离心泵性能实验报告

合集下载

离心泵实验报告

离心泵实验报告

离心泵实验报告离心泵实验报告引言:离心泵是一种常见的流体机械设备,广泛应用于工业生产和民用领域。

通过离心力将流体从低压区域输送到高压区域,起到加压和输送的作用。

本次实验旨在研究离心泵的性能特点和工作原理,以及其在不同工况下的流量、扬程和效率等参数的变化。

实验目的:1. 了解离心泵的结构和工作原理;2. 研究离心泵在不同转速和进口压力下的性能特点;3. 掌握离心泵的流量、扬程和效率等参数的测试方法。

实验装置:本次实验使用的离心泵实验装置主要包括离心泵、水箱、流量计、压力计等设备。

实验中使用的流体为水。

实验步骤:1. 检查实验装置的连接是否牢固,确保安全;2. 打开水泵和水箱,调节流量计的阀门,使水流量适中;3. 通过调节进水阀门控制进口压力,记录不同进口压力下的流量和扬程;4. 调节电机的转速,记录不同转速下的流量和扬程。

实验结果与分析:通过实验记录和数据分析,我们得到了离心泵在不同工况下的性能参数。

随着进口压力的增加,离心泵的流量和扬程均呈现增加的趋势。

这是因为进口压力的增加会增加离心泵的工作能力,使其能够更多地输送流体。

然而,当进口压力达到一定值后,流量和扬程的增加速度会逐渐减缓,直至趋于稳定。

在转速方面,随着转速的增加,离心泵的流量也会增加,但扬程则呈现先增加后减小的趋势。

这是因为转速的增加会增加离心泵的离心力,使其能够更快地输送流体。

然而,当转速达到一定值后,离心泵的扬程会受到离心力和摩擦阻力的影响,导致扬程逐渐减小。

此外,我们还计算了离心泵在不同工况下的效率。

实验结果显示,离心泵的效率随着流量和扬程的增加而增加,但在一定范围内会达到峰值后逐渐减小。

这是因为离心泵在输送流体过程中会产生一定的能量损失,导致效率的下降。

结论:通过本次实验,我们深入了解了离心泵的性能特点和工作原理。

进口压力和转速是影响离心泵性能的重要因素,它们对流量、扬程和效率等参数都有一定的影响。

在实际应用中,需要根据具体工况选择合适的进口压力和转速,以达到最佳的工作效果。

离心泵性能实验实验报告

离心泵性能实验实验报告

离心泵性能实验实验报告一、实验目的1、了解离心泵的结构、工作原理和性能特点。

2、掌握离心泵性能参数的测量方法,包括流量、扬程、功率和效率。

3、绘制离心泵的性能曲线,分析其性能变化规律。

4、探究离心泵的运行工况对其性能的影响。

二、实验原理1、离心泵的工作原理离心泵依靠叶轮旋转时产生的离心力将液体甩出,在叶轮中心形成低压区,从而使液体不断被吸入和排出。

2、性能参数的定义及计算流量(Q):单位时间内泵排出的液体体积,通过流量计测量。

扬程(H):泵给予单位重量液体的能量,H =(P2 P1) /(ρg) +(Z2 Z1) + hf ,其中 P1、P2 为进出口压力,Z1、Z2 为进出口高度,hf 为管路阻力损失。

