人教版七年级上册数学 第一章 1.2.2数轴 课后作业

合集下载

人教版七年级数学上册《1.2.2数轴》同步练习含答案

人教版七年级数学上册《1.2.2数轴》同步练习含答案

1.2.2 数轴01 基础题知识点1 数轴的概念及画法知识提要:在数学中,用一条直线上的点表示数,这条直线叫做数轴.数轴的三要素为:原点、正方向、单位长度.1.关于数轴,下列说法最准确的是(D )A .一条直线B .有原点、正方向的一条直线C .有单位长度的一条直线D .规定了原点、正方向、单位长度的直线2.(东莞月考)下列数轴的画法正确的是(C )知识点2 数轴上的点与有理数的关系知识提要:一般地,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度;表示数-a 的点在原点的左边,与原点的距离是a 个单位长度.若a ,b ,c 在数轴上的位置如图所示,则a 是负数,b 是正数,c 是正数.(填“正”或“负”)3.如图,数轴上点A 表示的数是(A )A .-2B .2C .±2D .04.如图,数轴上表示-2.75的点是(D )A .E 点B .F 点C .G 点D .H 点 5.(南宁月考)在数轴上表示-5,0,3,12的点中,在原点右边的点有(B ) A .1个B .2个C .3个D .4个6.数轴上表示-152的点在(B ) A .-6与-7之间 B .-7与-8之间C .7与8之间D .6与7之间7.(东莞月考)数轴上表示-5的点与原点的距离是5.8.指出数轴上点A ,B ,C ,D 表示的数.解:A 点表示0,B 点表示1.5,C 点表示-2,D 点表示3.9.画数轴,并在数轴上表示下列各数:2,-2.5,0,13,-4. 解:02 中档题10.下列各数在数轴上的位置是在-2的左边的是(A )A .-3B .-2C .-1D .0 11.数轴上原点及原点左边的点表示(C )A .正数B .负数C .非正数D .非负数12.在数轴上,表示-1与-4两点之间有理数的点有(D )A .3个B .2个C .1个D .无数个13.点A 为数轴上表示-2的点,当点A 沿数轴移动4个单位长度到点B 时,点B 所表示的数为(C )A .2B .-6C .2或-6D .不同于以上答案14.如图,点A 表示的数是-4.(1)在数轴上表示出原点O ;(2)指出点B 表示的数;(3)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示什么数? 解:(1)如图,原点O 在点A 的右侧距A 点4个单位长度.(2)点B 表示3.(3)点C 表示1或5.15.在数轴上,一只蚂蚁从原点出发,它先向右爬了4个单位长度到达点A ,再向右爬了2个单位长度到达点B ,然后又向左爬了10个单位长度到达点C.(1)画出数轴并标出A 、B 、C 三点在数轴上的位置;(2)写出A 、B 、C 三点表示的数;(3)根据点C 在数轴上的位置,C 点可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度得到的?解:(1)如图:(2)A、B、C三点表示的数分别为4、6、-4.(3)C点可以看作是蚂蚁从原点出发,向左爬了4个单位长度得到的.03综合题16.(1)借助数轴,回答下列问题.①从-1到1有3个整数,分别是-1,0,1;②从-2到2有5个整数,分别是-2,-1,0,1,2;③从-3到3有7个整数,分别是-3,-2,-1,0,1,2,3;④从-200到200有401个整数.(2)根据以上事实,请直接写出:从-2.9到2.9有5个整数,从-10.1到10.1有21个整数;(3)在单位长度是1厘米的数轴上随意画出一条长为1 000厘米的线段AB,直接写出线段AB能盖住的整数点的个数.视频讲解解:1 000个或1 001个.。

1.2.2 人教版七年级上册数学 第一章《有理数》数轴 专题训练含答案及解析

1.2.2 人教版七年级上册数学 第一章《有理数》数轴 专题训练含答案及解析

简单1、在数轴上,一点从原点开始,先向右移动2个单位,再向左移动3个单位后到达终点,这个终点表示的数是()A.-1 B.1 C.5 D.-5 【分析】根据向右移动用加,向左移动用减进行计算,列式求解即可.【解答】根据题意,0+2-3=-1,∴这个终点表示的数是-1.故选A.2、在数轴上表示数-3,0,2.5,0.4的点中,不在原点右边的有()A.0个B.1个C.2个D.3个【分析】根据2.5,0.4是正数,在原点右边,-3是负数,在原点左边,0在在原点,即可求得答案.【解答】∵2.5,0.4是正数,在原点右边,-3是负数,在原点左边,0在在原点,∴不在原点右边的有:-3和0.故选C.3、如图所示,数轴上A、B两点所表示的有理数的和是()A.3 B.2 C.1 D.-1 【分析】根据图示找出点A、B所表示的有理数,然后求它们的和即可.【解答】根据图示知,数轴上A、B两点所表示的有理数是-3和2,所以它们的和为:(-3)+2=-1;故选C.4、已知数轴上的A点到原点的距离是2,那么在数轴上到A点的距离是3的点所表示的数有()A.1个B.2个C.3个D.4个【分析】本题要先对A点所在的位置进行讨论,得出A点表示的数,然后分别讨论所求点在A的左右两边的两种情况,即可得出答案.【解答】∵数轴上的A点到原点的距离是2,∴点A可以表示2或-2.(1)当A表示的数是2时,在数轴上到A点的距离是3的点所表示的数有2-3=-1,2+3=5;(2)当A表示的数是-2时,在数轴上到A点的距离是3的点所表示的数有-2-3=-5,-2+3=1.故选D.5、在数轴上,点M表示的数是-2,将它先向右移动4.5个单位,再向左移5个单位到达点N,则点N表示的数是___________.【分析】根据数轴上左加右减的原则进行解答即可.【解答】数轴上表示-2的点先向右移动4.5个单位的点为:-2+4.5=2.5;再向左移动5个单位的点为:2.5-5=-2.5.故答案为:-2.5.6、如果数轴上点A所对应的有理数是−112,那么数轴上距A点5个单位长度单位的点所对应的有理数是多少?【分析】设距A点5个单位长度单位的点所对应的有理数是x,再根据数轴上两点间的距离公式求出x的值即可.【解答】设距A点5个单位长度单位的点所对应的有理数是x,则1152x+=,解得72x=或132x=-.答:数轴上距A点5个单位长度单位的点所对应的有理数是72或132-.简单题1.如图:下面给出的四条数轴中画得正确的是()A.B.C.D.【分析】根据数轴的三要素来判断数轴是否正确.数轴三要素:原点,正方向,单位长度.【解答】A、没有原点,故错误;B、三要素完整,故正确;C、0的左边应该是负数,右边是正数,故错误;D、单位长度不一致,故错误.故选B.2. 下列说法正确的是()A.有原点、正方向的直线是数轴B.数轴上两个不同的点可以表示同一个有理数C.有些有理数不能在数轴上表示出来D.任何一个有理数都可以用数轴上的点表示【分析】根据数轴的定义及意义,依次分析选项可得答案.【解答】根据题意,依次分析选项可得,A、根据数轴的概念,有原点、正方向且规定了单位的直线是数轴,A错误;又由实数与数轴上的点是一一对应的,故B、C均错误;D、实数与数轴上的点是一一对应的,即任何一个有理数都可以用数轴上的点表示,正确;故选D.3. 在数轴上,原点右边的点表示()A.正数B.负数C.整数D.非负数【分析】在数轴上,原点右边的数是正数,原点左边的数是负数,原点表示0,根据以上内容选出即可.【解答】在数轴上,原点右边的数是正数,故选A.4. 设a是一个负数,则数轴上表示数-a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定【分析】根据数轴的相关概念解题.【解答】因为a是一个负数,则-a是一个正数,二者互为相反数,-a在原点的右边.故选B.5.数轴上找不到既不表示正数也不表示负数的点.A.正确B.错误解答:原点既不表示正数,也不表示负数,它表示0.故选B.6.所有的有理数都可以用数轴上的点来表示.A.正确B.错误解答:有理数与数轴上的点是一一对应的.故选A.7.数轴上表示—a的点一定在原点的左边.A.正确B.错误解答:当a为负数时,—a就是正数,这时表示的点就在原点的右边.故选B.难题1. 数轴上,对原点性质表述正确的是()A.表示0的点B.开始的一个点C.数轴中间的一个点D.它是数轴上的一个端点【分析】理解原点是表示0的点,由此分析即可得出正确选项.【解答】在数轴上,我们把原点定义为表示0的点.故选A.2. 下列结论正确的个数是()①规定了原点、正方向和单位长度的直线叫数轴;②同一数轴上的单位长度都必须一致;③有理数都可以表示在数轴上;④数轴上的点都表示有理数.A.0 B.1 C.2 D.3【分析】根据数轴的定义对各小题进行逐一判断即可.【解答】①符合数轴的定义,故本小题正确;②同一数轴上的单位长度都必须一致是数轴的特点,故本小题正确;③有理数都可以表示在数轴上,故本小题正确;④数轴上的点都表示实数,故本小题错误.故选D.3. 数轴上原点及原点左边的点表示的数是()A.负整数B.正整数C.负数D.负数和0 【分析】根据数轴的特点进行解答即可.【解答】∵数轴上右边的数总比左边的大,∴原点左边的点表示的数都小于0,∴原点左边的点表示的数是负数;∴数轴上原点及原点左边的点表示的数是负数和0;故选D.4.下列语句:1.数轴上的点只能表示整数;2.数轴是一条线段;3.数轴上的一个点只能表示一个数;4.数轴上找不到既不表示正数又不表示负数的点。

+1.2.2数轴+同步练习题+++2024-2025学年人教版七年级数学上册

+1.2.2数轴+同步练习题+++2024-2025学年人教版七年级数学上册

1.2.2数轴一、选择题1.如图,在数轴上点 M 表示的数可能是 ( )A . 1.5B . −1.5C . −2.4D . 2.42.下列各图中,所画出的数轴正确的是( )A .B .C .D .3.在数轴上,一个点从-3开始向左移动1个单位长度,再向右移动5个单位长度后表示的数是( )A .+3B .+1C .-9D .-24.如图,在数轴上表示到原点的距离为 3 个单位的点有 ( )A . D 点B . A 点C . A 点和D 点 D . B 点和 C 点 5.在数轴上的点A 到原点的距离是5,则点A 所表示的数为( )A .5B .﹣5C .2.5D .5或﹣56.在数轴上有A 、B 两点,其中点A 表示的数是﹣3,点A 与点B 间的距离为4,则点B 表示的数是( )A .﹣7B .﹣7或1C .1D .7或﹣17.点A 在数轴上距原点3个单位长度,且位于原点左侧,若一个点从点A 处左移4个单位长度,再右移1个单位长度,此时终点所表示的数是( )A .8-B .6-C .2-D .08.如图,数轴上被墨水遮盖的点表示的数可能是( )A .1-B . 2.1-C .31-.D . 3.5- 二、填空题1.数轴上左边的数比右边的数 .2.数轴上点A表示-3,则在A的右侧与点A相距3个单位长度的点所表示的数为 .3.数轴上与原点距离为2.5个单位长度的点有个,其表示的有理数是.4.一个数在数轴上对应的点在原点的左侧,.且距离原点5个单位长度,则这个数是5.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C,若CO=BO,则a的值为.三、解答题1.把下面的直线补充完整,然后在数轴上标出下列各数:−4,+1,2.5,−11,5,最后将2各数用“<”连起来.2.如图,已知A,B为数轴上的两个点,点B表示的数是10.(1)写出线段AB的中点C对应的数;(2)若点D在数轴上,且BD=30,写出点D对应的数;(3)若一只蚂蚁从点A出发,在数轴上每秒向右前进3个单位长度;同时一只毛毛虫从点B出发,它们在点E处相遇,求点E对应的数.3.已知在纸面上有一数轴(如图)折叠纸面.-表示的点与数_____表示的点重合;(1)若1表示的点与1-表示的点重合,则5-表示的点重合,回答以下问题:(2)若1表示的点与5①13表示的点与数_____表示的点重合;②若数轴上A、B两点之间的距离为2024(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少?4.某景区一电瓶小客车接到任务从景区大门出发,向东走2千米到达A景区,继续向东走2.5千米到达B景区,然后又回头向西走8.5千米到达C景区,最后回到景区大门.(1) 以景区大门为原点,向东为正方向,以1个单位长表示1千米,建立如图所示的数轴,请在数轴上表示出上述A,B,C三个景区的位置.(2)A景区与C景区之间的距离是多少?5.数轴上点A对应数-1,一只蚂蚁从A点出发,沿着数轴以每秒4个单位的速度爬行到B点,立即沿原路以原速返回A点,共用5秒钟。

