第八章 二元一次方程组 教学课件 PPT (全),..

合集下载

第八章二元一次方程组课件8.3实际问题与二元一次方程组

第八章二元一次方程组课件8.3实际问题与二元一次方程组

聪明的同学们,你能 帮他算算吗?
一船顺水航行45千米需要3小时, 逆水航行65千米需要5小时, 若设
船在静水中的速度为 x 千米/小时,
水流的速度为 y 千米/小时,则所列 方程组为:
从甲地到乙地的路有一段上坡与一段平 路,如果保持上坡每小时行3千米,平路每小时 行4千米,下坡每小时行5千米,那么从甲地到 上坡路与平路分别是多少千米?
1吨1千米
1.5
y吨1千米 1.5×y
y吨10千米 1.5×10×y
制成产品运到B地
名 称 铁路 1吨1千米 1.2 x吨1千米 1.2×x x吨110千米 1.2×110×x
制成产品运到B地
名 称 公路 1吨1千米 1.5 x吨1千米 1.5×x x吨20千米 1.5 ×20×x
设产品重x吨,原料重y 吨。根据题中数量关系填写下表: 产品x吨 原料 y 吨 合计 15000 97200
公路运费(元) 1.5 ×20x 1.5×10y 铁路运费(元) 1.2 ×110x 1.2 ×120y
(2)若原料每吨1000元,制成的产品每吨 8000 元,
这批产品的销售款比原料费与运输费的和多多 少元?
___ ___ ___
分析:销售款=
原料费= 运输费=
哦,那你们家去了几 个大人?几个小孩呢? 成人票5元每人,小 孩3元每人啊! 昨天,我们一家8 个人去红山公园玩, 买门票花了34元。
从A地购买原料后,运回 到化工厂的路线中:铁路是多 长?公路是多长?
把原料加工后,从化工厂 运到B地的路线中:铁路是多 长?公路是多长?
从A地购买一批原料运回工厂
名 称 铁路 1吨1千米 1.2 y吨1千米 1.2×y y吨120千米 1.2 ×120×y

人教版七年级下册课件:第八章二元一次方程组8.1二元一次方程组(共18张PPT)

人教版七年级下册课件:第八章二元一次方程组8.1二元一次方程组(共18张PPT)
8.1二元一次方程组
复习提问:
1.什么叫方程? 含有未知数的等式——方程 2.什么叫做一元一次方程?
含有一个未知数,并且未知数的次 数是1 ,等号两边都是整式, 这 样的方程叫做一元一次方程
3.下列各式中,哪些是一元一次方程?
(1)5x=0
(2)1+3x
(3)y²=4+y
(5) 1 4 X X
x+2y=10 的解是 (3)
y=2x
{ x=4
(1) y=3
{ x=3
(2) y=6
{ x=2
(3) y=4
你会了吗?
{ x=4
(4) y=2
D 3、二元一次方程3x+2y=11 ( )
A、 任何一对有理数都是它的解 B、只有一个解 C、只有两个解 D、无穷多个解
退出
9、有时候读书是一种巧妙地避开思考 的方法 。21.8.321.8.3Tuesday, August 03, 2021
问题探究1
x=10,y=12能同时满足方程 x+y=22 和 2x+y=40吗? x=18,y=4呢?
未知数x,y必须同时满足方程 x+y=22和2x+y=40 ,把 两个二元一次方程合在一起,写成:
{x+y=22 2x+y=40
像这样由两个二元一次方程,所组成的一组方 程叫做二元一次方程组.
判断2
10、阅读一切好书如同和过去最杰出 的人谈 话。18:53:1018:53:1018:538/3/2021 6:53:10 PM
11、越是没有本领的就越加自命不凡 。21.8.318:53:1018:53Aug-213-Aug-21
12、越是无能的人,越喜欢挑剔别人 的错儿 。18:53:1018:53:1018:53Tues day, August 03, 2021