功率(P):包括轴功率和有效功率。

轴功率由功率表测量电机输入功率,有效功率 Pe =ρgQH 。

效率(η):η = Pe / P 。

三、实验装置1、离心泵:实验所用离心泵型号为_____,额定流量为_____,额定扬程为_____。

2、水箱:用于储存实验液体。

3、流量计:选用_____流量计,测量范围为_____,精度为_____。

4、压力表:分别安装在泵的进出口处,测量压力。

5、功率表:测量电机的输入功率。

6、管路系统:包括吸入管路和排出管路,管路上安装有调节阀用于调节流量。

四、实验步骤1、检查实验装置,确保各仪器仪表正常工作,管路连接紧密无泄漏。

2、向水箱中注入适量的实验液体(通常为清水)。

3、启动离心泵,待运行稳定后,记录初始的流量、扬程、功率等参数。

4、逐渐调节调节阀,改变流量,每次调节后待运行稳定,记录相应的流量、进出口压力和功率等数据。

5、重复步骤 4,测量多组数据,流量调节范围应涵盖离心泵的正常工作范围。

6、实验结束后,关闭离心泵,清理实验装置。

五、实验数据记录与处理|流量 Q(m³/h)|扬程 H(m)|轴功率 P(kW)|效率η(%)|||||||_____|_____|_____|_____||_____|_____|_____|_____||_____|_____|_____|_____||_____|_____|_____|_____||_____|_____|_____|_____|根据实验数据,计算出不同流量下的有效功率和效率,并绘制离心泵的性能曲线,包括扬程流量曲线(HQ 曲线)、功率流量曲线(PQ 曲线)和效率流量曲线(ηQ 曲线)。

【精品】离心泵性能实验报告

【精品】离心泵性能实验报告

【精品】离心泵性能实验报告离心泵是一种常见的泵类,它是基于旋转原理,通过离心力将液体送出的机械设备。

离心泵具有结构简单、使用方便、流量大、压力高等优点。

然而,在实际应用中,由于工况变化、泵运行时间长等原因,离心泵可能会出现性能降低等问题。

因此,为了更好地掌握并改善离心泵的性能,本文进行了一次离心泵性能实验,并对实验结果进行了分析和总结。

实验原理离心泵是一种动能换能设备,其基本工作原理是利用泵轮高速旋转时产生的离心力,将液体从入口吸入,提高流体的压力和流速,并将流体送到出口。

当泵轮高速旋转时,液体在泵轮中心的真空区域形成低压区域,使液体被强制送入泵轮,随后液体被离心力推向泵轮边缘,在泵轮与泵壳之间的流体通道中产生了压力,使液体沿通道流向出口。

离心泵的性能主要取决于其流量、扬程、功率等参数,这些参数通常被综合为性能曲线。

离心泵的性能曲线是指在一定转速下,离心泵的扬程(H)和流量(Q)之间的关系。

一般来说,离心泵的流量随着扬程的增加而逐渐减小,而功率则随着扬程的增加而逐渐增大。

实验步骤1.首先,将离心泵放置在整平的工作台上,并确定泵的入口和出口方向。

2.然后,将测量仪器连接到泵的入口和出口处,使用螺丝固定好。

3.接下来,打开水源,控制水源流量,并由调节器控制水的压力。

4.通过控制台上的开关启动离心泵,设定不同的流量和扬程值。

5.等泵运转1-2分钟后,记录每种情况下的流量、扬程和功率等参数。

6.最后,总结和分析实验结果,得出离心泵的性能曲线和运行参数。

实验数据处理与分析通过实验测量,得到了一组离心泵的性能参数数据,如表1所示:表1 离心泵性能参数数据| 流量(m3/h) | 扬程(m) | 功率(kW) ||--------------|-----------|-----------|| 1.0 | 10.0 | 0.2 || 2.0 | 9.0 | 0.3 || 3.0 | 8.0 | 0.4 || 4.0 | 6.0 | 0.6 || 5.0 | 5.0 | 0.8 || 6.0 | 4.0 | 1.0 |根据这些数据,我们可以计算出离心泵的流量-扬程和流量-功率曲线,如图1和图2所示:从图1和图2中可以看出,离心泵的性能曲线呈现倒U形,流量随着扬程的增加先增加后减小。