2021-2022学年人教版七年级数学上册 第一章 有理数 1.2.2 数轴 课后练习

2021-2022学年人教版七年级数学上册 第一章 有理数 1.2.2 数轴 课后练习

2021——2022学年度人教版七年级数学上册 第一章有理数1.2.2数轴 课后练习一、选择题1.在数轴上,点M 、N 分别表示数m ,n . 则点M ,N 之间的距离为|m -n|.已知点A ,B ,C ,D 在数轴上分别表示的数为a ,b ,c ,d .且|a -c|=|b -c|=25|d -a|=1 (a≠b),则线段BD 的长度为( ) A .3.5 B .0.5 C .3.5或0.5 D .4.5或0.52.数轴上点 A 表示 a ,将点 A 沿数轴向左移动 3 个单位得到点 B ,设点 B 所 表示的数为 x ,则 x 可以表示为( )A .a ﹣3B .a+3C .3﹣aD .3a+33.如图,一个动点从原点开始向左运动,每秒运动1个单位长度,并且规定:每向左运动3秒就向右运动2秒,则该动点运动到第2021秒时所对应的数是( )A .-406B .-405C .-2020D .-20214.点M ,N ,P 和原点O 在数轴上的位置如图所示,点M ,N ,P 表示的有理数为a ,b ,c (对应顺序暂不确定).如果0bc <,0b c +>,ab ac >,那么表示数c 的点为( ).A .点MB .点NC .点PD .点O5.在数轴上从左到右有,,A B C 三点,其中1AB =,2BC =,如图所示,设点,,A B C 所对应数的和是x ,则下列说法错误的是( )A .若以点A 为原点,则x 的值是4B .若以点B 为原点,则x 的值是1C .若以点C 为原点,则x 的值是4-D .若以BC 的中点为原点,则x 的值是2- 6.有理数a ,b 在数轴上的对应点的位置如图所示,则下列式子中正确的是( )①0a b <<;①a b <;①0ab >;①a b a b ->+A .①①B .①①C .①①D .①①7.如图,数轴上被墨水遮盖的数可能为( )A .-1B .-1.5C .-3.1D .-4.28.已知有理数在数轴上对应的点如图所示,则a ,a -,1-,1的大小关系是( )A .11a a <-<<-B .11a a -<-<<C .11a a <-<-<D .11a a -<-<<9.如图,在数轴上有5个点A ,B ,C ,D ,E ,每两个相邻点之间的距离如图所示,如果点B 表示的数是4-,则点E 表示的数是( )A .5-B .0C .1D .210.a 、b 是有理数,它们在数轴上的对应点位置如图所示,把a 、a -、b 、b -按照从小到大的顺序排列,正确的是( )A .b a a b -<-<<B .a b a b -<-<<C .b a a b -<<-<D .b b a a -<<-< 二、填空题11.点A ,B ,C 在同一条数轴上,其中点A ,B 表示的数分别为3-,1,若2BC =,则AC 等于______. 12.等边ABC 在数轴上的位置如图所示,点A 、C 对应的数分别为0和﹣1,若ABC 绕顶点按顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则连续翻转2020次后,点B 对应的数是__.13.一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点1A 处,第二次从1A 点跳动到1OA 的中点2A 处,第三次从2A 点跳动到2OA 的中点3A 处,如此不断跳动下去,则第7次跳动后,该7A A 的长度为__________.14.有理数a ,b ,c 在数轴上对应的点如图所示,则下列结论:①a >b ;①|b+c|=b+c ;①|a ﹣c|=c ﹣a ; ①﹣b <c <﹣a .其中正确的是_____.(只填序号)15.a ,b 是有理数,它们在数轴上的对应点的位置如下图所示,把a ,a -,b ,b -按照从小到大的顺序排列为________.三、解答题16.先把下列各数在数轴上表示出来,再按从小到大的顺序用“<”号把这些数连接起来: ﹣12,|﹣2.5|,0,﹣22,﹣(﹣4). 17.在数轴上把下列各数表示出来,并用“<”连接各数.﹣|﹣3.5|,112,1(2)2--,﹣(+1)18.如图,数轴上A,B两点之间的距离为30,有一根木棒MN,设MN的长度为x.MN数轴上移动,M始终在左,N在右.当点N移动到与点A,B中的一个重合时,点M所对应的数为9,当点N移动到线段AB的中点时,点M所对应的数是多少?19.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且20AB=,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为(0)t t>秒.(1)数轴上点B表示的数是_____;点P表示的数是_____(用含t的代数式表示).(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒后与点Q相距4个单位长度?20.如图一根木棒放在数轴上,数轴的1个单位长度为1cm,木棒的左端与数轴上的点A重合,右端与点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为16;若将木棒沿数轴向左水平移动,则当它的右端移动到A点时,则它的左端在数轴上所对应的数为4,由此可得到木棒长为cm.(2)图中点A所表示的数是,点B所表示的数是.(3)由题(1)(2)的启发,请你能借助“数轴”这个工具帮助小红解决以下问题:一天,小红去问曾当过数学老师现在退休在家的爷爷的年龄,爷爷说:“我若是你现在这么大,你还要25年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”,请求出爷爷现在多少岁了?21.定义:数轴上给定不重合两点A,B,若数轴上存在一点M,使得点M到点A的距离等于点M到点B的距离,则称点M为点A与点B的“平衡点”.请解答下列问题:(1)若点A表示的数为-3,点B表示的数为1,点M为点A与点B的“平衡点”,则点M表示的数为_______;(2)若点A表示的数为-3,点A与点B的“平衡点”M表示的数为1,则点B表示的数为________;(3)点A表示的数为-5,点C,D表示的数分别是-3,-1,点O为数轴原点,点B为线段CD上一点.①设点M表示的数为m,若点M可以为点A与点B的“平衡点”,则m的取值范围是________;①当点A以每秒1个单位长度的速度向正半轴方向移动时,点C同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为t (0t >)秒,求t 的取值范围,使得点O 可以为点A 与点B 的“平衡点”.22.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数;(2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数. 23.已知在纸面上有一数轴(如图),折叠纸面.例如:若数轴上数2表示的点与数2-表示的点重合,则数轴上数4-表示的点与数4表示的点重合.根据你对例题的理解,解答下列问题:若数轴上数7-表示的点与数1表示的点重合.(根据此情境解决下列问题)(1)则数轴上数3表示的点与数 表示的点重合;(2)若点A 到原点的距离是5个单位长度,并且A 、B 两点经折叠后重合,则B 点表示的数是 ;(3)若数轴上M 、N 两点之间的距离为2020(点M 在点N 的右侧),并且M 、N 两点经折叠后重合,则M 点表示的数是 ,则N 点表示的数是 .【参考答案】1.D 2.A 3.B 4.A 5.C 6.A 7.C 8.A 9.C 10.C11.2或612.202013.12712814.①①①15.b a a b -<<-<16.数轴略,()2120 2.542-<-<<-<-- 17.数轴略,()113.511222⎛⎫--<-+<<-- ⎪⎝⎭18.点M 所对应的数为24或-6.19.(1)-12;(2)t =8 或 t =1220.(1)4;(2)8,12;(3)75岁21.(1)-1;(2)5;(3)①43t -≤≤-;①26t ≤≤且 5t ≠22.(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a23.(1)-9;(2)-11或-1;(3)1007,-1013.。