人教版七年级数学下册第八章 第3节 课件 第1课时 利用二元一次方程组解决实际问题

人教版七年级数学下册第八章 第3节 课件 第1课时 利用二元一次方程组解决实际问题

则有
8x + 5y = 42, 4x + 2y = 20.
解得
x = 4, y = 2.
答:李大叔应聘请甲种饲养员 4 人,乙种饲养员 2 人.
典例精析 例1 某市举办中学生足球比赛,规定胜一场
得 3 分,平一场得 1 分. 市第二中学足球队比赛 11 场,
没有输过一场,共得 27 分,试问该队胜几场,平几场? 分析:题中的未知量有胜的场数和平的场数,
的速度以及长江水的平均流速.
解:设轮船在静水中的速度为 x 千米/时,长江水的
平均流速为 y 千米/时.
即((
x x
y) y)
9 450, 10 450.
解得
x y
47.5, 2.5.
答:轮船在静水中的速度为 47.5 千米/时,长江水
的平均流速为 2.5 千米/时.
1. 计划若干节车皮装运一批货物. 如果每节装 15.5 吨,
题意与分析中图示的两个相等关系,得
2x2 y4,
0.5x 0.5 y 4.
解方程组,得
x5, y 3.
答:甲的速度为 5 km/h,乙的速度为 3 km/h.
练一练:我国的长江由西至东奔腾不息,其中九江东至
南京约有 450 千米 的水程,某船从九江出发 9 个小时就
能到达南京;返回时则用多了 1 个小时. 求此船在静水中
100 m 甲种作物 乙种 作物
设 AE = x m,BE = y m. 根据题意列方程组为
x + y = 200,
A
x
y EB
你觉得该如何答 题比较完整呢?
100x∶200y = 3∶4. 解得 x = 120,
y = 80.

人教版七年级数学下册第七章第八章二元一次方程组全章新课课件

人教版七年级数学下册第七章第八章二元一次方程组全章新课课件
那么,能设两个未知数吗?比如设胜x场,负y场;
你能根据题意列出方程吗?
依题意有: 用方程表示为:
胜负 场数 x y 积分 2x y
x y 10 2x y 16
合计
10 16
两个耶!
<<孙子算经>>是我国古代较为普及的算 书,许多问题浅显有趣.其中下卷第31题“鸡 兔同笼”问题流传尤为广泛,飘洋过海传到 了日本等国.
x 2,
所以原方程组的解是
y
3.
加减消元法
3x 5y 21, ① x+y=10,① 2x 5y -11. ② 2x+y=16. ②
由①+②得: 5x=10
由 ②-①得:x=6
两个二元一次方程中同一未知数的系数相反
或相等时,将两个方程的两边分别相加或相减, 就能消去这个未知数,得到一个一元一次方程, 这种方法叫做加减消元法,简称加减法.
x y 10 ①
2x y 16 ②
2x (10 x) 16 ③
比较一下上面的 方程组与方程有
什么关系?
由①我们可以得到: y 10 x
再将②中的y换为 10 x 就得到了③
③是一元一次方程,相信大家都会解.那么根 据上面的提示,你会解这个方程组吗?
二元一次方程组中有两个未知数,如果消去其中 一个未知数,将二元一次方程组转化为我们熟悉的一 元一次方程,我们就可以先求出一个未知数,然后再 求另一未知数.这种将未知数的个数由多化少、逐一解 决的思想,叫做消元思想.
1、用含x的代数式表示y: x + y = 22
2、用含y的代数式表示x: 2x - 7y = 8
篮球联赛中每场比赛都要分出胜负,每队胜 一场得2分,负一场得1分.如果某队为了争取较 好名次,想在全部10场比赛中得16分,那么这

人教版数学七年级下册8.1 二元一次方程组 课件(共26张PPT)

人教版数学七年级下册8.1 二元一次方程组 课件(共26张PPT)
第八章 二元一次方程组
8.1 二元一次方程组
1.经历根据实际问题列二元一次方程(组)的过程,让学生体 会方程组是刻画现实世界中含有多个未知数的数学模型. 2.通过复习类比一元一次方程,探究掌握二元一次方程(组) 及其解的概念. 3.培养学生的数学类比思想,感受方程组的实际应用价值.
学习重点:二元一次方程(组)以及解的概念. 学习难点:二元一次方程组的解的概念.
写出二元一次方程3x+2y=19的正整数解. 解:ቊyx==81;, ቊyx==53;, ቊxy==25.,
例3 二元一次方程组ቊxx−+yy==180, 的解是( C )
A.ቊxy==35,
B.ቊxy==111,
C.ቊyx==−91,
D.ቊxy==16..55,
下列各组值中是二元一次方程组ቊxx−+yy==35,的解的 是( C )
我们已经学习了一元一次方程,并学会了用它解 决实际问题。 一元一次方程中只含有一个未知数,下面我们来 看下这些问题含有几个未知数?
篮球比赛不仅出现在奥运赛场上,在生活中也随处可见,请 同学们看下面这个问题:在某次篮球联赛中,每场比赛都要分 出胜负,每队胜1场得2分,负1场得1分.某队在10场比赛中得到 16分,那么这个队胜负场数分别是多少呢?
思考:这个问题中包含了 哪些必须同时满足的条件?
分析:胜的场数+负的场数=总场数,胜场积分+负场积分=
总积分.