离心泵性能实验报告

离心泵性能实验报告

实验三、离心泵性能实验姓名:杨梦瑶学号:56 实验日期:2014年6月6日同组人:陈艳月黄燕霞刘洋覃雪徐超张骏捷曹梦珺左佳灵预习问题:1.什么是离心泵的特性曲线?为什么要测定离心泵的特性曲线?答:离心泵的特性曲线:泵的He、P、η与Q V的关系曲线,它反映了泵的基本性能。

要测定离心泵的特性曲线是为了得到离心泵最佳工作条件,即合适的流量范围。

2.为什么离心泵的扬程会随流量变化?答:当转速变大时,,沿叶轮切线速度会增大,当流量变大时,沿叶轮法向速度会变大,所以根据伯努力方程,泵的扬程:H=(u22- u12)/2g + (p2- p1) / ρg + (z2- z1) +H f沿叶轮切线速度变大,扬程变大。

反之,亦然。

3.泵吸入端液面应与泵入口位置有什么相对关系?答:其相对关系由汽蚀余量决定,低饱和蒸气压时,泵入口位置低于吸入端液面,流体可以凭借势能差吸入泵内;高饱和蒸气压时,相反。

但是两种情况下入口位置均应低于允许安装高度,为避免发生汽蚀和气缚现象。

4.实验中的哪些量是根据实验条件恒定的?哪些是每次测试都会变化,需要记录的?哪些是需要最后计算得出的?答:恒定的量是:泵、流体、装置;每次测试需要记录的是:水温度、出口表压、入口表压、电机功率;需要计算得出的:扬程、轴功率、效率、需要能量。

一、实验目的:1.了解离心泵的构造,熟悉离心泵的操作方法及有关测量仪表的使用方法。

2.熟练运用柏努利方程。

3.学习离心泵特性曲线的测定方法,掌握离心泵的性能测定及其图示方法。

4.了解应用计算机进行数据处理的一般方法。

二、装置流程图:图5 离心泵性能实验装置流程图1 水箱2 Pt100温度传感器3 入口压力传感器 4真空表 5 离心泵 6 压力表7 出口压力传感器 8 φ48×3不锈钢管图 9 孔板流量计d=24mm 10压差传感器11 涡轮流量计 12 流量调节阀 13 变频器三、实验任务:1.绘制离心泵在一定转速下的H(扬程)~Q(流量);N(轴功率)~Q;η(效率)~Q三条特性曲线。

离心泵性能实验报告

离心泵性能实验报告
离心泵性能实验 实验报告
化工 0808 200811240 报告人:董天琦 同组人: 谢应锐、魏来、派瑞克
离心泵性能实验报告 200811240 化工 0808 董天琦
实验名称: 离 心 泵 性 能 实 验 一、目的及任务
①了解离心泵的构造,掌握其操作和调节方法。 ②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 ③熟悉孔板流量计的构造、性能及安装方法。 ④测定孔板流量计的孔流系数。 ⑤测定管路特性曲线。
21.6
25
7
15.9
0.07
-0.015 0.72
97
305
24.8
22
8
15.9
0.05
-0.018 0.71
103
305
9
15.4
309
26.1
21
27.3
21
表 2. 管路特性曲线数据记录表 1
序号 孔板压降ΔP/kPa 真空表/Mpa 压力表/Mpa 电流频率Hz
3.实验室,逐渐打开调节阀以增大流量,并用计量槽计量液体流量。当流量大时,应 注意即时按动秒表和迅速移动活动接管,并多次测取几次数据。
4.为防止睡眠波动而引起的误差,测量时液位计高度插值应该不小于 200mm。 5.测取 10 组数据并验证其中几组数据,若基本吻合后,可以停泵,同时记录下设备的 相关数据(如,离心泵型号、额定流量、扬程和功率等)。 6.测定管路特性曲线时,固定阀门开度,改变频率,测取 10~8 组数据,冰记录 7.实验结束,停泵,清理现场。
在水平管路上装有一块孔板,其两侧接测压管,分别与压差传感器两端连接。孔板流
量计是利用流体通过锐孔的节流作用,使流速增大,压强减小,造成孔板前后压强差,作为

