用6千克紫砂泥制作这些茶具,应用多少千克紫砂泥做茶壶,多少个千克紫砂泥做茶杯,恰好配成这种茶具多少套?9.一车间加工轴杆和轴承,每名工人每天平均可以加工轴杆12根或者轴承16个,1根轴杆与2个轴承为一套,该车间共有90名工人;(1)应该怎样调配,多少名工人加工轴杆,多少名工人加工轴承,才能使每天生产的轴承和轴杆正好配套?(2)由于急需,又从二车间抽调12名具有相同能力的工人来一车间;问能安排这些新来的工人加工轴杆、轴承,使每天生产的轴承和轴杆正好配套?10.有蓝色和黑色两种布料,其中蓝布料每米30元,黑布料每米50元.(1)若花了5400元买两种布料共136米,两种布料各买了多少米?(2)用蓝布料做上衣,每件上衣需要布料1.5米,用黑布料做裤子,每条裤子需要布料1.2米,一件上衣和一条裤子配成一套.购买这两种布料共162米做上衣和裤子,布料全部用完,且做的上衣和裤子刚好完全配套,购买这162米布料花了多少元?11.某丝巾厂家70名工人义务承接了志愿者手上,脖子上的丝巾的制作任务.已知每人每天平均生产手上的丝巾180条或者脖子上的丝巾120条,一条脖子上的丝巾要配2条手上的丝巾.(1)为了使每天生产的丝巾刚好配套,应分配多少名工人生产手上的丝巾,多少名工人生产脖子上的丝巾?(2)在(1)的方案中,能配成_______套.12.某车间36名工人生产螺母和螺钉,每人每天平均生产螺钉200个或螺母500个,一个螺钉要配两个螺母,为了使每天的产品刚好配套,应该分配多少名工人生产螺钉?13.某礼品制造厂接了一批玩具熊的订单,按计划天数生产,若每天生产20个玩具熊,则最终比订单少生产100个;若每天生产23个玩具熊,则最终比订单多生产20个.原计划几天完成订单?14.制作一张桌子,要用一个桌面和4条腿组成,31m木材可制作300条桌腿或可制作15个桌面,现有330m木材,应该用多少立方木材制作桌面,用多少立方木材制作桌腿,才能使桌腿和桌面配套?15.某工厂车间有28个工人,生产A零件和B零件,每人每天可生产A零件18个或B零件12个(每人每天只能生产一种零件),一个A零件配两个B零件,且每天生产的A零件和B零件恰好配套.工厂将零件批发给商场时,求该工厂有多少工人生产A 零件?16.某城市平均每天产生垃圾700吨,由甲,乙两个垃圾处理厂处理.已知甲厂每小时可处理垃圾55吨,每吨需费用10元;乙厂每小时可处理垃圾45吨,每吨需费用11元.(1)甲,乙两厂同时处理该城市的垃圾,每天需多少时间完成?(2)如果该城市每天用于处理垃圾的费用为7300元,那么甲厂每天处理垃圾多少吨?17.机械厂加工车间有52名工人,平均每人每天加工大齿轮12个或小齿轮8个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套?18.某车间有28名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母12个或螺栓22个.若分配多少名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套.19.为了增强身体素质,提高班级凝聚力,某校初一年级师生在11月中旬集体乘车去青龙湖参加定向越野活动.学校租来大巴车若干辆,若按照每辆车载40名学生,则还有22名学生没有座位;若按照每辆车载43名学生,则前面的车辆都是载43名学生,只有最后一辆车载23名学生,求参加定向越野的学生共有多少人?20.某工厂车间有28个工人,每人每天可生产A零件18个或B零件12个(每人每天只能生产一种零件),一个A零件配两个B零件,且每天生产的A零件和B零件恰好配套.设该工厂有x名工人生产A零件:(1)求车间每天生产A零件和B零件各多少个?(用含x的式子表示)(2)求该工厂有多少工人生产A零件?。
人教版七年级数学上册配套问题省名师优质课赛课获奖课件市赛课一等奖课件
解得:x=60 则做盒底旳铁皮为:100-x=40(张)
答:用60张白铁皮做盒身,40张白铁皮做盒底.
措施规律:
生产调配问题一般从调配后 各量之间旳倍、分关系寻找相等 关系,建立方程。
归纳小结:
用一元一次方程处理实际问题旳基本过程如下:
解:设生产甲种零件 x 天,依题意,得:
2×100x=3×100(30-x) 解得:x=18 则生产乙种零件旳天数为:30-x=12(天) 答:应安排生产甲种零件18天,乙种零件12天.