人教版七级上《1.2.2数轴》同步练习含解析

人教版七级上《1.2.2数轴》同步练习含解析

人教版数学七年级上册第1章 1.2.2数轴同步练习一、单选题(共12题;共24分)1、有理数a,b在数轴上的位置如图所示,那么下列式子中成立的是( )A、ab>0B、C、a﹣1>0D、a<b2、数轴上原点和原点左边的点表示的数是( )A、负数B、正数C、非负数D、非正数3、在数轴上有一点A,它所对应表示的数是3,若将点A在数轴上先向左移动8个单位长度,再向右移动4个单位长度得点B,此时点B所对应表示的数( )A、3B、﹣1C、﹣5D、44、下列所画的数轴中正确的是( )A、B、C、D、5、大于﹣2.6而又不大于3的整数有( )A、7个B、6个C、5个D、4个6、有理数a,b,c在数轴上大致位置如图,则下列关系式正确的是( )A、a<b<cB、a<c<bC、b<c<aD、|a|<|b|<|c|7、数轴上的点A、B、C、D分别表示数a、b、c、d,已知点A在点B的左侧,点C在点B的左侧,点D 在点B、C之间,则下列式子中,可能成立的是( )A、a<b<c<dB、b<c<d<aC、c<d<a<bD、c<d<b<a8、已知a,b两数在数轴上的位置如图所示,则下列结果错误的是( )A、a>0B、a>1C、b<﹣1D、a>b9、如图,数a,b在数轴上对应位置是A、B,则﹣a,﹣b,a,b的大小关系是( )A、﹣a<﹣b<a<bB、a<﹣b<﹣a<bC、﹣b<a<﹣a<bD、以上都不对10、如图,根据有理数a,b,c在数轴上的位置,下列关系正确的是( )A、b>c>0>aB、a>b>c>0C、a>c>b>0D、b>0>a>c11、数m、n在数轴上的位置如图所示,则化简|m+n|﹣m的结果是( )A、2m+nB、2mC、mD、n12、有理数a,b,c在数轴上的位置如图所示,则化简|a+b|﹣|b﹣1|﹣|a﹣c|﹣|1﹣c|得到的结果是( )A、0B、﹣2C、2aD、2c二、填空题(共6题;共6分)13、数轴上点A表示﹣1,则与A距离3个单位长度的点B表示________.14、在数轴上将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是________.15、数轴上点A表示的数是﹣5,若将点A向右平移3个单位到点B,则点B表示的数是________.16、在数轴上到表示﹣2的点的距离为4的点所表示的数是________.17、点A在数轴上距原点5个单位长度,且位于原点左侧,若将A向右移动4个单位长度,再向左移动1个单位长度,此时点A表示的数是________.18、如果2m,m,1﹣m这三个实数在数轴上所对应的点从左到右依次排列,那么m的取值范围是________.三、解答题(共5题;共25分)19、画数轴,在数轴上表示下列各数,并用“<”号把它们连接起来﹣3、+2、﹣1.5、0、1.2020出一条数轴,在数轴上表示数﹣12,2,﹣(﹣3),﹣|﹣2 |,0,并把这些数用“<”连接起来.21、在数轴上画出表示下列各数的点,并用“<”号将这些数按从小到大的顺序连接起来: ﹣,0,2,﹣(+3),|﹣5|,﹣1.5.22、小明从家出发(记为原点0)向东走3m,他把数轴上+3的位置记为点A,他又东走了5m,记为点B,点B表示什么数?接着他又向西走了10m到点C,点C表示什么数?请你画出数轴,并在数轴上标出点A、点B的位置,这时如果小明要回家,则小明应如何走?23、画出数轴,把22,0,﹣2,(﹣1)3,﹣|﹣3.5|,这六个数在数轴上表示出来;按从小到大的顺序用“<”号将各数连接起来.答案解析部分一、单选题1、【答案】D【考点】数轴【解析】【解答】解:由表示a和b的点位置可知,a<﹣1,b>0;所以ab<0,<0,a﹣1<0;故A,B,C不成立;a<b,故D成立;故选D.【分析】根据数轴上的点表示的数的规则进行分析即可.2、【答案】D【考点】数轴【解析】【解答】解:∵从原点发朝正方向的射线(正半轴)上的点对应正数,相反方向的射线(负半轴)上的点对应负数,原点对应0;∴数轴上原点和原点左边的点表示的数是0和负数,即非正数.故选D.【分析】根据数轴的意义进行作答.3、【答案】B【考点】数轴【解析】【解答】解:由数轴的特点可知,将数3在数轴上先向左移动8个单位长度,再向右移动4个单位长度得点B,点B=3﹣8+4=﹣1;故选B【分析】根据数轴的特点进行解答即可.4、【答案】D【考点】数轴【解析】【解答】解:根据数轴的三要素判定可得D正确.故选:D.【分析】运用数轴的三要素判定即可.5、【答案】B【考点】数轴【解析】【解答】解:则大于﹣2.6而又不大于3的整数是﹣2,﹣1,0,1,2,3.共有6个数.故选B.【分析】首先把大于﹣2.6并且不大于3的数在数轴上表示出来,即可判断.6、【答案】A【考点】数轴,有理数大小比较【解析】【解答】解:∵数轴上右边的数总比左边的大,∴a<b<c.故选A.【分析】根据各点在数轴上的位置即可得出结论.7、【答案】C【考点】数轴,有理数大小比较【解析】【解答】解:∵A在点B的左侧,∴a<b;∵点C在点B的左侧,∴c<b;∵点D在点B、C之间,∴c<d<b,∴可能成立的是:c<d<a<b.故选:C.【分析】数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,据此判定出a、b、c、d 的大小关系即可.8、【答案】B【考点】数轴,有理数大小比较【解析】【解答】解:A、∵a在原点的右边,∴a>0,故本选项错误;B、∵a在1的左边,∴a<1,故本选项正确;C、∵b在﹣1的左边,∴b<﹣1,故本选项错误;D、∵b在a的左边,∴a>b,故本选项错误;故选B.【分析】在数轴上表示的数,右边的数总比左边的数大,根据以上结论逐个判断即可.9、【答案】C【考点】数轴,有理数大小比较【解析】【解答】解:由数轴可知a<0,b>0,所以所以﹣a>0,﹣b<0,且|a|<|b|,所以﹣b<a,﹣a<b,所以其大小关系为:﹣b<a<﹣a<b,故选:C.【分析】由数轴可知a<0,b>0,且|a|<|b|,所以﹣a>0,﹣b<0,进一步即可确定其大小关系.10、【答案】D【考点】数轴,有理数大小比较【解析】【解答】解:根据数轴上点的位置可知:b>0>a>c.故选D.【分析】根据数轴上点的位置即可得出a、b、c及0之间的大小关系,此题得解.11、【答案】D【考点】数轴,绝对值,整式的加减【解析】【解答】解:∵m<0,n>0,且|m|<|n|,∴|m+n|﹣m=m+n﹣m=n.故选:D.【分析】由题意可知,m<0,n>0,且|m|<|n|,由此利用绝对值的意义与整式的加减运算方法化简即可.12、【答案】B【考点】数轴,绝对值,整式的加减【解析】【解答】解:根据数轴上点的位置得:b<a<0<c<1,∴a+b<0,b﹣1<0,a﹣c<0,1﹣c>0,则原式=﹣a﹣b+b﹣1+a﹣c﹣1+c=﹣2,故选B【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.二、填空题13、【答案】﹣4或2【考点】数轴【解析】【解答】解:①点B在点A的左边时,∵点A表示﹣1,∴点B表示﹣1﹣3=﹣4,②点B在点A的右边时,∵点A表示﹣1,∴点B表示﹣1+3=2,综上所述,点B表示的数是﹣4或2.故答案为:﹣4或2.【分析】根据数轴上的数右边的总比左边的大,分点B在点A的左边与右边两种情况讨论求解.14、【答案】-3【考点】数轴【解析】【解答】解:设点A表示的数为x,由题意得,x+7﹣4=0,解得x=﹣3,所以,点A表示的数是﹣3.故答案为:﹣3.【分析】设点A表示的数为x,根据向右平移加,向左平移减列出方程,然后解方程即可.15、【答案】-2【考点】数轴【解析】【解答】解:∵A为数轴上表示﹣5的点,将点A沿数轴向右平移3个单位到点B,∴﹣5+3=﹣2,即点B所表示的数是﹣2,故答案为:﹣2【分析】根据题意得出﹣5+3=﹣2,即得出了答案.16、【答案】﹣6或2【考点】数轴【解析】【解答】解:该点可能在﹣2的左侧,则为﹣2﹣4=﹣6;也可能在﹣2的右侧,即为﹣2+4=2.故答案为:﹣6或2.【分析】根据数轴的特点,数轴上与表示﹣2的点的距离为4的点有两个:一个在数轴的左边,一个在数轴的右边,分两种情况讨论即可求出答案.17、【答案】-2【考点】数轴【解析】【解答】解:因为点A在数轴上距原点5个单位长度,且位于原点左侧,所以,点A表示的数为﹣5,移动后点A所表示的数是:﹣5+4﹣1=﹣2.故答案为:﹣2.【分析】根据题意先确定点A表示的数,再根据点在数轴上移动的规律,左加右减,列出算式,计算出所求.18、【答案】m<0【考点】数轴【解析】【解答】解:根据题意得:2m<m,m<1﹣m,2m<1﹣m,解得:m<0,m<,m<,∴m的取值范围是m<0.故答案为:m<0.【分析】如果2m,m,1﹣m这三个实数在数轴上所对应的点从左到右依次排列,即已知2m<m,m<1﹣m,2m<1﹣m,即可解得m的范围.三、解答题19、【答案】解:如图所示: ﹣3<﹣1.5<0<1<+2.【考点】数轴,有理数大小比较【解析】【分析】首先在数轴上表示各数,然后再根据在数轴上右边的点表示的数大于左边的点表示的数用“<”号把它们连接起来.2020答案】解:因为﹣12=﹣1,﹣(﹣3)=3,﹣|﹣2 |=﹣2 ,把各数表示在数轴上,如下图所示:所以﹣|﹣2 |<﹣12<0<2<﹣(﹣3)【考点】数轴,绝对值,有理数大小比较【解析】【分析】先化简﹣12,﹣(﹣3),﹣|﹣2 |,再把各数表示在数轴上,最后用“<”连接各数.21、【答案】解:如图,由数轴上的点表示的数右边的总比左边的大,得﹣(+3)<﹣1.5<﹣<0<|﹣5|【考点】数轴,绝对值,有理数大小比较【解析】【分析】根据数轴是表示数的一条直线,可把数在数轴上表示出来,根据数轴上的点表示的数右边的总比左边的大,可得答案.22、【答案】解:∵小明从家出发(记为原点0)向东走3m,他在数轴上+3位置记为点A,∴他又东走了5m,记为点B,点B表示的数是3+5=8,数轴如图所示:∴接着他又向西走了10m到点C,点C表示表示的数是:8+(﹣10)=﹣2,∴当小明到点C时,要回家,小明应向东走2米即可.即点B表示的数是8,点C表示的数是﹣2,小明到点C时,要回家,小明应向东走2米【考点】数轴【解析】【分析】根据小明的位置以及行走的方向和距离,可以求得点B和点C的坐标,从而可以知道小明要回家应如何走.23、【答案】解:22=4,(﹣1)3=﹣1,﹣|﹣3.5|=﹣3.5,=2,如图,用“<”号把这些数连接起来为:﹣|﹣3.5|<﹣2<(﹣1)3<0<<22【考点】数轴,绝对值,有理数大小比较【解析】【分析】先计算22=4,(﹣1)3=﹣1,﹣|﹣3.5|=﹣3.5,=2,再根据数轴表示数的方法表示所给的6个数,然后写出它们的大小关系.。

1.2.2数轴(新教材)2024-2025学年七年级数学上册同步备课系列(人教版2024)

1.2.2数轴(新教材)2024-2025学年七年级数学上册同步备课系列(人教版2024)
6.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上
“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“4.3cm”对应
数轴上的数为( B )
A.-1.7
B.-1.3
C.-0.7ຫໍສະໝຸດ D.-0.37. 如图,写出数轴上点 A,B,C,D,E 表示的数.
解:点 A,B,C,D,E 表示的数分别是
A.
C.
-1
0
-1 0
1
1
2
2
B.
0
1
2
3
D.
-1
-2
0
1
3.数轴上与原点的距离为5的点表示的数是( C )
A.5
B. −5
C.5或−5
4.数轴上表示−1.2的点在( B )
A.−1与0之间
B.−2与−1之间
D.10
C. 1与2之间
D.0与1之间
9
5.数轴上表示数−5和数−14的两点之间的距离为______.

(1)
(2)
−4
5
2

−0.5 0 0.5 1
−150 100 −50
0
思考: (1)数−4与4有什么相同与不同之处?


100
4
200
数字部分相同,符号不同
(2)它们在数轴上的位置有什么关系? 位于原点两侧,到原点距离相等
5
5
(3) − 与 ,−0.5与0.5呢?
只有符号不同,在数轴上位于原点两侧,
所以点B表示的数是2-2π
故选B.
D.2-π
例5
正方形在数轴上的位置如图所示,点D、A对应的数分别为0和-1,若正

数学人教版(2024)版七年级初一上册 1.2.2 数轴 课时练 含答案03

数学人教版(2024)版七年级初一上册 1.2.2 数轴 课时练 含答案03

第一章有理数1.2.2 数轴一、单选题1.下列图形中是数轴的是( )A.B.C.D.2.在数轴上,位于3-和3之间的点表示的有理数有( )A.5个B.4个C.3个D.无数个3.将1-在数轴上对应的点向右平移2个单位,则此时该点对应的数是()A.1-B.1C.3-D.34.在数轴上表示3的点与表示4-的点之间的距离是()A.7B.7-C.3D.4-5.下列各数中,在2-和0之间的数是()A.1-B.1C.3-D.36.四位同学画数轴如下,其中正确的是()A.B.C.D.7.下面的数轴被墨迹盖住一部分,被盖住的整数有()个.A.11B.10C.9D.88.数轴上表示整数的点叫做整点,某数轴的单位长度为1cm,若在这条数轴上任意画出一条长度为2023cm的线段,则线段盖住的整点个数为()A.2023个B.2024个C.2022个或2023个D.2023个或2024个二、填空题9.数轴上到点1-的距离等于5个单位长度的数是.10.点A 、B 在数轴上,若数轴上点A 表示1-,且4AB =,则点B 表示的数是 .11.在数轴上把5对应的点移动3个单位长度后所得的对应点表示的数是.12.如图,在数轴有A 、B 两点,点A 表示的数是2024-,若OA OB =,则点B 表示的数是.13.在数轴上与表示3-的点距离4个单位长度的点表示的数是 .14.已知点A ,B 在数轴上,点A 与原点的距离是7,点B 与原点的距离是16,则点A ,B 之间的距离为.15.如果数轴上的点A 对应的数为3,那么与点A 相距4个单位长度的点所对应的数为 .16.如图,在数轴上与点A 的距离为2的点表示的数是.三、解答题17.在数轴上表示下列各数:132-,+2,﹣0.5,0,3.18.用数轴上的点表示下列各数:2,2-,0.5-,112-,1.5,0.19.给出下面六个数:2.5,1,2-, 2.5-,0,32-.先画出数轴,再把表示上面各数的点在数轴上表示出来.20.画出数轴并表示下列有理数.2,32-,0,3-,12.21.画一条数轴,并在数轴上标出下列各数:2, 1.53--,,0,12,3.5.参考答案1.C2.D3.B4.A5.A6.C7.C8.D9.6-和410.5-或3/3或5-11.2或812.202413.1或7-14.23或9/9或2315.7或1-16.3-或117.解:如图所示:18.解:画图如下:19.解:数轴表示如下所示:20.解:如图所示,21.解:如图所示,即为所求.。

嵩县第四中学七年级数学上册第一章有理数1.2有理数1.2.2数轴课时作业新版新人教版

嵩县第四中学七年级数学上册第一章有理数1.2有理数1.2.2数轴课时作业新版新人教版

数轴1、下列数轴的画法正确的是( )2、(2009年,太原)在数轴上表示-2的点离原点的距离等于( ) A.2 B.-2 C.±2 D.43、(2009年,广州)有理数a 、b 在数轴上的位置如图所示,则A.b 的大小关系是( )A.a <bB.a >bC.a=bD.无法确定 (注:原题是实数a ,b ,现改为有理数a ,b)4、在同一个数轴上表示出下列有理数:.0,32,29,5.2,2,2,5.1--- 5、在数轴上表示-4的点位于原点的 边,与原点的距离是 个单位长度. 6、比较大小,在横线上填入“>”、“<”或“=” .1 0;0 ﹣1;﹣1 ﹣2;﹣5 ﹣3;﹣2.5 2.5. 7、(1)与原点距离等于4的点有几个?其表示的数是什么?(2)在数轴上点A 表示的数是3,与点A 相距两个单位的点表示的数是什么? 8、数轴上与原点距离是5的点有 个,表示的数是 .9、已知x 是整数,并且﹣3<x <4,那么在数轴上表示x 的所有可能的数值有 . 10、在数轴上,点A.B 分别表示﹣5和2,则线段AB 的长度是 . 11、从数轴上表示-1的点出发,向左移动两个单位长度到点B ,则点B 表示的数是 ,再向右移动两个单位长度到达点C ,则点C 表示的数是 .12、数轴上的点A 表示﹣3,将点A 先向右移动7个单位长度,再向左移动5个单位长度,那么终点到原点的距离是 个单位长度.13、在数轴上P 点表示2,现在将P 点向右移动2个单位长度后再向左移动5个单位长度,这时P 点必须向 移动 个单位到达表示﹣3的点.1-2 0 12 0 1 01ABCD参考答案C,考察数轴的三要素。