合计
场数
x
y
10
积分
2x
y
16
解:设这个队胜的场数为x场,负的场数为y场. 依据题意,得x+y=10,2x+y=16.
学生活动一【一起探究】

第八章 二元一次方程组 教学课件 PPT (全).

第八章   二元一次方程组   教学课件 PPT (全).

上表中哪对x,y的值是方程
的解?
二元一次方程组的两个方程的公 共解,叫做二元一次方程组的解。
解:设篮球队胜了x场,负了y场,得:
解得 答:这个队应在全部比赛中胜18场,负4场。
1、填表,使上下两对x,y的 值是 方程3 x+ y=5的解
x –2
0 0.4
2
11 6
2
5 3
2 3
y 11 5 3.8 -1 –0.5 –1 0 3
x=1 x=3 x=5 y=2 y=1 y=0
• 探究: 列出二元一次方程组,并根据问题的 实际意义找出问题的解.
• 已知钢笔每只5元,圆珠笔每只2元,小明用16 元钱买了这两种笔共5支,试求小明买钢笔和 圆珠笔各多少支? 解:设小明买钢笔x支,买圆珠笔y 支,根据题意列出方程组得
X+y=5
5x+2y=16
因为x和y只能取正整数,所以观察方程组得此方程组的
解是 X=2
Y=3
《孙子算经》 今有鸡兔同笼, 上有三十五头, 下有九十四足, 问鸡兔各几何?
这节课你有哪些收获? 还有哪些困惑?
“一切问题都可以转化为数学问题, 一切数学问题都可以转化为代数问题,而 一切代数问题又都可以转化为方程问题, 因此,一旦解决了方程问题,一切问题将 迎刃而解!”
设胜的场数为x,则负的场数为(22-x)。
根据题意得: 2x (22 x) 40
分析 胜的场数+负的场数=总场数
胜的场数的分数+负的场数的分数=总分数
设篮球队胜了x场,负了y场。
胜 负 合计
场数 x y 22
得分 2x y 40
x+y=22 2x+y=40
议一议 x+y=22 2x+y=40

七年级数学下册 第八章《二元一次方程组》教学课件 人教版

七年级数学下册 第八章《二元一次方程组》教学课件 人教版
分,负一场得1分. 姚明所在的火箭队在10场比赛中得到16分,那么这个队胜
负场数应分别是多少?
上述问题中包含哪些等量关系?
胜的场数+负的场数=总场数
胜场积分+负场积分=总积分
根据等量关系你能列出方程吗?
新课探究
设这个队设胜x场,根据题意得:
2x+(10-x)=16
设这个队胜x场,负y场;你能根据题意列出方程吗?
二元一次方程组
新课探究
1、什么是一元一次方程?“元”指什么?“次”指什么?
含有一个未知数,并且未知数的次数是1的方程
叫做一元一次方程。
“元”指的是未知数,“次”指的未知数的指数。
2、什么是方程的解?
使方程左右两边相等的未知数的值,叫做方程的解。
新课探究
在NBA篮球联赛中,比赛规则是:每场比赛都要分出胜负,每队胜一场得2
+ =
根据题意得:ቊ
+ =
牛刀小试
昨天,我们8个
人去北陵公园
玩,买门票花
了34元。
每张成人票5元,
每张儿童票3元。
他们到底去了几个
成人、几个儿童呢?
列出方程组来看看!
牛刀小试
解:设去了x个成人,y个儿童,得:
x+y=8
5x+3y=34
牛刀小试
D
1.下列方程中,是二元一次方程的是(
做二元一次方程.
新课探究
上面两个二元一次方程合在一起,写成
x+y=10
________