(3)、一套仪器由一种A部件和三个B部件构成。用1立 方米钢材可做40个A部件或240个B部件。现要用6立 方米钢材制作这种仪器,应用多少钢材做A部件,多 少钢材做B部件,恰好配成这种仪器多少套?
钢材(m3) 个数(个/m3) 数量(个)
A部件
X
40
40x
B部件
6-X
240 240(6-x)
A 1 3 A 1 B
B3 3×A部件旳数量 = B零件旳数量
3×40X= 240(6-X)
(3)、一套仪器由一种A部件和三个B部件构成。用1立 方米钢材可做40个A部件或240个B部件。现要用6立 方米钢材制作这种仪器,应用多少钢材做A部件,多 少钢材做B部件,恰好配成这种仪器多少套?
合并同类项,得 3x=180
系数化为1,得 x=60.
所以做裤子旳人数为: 90-x=30(人).
答:做衣服旳人数为60人,做裤子旳人数为30人.
(2)某车间每天能生产甲种零件100个,或者 乙种零件100个.甲、乙两种零件分别取3个、2个才 干配成一套.要在30天内生产最多旳成套产品,问怎 样安排生产甲、乙两种零件旳天数?
人教版数学七年级上册《“配套”问题》教案1
人教版数学七年级上册《“配套”问题》教案1一. 教材分析《“配套”问题》是人教版数学七年级上册的一章内容,主要讲述了配套问题的解法和相关应用。
本章通过实际问题引入配套概念,使学生了解并掌握成套物品的搭配问题。
教材内容由浅入深,从简单到复杂,让学生在解决实际问题的过程中,体会数学的乐趣,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在进入七年级之前,已经学习了初步的数学知识,对于一些基本的运算和数学概念有一定的了解。
但面对实际问题,部分学生可能还缺乏解决问题的思路和方法。
因此,在教学过程中,需要关注学生的个体差异,针对不同层次的学生进行引导和启发,帮助他们建立解决实际问题的信心。
三. 教学目标1.知识与技能:让学生掌握配套问题的解法,能够独立解决简单的配套问题。
2.过程与方法:通过解决实际问题,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生积极参与数学学习的积极性。
四. 教学重难点1.重点:配套问题的解法及其应用。
2.难点:如何将实际问题转化为数学模型,并运用配套问题的解法进行求解。
五. 教学方法采用问题驱动的教学方法,以学生为主体,教师为主导。
通过引导学生观察、分析、思考、讨论,激发学生的学习兴趣,培养学生的独立解决问题的能力。
六. 教学准备1.教具:黑板、粉笔、多媒体设备。
2.教材:《人教版数学七年级上册》。
3.学具:笔记本、铅笔、橡皮。
七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,如“小明有3红球和2蓝球,他想用这些球组成不同颜色的组合,请问他有多少种组合方式?”引起学生的兴趣,引导学生思考如何解决这类问题。
2.呈现(10分钟)教师引导学生观察问题,并提出解决思路。
让学生尝试用数学语言描述问题,从而引出配套概念。
例如,将红球和蓝球看作两个集合,求解两个集合的组合问题。
3.操练(10分钟)教师给出一些简单的配套问题,让学生独立解决。
人教版数学七年级上册实际问题与一元一次方程-配套问题课件
解: (1) 设盈利25%的衣服进价是 x 元, 依题意得 x+0.25 x=60 解得 x=48.
(2) 设亏损25%的衣服进价是 y元, 依题意得 y-0.25y=60 解得 y=80.
两件衣服总成本:x+y=48+80=128 (元). 因为120-128=-8(元) 所以卖这两件衣服共亏损了8元.
列出方程 (4)通过解方程
解决问题
每人每天生 产(个)
生产人员分 配(个)
生产总量 (个)
甲种零件
12 x
12x
乙种零件
16 27-x 16× (27-x)
解题过程如下:
解:设应安排x名工人生产甲种零 件,(27-x)名工人生产乙种零件. 依题意得: 3× 16× (27-x)=2×12x 即24x=48(27-x) 解方程得x=18 27-18=9 答:应安排18人生产甲种零件,9 人生产乙种零件
列出方程 (4)通过解方程
解决问题
变式演练,掌握新知
某车间有27名工人,生产甲、乙两种零件,每3个甲零件与2个乙零件配成一套,已知每 个工人每天能加工甲零件12个或乙零件16个,为使每天生产的两种零件配套,应如何分 配工人的生产任务?