离心泵的实验报告

离心泵的实验报告

离心泵的实验报告离心泵的实验报告引言:离心泵是一种常见的流体输送设备,广泛应用于工农业生产中。

本次实验旨在研究离心泵的工作原理、性能特点以及影响因素,通过实验数据的分析和对比,探讨离心泵的运行规律和优化方法。

一、实验目的本次实验的主要目的是:1. 了解离心泵的基本结构和工作原理;2. 掌握离心泵的性能参数测量方法;3. 研究离心泵运行时的流量、扬程和效率等性能指标的变化规律;4. 探讨离心泵的运行特点和优化方法。

二、实验装置和方法1. 实验装置:本次实验采用了一台标准离心泵,配备有流量计、压力表等测量仪器,以及水泵、水箱等辅助设备。

2. 实验方法:(1)调试设备:按照操作手册的要求,对实验装置进行调试和检查,确保设备正常运行。

(2)测量基本参数:通过调节进口阀门和出口阀门,使泵的进口压力、出口压力和流量达到稳定状态,记录下相应的数值。

(3)变换工况:按照实验要求,逐步改变进口阀门和出口阀门的开度,记录下不同工况下的参数变化。

(4)数据处理:根据实验数据,计算出离心泵的流量、扬程和效率等性能指标,并进行分析和对比。

三、实验结果与数据分析1. 流量与扬程的关系:通过实验数据的分析,可以得到离心泵的流量与扬程之间存在一定的关系。

在其他条件不变的情况下,随着扬程的增加,流量逐渐减小。

这是因为离心泵在提供一定扬程的同时,需要克服更大的阻力,从而减小了流量。

2. 流量与效率的关系:通过实验数据的对比,可以发现离心泵的流量与效率之间存在一定的关系。

在其他条件不变的情况下,随着流量的增加,效率逐渐降低。

这是因为离心泵在提供更大流量的同时,需要克服更大的摩擦阻力和涡流损失,从而降低了效率。

3. 运行特点与优化方法:通过实验数据的分析和对比,可以得出离心泵的运行特点和优化方法。

在实际应用中,为了提高离心泵的效率和稳定性,可以采取以下措施:(1)合理选择泵的类型和型号,根据实际工况需求进行匹配;(2)控制流量和扬程的匹配,避免过大或过小的工况;(3)定期检查和维护离心泵的运行状态,保持设备的良好工作状态;(4)根据实际情况,调整泵的进口和出口阀门的开度,以达到最佳运行状态。

离心泵性能实验实验报告

离心泵性能实验实验报告

离心泵性能实验实验报告离心泵是一种常用的液体输送设备,其主要工作原理是通过离心力将液体从低压端(进口)输送到高压端(出口)。

本次实验旨在通过测试不同转速下离心泵的流量、扬程、效率等性能指标,了解离心泵的工作状态及其性能特点。

实验步骤:1. 将离心泵放置在试验台上,并连接出口管道和电源。

2. 启动电机,调整转速至1000rpm,记录相应的流量和扬程。

3. 逐步增加离心泵转速,每隔500rpm记录一次流量、扬程和电机电流,并计算泵的效率。

5. 实验结束后,关闭电源,卸载离心泵并清洗试验台及设备。

实验数据与分析:实验结果如下表所示:| 转速(rpm) | 流量(L/min) | 扬程(m) | 电机电流(A) | 效率(%) || -------- | ---------- | -------- | ------------ | -------- || 1000 | 16.5 | 3.5 | 0.6 | 24.5 || 1500 | 23.2 | 4.3 | 0.8 | 30.1 || 2000 | 31.4 | 4.9 | 1.1 | 35.2 || 2500 | 38.1 | 5.2 | 1.4 | 38.8 || 3000 | 43.8 | 5.1 | 1.7 | 40.2 || 3500 | 45.3 | 4.9 | 2.0 | 38.8 || 3000 | 41.7 | 4.8 | 1.7 | 36.0 || 2500 | 35.2 | 3.9 | 1.3 | 32.3 || 2000 | 24.5 | 3.0 | 1.0 | 26.4 || 1500 | 14.8 | 2.2 | 0.6 | 19.5 |根据上表的数据,可以得出以下结论:1. 随着离心泵转速的增加,流量和扬程均呈现出增加的趋势,电机电流也逐渐增大。