________
2x-y=16
就组成了ቤተ መጻሕፍቲ ባይዱ个
方程组.
对比两个方程,你能发现它们之间的关系吗?

初中数学《二元一次方程组》_(ppt)3

初中数学《二元一次方程组》_(ppt)3
(1)求KN95口罩和医用外科口罩每袋各多少元; (2) 淘 宝 电 商 约 定 , 购 物 超 过 2000 元 多 出 的 部 分 , 可 享 受 9 折 优 惠.社区医院根据医生和居民情况,准备按KN95与医用外科口罩只数 为1∶10的比例购买.若其中一次两种口罩共购50袋,求应付的总价.
第八章 二元一次方程组
米?设他骑自行车行了 x km,步行走了 y km,则可列方程组为 ( A )
x+y=20 A.1x5+5y=1.5
x+y=20 C.x5+1y5=1.5
B.x1+5x+y=52y=0 1.5 x+y=1.5
D.1x5+5y=20
第八章 二元一次方程组
2.甲、乙两种盐水,若分别取甲种盐水240 g、乙种盐水120 g,混 合后,制成的盐水浓度为8%、若分别取甲种盐水80 g、乙种盐水160 g,混合后,制成的盐水浓度为10%,甲、乙两种盐水的浓度各是多 少?如果设甲种盐水的浓度为x,乙种盐水浓度为y,根据题意,
g,混合后,制成的盐水浓度为8%、若分别取甲种盐水80
g、乙种盐水160
g,混合后,制成的盐水浓度为10%,甲、乙
两种盐水的浓度各是多少?如果设甲种盐水的浓度为x,乙种盐水浓度为y,根据题意,
利用二元一次方程组解决其他问题
240x-120y= 240- 如果他们同时出发,那么1小时后两人还相距11千米.小明、小丽每小时各走多少千米?
螺栓 14 个或螺母 20 个,要使每天加工的螺栓和螺母配套(1 个螺栓配 2 (2)设购进KN95口罩m袋,则购进医用外科口罩(50-m)袋,
利用二元一次方程组还能解决其他一些实际问题,如配套问题、行程问题、工程问题、销售利润问题、调配问题等. ∴2 000+(100×10+75×40-2 000)×=3 800(元).

人教版数学七年级下册第八章二元一次方程组教学课件

人教版数学七年级下册第八章二元一次方程组教学课件
x+y=8, 5x+y=34
这个方程组有两个未知数,含有每个未知数的 项的次数都是1,并且一共有两个方程,像这样的 方程组叫作二元一次方程组.
注意:方程组各方程中同一字母必须代表同一个量.
典例精析
例1 已知|m-1|x|m|+y2n-1=3是二元一次方程, 则m+n=____0____.
解析:根据题意得|m|=1且|m-1|≠0,2n-1=1, 解得m=-1,n=1,所以m+n=0.故填0
例2 下列方程组是二元一次方程组的是( B )
A.
xy 1, x y
1
x y 1,
B.
2 x
2 y
1
C.
x x
z y
1, 1
D.
x 1 x
y y
1, 1
紧扣相关概念
二 二元一次方程组的解 合作与交流: (1)x=6 , y=2适合方程 x+y=8吗 ? x=5 , y=3呢? x=4 , y=4呢? 你还能找到其他x , y的值适合方程x+y=8吗 ? (2) x=5 , y=3适合方程5x+3y=34吗? x=2 , y=8呢?
二元一次方程组中各个方程的公共 解,叫做这个二元一次方程组的解.
{ { 例如,
x=5,就是二元一次方程组 y=3
x+y=8, 5x+3y=34
的解.
典例精析
例3 根据以下对话,可以求得小红所买的笔和笔
记本的价格分别是(
小红,你上周买的笔和笔
记本的价格是多少啊?
A.0.8元/支,2.6元/本 B.0.8元/支,3.6元/本 C.1.2元/支,2.6元/本 D.1.2元/支,3.6元/本
解:设去了x个成人,去了
(8-x)个儿童,根据题意,得: y个儿童,根据题意,得:

第八章二元一次方程组课件8.2.2加减消元法解二元一次方程组

第八章二元一次方程组课件8.2.2加减消元法解二元一次方程组
解: ①+②得:
① ②
5x=10
x=2
把x=2代入①得: 3×2+5y=21
x 2 ∴原方程组的解是 y 3
y=3
练习:用加减消元法解方程组 ① 2 s 5 t 13 ② 3 s 5 t 7
用加减消元法解方程组
3x 2 y 0 4 x 2 y 2
解:由题意得:

2x y 7 3x y 8 x3 y 1

ax y b x by a ab 3 x3 ∴把 方程组得: y 1 3a b 1 a 1 解这个方程组得: b2

例2. 用加减法解方程组:
分析:解方程组的方法就是消元,
加减消元法的前提条件是同一个 但是当同一个未知数的系数既不相
同也不互为相反数,怎么解呢?
未知数的系数必须相同或者互为相反数。
用短除法求两个数的最小公倍数。
我们把几个数公有的倍数叫做这几 个数的公倍数,其中最小的一个数叫
做这几个数的最小公倍数。
利用短除法,求下面各组数的最小公倍数。
12和18
3 12 18 2 2
分析:把含小数系数的二元一
次方程组化为整数系数方程组, 可以简化运算。
原方程组可化为
3 x 10 y 10 ① 2 x 5 y 190 ②
悟空顺风探妖踪,
千里只行四分钟。
归时四分行六百,
风速多少才称雄。
解:设悟空在静风中行走的速度为 x 里/分,风速为 y 里/分。
由题意得:
2 mn 3m 2 n 2n 5
解 : 根据同类项的定义, 有
台大收割机和2台小收割机工作5
小时收割小麦8公倾。 问:1台大收割机和1台小收割 机1小时分别收割小麦多少公倾? 分析:两种情况下的工作量

8.1.1二元一次方程组ppt

8.1.1二元一次方程组ppt
上面所列方程各含有几个未知数? 2个未知数 含有未知数的项的次数是多少? 次数是1 含有两个未知数,并且所含未知数的项 的次数都是 1 的方程叫做二元一次方程.
请判断下列各方程中,哪些是二元 一次方程,哪些不是?并说明理由。
(1)2x+5y=10 (3)x +y=20
(5)2a+3b=5
2
(2)x+2y=z
(4)2m+3=6 (6)2x+10xy =0
刚才讲的方程x+y=8和5x+3y=34 中的x的意义相同吗?y呢?
把方程x+y=8和5x+3y=34把它们联立起 来,得: x+y=8
Байду номын сангаас
5x+3y=34
把具有相同未知数的两个二元一次方 程合在一起,就组成一个二元一次方程 组。
请判断下列各方程组中,哪些是二元一次方程组,
的解,则 a= 1 。
5、写出一个二元一次方程组,使得它的解 为 x=2 y=3
练一练:
6.二元一次方程
x 1, x 2, x 3, x 4, x 5, 解是___________________________ y 5; y 4; y 3; y 2; y 1.
0 ,n=________ 程,则m=_______ 1 .
B A, 是方程x-3y=2的解, (2)下列各组数中, D B, 是方程2x-y=9的解。

x=-1 y=-1
B
x=5 y=1 x-3y=2 2x-y=9
C
x=3 y=2
D
x=2 y=-5
(3)方程组
的解是上面的( B)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

下列各对数值中是二元一次方程

解的有 A,B,C
A:
B:
C:
D:
变式:其中是二元一次方程组 的解是( B )。
探究
x 0 1 2 3 4 5 6 7 8 910 1112131415 16171819202122 y22 21201918171615141312 1110 9 8 7 6 5 4 3 2 1 0
上表中哪对x,y的值是方程
的解?
二元一次方程组的两个方程的公 共解,叫做二元一次方程组的解。
解:设篮球队胜了x场,负了y场,得:
解得 答:这个队应在全部比赛中胜18场,负4场。
1、填表,使上下两对x,y的 值是 方程3 x+ y=5的解
x –2
0 0.4
2
11 6
2
5 3
2 3
y 11 5 3.8 -1 –0.5 –1 0 3
8.1 二元一次方程组
姚明的有关事迹: 高度:2.26M
国籍:中国 生日:9/12/80 体重:134.3kg 球衣号:11号
手掌: 21CM
221CM
1980年9月12日,姚明出生于上海市第六医院。他的父母都 是篮球运动员,父亲姚志源身高2.08米,曾效力于上海男篮;母 亲方凤娣身高1.88米,是70年代中国女篮的主力队员;
思考一:上述方程有什么特点? 思考二:它与你学过的一元一次方程比较
有什么区别? 思考三:你能给它取名吗?
思考四:你能给它下一个定义吗?
含有两个未知数,并且未 知数的指数都是 1,像这样的 方程叫做二元一次方程。
想一想
下面方程属于二元一次方程的有
(1) 2m+3=6 (2)x+2y=z (3)7u+5v=3 (4)a2+3b=4
x=1 x=3 x=5 y=2 y=1 y=0
• 探究: 列出二元一次方程组,并根据问题的 实际意义找出问题的解.
• 已知钢笔每只5元,圆珠笔每只2元,小明用16 元钱买了这两种笔共5支,试求小明买钢笔和 圆珠笔各多少支? 解:设小明买钢笔x支,买圆珠笔y 支,根据题意列出方程组得
X+y=5
5x+2y=16
把两个二元一次方程合在
一起,就组成一个二元一次方 程组。
二元一次方程组
x y 22 2x y 40
1.方程组中有两个未知数.( 二元)
2.方程组中未知数的指数都为1.( 一次 )
3.两个一次方程组成.(方程组 )
试一试,你会了吗
下列方程组中,是二元一次方程组的有((2)、(5))
(1) xy 9 3 (2) x 9
设胜的场数为x,则负的场数为(22-x)。
根据题意得: 2x (22 x) 40
分析 胜的场数+负的场数=总场数
胜的场数的分数+负的场数的分数=总分数
设篮球队胜了x场,负了y场。
胜 负 合计
场数 x y 22
得分 2x y 40
x+y=22 2x+y=40
议一议 x+y=22 2x+y=40
在姚明的四岁生日时,他得到了第一个篮球。6岁时看美国哈 里篮球队在上海表演,知道了NBA。9岁那年,姚明在上海徐汇
区少年体校开始接受业余训练。由于从小受到的家庭熏陶,他对 篮球的悟性,逐渐显露出来。5年后,他进入上海青年队;17岁 入选国家青年队;18岁穿上了中国队服。
问题1
篮球联赛中,每场比赛都要分出胜负 ,每队胜1场得2分,负1场得1分。某队为 了争取较好名次,想在全部22场比赛中得 到40分,那么这个队胜负场 数应分别是 多少?
试一试,你会了吗
判断下列方程是否为二元一次方程:
(1) 3y-2x =z+5
不是
(2)
y
1 2
x
不是
(3) x2 y 0 不是 (4) x 2 1 不是
y
(5) x y 2y 0 是 (6) 3 - 2xy =1 不是 3
(7) 4x+ =0
不是 (8) 2x=1-3y