配套关系
甲:乙=3:2
等量关系
3乙总=2甲总
(1)抓住配套关系 (2)设出未知数 (3)根据配套关系
我们也可以借助表格来进一步分析题目中的数量 关系.
每人每天生 产(个)
生产人员分 配(个)
生产总量 (个)
螺钉
1200 x
1200x
螺母
2000 22-x
2000(22-x)
每天的工作总量=每人每天的工作效率 × 人数 根据配套关系 2倍螺钉数量=螺母数量 列出方程
人教版数学七年级上册3.4.1 配套问题与工程问题教案
3.4 实际问题与一元一次方程第1课时 配套问题与工程问题●情景导入 前面我们学习了一元一次方程的解法,本节课,我们将讨论一元一次方程的应用.生活中,有很多需要进行配套的问题,如课桌和凳子、螺钉和螺母、电扇叶片和电机等,大家还能举出一些生活中配套问题的例子吗?【教学与建议】教学:通过这一情景的导入,让学生认识到配套问题无处不在.建议:让学生例举日常生活中配套问题.●悬念激趣 展示近年来全国各地的城市面貌变化的图片,让学生感受到我国经济正突飞猛进的发展,我们的家乡发生了日新月异的变化,同时工人叔叔们在盖房子、修建公路的工程建设中,经常会遇到一些数学问题.某市内要修一条公路,公路大约长120 km.有两个工程队找到了局长,甲工程队说:“包给我们,保证30天完成”;乙工程队说:“包给我们,保证20天就完成”.如果你是局长,会怎么办呢?【教学与建议】教学:展示工程问题,明确本课学习的列一元一次方程解应用题的方法技巧,调动学生的学习热情.建议:小组内讨论说出自己的见解. *命题角度1 产品配套问题此类问题中的配套的物品之间具有一定的数量关系,可作为列方程的依据.【例1】某车间有28名工人,每人每天能生产桌子12张或椅子18把.设有x 名工人生产桌子,其他工人生产椅子,每天生产的桌子和椅子按1∶2配套,则所列方程正确的是(D)A .12x =18(28-x )B .18x =12(28-x )C .2×18x =12(28-x )D .2×12x =18(28-x )【例2】用白铁皮做罐头盒,每张白铁皮可制盒身16个或盒底43个,一个盒身与两个盒底配成一套罐头盒.现在150张白铁皮,用多少张白铁皮制盒身,多少张白铁皮制盒底可以正好制成整套罐头盒而无余料?若设用x 张白铁皮制盒身,则所列的方程应该是__2×16x =43(150-x )__.*命题角度2 工程问题工作总量、工作时间、工作效率,它们的关系是:工作总量=工作时间×工作效率.【例3】一项工程,甲队单独完成需要20天,乙队单独完成需要30天.若先由甲队单独做5天,剩下的部分由甲、乙两队合作完成,则还需要的天数是(A)A .9B .10C .12D .15【例4】整理一批图书,如果由一个人单独做要用30 h ,现先安排一部分人做1 h ,随后又增加6人和他们一起做了2 h ,恰好完成这项工作.假设每个人的工作效率相同,那么应先安排多少人工作?解:设应先安排x 人工作.根据题意,得x 30 +x +630 ×2=1,解得x =6.答:应先安排6人工作.*命题角度3 人员调配问题解决人员调配问题,理清调配前后的等量关系,恰当设出未知数,正确列出方程.【例5】某班同学参加平整土地劳动,运土人数比挖土人数的一半多2人.若从挖土人员中抽出7人去运土,则两者人数相等.求原来运土和挖土的各有多少人.解:设原来挖土的有x 人,则原来运土的有⎝⎛⎭⎫12x +2 人. 根据题意,得x -7=12 x +2+7,解得x =32.则12 x +2=18.答:原来运土的有18人,挖土的有32人.高效课堂 教学设计1.熟练掌握利用一元一次方程解决产品配套问题和工程问题的方法,抓住解决这两类问题的关犍.2.熟练掌握列方程解决实际问题的一般思路.▲重点列方程解决实际问题.▲难点根据题意找等量关系.◆活动1 新课导入48位大学生暑假到水利工地做义工,若每人每天平均挖土5 m 3或运土3 m 3,他们如何配合,才能使挖出的土及时运走?若设其中x 人挖土,则运土的人数为__(48-x )__人,根据题意,可列方程__5x =3(48-x )__.◆活动2 探究新知1.教材P 100 例1.提出问题:(1)“1个螺钉配2个螺母”隐含着什么等量关系?(2)本题中有哪些等量关系?(3)如果设x 名工人生产螺母,怎样列方程?