2. 在转速达到2500rpm时,离心泵的效率达到最高值,约为38.8%。

在转速继续增加时,效率开始下降。

离心泵性能测定实验报告

离心泵性能测定实验报告

离心泵性能测定实验报告离心泵性能测定一、实验目的:1、了解离心泵的构造与特性,掌握离心泵的操作方法;2、测定并绘制离心泵在恒定转速下的特性曲线。

二、实验原理:离心泵的压头H、轴功率N及功率η与流量Q之间的对应关系,若以曲线H~Q、N~Q、η~Q表示,则称为离心泵的特性曲线,可由实验测定。

实验时,在泵出口阀全关至全开的范围内,调节其开度,测得一组流量及对应的压头、轴功率和效率,即可测定并绘制离心泵的特性曲线。

2u2u12p2p1泵的扬程He有下式计算:Heh0hf2gg而泵的有效功率Ne与泵效率η的计算式为:Ne=Qheηg;η=Ne/N测定时,流量Q可用涡轮流量计或孔板流量计来计量。

轴功率N可用马达-天平式测功器或功率来表测量。

离心泵的性能与其转速有关。

其特性曲线是某一恒定的给定转速(一般nl =2900PRM)下的性能曲线。

因此,如果实验中的转速n与给定转速nl有差异,应将实验结果换算成给定转速下的数值,并以此数值绘制离心泵的特性曲线。

换算公式如下:n20%时,Q1QQHgnnn1He1He(1)2N1N(1)311e1nnn2N1三、装置与流程:水由水箱1阀2、离心泵4涡轮流量计9回水箱四、操作步骤:1、熟悉实验装置及仪器仪表等设备,做好启动泵前的准备工作;将泵盘车数转,关闭泵进口阀,打开泵出口阀并给泵灌水,待泵内排尽气体并充满水后,再关闭泵出口阀。

2、启动离心泵,全开泵进口阀,并逐渐打开离心泵出口阀以调节流量。

在操作过程稳定条件下,在流量为零和最大值之间,进行8次测定。

3、在每次测定流量时,应同时记录流量计、转速表、真空计、压力表、功率测定器示值。

数据取全后,先关闭泵出口阀,再停泵。

五、实验数据记录和数据处理:3泵入口管径d1=40mm;出口管径d2=40mm;h0=0.1m;水温T=25.0℃;ρ=997.0kg/m;μ=0.903mPas;V[m3/h]=0.04855I[μA];直管长度l=2m;由公式Q=V=[m/h]=0.04855[μA];He=h0+(P2-P1)/ρgNe=Q_He_ρ_gN=PLn/0.974泵功率η=Ne/N_100%因为离心泵的性能与其转速有关,表2数据修正为下表3:(=2900PRM)Qn1Q1He1g1QnH1He(n1n)2Nn131N(n)12eN1表3.泵性能数据修正表/mHe0.60.40.20.080.0Q/10N/kW六、讨论:1、离心泵开启前,为什么要先灌水排气答:是为了除去泵内的空气,使泵能够把水抽上来。

离心泵性能测定实验分析报告

离心泵性能测定实验分析报告

离心泵性能测定实验一、实验目的:1、了解离心泵的构造,掌握其操作和调节方法;2、测量离心泵在恒定转数下的特性曲线,并确定其最佳工作范围;3、测量管路特性曲线及双泵并联时特性曲线;4、了解工作点的含义及确定方法;5、测定孔板流量计孔流系数C0与雷诺数Re的关系(选做)。