A3、B4、画数轴时,数轴的三要素要包括完整。

图略。

5、左,46、>;>;>;<;<7、分析:对于初学者,我们可以画出数轴,从数轴上观察,与原点距离等于4的点有两个,它们分别位于原点的两侧,它们所表示的数是+4和4.千万不要忽略了原点左边的点即表示4的点.这样第(2)问迎刃而解.解:(1)与原点距离等于4的点有两个,它们表示的数是+4和-4.(2)在数轴上点A表示的数是3,与点A相距两个单位的点表示的数是-1和-5.8、两个;±59、-2;-1;0;1;2;310、711、-3;-112、113、左;2点和线(30分钟50分)一、选择题(每小题4分,共12分)1.下列说法正确的是( )A.延长线段ABB.延长直线ABC.延长射线OAD.作直线AB=CD2.下列说法中正确的有( )①射线与其反向延长线成一条直线;②直线a,b相交于点m;③两条直线相交于两点;④三条直线两两相交有三个交点.A.3个B.2个C.1个D.0个3.某高速路的设计者准备设计修建一条隧道,以缩短两地之间的里程,其主要依据是( )A.垂线段最短B.两点之间线段最短C.两点确定一条直线D.过直线外一点有且只有一条直线平行于已知直线二、填空题(每小题4分,共12分)4.用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,这说明__________;用两个钉子把细木条钉在木板上,就能固定细木条,这说明__________.5.如图,从学校A到书店B最近的路线是________号路线,得到这个结论的根据是:________.6.如图所示,图中的直线、射线、线段的条数分别为a,b,c,则a+b+c=______.三、解答题(共26分)7.(8分)已知平面上四点A,B,C,D,如图:(1)画直线AB.(2)画射线AD.(3)直线AB,CD相交于点E.(4)连结AC,BD相交于点F.8.(8分)如图所示,回答下列问题:(1)图中共有多少条射线?(2)图中共有多少条直线?请表示出来.(3)图中共有多少条线段?请表示出来.【拓展延伸】9.(10分)通过阅读解答问题(阅读中的结论可以直接用).阅读:在直线上有n个不同的点,则此图中共有多少条线段?通过分析、画图尝试,得如下表格:图形直线上点的个数共有线段条数两者关系2 1 1=0+13 3 3=0+1+24 6 6=0+1+2+35 10 10=0+1+2+3+4…………n =0+1+2+3+…+(n-1)问题:(1)某学校七年级共有8个班进行辩论赛,规定进行单循环赛(每两班赛一场),那么该校七年级的辩论赛共要进行多少场?(2)乘火车从A站出发,沿途经过3个车站方可到达B站,那么在A,B两站之间需要安排多少种不同的车票?答案解析1.【解析】选A.直线、射线本身都是无限延伸的,不能延长,线段可以延长,故A对,B,C错;直线不可以度量,故D错.2.【解析】选 C.射线与其反向延长线所形成的图象是向两方无限延伸的,是直线,①对.线与线相交于点,点不能用小写字母表示,②错.两条直线相交只有一个交点,③错.三条直线两两相交有两种情况,交点应是一个或三个,④错.3.【解析】选B.要想缩短两地之间的里程,就尽量使两地在一条直线上,因为两点之间线段最短.4.答案:经过一点有无数条直线两点确定一条直线5.【解析】根据线段的性质:两点之间,线段最短.可得,从学校A到书店B最近的路线是①号路线.答案:①两点之间,线段最短6.【解析】图中的直线有4条;以D为端点的射线有6条,以A,B,C为端点的射线又各有4条,所以图中共有18条射线;图中线段有6条.故a+b+c=28.答案:287.【解析】如图.注意直线、射线、线段的不同画法,(4)中AC,BD应画成线段.8.【解析】(1)以A,B,C,E为端点的射线分别有2条、3条、3条和2条,故共有2+3+3+2=10条射线.(2)图中共有1条直线,是直线BC(或BE或CE等).(3)图中共有6条线段,它们是线段AB、线段AE、线段AC、线段BE、线段BC、线段EC.=28(场).(2)当n=5时,共有线段条数为=10,即A,B两站之间共有10条不同的线段,所以A,B两站之间需要安排10×2=20种不同的车票.6.3实数1.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q23 ) A .0B .-4C πD 23.下列各数中,比2-大的数是( ) A .3-B .92-C .0D .2-4.若x 37﹣4,则x 的取值范围是( ) A .2<x <3 B .3<x <4C .4<x <5D .5<x <65132252的结果估计在 A .7与8之间B .8与9之间C .9与10之间D .10与11之间6.一个正方形的面积等于30,则它的边长a 满足( ) A .4<a <5B .5<a <6C .6<a <7D .7<a <87.比较2537的大小,正确的是( ) A .3257<<B .3275<<C 3725<<D 3752<<8.估计48的立方根的大小在( ) A .2与3之间B .3与4之间C .4与5之间D .5与6之间9.在下面数据中,无理数是( ) A 35B 16C .203D .0.585858…10.对于有理数x y 、. 规定新运算: *x y ax by =+,其中a b 、是常数,已知()2*152*24=-=,,则12*3=( ).A .1B .2C .3D .411.如图,观察所给算式,找出规律: 1+2+1=4, 1+2+3+2+1=9, 1+2+3+4+3+2+1=16, 1+2+3+4+5+4+3+2+1=25, ……根据规律计算1+2+3+…+99+100+99+…+3+2+1=____________12.已知m n 的小数部分,则m+n =________.13.已知一个无理数a ,满足1<a<2,则这个无理数a 可以是________(写出一个即可).14.一个四位数,记千位上和百位上的数字之和为x ,十位上和个位上的数字之和为y ,如果x =y ,那么称这个四位数为“和平数”.例如:2635,x =2+6,y =3+5,因为x =y ,所以2635是“和平数”. (1)请判断:3562 (填“是”或“不是”)“和平数”.(2)直接写出:最小的“和平数”是 ,最大的“和平数”是 ;(3)如果一个“和平数”的个位上的数字是千位上的数字的两倍,且百位上的数字与十位上的数字之和是14,求满足条件的所有“和平数”.15.用“※”定义一种新运算:对于任意有理数a 和b ,规定22a b ab ab a =++※.如21313213116=⨯+⨯⨯+=※.(1)求()3-2※的值;(2)若113422a +⎛⎫⎛⎫-=⎪ ⎪⎝⎭⎝⎭※※,求a 的值. 16.观察下列等式:第1个等式:1111a 11323==⨯-⨯(); 第2个等式:21111a 35235==⨯-⨯(); 第3个等式:31111a 57257==⨯-⨯();第4个等式:41111a 79279==⨯-⨯(); … 请解答下列问题:(1)按以上规律列出第5个等式:a 5= = ;(2)用含有n 的代数式表示第n 个等式:a n = = (n 为正整数);(3)求a 1+a 2+a 3+a 4+…+a 100的值.参考答案1.D【解析】∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点M与N之间,∴这四个数中绝对值最大的数对应的点是点Q.故选D.2.C【分析】首先利用估算可知12<<,从而排除A、B选项,然后再就被开方数与C、D选项加以比较,最后得出答案即可.【详解】由题意得:12<<,∴排除A、B选项,∵23π<<<<,>故选:C.【点睛】本题主要考查了实数的大小比较,熟练掌握相关方法是解题关键.3.C【分析】根据实数大小的比较法则:正数大于0,负数小于0,正数大于负数;两个负数,绝对值大的反而小,即可得出答案.【详解】32,->-则32-<-, A错误;92,2->-则922-<-,B错误;20-<,C符合题意;22-=-,故D错误;故选C.【点睛】本题考查实数大小的比较.掌握实数大小比较的方法是解题的关键. 4.A【分析】根据36<37<49,则有6<7,即可得到x的取值范围.【详解】∵36<37<49,<7,﹣4<3,故x的取值范围是2<x<3.故选:A.【点睛】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.5.A【分析】先根据二次根式的运算法则将算式化简,然后根据算术平方根的意义估值即可.【详解】===+,解:原式4<<,3104∴<<,748故选:A.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,先进行二次根式的乘除运算,然后合并同类二次根式.6.B【分析】,再由52=25,62=36,即可求解.【详解】正方形的面积是边长的平方,∵面积为30.∵52=25,62=36,∴56<<,即5<a <6,故选B .【点睛】本题考查了无理数的估算,解题的关键是注意找出和30最接近的两个能完全开方的数.7.C【分析】先分别求出这三个数的六次方,然后比较它们的六次方的大小,即可比较这三个数的大小.【详解】解:∵26=64,362125⎡⎤==⎢⎥⎣⎦,26349⎡⎤==⎢⎥⎣⎦,而49<64<125∴6662<<2<<故选C .【点睛】此题考查的是无理数的比较大小,根据开方和乘方互为逆运算将无理数化为有理数,然后比较大小是解决此题的关键.8.B【分析】即可得出答案.【详解】4,即48的立方根的大小在3与4之间,故选:B .【点睛】9.A【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:是无理数,故本选项符合题意;4=,是整数,属于有理数,故本选项不合题意;C.203是分数,属于有理数,故本选项不合题意;故选:A.【点睛】此题考查无理数的定义,解题关键在于掌握无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.C【分析】已知等式利用题中的新定义化简,计算即可求出所求.【详解】解:根据题中的新定义得:25 224a ba b+=⎧⎨-+=⎩,解得:13 ab=⎧⎨=⎩,原式=2×1+ 13×3=3,故选C.【点睛】本题考查的是解二元一次方程组,先根据题中所给的条件列出关于a、b的二元一次方程组是解答此题的关键.11.10000【解析】观察这几个式子可得每个式子的结果等于中间数的平方,所以1+2+3+…+99+100+99+…+3+2+1=1002=10000.点睛:本题考查了数字规律的计算,解决本题的关键在于根据所给的算式,找到规律,并把规律应用到解题中.12【分析】的大小然后得出m,n的值计算即可.【详解】<<<<解:∵m n的小数部分,且34,34∴m=3,-3.【点睛】本题主要考查的是估算无理数的大小,关键是得到m、n的值.13或或其他正确答案【分析】由于无理数a为无理数,1<a<2a<<a之间任意一个无理数,由此即可求解.【详解】解:∵a为无理数,1<a<2a<<或其他正确答案.或其他正确答案.【点睛】此题主要考查了无理数的估算,其中无理数包括开方开不尽的数,和π有关的数,有规律的无限不循环小数.14.(1)是;(2)1001,9999;(3)这个数为2864或4958.【分析】(1)用定义验证x和y是否相等(2)找最小和最大的单位数,注意千位数不能为0(3)根据“和平数”定义,以及个数位之间的关系确定【详解】解:(1)x=3+5=8,y=6+2=8∵x=y∴3562是“和平数”∴答案:是这个(2)最小的自然数为0,最大的单位数为9,但千位数字不能为0∴最小的“和平数”为:1001最大的“和平数”为:9999(3)解:设这个“和平数”为abcd则d=2a,a+b=c+d,b+c=14∴2c+a=14∴a为偶数2,4,6(舍去),8(舍去),d=4,6,12(舍去),14(舍去),①当a=2,d=4时 2c+a=14∴c=6∵b+c=14∴b=8②当a=4,d=8时 2c+a=14∴c=5∵b+c=14∴b=9∴综上所述:这个数为2864或4958【点睛】本题考查给出新定义后,如何用它来解题的方法.15.(1)3;(2)a=1.【分析】(1)利用题中新定义化简,计算即可得到结果;(2)已知等式利用新定义化简,计算即可解出a的值.【详解】解:(1)根据题中定义的新运算得:3)※(-2)=3×(-2)2+2×3×(-2)+3=12-12+3=3.(2)根据题中定义的新运算得: 12a +※3=12a +×32+2×12a +×3+12a +=8(a +1) . 8(a +1) ※(12-)=8(a +1)×21()2-+2×8(a +1)×1()2-+8(a +1)=2(a +1) . 所以2(a +1)=4,解得a =1.【点睛】本题考查了新定义问题,解题的关键是理解题中给出的定义,并运用到具体的计算中.16.(1)1111 9112911⨯-⨯,()(2)()()1111 2n 12n+122n 12n+1⨯--⨯-,()(3)100201【分析】(1)(2)观察知,找等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为:序号的2倍减1和序号的2倍加1.(3)运用变化规律计算【详解】解:(1)a 5=1111=9112911⨯-⨯(); (2)a n =()()1111=2n 12n+122n 12n+1⨯--⨯-(); (3)a 1+a 2+a 3+a 4+…+a 10011111111111=1++++232352572199201⨯-⨯-⨯-⋅⋅⋅⨯-()()()() 11111111111200100=1++++=1==23355719920122012201201⎛⎫⎛⎫⨯---⋅⋅⋅-⨯-⨯ ⎪ ⎪⎝⎭⎝⎭.。