学生完成并交流展示.2.教材P 100 例2.提出问题:(1)题目中把什么看作1?(2)题目中的已知量和未知量分别是什么?(3)题目中的等量关系是什么?(4)列出的方程是什么?(5)由此你能归纳出用一元一次方程解决实际问题的基本步骤吗?学生完成并交流展示.◆活动3 知识归纳1.配套问题:关键是明确题目中的数量关系,根据数量关系列出方程.2.工程问题:常把总工作量看作1,再利用“工作量=人均效率×人数×时间”的关系列出方程.3.用一元一次方程解决实际问题的基本步骤包括:(1)审清题意,找__等量关系__;(2)设__未知数__,一般设所求的量为未知数;(3)列方程;(4)解方程;(5)检验、作答.◆活动4 例题与练习例1 某生产车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个,该如何分配工人生产镜片和镜架,才能使每天生产的产品配套?解:设安排x 名工人生产镜片,则有(60-x )名工人生产镜架.由题意,得200x 2 =50(60-x ),解得x =20,则60-x =40.答:安排20名工人生产镜片,40名工人生产镜架,才能使每天生产的产品配套.例2 整理一批数据,由一人做需80 h 完成,现在计划先由一些人做2 h ,再增加5人做8 h ,完成这项工作的34 ,应该怎样安排参与整理数据的具体人数?解:设开始安排x 人做.依题意,得2×180 x +8×180 (x +5)=34 ,解得x =2.答:应该先安排2人做2 h 后,再增加5人做8 h .例3 一个三位数,十位上的数字比个位上的数字大3,且比百位上的数字小1,三个数字之和的50倍比这个三位数小2,求这个三位数.解:设十位数字为x ,则个位数字为x -3,百位数字为x +1,这个三位数为100(x +1)+10x +x -3. 根据题意,得50(x +x -3+x +1)=100(x +1)+10x +x -3-2,解得x =5.则这个三位数为100×(5+1)+10×5+5-3=652.练习1.教材P 101 练习第1,2题.2.教室里有40套桌椅(一把椅子配一张桌子),总价值2 800元,每把椅子20元,则每张桌子多少元?设每张桌子x元,可列方程为(B)A.40x+20=2 800 B.40x+40×20=2 800C.40(x-20)=2 800 D.40x+20(40-x)=2 8003.一项工作中,甲单独做需要10 h完成,乙单独做需要15 h完成,那么甲每小时完成总工作量的__110__,乙每小时完成总工作量的__115__.若设甲、乙合作需要x h完成,则可列方程为__x10+x15=1__,解得x=__6__.4.某配件厂原计划每天生产60件产品,改进技术后,工作效率提高了20%,这样不仅提前5天完成了生产任务,并且比原计划多生产了48件产品,求原计划要生产多少件产品.解:设原计划要生产x件产品.根据题意,得x60-x+4860×(1+20%)=5,解得x=2 040.答:原计划要生产2 040件产品.◆活动5课堂小结1.利用一元一次方程解决产品配套问题.2.利用一元一次方程解决工程问题.1.作业布置(1)教材P106习题3.4第2,3,4题;(2)对应课时练习.2.教学反思。
人教版2024-2025学年七年级数学上册第1课时 配套问题与工程问题(习题课件)
当选择②③④时,设师父每小时检修 x m,则徒弟每小时 检修( x -10)m, 由题意,得2 x +2( x -10)+70=3 x +3( x -10),解得 x =40,所以 x -10=30, 答:师父每小时检修40 m,徒弟每小时检修30 m.
123456789
Байду номын сангаас
5. [2024·福州鼓楼区期末]某车间有技工85人,平均每人每天 能生产甲种零件16个或乙种零件10个,已知每2个甲种零 件和3个乙种零件配成一套,通过合理安排,分配恰当的 人数生产甲种或乙种零件,可以使得每天生产的两种零件
8. [2024·徐州鼓楼区月考]用长方形硬纸板做长方体盒子 (如图①),底面为正方形.长方形硬纸板以如图②所示 的两种方法裁剪.A方法:剪3个侧面;B方法:剪2个 侧面和2个底面.现有35张硬纸板,裁剪时 x 张用A方 法,其余用B方法.