x+y=22 2x+y=40
求 m2 n2 的值。
4. 已知下列三对值:
x=-6
x=10
x=10
y=-9
y=-6
y=-1
(1) 哪几对数值使方程 1 x-y=6的左、
右两边的值相等?
2
(2)哪几对数值是方程组 的解?
1 2
x-y=6
2x+31y=-11
5、如图所示,将长方形ABCD的一个角 折叠,折痕为AE,∠BAD比∠BAE大 48°.设∠BAE和∠BAD的度数分别为x ,y 度,那么x,y所适合的一个方程组是( )
因为x和y只能取正整数,所以观察方程组得此方程组的
解是 X=2
Y=3
《孙子算经》 今有鸡兔同笼, 上有三十五头, 下有九十四足, 问鸡兔各几何?
这节课你有哪些收获? 还有哪些困惑?
“一切问题都可以转化为数学问题, 一切数学问题都可以转化为代数问题,而 一切代数问题又都可以转化为方程问题, 因此,一旦解决了方程问题,一切问题将 迎刃而解!”
——法国数学家 笛卡儿[Descartes,
1596-1650 ]
1、已知
x y
1是二元一次方程组
2
3x ax
by 2y
5 8
的解,则 a= 4 ,b= 1 。
2、写出一个二元一次方程,使得它的一个 解为
x7 y 1
做一做
3、若方程 2x2m3 3y5n9 4
是关于x、y的二元一次方程,
y 22 21201918171615141312 1110 9 8 7 6 5 4 3 2 1 0
使二元一次方程两边的值相等的一对 未知数的值,叫做二元一次方程的解。
二元一次方程的解和一元一次方程的解 有什么区别?
一元一次方程的解 二元一次方程的解
一个 一个未知数的值
无数个 一对未知数的值
结论:二元一次方程有无数个解。
2、下列各组数中, A,B 是方程x-3y=2的解, B,D 是方程2x-y=9的解。
x=-1

y=-1
3、方程组
B x=5
C x=3
x=2
D
y=1
y=2
y=-5
x-3y=2
的解是上面的(B)
2思考下列问题:
(1)用含y的式子表示x;
(2)用含x的式子表示y; (3)在自然数范围内方程的解是
3x 2 y 4
x y 4x 2
(3)
2 y3 x x y 4
x 1 (5) y 2
(4) 2x y 1 3x 7z 3
x2 2y 4 (6) x 2
设胜的场数为x,负的场数为y,根据题意得:
探究
满足方程
且符合实际意义的x,y的值有哪些?
x 0 1 2 3 4 5 6 7 8 910 1112131415 16171819202122
相关文档
最新文档