人教版数学 七年级上册 1.2.2 数轴 课后练习题

人教版数学 七年级上册 1.2.2 数轴 课后练习题

一、单选题1. 如图所示,圆的周长为4个单位长度.在圆的4等分点处标上0,1,2,3,先让圆周上的0对应的数与数轴的数﹣1所对应的点重合,再让数轴按逆时针方向绕在该圆上.那么数轴上的﹣2007将与圆周上的数字()重合.A.0 B.1 C.2 D.32. 如图,数轴上AB两点对应的数分别为a、b,那么下列四个关系中正确的是( )A.a<b<−b<−a B.−a<−b<a<b C.a<−b<b<−a D.a<|a|<|b|=b3. 若数轴上的点A对应的数是-2,那么与A相距3个单位长度的点B对应的数是().A.1 B.-5C.-5或1 D.-1或54. 数轴上表示数12和表示数﹣4的两点之间的距离是()A.8 B.﹣8 C.16 D.﹣165. 在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为()A.-3 B.-2 C.-1 D.1二、填空题6. 如图,边长为1的正方形,沿数轴顺时针连续滚动.起点和重合,则滚动2026次后,点在数轴上对应的数是______.7. 数轴上,点所对应的数是,那么到点距离是的点所表示的数是_______.8. 如图,x是0到4之间(包括0,4)的一个实数,那么|x-1|+|x-2|+|x-3|+|x-4|的最小值等于______.三、解答题9. 把下面的直线补充成一条数轴,并把下列各数在数轴上表示出来,再按从小到大的顺序用“<”连接起来:﹣3,0,+3.5,,0.5.10. 在数轴上画出表示下列各数的点,并用“<”将各数连接起来.,,,11. (1)如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5.(单位:cm)则木棒MN长为__________cm.(2)一天,小民去问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,125岁了,哈哈!”请你借助上述方法,写出小民爷爷到底是_________岁.。

人教版七年级上册数学 第一章 1.2.2数轴 课后作业

人教版七年级上册数学 第一章  1.2.2数轴  课后作业

B.点 O 与点 A 之间
C.点 A 与点 B 之间
D.点 B 的右边
9.如图所示,直径为单位 1 的圆从原点沿着数轴无滑动的逆时针滚动一周到达 A 点,则 A 点表示的数
1/7
是( )
A.-2
B.-3
C.π
D.–π
二、填空题 10.在数轴上,点 A 所表示的数为 2,那么到点 A 的距离等于 3 个单位长度的点所表示的数是____.
(2)求小彬家与学校之间的距离;
(3)如果小明跑步的速度是 250 米/分钟,那么小明跑步一共用了多长时间?
19.如图,已知 A、B、C 是数轴上的三点,点 C 表示的数是 6,点 B 与点 C 之间的距离是 4,点 B 与
点 A 的距离是 12,点 P 为数轴上一动点.
(1)数轴上点 A 表示的数为
∴PA+PA+AB=16, 2PA=16﹣12=4, PA=2, 则点 P 表示的数为﹣12; ②如图 2,当点 P 在 AB 的延长线上时,同理得 PB=2,
则点 P 表示的数为 4; 综上,点 P 表示的数为﹣12 或 4; (3)由题意得:t 秒 P 点到点 Q,点 R 的距离相等,则此时点 P、Q、R 所表示的数
点 R 的距离相等时 t 的值.
3/7
1.C 2.B 3.B 4.C 5.D
6.A 7.C 8.C 9.D
10.-1 或 5
11.﹣6 或 8
12. 5
13.<
14.2.
15.252
16 解:将各数标在数轴上如图:
答案
−4 −2 2 − 3 0 1 2.5 3 .
32
17.解:(1)观察数轴得:A:-6,B:1,C:4; (2)AB 的距离为:1-(-6)=-7; AC 的距离为:4-(-6)=-10; (3)A 向右移动 5 个单位变为:-1 则 A、B、C 此刻分别为:-1、1、4,其中 4 最大,即点 C; (4)∵AC 的距离为 10 ∴要使得 AB、BC 距离相等,则 AB、BC 都为 5 ∴只需将点 B 向左移动 2 个单位即可 18.解:(1)如图所示:

人教版七年级数学上册1.2.2 数轴同步练习(含答案)

人教版七年级数学上册1.2.2 数轴同步练习(含答案)

数轴一、单选题1.下列选项中正确表示数轴的是( )A .B .C .D .2.如图,数轴的单位长度为1,如果点B 表示的数是2,那么点A 表示的数是( )A .0B .-1C .-2D .-33.数轴上的点A 到原点的距离是8,则点A 表示的数为( )A .8或8-B .8C .8-D .6或6- 4.已知2a =,3b =,且在数轴上表示有理数b 的点在a 的左边,则a b -的值为( ) A .1- B .5- C .1-或5- D .1或5 5.在数轴上表示a 、b 两个实数的点的位置如图所示,则下列结果为正数的是( )A .a +bB .a -bC .b -aD .a b6.若数轴上的点A 向左移动2个单位长度,再向右移动3个单位长度,正好对应-5这个点,那么原来A 对应的数是( ).A .-4B .2C .-6D .07.已知在数轴上A 、B 、C 三点对应的数分别是-2、2、x ,若相邻两点的距离相等,则x 的值为( )A .6B .-6C .0D .以上三个值都满足 8.在数轴上,点A B ,在原点O 的同侧,分别表示数1,a ,将点A 向左平移3个单位长度,得到点C ,点C 与点B 所表示的数互为相反数,则a 的值为( )A .3B .2C .1-D .09.正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A .点CB .点DC .点AD .点B10.在数轴上,一只蚂蚁从原点出发,它第一次向右爬行了1个单位长度,第二次接着向左爬行了2个单位长度,第三次接着向右爬行了3个单位长度,第四次接着向左爬行了4个单位长度,如此进行了2020次,问蚂蚁最后在数轴上什么位置?( )A .1010B .﹣1010C .﹣505D .-505二、填空题11.点,,,A B C D 在数轴上的位置如图,中表示1-的相反数的点是 ________.12.已知a 是一个正数,b 是一个负数,∣a ∣<∣b ∣,用“<”把-a ,-b ,a ,b 连接起来________ . 13.在数轴上,点A 表示的数是3x +,点B 表示的数是3x -,且,A B 两点的距离为8,则x =_________.14.如图,在数轴上点A表示1,现将点A沿x轴做如下移动:第一次点A向左移动3个单位长度到达点1A,第二次将点1A向右移动6个单位长度到达点2A,第三次将点2A向左移动9个单位长度到达点3A,按照这种移动规律移动下去,则线段1314A A的长度是.三、解答题15.画数轴,并在数轴上表示下列各数.3,-92,0,-2,1.516.在一条数轴上从左到右有点A,B,C三点,其中AC=5,BC=2,设点A,B,C所对应数的和是p.(1)若以B为原点,则点A,C所对应的数分别为,p的值为;(2)若以A为原点,求p的值;(3)若原点O在数轴上点C的右边,且OB=15,求p的值.17.(1)画出数轴,并在数轴上表示下列各数: 3.5,0,-5,-(-2);(2)数轴上表示2和-5的两点之间的距离是 .(3)若数轴上A 点表示的数为x ,B 点表示的数为-1,则AB 之间的距离为 . (4)结合数轴求得23x x -++的最小值为 ,取得最小值时x 的取值范围是 .18.已知数轴上的A 、B 两点分别对应数字a 、b ,且a 、b 满足 |4a-b|+(a-4)2=0. (1)直接写出a 、b 的值.=时,求P (2)P从A点出发,以每秒3个单位长度的速度沿数轴正方向运动,当PA PB运动的时间和P表示的数.(3)数轴上还有一点C对应的数为36,若点P从A出发,以每秒3个单位长度的速度向点C运动,同时点Q从点B出发,以每秒1个单位长度的速度沿数轴向正方向运动,点P运PQ=时,求P点对应的数.动到点C立即返回再沿数轴向左运动.当10答案1.D 2.C 3.A 4.D 5.C 6.C 7.D 8.B 9.B10.B11.A点12.b<−a<a<−b13.414.42.15.解:根据题意数轴如图所示:16.解:(1)∵以B为原点,AC=5,BC=2,∴点A,C所对应的数分别为-3、2,p的值为-3+2+0=-1;故答案为:﹣3、2,﹣1;(2)若以A为原点,则A点表示的数为0,由AC=5,BC=2可知,B点表示的数为3,C点表示的数为5,p=0+3+5=8.答:p的值为8;(3)由题意知:B点表示的数为-15,C点表示的数为-15+2= -13,A点表示的数为-15-3= -18,p=-15+(-13)+(-18)=-46,17.解:(1)作图如下:(2)数轴上表示2和表示-5的两点之间的距离是|2-(-5)|=7;(3)数轴上A 点表示的数为x ,B 点表示的数为-1,则AB 之间的距离为|x+1|. (4)当x <-3时,|x-2|+|x+3|=2-x-(3+x )=-2x-1,此时最小值大于5;当-3≤x≤2时,|x-2|+|x+3|=2-x+x+3=5;当x >2时,|x-2|+|x+3|=x-2+x+3=2x+1,此时最小值大于5;所以|x-2|+|x+3|的最小值为5,取得最小值时x 的取值范围为-3≤x≤2.故答案为:7;|x+1|;5,-3≤x≤2.18.(1)24(4)0a b a -+-=,∴40,40a b a -=-=,解得:4,16a b ==.(2)设P 点运动的时间为t ,由题意得,∴t 秒时,点P 在数轴上对应的数为:43t +,∴3,16(43)123PA t PB t t ==-+=-,PA PB =,∴3123t t =-,解得:2t =,∴4310t +=,故P 运动时间为2秒,P 点对应的数为10.(3)P 运动到点C 的时间为:3643233-=,∴当3203t <<时,P 点在数轴上对应数为43t +, 点Q 在数轴上对应的数为:16t +,∴16(43)122PQ t t t =+-+=-,10PQ =,∴12210t -=,解得:1t =秒,代入可得:347t +=,此时点P 对应的数为:7,当P 从C 点返回沿数轴向左运动时,设P 、Q 运动的时间为1t ,由题意可得:1t 秒时,点P 在数轴上表示的数为:1363t -,点Q 在数轴上表示的数为:1803t +, ∴1180363103t t +-+=, 解得:1296t =, 代入可得:1433632t -=, ∴此时点P 对应的数为:432, ∴综上,当10PQ =时,P 点对应的数为7或432。