123456789
(1)用含 x 的代数式分别表示裁剪出的侧面和底面的个数; 【解】A方法剪3 x 个侧面,则B方法剪2(35- x )个侧面 和2(35- x )个底面, 所以共有侧面3 x +2(35- x )= x +70(个),底面2(35- x )=70-2 x (个).
123456789
【解】答案不唯一,写一种即可.当选择①②③时, 设师父每小时检修 x m,则徒弟每小时检修( x -10)m, 由题意,得3 x +3( x -10)=270,解得 x =50,所以 x - 10=40. 答:师父每小时检修50 m,徒弟每小时检修40 m.
123456789
当选择①②④时,设师父每小时检修 x m,则徒弟每小时 检修( x -10)m, 由题意,得70+2 x +2( x -10)=270,解得 x =55,所以 x -10=45. 答:师父每小时检修55 m,徒弟每小时检修45 m.
人教版七年级数学上册精品系列:实际问题与一元一次方程—分配、配套问题PPT
挖出土的数量 运等走于土的数量
两个等量关系的问题:利用第一个等量关系设未知数, 第二个等量关系列方程。
人教版七年级数学上册课件:3.4.1实 际问题 与一元 一次方 程—分 配、配 套问题 (共20 张PPT)
人教版七年级数学上册课件:3.4.1实 际问题 与一元 一次方 程—分 配、配 套问题 (共20 张PPT)
练习3.一个服装车间,共有90人,每人每小 时加工1件衣服或2条裤子,问怎样安排工作才能 使衣服和裤子正好配套?(一件衣服配一条裤子)
审:分析题中已知什么,未知什么,明确各量 之间的关系。
找:找等量关系(列方程的关键); 设:设未知数,一般是求什么就设什么为x,
但有时也可以间接设未知数; 列:把相等关系左右两边的量用含有未知数的
代数式表示出来,列出方程; 解:求出未知数的值; 验:看方程的解是否正确以及是否符合题意; 答:写出答案(包括单位)。
甲种零件数量:乙种零件数量=
3。:2
两个等量关系的问题:利用第一个等量关系设未知数,
第二个等量关系列方程。
人教版七年级数学上册课件:3.4.1实 际问题 与一元 一次方 程—分 配、配 套问题 (共20 张PPT)
人教版七年级数学上册课件:3.4.1实 际问题 与一元 一次方 程—分 配、配 套问题 (共20 张PPT)
问题与练习
练习2.某车间每天能生产甲种零件120个,或乙种 零件100个,甲、乙两种零件分别取3个、2个才能 配成一套,现要在30天内生产最多的成套产品,问 怎样安排生产甲、乙两种零件的天数?
分析: (30-x)
(1)如果设x天生产甲种零件,则 天生产乙种零件;
人教版七年级数学上册知识讲义-3 配套问题与工程问题
精讲精练1. 配套问题等量关系:各种物品的总数量比等于一套组合中各部分的数量比。
比如:螺栓与螺母的配套、盒身与盒底的配套,桌子与椅子的配套等等。
2. 工程问题。
等量关系:(1)工作量=工作效率×工作时间(2)合作效率=甲工作效率+乙工作效率(3)总工作量=甲工作量+乙工作量注意:(1)我们常把总工作量看作1,此时工作效率可以用工作时间的倒数来表示,即;(2)多个人(或单位)合作时,合作效率=多个人(或单位)效率之和;(3)有时还会利用“工作量=工作效率×工作时间×工作人数”的关系列方程。
例题1 (西安月考)某种仪器由1个A部件和1个B部件配套构成,每个工人每天可以加工A部件1000个或加工B部件600个。
现有工人16人,应该怎样安排人力,才能使每天生产的A部件和B部件配套?思路分析:找准要配套物品之间的数量关系是关键。
本题中的相等关系是“每天生产A 部件的数量=每天生产B部件的数量”。
题中的数量列表如下:答案:设安排x人生产A部件,安排(16-x)人生产B部件根据题意,得1000x=600(16-x),解得x=6,所以16-x=16-6=10。
答:应安排6人生产A部件,10人生产B部件,才能使每天生产的A部件和B部件配套。
例题2 (江门期末)某制衣厂接受一批服装订货任务,按计划天数进行生产。
如果每天平均生产20套服装,就比订货任务少生产100套;如果每天平均生产23套服装,就可超过订货任务20套。
问这批服装的订货任务是多少套?原计划多少天完成?思路分析:设这批服装任务为x套,可以利用计划天数不变找等量关系,由第一个条件可以表示计划天数为,由第二个条件可以表示计划天数为,这两个天数相等列出方程。
答案:设这批服装的订货任务为x套。
由题意,得去分母,得23(x-100)=20(x+20),去括号,得23x-2300=20x+400,移项,得23x-20x=400+2300,系数化为1,得x=900,所以。
3.4配套问题与工程问题(教案)-2023-2024学年七年级上册数学(人教版)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了配套问题和工程问题的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对这些问题的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在教学过程中,教师应当针对这些难点和重点,采用不同的教学策略和方法,如使用图表、实物操作、小组讨论等,以确保学生能够透彻理解和掌握本节课的核心知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《配套问题与工程问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要分配或搭配资源的情况?”比如,你们如何决定用多少钱买多少文具?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索如何用数学解决配套和工程问题。