二、基本原理:1、离心泵特性曲线测定离心泵的特征方程是从理论上对离心泵中液体质点的运动情况进行分析研究后,得出的离心泵压头与流量的关系。

离心泵的性能受到泵的内部结构、叶轮形式和转数的影响,故在实际工作中,其内部流动的规律比较复杂,实际压头要小于理论压头。

因此,离心泵的扬程尚不能从理论上作出精确的计算,需要实验测定。

在一定转数下,泵的扬程、功率、效率与其流量之间的关系,即为特性曲线。

泵的扬程可由进、出口间的能量衡算求得:He = H压力表+ H真空表+ H0 [ m ]其中:H真空表,H压力表分别为离心泵进出口的压力[ m ];H0为两测压口间的垂直距离,H0= 0.3m 。

N轴= N电机•η电机•η传动[ kw ]其中:η电机—电机效率,取0.9;η传动—传动装置的效率,取1.0;102ρ⋅⋅=He Q N [ kw ] 因此,泵的总效率为:轴N Ne =η 2、孔板流量计孔流系数的测定孔板流量计孔板孔径处的流速u 0可以简化为:u 0=C 0(2gh )1/2根据u 0和S 0,即可算出流体的体积流量Vs 为:Vs=u 0S 0=C 0S 0(2gh )1/2或: Vs= C 0S 0(2△p/ρ)1/2式中Vs ——流体的体积流量,m 3/s ;△ p ——孔板压差,Pa ;S 0——孔口面积,m 2;ρ——流体的密度,kg/m 3;C 0——孔流系数。

孔流系数的大小由孔板锐孔的形状、测压口的位置、孔径与管径比和雷诺数共同决定,具体数值由实验确定。

当d 0/d 1一定,雷诺数Re 超过某个数值后,C 0就接近于定值。

通常工业上定型的孔板流量计都在C 0为常数的流动条件下使用。

离心泵实验报告

离心泵实验报告

一、实验目的1. 了解离心泵的结构和性能,掌握其工作原理。

2. 通过实验测定离心泵在一定转速下的特性曲线,包括流量与扬程、功率与流量的关系。

3. 分析离心泵的效率与流量的关系,并了解泵在不同工况下的性能变化。

二、实验原理离心泵是一种常见的流体输送设备,其工作原理是利用旋转叶轮对流体做功,使流体获得能量。

在实验中,我们主要关注以下参数:1. 流量(Q):单位时间内流体通过泵的体积。

2. 扬程(H):流体在泵内获得的能量,通常以米(m)为单位。

3. 功率(N):泵在输送流体过程中消耗的功率,通常以千瓦(kW)为单位。

4. 效率(η):泵的输出功率与输入功率的比值。

离心泵的特性曲线是描述泵在不同工况下性能变化的重要依据。

实验中,我们将通过改变泵的转速和管路阻力,测定泵的特性曲线。

三、实验仪器与设备1. 离心泵一台2. 转速表一台3. 流量计一台4. 压力表两台5. 计时器一台6. 电机调速器一台7. 实验台架一套四、实验步骤1. 准备工作:将离心泵安装到实验台上,连接好流量计、压力表和转速表,并确保各仪表正常工作。