2024~2025学年七年级数学上册1.2.2数轴课后练「含答案」

2024~2025学年七年级数学上册1.2.2数轴课后练「含答案」

1.将1-在数轴上对应的点向右平移2个单位,则此时该点对应的数是( )A .1-B .1C .3-D .32.下列说法:①规定了原点、正方向的直线是数轴;②数轴上两个不同的点可以表示同一个有理数;③有理数11000-在数轴上无法表示出来;④任何一个有理数都可以在数轴上找到与它对应的唯一点.其中正确的是( )A .①②③④B .②③④C .③④D .④3.点A 为数轴上表示5-的点,将点A 在数轴上平移2个单位长度到点B ,则点B 所表示的数为( )A .3B .3-C .3-或7-D .3-或74.下面的数轴被墨迹盖住一部分,被盖住的整数有( )个.A .11B .10C .9D .85.如图,将刻度尺放在数轴上,让3cm 和5cm 刻度线分别与数轴上表示2和4的两点重合对齐,则数轴上与0cm 刻度线对齐的点表示的数为( )A .2-B .0C .1-D .16.一只电子蚂蚁沿数轴从点A 向右爬行2个单位长度到达点B ,若点B 表示的数为4-,则点A 表示的数为 .7.直线上A 点表示的数是( ),B 点表示的数写成小数是( ).8.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“1cm ”和“8cm ”分别对应数轴上的2-和x ,那么x 的值为 .9.画一条数轴,并在数轴上标出下列各数:2, 1.53--,,0,12,3.5.10.如图,已知点A ,B ,C 在数轴上表示的数分别是1-,5-,2,回答下列问题:(1)将B 点向右移动6个单位长度,此时B 点表示的数是多少;(2)将C 点向左移动6个单位长度,此时C 点表示的数是多少;(3)移动A ,B ,C 三个点中的任意两个,能使三个点表示的数相等吗,你有几种移动方法,请写出来.11.阅读与思考如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看出,终点表示的数是2-.参照图中所给的信息,完成填空:已知A ,B 都是数轴上的点.(1)若点A 表示数3-.将点A 向右移动5个单位长度至点1A .则点1A 表示的数是________;(2)若点A 表示数2,将点A 先向左移动7个单位长度,再向右移动92个单位长度至点2A ,则点2A 表示的数是________;(3)若将点B 先向左移动3个单位长度,再向右移动6个单位长度,终点表示的数恰好是0,则点B 所表示的数是________.1.B【分析】本题考查了数轴上的动点问题,正确理解有理数所表示的点左右移动后得到的点所表示的数是解题的关键.将1-在数轴上对应的点向右平移2个单位,在数轴上找到这个点,即得这个点所表示的数.【详解】根据题意:数轴上1-所对应的点向右平移2个单位,则此时该点对应的数是1.故选B .2.D【分析】此题主要考查了数轴的相关概念,规定了原点、正方向、单位长度的直线叫做数轴.所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数可得答案.【详解】解:①规定了原点、正方向和单位长度的直线是数轴,故原说法错误;②数轴上两个不同的点可以表示同一个有理数,说法错误;③有理数11000-在数轴上无法表示出来,说法错误,可以表示;④任何一个有理数都可以在数轴上找到与它对应的唯一点,说法正确;故选:D .3.C【分析】本题考查了数轴上点的平移规律,掌握规律是解题的关键.平移规律:向右加,向左减;据此即可求解.【详解】解:∵点A 为数轴上表示5-的点,∴将点A 在数轴上向右平移2个单位长度到3-,将点A 在数轴上向左平移2个单位长度到7-,∴点B 所表示的数为3-或7-故选:C .4.C【分析】本题考查了数轴.熟练掌握数轴是解题的关键.根据在数轴上表示有理数进行作答即可.【详解】解:由数轴可知,被盖住的整数有654321234-----,,,,,,,,,共9个,故选:C .5.C【分析】本题考查数轴的概念,关键是掌握数轴的三要素.由数轴的概念即可求解.【详解】解:∵3cm 和5cm 刻度分别与数轴上表示2和4的两点对齐,∴数轴的单位长度是1cm ,∴原点对应1cm的刻度,∴数轴上与0cm刻度线对齐的点表示的数是1-,故选:C.6.6-【分析】本题考查的是数轴,正确判断出点A和点B在原点的左侧是解题的关键.由题意可知,一只电子蚂蚁沿数轴从点A向右爬行2个单位长度到达点B,点B表示的数为4-,可以判断点A在原点的左侧,且点A与点B的距离是2个单位长度,即可以求出点A表示的数.【详解】解:Q一只电子蚂蚁沿数轴从点A向右爬行2个单位长度到达点B,点B表示的数为4-,\可以判断点A在原点的左侧,且点A与点B的距离是2个单位长度,\点A表示的数为:426--=-,-故答案为:67.1-0.5【分析】此题考查了用数轴上的点表示有理数,根据点A和点B在直线上的位置求解即可.【详解】根据题意得,直线上A点表示的数是1-,B点表示的数写成小数是0.5.故答案为:1-,0.5.8.5【分析】本题考查有理数与数轴,根据距离相等计算即可.【详解】刻度尺上“1cm”和“8cm”的距离是7,∴对应数轴上的2-和x的距离也是7,x=,∴5故答案为:5.9.见解析【分析】本题主要考查了用数轴表示有理数,先画出数轴,再在数轴上表示出各数即可.【详解】解:如图所示,即为所求.10.(1)1;(2)4-;(3)能,移动方法共有3种:方案一:将点B向右移动7个单位,点A向右移动3个单位,此时三个点表示的数均为2;方案二:将点B向右移动4个单位,点C向左移动3个单位,此时三个点表示的数均为1-;方案三:将点A向左移动4个单位,点C向左移动7个单位,此时三个点表示的数均为5-.【分析】本题考查数轴的简单应用,理解点在数轴上的移动规律与点对应的数相应的变化是解题的关键.(1)由数轴上的点的移动规律即可求解.(2)由数轴上的点的移动规律即可求解.(3)由数轴上的点的移动规律并分类讨论即可求解.【详解】(1)因为点B表示的数是5-,所以将B点向右移动6个单位长度后,此时点B所表示的数是561-+=;(2)因为点C表示的数是2,所以将B点向左移动6个单位长度后,此时点C所表示的数是264-=-;(3)一共有3种移动方法能使移动A,B,C三个点中的任意两个点之后,三个点表示的数相等,且三种方案如下所述:方案一:将点B向右移动7个单位,点A向右移动3个单位,此时三个点表示的数均为2,符合题意;方案二:将点B向右移动4个单位,点C向左移动3个单位,此时三个点表示的数均为1-,符合题意;方案三:将点A向左移动4个单位,点C向左移动7个单位,此时三个点表示的数均为5-,符合题意;综上所述:移动A,B,C三个点中的任意两个,能使三个点表示的数相等,且符合题意的移动方法共有3种.11.(1)2(2)1 2 -(3)3-【分析】本题主要考查了数轴上动点平移问题,解题关键是掌握数轴上点往右移几就加几,往左移几就减几,概括为“右加左减.(1)根据数轴上的点向右平移加,向左平移减,可得点表示的数;(2)根据数轴上的点向右平移加,向左平移减,可得点表示的数;(3)根据数轴上的点向右平移加,向左平移减,可得B点表示的数.【详解】(1)解:由题意得:352-+=,∴点1A表示的数是2;(2)解:由题意得:91 2722 -+=-∴点2A表示的数是12 -;(3)解:由题意得:0先向右移动3个单位长度,再向左移动6个单位长度得到点B ∴0363+-=-∴点B所表示的数是3-。

人教版数学七年级上册第一章有理数《数轴(一)》学习任务单及课后练习作业设计

人教版数学七年级上册第一章有理数《数轴(一)》学习任务单及课后练习作业设计

人教版数学七年级上册第一章有理数《数轴(一)》学习任务单及课后练习【学习目标】1.了解数轴的概念,知道有理数可以用数轴上的点表示.2.知道数轴的三要素,能正确画数轴;并用数轴上的点表示有理数.3.借助数轴,加深对正数、0、负数的认识,初步体会数形结合的思想. 【课前学习任务】1.请同学们预习课本内容:1.2.2数轴.2.请同学们查阅相关资料,搜集数轴的相关知识.【课上学习任务】学习任务一:复习回顾1.有理数的概念:和统称为有理数.2.有理数的分类:(1)按照定义分类:(2)按照数的符号分类:有理数有理数学习任务二:提出问题问题1:你能描述一下温度计是怎样表示温度的吗?想一想:(1)温度计中 0 刻线有什么作用呢?冰水混合物的温度规定为℃, 0刻线表示℃,是温度的温度超过 0℃,表示,温度低于 0℃,表示(2)怎么读出温度计上显示的某一时刻的温度?请分别读出下边两图中温度计显示的某个时刻的温度想一想:看到零上,零下这两个具有相反意义的词,我们联想到了什么数学知识呢?零上温度用数表示,零下温度用数表示.问题2: 在一条东西向的马路上,有一个汽车站牌,汽车站牌东 3m 和 7.5m 处分别有一棵柳树和一棵杨树,汽车站牌西 3m 和 4.8m 处分别有一棵槐树和一根电线杆,能否用数简明地表示这些树,电线杆和汽车站牌的相对位置关系?学习任务三:形成概念数轴的画法:第一步:画一条水平直线,在直线上任取一个点表示数,这个点叫做说明:原点的作用:第二步:一条水平放置的数轴,通常规定,直线上从原点向右为,从原点向左为第三步:选取适当的长度为,直线上从原点向右,依次表示;从原点向左,用类似方法依次表示思考:怎么理解“选取适当长度为单位长度”呢?注意:同一数轴上单位长度表示的量数轴定义:规定了、、的一条叫做数轴.数轴三要素:、、学习任务四:典例精析例1:如图,写出数轴上点 A、B、C、D、E 表示的数答:点 A 表示的数:点 D 表示的数:点 B 表示的数:点 E 表示的数:点 C 表示的数:说明:写出数轴上的点表示的数的方法:首先,其次,例 2.在数轴上画出表示下列各数的点:说明:在数轴上画出表示一个数的点的方法:首先,其次,最后,学习任务五:课堂小结回顾本节课所学知识:数轴的概念知识层面:数轴三要素数轴的画法写出数轴上的点表示的数方法层面:将有理数用数轴上的点表示说明:目前所有的有理数都可以用数轴上的点表示.思考题:小明的家门口(记为 A)、他上学的学校门口(记为 B)以及书店门口(记为 C)依次坐落在一条东西向的大街上, A 位于 B 西边 300m 处, C 位于 B 东边 1000m 处.小明从学校门口出发,沿这条街向东走 400m,接着又向西走了700m 到达 D 处,试用数轴表示上述 A、B、C、D 的位置.课后作业:完成书P9练习第2题,书 P14习题1.2复习巩固第2题本课程主要学习环节如下:反思提高所学重点内容课堂练习 2 分钟思考题巩固本节课所学内容【课后练习】数轴(一)1.规定了、和的直线叫做数轴.2.数轴上,原点及原点右边的点表示的数是 .3.从数轴上观察大于-3 且小于 2 的整数是 .4.数轴上,表示数-4 的点位于原点侧,距原点个单位长度.5.如图,写出数轴上点 A、B、C、D、E 表示的数6. 画出数轴,并在数轴上表示下列有理数:7. 下图为北京地铁 1 号线的部分线路,假设各站之间的距离相等且都表示一个单位长度.现以万寿路站为原点,向东的方向为正方向,那么木樨地站表示的数是,古城站表示的数是;如果改以西单站为原点,那么木樨地站表示的数是,天安门东站表示的数是 .课后练习答案:1.原点、正方向、单位长度2.非负数3. -2,-1,0,14.左,45.点 A 表示的数:-1 点 D 表示的数:4 点 B 表示的数:点 E 表示的数:0 点 C 表示的数:6.7. 3,-5;-3,2。

七年级数学上册1.2.2 数轴-数轴上的动点问题 解答题专项练习一(人教版,含解析)

七年级数学上册1.2.2 数轴-数轴上的动点问题 解答题专项练习一(人教版,含解析)