二、核心素养目标
1.培养学生的逻辑推理能力,使其能够通过分析问题,发现数量关系,建立方程或比例关系,解决实际问题。
2.提升学生的数学建模素养,学会将实生活中的问题抽象为数学模型,并用数学方法进行求解。
3.增强学生的数据分析能力,通过解决配套问题和工程问题,培养学生对数据的敏感性和处理能力。
4.培养学生的应用意识,使学生能够将所学知识应用于解决实际生活中的数学问题,体会数学在生活中的重要性。
-例题:一辆汽车以60km/h的速度行驶,行驶了3小时,计算行驶的距离。
-习题:设计有关速度、浓度等比例问题的练习,巩固所学知识。
4.学会分析问题,找出数量关系,建立方程或比例关系解决问题。
人教版七年级上册数学第三章一元一次方程应用题——配套问题
人教版七年级上册数学第三章一元一次方程应用题——配套问题1.某工厂甲、乙两个车间共有22名工人,每人每天可以生产1200个螺钉或2000个螺母.(1)如果甲车间的人数比乙车间的人数多4人,那么两个车间各有多少人?(2)如果1个螺钉需配2个螺母,为使每天生产的螺钉和螺母刚好匹配,工厂应安排其中多少人生产螺母?2.制作一张桌子要用一个桌面和4条桌腿,1m3木材可制作15个桌面,或者制作300条桌腿,现有12m3木材,应怎样计划用料才能制作尽可能多的桌子?最多能制作多少张桌子?3.一张桌子有一张桌面和四条桌腿,做一张桌面需要木材0.03m3,做一条桌腿需要木材0.002m3.现做一批这样的桌子,恰好用去木材3.8m3,共做了多少张桌子?4.某中学有住宿生若干人,若每个房间住8人,则有3人无处住;若每个房间住9人则有两张空床位,问该中学有宿舍多少间,住宿生有多少人?5.在预防新型冠状病毒期间,电子体温枪成为最重要的抗疫资源之一.某品牌电子体温枪由甲、乙两部件各一个组成,加工厂每天能生产甲部件600个,或者生产乙部件400个,现要在30天内生产最多的该种电子体温枪,则甲、乙两种部件各应生产多少天?6.某车间有84名工人,每人每天可以生产16个大齿轮或10个小齿轮,已知1个大齿轮和2个小齿轮配成一套,为使每天生产的大齿轮和小齿轮刚好配套,应安排生产大齿轮和小齿轮的工人各多少名?一共可以配成多少套?7.某车间有技术工人58人,平均每天每人可加工甲种部件16个或乙种部件10个,1个甲种部件和3个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?8.某车间每天能生产甲种零件150个,或乙种零件100个,甲、乙两种零件分别取3个、1个才能配成一套,现要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?9.东方红机械厂加工车间有90名工人,平均每人每天加工大齿轮20个或小齿轮15个,已知2个大齿轮与3个小齿轮配成一套,问一天可以生产多少套这样成套的产品?10.某车间有工人85人,平均每人每天可加工大齿轮16个或小齿轮10个,又知二个大齿轮和三个小齿轮配成一套,问应如何安排劳力使生产的产品刚好成套?11.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产1200个螺柱或2000个螺母,1个螺柱需要2个螺母,为使每天生产的螺桩和螺母刚好配套,应该安排生产螺柱和螺母的工人各多少名?12.某车间有75个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件15个或乙种零件20个.已知每1个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?13.机械厂加工车间有68名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮刚好配成1套,那么需要分别安排多少名工人加工大、小齿轮,才能使每天加工的大、小齿轮刚好配套?14.某车间每天能制作甲种零件500个,或者制作乙种零件250个,甲乙两种零件各一个配成一套产品,现要在30天内制作最多的成套产品,则甲种零件制作多少天?15.某班统计数学考试成绩,平均成绩是84.3分:后来发现莉莉的成绩是97分,而被错误地统计为79分.重新计算后,平均成绩是84.7分.这个班有多少名学生?16.配制一种黑色火药,硫磺、硝、木炭的比为1:2:3,要配火药1218千克,各需多少千克硫磺、硝、木炭?(设未知数,只列方程)17.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元,求钢笔和毛笔的单价各为多少元?18.某车间每天能生产甲种零件120个,或者乙种零件100个.甲、乙两种零件分别取3个、2个才能配成一套,要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?19.制作一张桌子要用1个桌面和4条桌腿,1立方米木材可制作20个桌面或者制作400条桌腿,现有24立方米木材,要使桌面和桌腿正好配套,应分别计划用多少立方米木材制作桌面和桌腿?20.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件,几个工人加工乙种零件?。
数学人教版(2024)七年级上册 5.3.1配套问题与工程问题课件(共20张PPT)
3
2
解得y=13.
所以15+6-y=15+6-13=8(人).
答:应安排13名工人生产A型配件,8名工人生产B型配件.
课堂练习
1.制作一张桌子要用1个桌面和4条桌腿,1立方米木材可制作20个桌面 或者400条桌腿.现有12立方米的木材,则下列方案能制作尽可能多的 桌子的是( A )
A.2立方米木材制作桌腿,10立方米制作桌面 B.3立方米木材制作桌腿,9立方米制作桌面 C.4立方米木材制作桌腿,8立方米制作桌面 D.5立方米木材制作桌腿,7立方米制作桌面
工人各多少名?
解:(1)设前3天应先安排x名工人生产,每名工人的工作效率为a. 由题意得:150a=3ax+5a(x+6), 即3x+5(x+6)=150, 解得x=15.
答:前3天应先安排15名工人生产. (2)设应安排y名工人生产A型配件,则安排(15+6-y)名工人生产B型配件.
由题意得:600y 650(15 6 y) ,
新课引入
生活中,有很多需要进行配套的问题,如课桌和凳子、螺钉 和螺母、电扇叶片和电机等等,大家能举出生活中配套问题的例 子吗?
获取新知
探究点1 配套问题
配套问题通常从各个量之间的倍、分关系入手寻找相等关 系,建立方程.
解决配套问题的思路: 1.利用配套问题中物品之间具有的数量关系作为列方程的依据; 2.利用配套问题中的套数不变作为列方程的依据.
然后增加6名工人与他们一起再生产5天就能完成这批订单的生产任务.假
设每名工人的工作效率相同.
(1)前3天应先安排多少名工人生产?
(2)增加6名工人一起工作后,若每人每天使用机器可以生产600个A型配
数学人教版七年级上册分配配套问题
一元一次方程解配套问题教学设计一、教学重点:分配、配套问题处理方法二、教学难点:1、分析题中的数量关系2、寻找配套关系式、列出方程三、教学流程:配套问题在现实中是一种常见的问题,如螺钉与螺母的配套,盒身与盒底的配套等。
我认为,解决这类问题的方法是抓住配套关系,设出未知数,根据配套关系列出方程,通过解方程来解决问题。
引例:某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?本题已知条件:①分配生产螺钉和螺母的人数共22人;②每人每天平均生产螺钉1200个或螺母2000个;③一个螺钉要配两个螺母;④每天的产品刚好配套。
其中本题的配套关系是:一个螺钉配两个螺母,即螺钉数:螺母数=1:2。
解法一:设分配x名工人生产螺钉,则(22-x)名工人生产螺母,则一天生产的螺钉数为1200x个,生产的螺母数为2000(22-x)个。
根据题意,得:1200x:2000(22-x)=1:2解得x=10,22-x=12。
答:为了使每天生产的产品刚好配套,应安排10人生产螺钉,12人生产螺母。
解法二:设法同上(略)。
1200x/1=2000(22-x)/2下面解法同上。
解法三:设法同上(略)。
2×1200x=2000(22-x)下面解法同上。
四、例题练习例1、某工地需要派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应该怎样安排人员,正好能使挖的土及时运走?分析:本题的配套关系是:每天挖的土方等于每天运走的土方. 解:设安排x人挖土,则(48-x)人运土,一天可挖土5x方,一天可运土3(48-x)方。
根据题意,得:5x=3(48-x),解得x=18,48-x=30答:每天安排18人挖土,30人运土正好能使挖的土及时运走。
例2、用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套.现在有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?分析:本题的配套关系是:盒身数:盒底数=1:2.解:设用x张白铁皮制盒身,(36-x)张制盒底,则共制盒身25x 个,共制盒底40(36-x)个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元一次方程解配套问题教学设计
一、教学重点:分配、配套问题处理方法
二、教学难点:1、分析题中的数量关系
2、寻找配套关系式、列出方程
三、教学流程:配套问题在现实中是一种常见的问题,如螺钉与螺母的配套,盒身与盒底的配套等。
我认为,解决这类问题的方法是抓住配套关系,设出未知数,根据配套关系列出方程,通过解方程来解决问题。
引例:某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?