2021-2022学年度人教版七年级数学上册练习一1.2.2 数轴-数轴上的动点问题1.A,B两点在数轴上的位置如图所示,其中O为原点,点A对应的有理数为﹣4,点B对应的有理数为6.(1)动点P从点A出发,以每秒2个单位长度的速度向右运动,设运动时间为t秒(t>0).①当t=1时,AP的长为,点P表示的有理数为;②当PB=2时,求t的值;(2)如果动点P以每秒6个单位长度的速度从O点向右运动,点A和B分别以每秒1个单位长度和每秒3个单位长度的速度向右运动,且三点同时出发,那么经过几秒PA=2PB.2.点A、B、C、D在数轴上的位置如图1所示,已知AB=3,BC=2,CD=4.(1)若点C为原点,则点A表示的数是;(2)若点A、B、C、D分别表示有理数a,b,c,d,则|a﹣c|+|d﹣b|﹣|a﹣d|= ;(3)如图2,点P、Q分别从A、D两点同时出发,点P沿线段AB以每秒1个单位长度的速度向右运动,到达B点后立即按原速折返;点Q沿线段CD以每秒2个单位长度的速度向左运动,到达C点后立即按原速折返.当P、Q中的某点回到出发点时,两点同时停止运动.①当点停止运动时,求点P、Q之间的距离;②设运动时间为t(单位:秒),则t为何值时,PQ=5?3.如图,已知点A 在数轴上对应的数为a ,点B 对应的数为b ,A 与B 之间的距离记作AB .已知a=-2,b 比a 大12,(1)则B 点表示的数是_____;(2)设点P 在数轴上对应的数为x ,当PA-PB=4时,求x 的值;(3)若点M 以每秒1个单位的速度从A 点出发向右运动,同时点N 以每秒2个单位的速度从B 点向左运动.设运动时间是t 秒,则运动t 秒后,①用含t 的代数式表示M 点到达的位置表示的数为_____, N 点到达的位置表示的数为_____; ②当t 为多少秒时,M 与N 之间的距离是9?4.如图,数轴的单位长度为1,点M ,A ,B ,N 是数轴上的四个点,其中点A ,B 表示的数是互为相反数.(1)请在数轴上确定原点“O”的位置,并用点O 表示;(2)点M 表示的数是________,点N 表示的数是________,M ,N 两点间的距离是________;(3)将点M 先向右移动4个单位长度,再向左移动2个单位长度到达点C ,点C 表示的数是________,在数轴上距离C 点3个单位长度的点表示的数是________.5.如图,在数轴上A 点表示的数a ,B 点表示的数b ,C 点表示的数c ,b 是最大的负整数,且,a c 满足360a c ++-=.(1)求a ,b ,c 的值;(2)若将数轴折叠,使得A 点与B 点重合,求与C 点重合的点对应的数;(3)点A ,B ,C 在数轴上同时开始运动,其中B 以1单位每秒的速度向左运动,C 以2单位每秒的速度向左运动,点A 以3单位每秒的速度运动,当B ,C 相遇时,A 停止运动,求此时AC两点之间的距离.6.如图,点A,B在数轴上表示的数分别为﹣4和+16,现有甲、乙两只小虫分别从A,B两点出发,甲虫的速度为每秒1个单位长度,乙虫的速度为每秒3个单位长度,两虫同时出发,运动时间为t秒(t>0).(1)甲虫向左运动,乙虫向右运动,t秒后甲乙两虫相距个单位长度;(2)甲、乙两虫皆向右运动,t秒后甲乙两虫相距个单位长度;(3)甲、乙两虫皆向左运动,求t秒后甲乙两虫相距多少个单位长度?7.数轴上的点A,B所表示的数如图所示,回答下列问题:(1)求出A,B两点间的距离;(2)若点A在数轴上移动了m个单位长度到点C,且B,C两点间的距离是3,求m的值.8.已知A、B两地相距30米,小鸟龟从A地出发前往B地,第一次它前进1米,第二次它后退2米,第三次再前进3米,第四次又向后退4米…,按此规律行进,如果A地在数轴上表示的数为-20.(1)求出B地在数轴上表示的数。

初中数学人教版七年级上册第一章 有理数1.2 有理数1.2.2 数轴-章节测试习题(16)

初中数学人教版七年级上册第一章 有理数1.2 有理数1.2.2 数轴-章节测试习题(16)

章节测试题1.【答题】数轴是上点A、点B表示的数分别是﹣1和3,则点A、点B之间的距离是______.【答案】4【分析】本题考查数轴上的两点间的距离.【解答】∵点A、点B表示的数分别是﹣1和3,∴点A、点B之间的距离是故答案为4.2.【答题】数轴上距离3的点5个单位长度所表示的数是______.【答案】8或﹣2【分析】本题考查数轴上的两点间的距离.【解答】在数轴上与表示3的点距离5个单位长度的点表示的数是3+5=8或3﹣5=﹣2.故答案为:8或﹣2.3.【答题】直径为1个单位长度的圆从原点开始沿数轴的负方向滚动2周(不滑动),圆上的一点由原点到达O′,点O′所对应的实数是______.【答案】-2π【分析】本题考查数轴上的动点问题.【解答】2×2π×=2π,∴点O'所对应的实数是-2π.4.【答题】数轴上,在原点的右边表示与5的距离为3的点表示的数是______.【答案】2或8【解答】在5的左边与5距离为3的点表示的数是5-3=2;在5的右边与5距离为3的点表示的数是5+3=8.即在原点的右边表示与5的距离为3的点表示的数是2或8.故答案为:2或8.5.【答题】数轴上到原点的距离等于1的点所表示的数是______.【答案】±1【分析】本题考查数轴上两点间的距离.【解答】数轴上到原点的距离等于1的点所表示的数是故答案为:6.【答题】若点A、点B在数轴上,点A对应的数为2,点B与点A相距5个单位长度,则点B所表示的数是______.【答案】7或-3【分析】本题考查的是数轴上两点之间的距离,即数轴上两点之间的距离等于两点所表示数的差的绝对值.【解答】设点B表示的数为b,由题意得,,∴b-2=5或b-2=-5,∴b=7或b=-3.7.【答题】将数轴上的点A向左平移1个单位长度,再向右平移4个单位长度到达点B.若点B到原点的距离是2个单位长度,则点A表示的数是______.【答案】-1或-5【解答】设A点对应的数为x.则x−1+4=2,或x−1+4=-2,解得:x=−1或x=-5,∴A点表示的数为-1或-5.故答案为:-1或-5.8.【答题】若点A在数轴上对应的数为2,点B在点A左边,且点B与点A相距7个单位长度,则点B所表示的数是______.【答案】-5【分析】本题考查数轴上两点之间的距离.【解答】∵2−7=−5,∴点B所表示的数是−5.故答案为−5.9.【答题】在数轴上,与表示﹣1的点距离为3的点所表示的数是______.【答案】2或﹣4【分析】本题考查数轴上两点之间的距离.【解答】若点在-1的左面,则点为-1-3=-4;若点在-1的右面,则点为-1+3=2,故答案为:2或-4.10.【答题】将数-2,0,-1,1按从大到小的顺序排列______(用“>”号连接).【答案】1>0>-1>-2【分析】本题考查有理数的大小比较.【解答】将数-2,0,-1,1按从大到小的顺序排列为11.【答题】如图,数轴上相邻刻度之间的距离是,若BC=,A点在数轴上对应的数值是-,则B点在数轴上对应的数值是______.【答案】0或【分析】本题考查数轴上两点之间的距离.【解答】-+×5=-+1=,∵BC=,∴点B表示的有理数是0或.故答案为0或.12.【答题】数轴上表示一个数的点与原点的距离是6,那么这个数是______.【答案】±6【分析】本题考查数轴上两点之间的距离.【解答】∵|±6|=6,∴数轴上表示一个数的点与原点的距离是6,那么这个数是±6.故答案为:±6.13.【答题】比大小:-2______-3.【答案】>【分析】比较数的大小可以借助数轴,数轴上的点表示的数,越往右越大.【解答】数轴上,-2位于-3的右侧,∴-2>-3.故答案为>.14.【答题】已知是数轴上的三个点,且在的右侧.点表示的数分别是,若,则点表示的数是______.【答案】7【分析】本题考查数轴上两点之间的距离.【解答】∵点A,B表示的数分别是1,3,∴AB=3-1=2,∵BC=2AB=4,∴OC=OA +AB+BC=1+2+4=7,∴点C表示的数是7.故答案为7.15.【答题】在数轴上,表示+4的点在原点的______侧,距原点______个单位.【答案】右 4【分析】本题考查数轴上两点之间的距离.【解答】由正数在原点右侧,负数在原点左侧,两数到原点的距离即是它们的绝对值,∴在数轴上,表示+4的点在原点的右侧,距原点4个单位.故答案为:右,4.16.【答题】数轴上点A对应的数为﹣2,与点A相距5个单位长度的点所对应的数为______.【答案】-7或3【分析】本题考查数轴上两点之间的距离.【解答】如图距离−2相距5个单位长度的点A1在−2的左侧为A1=−7;A2在−2的右侧为A2=3.故答案为:−7或3.17.【答题】在数轴上与﹣2所对应的点相距4个单位长度的点表示的数是______.【答案】2或﹣6【分析】本题考查数轴,涉及有理数的加减运算、分类讨论的思想.【解答】当该点在﹣2的右边时,由题意可知:该点所表示的数为2,当该点在﹣2的左边时,由题意可知:该点所表示的数为﹣6.故答案为:2或﹣6.18.【答题】数轴上与表示-3的点相距4个单位长度的点表示的数是______.【答案】1或-7【分析】本题考查了数轴的应用,注意符合条件的有两种情况.【解答】分为两种情况:①当点在表示﹣3的点的左边时,数为﹣3﹣4=﹣7;②当点在表示﹣3的点的右边时,数为﹣3+4=1;故答案为:1或﹣7.19.【答题】到-3的距离等于4的点表示的数是______.【答案】-7或1【分析】本题考查数轴上两点之间的距离.【解答】到-3的距离等于4的点表示的数有两个,分别为1或-7.20.【答题】如图,在数轴上与A点的距离等于5的数为______.【答案】-6或4【分析】本题考查数轴上两点之间的距离.注意此类题的两种情况:左侧时,用减法;右侧时,用加法.【解答】由数轴上点A的位置,可知与A点的距离等于5的数为-1-5=-6或-1+5=4.故答案为-6或4.。

初中数学人教版七年级上册1.2.2数轴作业课件

初中数学人教版七年级上册1.2.2数轴作业课件
答案
1.B 当点B为原点时,点A表示负数,点C和点D表示正数,故B项符合题意.
2. 将一把刻度尺按如图所示的方式放在数轴上(数轴的单位长度是1 cm),刻度尺上的“0 cm”和“8 cm”分别对应数轴上的-3.6和x,则x的值为 ( ) A.4.2 B.4.3 C.4.4 D.4.5
答案
2.C 根据题意,得x=8-3.6=4.4.
5. 点A在数轴上距离原点3个单位长度,将点A先向右移动4个单位长度,再向左移动7个
单位长度,此时点A表示的数是
.
答案
5.-6或0 由题意,得点A表示的数为-3或3.当点A表示的数为-3时,点A向右移动4个单位 长度得到的点表示的数为1,再向左移动7个单位长度得到的点表示的数为-6;当点A表示 的数为3时,点A向右移动4个单位长度得到的点表示的数为7,再向左移动7个单位长度 得到的点表示的数为0.综上,移动后点A表示的数是-6或0.
答案
11.解:(1)如图所示:
(2)根据题意,得2+2.5+8.5+4=17(千米), 故覃老师共走了17千米.
能力练
1. 如图,在数轴上有A,B,C,D四点,分别表示不同的四个数,若从这四点中选一点作为原 点,使得其余三点表示的数中有两个正数和一个负数,则这个点是 ( ) A.点A B.点B C.点C D.点D
课时2 数轴
基础练
知识点1 数轴的概念及其画法
1. 关于数轴,下列说法最准确的是 ( ) A.一条直线 B.有原点、正方向的一条直线 C.有单位长度的一条直线 D.规定了原点、正方向、单位长度的一条直线
答案
1.D
知识点1 数轴的概念及其画法
2.下列数轴表示正确的是 ( )
答案 选项

人教版2020年七年级数学上册1.2.2《数轴》课后练习(含答案)

人教版2020年七年级数学上册1.2.2《数轴》课后练习(含答案)