本题已知条件:①分配生产螺钉和螺母的人数共22人;②每人每天平均生产螺钉1200个或螺母2000个;③一个螺钉要配两个螺母;④每天的产品刚好配套。
其中本题的配套关系是:一个螺钉配两个螺母,即螺钉数:螺母数=1:2。
解法一:设分配x名工人生产螺钉,则(22-x)名工人生产螺母,则一天生产的螺钉数为1200x个,生产的螺母数为2000(22-x)个。
根据题意,得:
1200x:2000(22-x)=1:2
解得x=10,22-x=12。
答:为了使每天生产的产品刚好配套,应安排10人生产螺钉,12人生产螺母。
解法二:设法同上(略)。
1200x/1=2000(22-x)/2
下面解法同上。
解法三:设法同上(略)。
2×1200x=2000(22-x)
下面解法同上。
四、例题练习
例1、某工地需要派48人去挖土和运土,如果每人每天平均挖土5方或运土3方,那么应该怎样安排人员,正好能使挖的土及时运走?
分析:本题的配套关系是:每天挖的土方等于每天运走的土方. 解:设安排x人挖土,则(48-x)人运土,一天可挖土5x方,一天可运土3(48-x)方。
根据题意,得:
5x=3(48-x),
解得x=18,48-x=30
答:每天安排18人挖土,30人运土正好能使挖的土及时运走。
例2、用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套.现在有36张白铁皮,用多
少张制盒身,多少张制盒底,可使盒身与盒底正好配套?
分析:本题的配套关系是:盒身数:盒底数=1:2.
解:设用x张白铁皮制盒身,(36-x)张制盒底,则共制盒身25x 个,共制盒底40(36-x)个。
根据题意,得:
2×25x=40(36-x)
解得x=16,36-x=20
答:用16张制盒身,20张制盒底正好使盒身与盒底配套。
例3、一张方桌由1个桌面、4条桌腿组成,如果 1立方米木料可以在方桌的桌面50个或做桌腿300条,现有5立方米木料,那么用多少立方米木料做桌面、多少立方米木料做桌腿,做出的桌面和桌腿,恰好配成方桌?能配成多少方桌?
分析:本题的配套关系是:桌面:桌腿=1:4,即一个桌面需要4个桌腿.
解:设用x立方米做桌面,(5-x)立方米做桌腿,则可做桌面50x 个,做桌腿300(5-x)条。
根据题意,得:
4×50x=300(5-x),
解得x=3,5-x=2
答:用3立方米做桌面,2立方米做桌腿,恰能配成方桌.共可做150张方桌。
例4、某车间有28名工人,生产一种螺栓和螺帽,平均每人每
小时能生产螺栓12个或螺帽18个,两个螺栓要配三个螺帽,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽刚好配套?
分析:本题的配套关系是:螺栓:螺帽=2:3,即两个螺栓要配三个螺帽。
解:设分配x人生产螺栓,(28-x)人生产螺帽,则生产12x 个螺栓,生产螺帽18(28-x)个。
根据题意,得:
12x/2=18(28-x)/3
解得x=14,28-x=14
答:应分配14人生产螺栓,14人生产螺帽,才能使生产的螺栓和螺帽刚好配套。
五、教学反思
1、通过这节课的学习,你有什么收获?
2、在解决配套、分配等问题方面你获得了哪些经验?这些问题中的相等关系有什么特点?
3、在解决两个等量关系的问题时:通常利用第一个等量关系设未知数,第二个等量关系列方程。