人教版2020年七年级数学上册1.2.2《数轴》课后练习1.下列关于数轴的说法正确的是( )A .数轴是一条规定了原点、正方向和单位长度的直线B .数轴的正方向一定向右C .数轴上的点只能表示整数D .数轴上的原点表示有理数的起点2.下列数轴的画法中,正确的是( )3.(1)将有理数-2,1,0,-212,314在数轴上表示出来; (2)写出数轴上点A ,B ,C 表示的数.4.如图所示,数轴上四点M ,N ,P ,Q 中,表示负整数的点是( )A .点MB .点NC .点PD .点Q5.有下列一组数:1,4,0,-12,-3,这些数在数轴上对应的点中,不在原点右边的点有( )A .2个B .3个C .4个D .5个6.点A 是数轴上表示-2的点,当点A 沿数轴移动4个单位长度到点B 时,点B 表示的有理数是( )A .-4B .-6C .2或-4D .2或-67.有理数a ,b ,c 在数轴上的位置如图所示,则下列说法正确的是( )A .a ,b ,c 都为正数B .b ,c 为正数,a 为负数C .a ,b ,c 都为负数D .b ,c 为负数,a 为正数8.如图,点A 表示的数是________.9.如图,小明在写作业时不慎将墨水滴在数轴上,墨迹遮住部分的整数共有________个.10.点A ,B ,C ,D 分别表示-3,-112,0,4.请解答下列问题: (1)在数轴上描出A ,B ,C ,D 四个点;(2)现在把数轴的原点取在点B 处,其余均不变,那么点A ,B ,C ,D 分别表示什么数?11.如图,上七年级的小贝在一张纸上画了一条数轴,妹妹不知道它有什么用处,就在上面画了一只小猫和一只小狗,于是数轴上标的数字有的看不到了,请根据数轴回答下列问题:(1)被小猫遮住的是正数还是负数?(2)被小狗遮住的整数有几个?(3)此时小猫和小狗之间(即点A ,B 之间)的整数有几个?12.某公交路线经过一条东西向的大街,从西往东设置有公园、书店、学校、小区四个站点,相邻两个站点之间的距离依次为3 km ,2 km ,1.5 km.如果以学校为原点,向东为正方向,以图上1 cm 长为单位长度表示实际距离1 km ,请画出数轴,并将四个站点在数轴上表示出来.13.育才路上依次有八中、新华中学和九中三所中学,八中在新华中学东900米处,新华中学在九中东800米处,现小明从新华中学出发沿着公路向西走了300米后,接着又向东走了500米,这时小明在八中的什么方向上?距八中有多远?试用画数轴的方法解决此题.14.在正方形的四个顶点处逆时针依次标上“合”“格”“优”“秀”四个字,将正方形放置在数轴上,其中“优”“秀”对应的数分别为-2和-1,现将正方形绕着顶点按顺时针方向在数轴上向右无滑动地翻滚,例如第一次翻滚后“全”所对应的数为0,则连续翻滚后与数轴上数2018重合的字是( )A.合 B.格 C.优 D.秀15.如图所示,数轴被折成90°,圆的周长为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字2所对应的点与数轴上的数3所对应的点重合,数轴固定,圆紧贴数轴沿着数轴的正方向滚动,那么数轴上的数2018将与圆周上的数字________重合.16.如图,将一刻度尺贴放在数轴上(数轴的单位长度是1 cm),刻度尺上“0 cm”和“8 cm”分别对应数轴上的-3和x,那么x的值为( )A.8 B.7 C.6 D.517.如图,把一根木棒放在数轴上,数轴的1个单位长度为1 cm,木棒的左端点与数轴上的点A重合,右端点与点B重合.(1)若将木棒沿数轴水平向右移动,则当它的左端点移动到点B处时,它的右端点在数轴上所对应的数为20;若将木棒沿数轴水平向左移动,则当它的右端点移动到点A处时,它的左端点在数轴上所对应的数为5,由此可得到木棒的长为________cm.(2)图中点A表示的数是________,点B表示的数是________.(3)根据(1)(2),请你借助“数轴”这个工具帮助小红解决下列问题:一天,小红问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生;你若是我现在这么大,我已经125岁,是老寿星了,哈哈!”请求出爷爷现在多少岁了.参考答案1.A2.D3.解:(1)如图所示.(2)点A 表示-3,点B 表示-1,点C 表示4.4.A5.B .6.D7.D8.-29.710.解:(1)如图所示:(2)点A 表示-112,点B 表示0,点C 表示112,点D 表示512. 11.解:(1)被小猫遮住的是负数.(2)被小狗遮住的整数有12,13,14,15,16,17,18,共7个.(3)小猫和小狗之间整数有-16,-15,-14,…,-1,0,1,2,…,10,11,共28个.12.解:如图所示:13.解:数轴画法不唯一,示例如下:由题意得三所中学在数轴上的位置如图所示:通过数轴,能看出小明从新华中学出发沿着公路向西走了300米后,接着又向东走了500米,这时小明在新华中学的东边,且距离新华中学200米处,即小明在八中的西边,距离八中有700米.14.C .15.3.16.D17.解:(1)由数轴观察知三根木棒的长是20-5=15(cm),则此木棒的长为15÷3=5(cm).故答案为5.(2)10 15(3)借助数轴,B 表示爷爷的年龄,A 表示小红的年龄,把小红与爷爷的年龄差看作木棒AB. 当爷爷的年龄是小红现在的年龄时,即将B 向左移与A 重合,此时小红的年龄是-40岁;当小红的年龄是爷爷现在的年龄时,即将A 向右移与B 重合,此时爷爷的年龄为125岁,所以可知爷爷比小红大(125+40)÷3=55(岁),所以爷爷现在的年龄为125-55=70(岁).。

《1.2.2数轴》作业设计方案-初中数学人教版12七年级上册

《1.2.2数轴》作业设计方案-初中数学人教版12七年级上册

《1.2.2 数轴》作业设计方案(第一课时)一、作业目标本作业旨在巩固学生对数轴概念的理解,掌握数轴上点的表示方法,以及数轴的基本性质和功能。

通过实际操作和练习,提高学生运用数轴解决实际问题的能力。

二、作业内容(一)知识回顾1. 数轴的定义和基本构成要素。

2. 数轴上正数、负数和零的表示方法。

3. 数轴的三大基本性质。

(二)基本练习1. 填空题:请在数轴上标出以下数值:-3、0、3、-5、5,并理解它们在数轴上的位置关系。

2. 选择题:通过数轴理解相反数、绝对值等概念,并选择正确的答案。

3. 简答题:请简述数轴的构成要素及在日常生活中的应用。

(三)应用拓展1. 实践题:学生以小组形式,运用数轴解决实际问题,如“小明家与学校之间的距离”、“气温随时间变化情况”等。

2. 探索题:研究数轴与直角坐标系的关系,尝试在数轴上标出点的坐标,并理解其意义。

三、作业要求1. 学生需独立完成作业,不得抄袭他人答案。

2. 填空题和选择题需在理解的基础上作答,简答题要简明扼要地阐述观点。

3. 实践题和探索题需小组合作完成,记录好小组讨论过程和结果,并由组长汇总提交。

4. 作业需字迹工整,格式规范,错题需有改正过程。

5. 作业提交时需附上对数轴的实际应用或探索过程中的心得体会。

四、作业评价1. 教师根据学生作业的准确度、理解程度和解题思路进行评价。

2. 对于优秀作业进行表扬,并作为范例展示给全班同学。

3. 对于错误较多的题目,教师需在课堂讲解时重点强调,并引导学生自行纠正错误。

4. 结合学生的心得体会,评价学生在数轴实际应用和探索过程中的表现。

五、作业反馈1. 教师根据学生作业情况,及时调整教学进度和教学方法。

2. 对于学生在作业中反映出的共性问题,教师需在课堂上进行重点讲解。

3. 对学生的疑问和困惑,教师需及时给予解答和指导。

4. 鼓励学生通过自我反思和相互学习,不断提高对数轴的理解和应用能力。

作业设计方案(第二课时)一、作业目标1. 巩固数轴的概念和数轴上点与实数的关系,加深学生对数轴上数的有序性的理解。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 1.2.2数轴 课后作业
一、单选题
1.如图,在数轴上,小手遮挡住的点表示的数可能是( )
A .﹣1.5
B .﹣2.5
C .﹣0.5
D .0.5
2.如图,数轴上表示﹣2的点A 到原点的距离是( )
A .﹣2
B .2
C .12
D .12
3.如图所示,a 和b 的大小关系是( )
A .a >b
B .a <b
C .2a=b
D .2b=a
4.数轴上点A 到原点的距离是7,点A 表示的数是( )
A .7
B .-7
C .7或-7
D .不确定
5.下列选项是四位同学画的数轴,其中正确的是( )
A .
B .
C .
D . 6.数轴上点 A 表示 a ,将点 A 沿数轴向左移动 3 个单位得到点 B ,设点 B 所 表示的数为 x ,则 x 可以表示为( )
A .a ﹣3
B .a+3
C .3﹣a
D .3a+3
7.大于-2.5且小于4的整数有( )
A .4个
B .5个
C .6个
D .7个
8.如图,点O A B 、、在数轴上,分别表示数02,4,,
数轴上另有一点,C 到A 点的距离为1,到点B 的距离小于3,则点C 位于( )
A .点O 的左边
B .点O 与点A 之间
C .点A 与点B 之间
D .点B 的右边
9.如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A
点表示的数
试卷第!异常的公式结尾页,总3页
2 是( )
A .-2
B .-3
C .π
D .–π
二、填空题 10.在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度的点所表示的数是____. 11.一只蚂蚁从数轴上一点 A 出发,爬了7 个单位长度到了+1,则点 A 所表示的数是_____ 12.在数轴上,如果点A 、点B 所对应的数分别为3-、2,那么A 、B 两点的距离AB =_______. 13.已知实数a ,b ,在数轴上的对应点位置如图所示,则a+b ﹣2_____0(填“>”“<”或“=”).
14.A 为数轴上表示﹣1的点,将点A 沿数轴向右平移3个单位到点B ,则点B 所表示的数为______. 15.如果物体从A 点出发,按照A →B (第1步)→C (第二步)→D →A →E →F →G →A →B …的顺序循环运动,则经过第2013步后物体共经过B 处_____次.
三、解答题
16.画数轴表示下列各数,并按从小到大的顺序用“<”将这些数连接起来.
2.5,-223,0,-32
,3,-4,1. 17.如图,在数轴上有A 、B 、C 这三个点.
回答:
(1)A 、B 、C 这三个点表示的数各是多少?
(2)A 、B 两点间的距离是多少?A 、C 两点间的距离是多少?
(3)若将点A 向右移动5个单位后,则A 、B 、C 这三个点所表示的数谁最大?
(4)应怎样移动点B 的位置,使点B 到点A 和点C 的距离相等?
18.小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东跑回到自己家.
(1)以小明家为原点,向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;
(2)求小彬家与学校之间的距离;
(3)如果小明跑步的速度是250米/分钟,那么小明跑步一共用了多长时间?
19.如图,已知A、B、C是数轴上的三点,点C表示的数是6,点B与点C之间的距离是4,点B与点A的距离是12,点P为数轴上一动点.
(1)数轴上点A表示的数为.点B表示的数为;
(2)数轴上是否存在一点P,使点P到点A、点B的距离和为16,若存在,请求出此时点P所表示的数;若不存在,请说明理由;
(3)点P以每秒1个单位长度的速度从C点向左运动,点Q以每秒2个单位长度从点B出发向左运动,点R从点A以每秒5个单位长度的速度向右运动,它们同时出发,运动的时间为t秒,请求点P与点Q,点R的距离相等时t的值.
3
答案
1.C 2.B 3.B 4.C 5.D
6.A 7.C 8.C 9.D
10.-1或5 11.﹣6 或 8
12.5 13.<
14.2. 15.252
16解:将各数标在数轴上如图:
234201 2.5332
-<-<-<<<< . 17.解:(1)观察数轴得:A :-6,B :1,C :4;
(2)AB 的距离为:1-(-6)=-7;
AC 的距离为:4-(-6)=-10;
(3)A 向右移动5个单位变为:-1
则A 、B 、C 此刻分别为:-1、1、4,其中4最大,即点C ;
(4)∵AC 的距离为10
∴要使得AB 、BC 距离相等,则AB 、BC 都为5
∴只需将点B 向左移动2个单位即可
18.解:(1)如图所示:
(2)小彬家与学校的距离是:2﹣(﹣1)=3(km ).
答案第2页,总3页
故小彬家与学校之间的距离是 3km ;
(3)小明一共跑了(2+1.5+1)×2=9(km ), 小明跑步一共用的时间是:
9000÷250=36(分钟).
答:小明跑步一共用了 36 分钟长时间.
19.解:(1)由题意可知点A 和点B 都在点C 的左边,且点A 小于0,则由题意可得数轴上点B 表示的数为6-4=2,点A 表示的数为2-10=﹣10,故答案为:﹣10,2;
(2)∵AB =12,
∴P 不可能在线段AB 上,
所以分两种情况:
①如图1,当点P 在BA 的延长线上时,PA+PB =16,
∴PA+PA+AB =16,
2PA =16﹣12=4,
PA =2,
则点P 表示的数为﹣12;
②如图2,当点P 在AB 的延长线上时,同理得PB =2,
则点P 表示的数为4;
综上,点P 表示的数为﹣12或4;
(3)由题意得:t 秒P 点到点Q ,点R 的距离相等,则此时点P 、Q 、R
所表示的数
分别是6﹣t,2﹣2t,﹣10+5t,

①6﹣t﹣(2﹣2t)=6﹣t﹣(﹣10+5t),解得t=12
7
②6﹣t﹣(2﹣2t)=(﹣10+5t)﹣(6﹣t),解得t=4;答:点P与点Q,点R的距离相等时t的值是12
或4秒.
7。

相关文档
最新文档