2. 实验数据采集:a. 将泵的转速设定为一定值,记录此时的转速。

b. 调节泵的出口阀门,改变管路阻力,记录不同流量下的扬程、功率和效率。

c. 重复步骤b,改变泵的转速,记录不同转速下的扬程、功率和效率。

3. 数据处理:a. 将实验数据整理成表格。

b. 绘制流量与扬程、功率与流量的关系曲线。

c. 分析离心泵的效率与流量的关系,并确定泵的最佳工作范围。

五、实验结果与分析1. 流量与扬程的关系:实验结果表明,离心泵的流量与扬程呈非线性关系。

在低流量区域,流量增加时扬程显著增加;而在高流量区域,流量增加时扬程增加幅度逐渐减小。

2. 功率与流量的关系:实验结果表明,离心泵的功率与流量呈非线性关系。

在低流量区域,功率随流量的增加而增加;而在高流量区域,功率增加幅度逐渐减小。

3. 效率与流量的关系:实验结果表明,离心泵的效率与流量呈非线性关系。

离心泵性能测试实训报告

离心泵性能测试实训报告

一、实验目的1. 熟悉离心泵的结构、工作原理和操作方法。

2. 掌握离心泵性能测试的基本原理和操作步骤。

3. 学会使用相关测试仪器,如流量计、压力表、功率计等。

4. 通过实验,了解离心泵的性能参数,如流量、扬程、效率等,并分析其变化规律。

二、实验原理离心泵是一种通过离心力将流体加速并输送的机械设备。

其性能参数主要包括流量、扬程、功率、效率等。

离心泵的性能测试是通过在不同工况下测量其流量、扬程、功率等参数,绘制出泵的性能曲线,从而了解泵的工作特性。

三、实验设备1. 离心泵一台2. 流量计一台3. 压力表一台4. 功率计一台5. 计时器一台6. 数据采集器一台7. 计算机一台四、实验步骤1. 准备工作(1)检查离心泵、流量计、压力表、功率计等设备是否完好,并连接好。

(2)打开离心泵,使其处于待机状态。

(3)启动数据采集器,设置好测试参数。

2. 实验操作(1)调节离心泵的进口阀门,改变进口压力,记录不同进口压力下的流量、扬程、功率等参数。

(2)在保持进口压力不变的情况下,改变出口阀门的开度,改变出口压力,记录不同出口压力下的流量、扬程、功率等参数。

(3)重复以上步骤,获取不同工况下的测试数据。

3. 数据处理(1)将测试数据输入计算机,绘制出流量-扬程曲线、功率-流量曲线、效率-流量曲线等。

(2)分析曲线,了解离心泵在不同工况下的性能变化规律。

五、实验结果与分析1. 流量-扬程曲线流量-扬程曲线反映了离心泵在不同进口压力下的流量和扬程关系。

曲线的斜率表示泵的扬程系数,斜率越大,泵的扬程系数越大。

2. 功率-流量曲线功率-流量曲线反映了离心泵在不同进口压力下的功率和流量关系。

曲线的斜率表示泵的效率,斜率越大,泵的效率越高。

3. 效率-流量曲线效率-流量曲线反映了离心泵在不同进口压力下的效率和流量关系。

曲线的峰值表示泵的最高效率点,峰值对应的流量表示泵的最佳工作点。

六、实验结论1. 通过实验,掌握了离心泵性能测试的基本原理和操作步骤。

离心泵性能实验实验报告

离心泵性能实验实验报告

离心泵性能实验实验报告北京化工大学实验报告课程名称:化工原理实验实验日期:班级:姓名:同组人:离心泵性能试验一、摘要本实验利用孔板流量计测量离心泵的特性曲线和管路曲线,并且用实验结果也测出了孔板流量计的Co 与雷诺数的一一对应关系,验证了孔板流量计的性质,并且后续实验的继续进行是在利用了第一次试验数据的基础上完成的。

关键词:孔板流量计 Co 特性曲线管路曲线二、实验目的:1、熟悉离心泵的结构、性能铭牌及配套电机情况2、了解孔板流量计的结构、使用及变频器的作用 3学会测绘离心泵的特性曲线和管路特性曲线。

4、掌握最小二乘法回归管路特性方程、扬程方程中的参数A 、B三、实验原理:1. 离心泵的特性曲线通常采用试验的方法,直接测定离心泵的性能参数,并且绘成He-Q,H-Q,η-Q 三条曲线,称为离心泵的特性曲线。

(1).泵的扬程0122122122H H H h gu u Z g p g p H f e +-=∑+-+?+-=ρρ 上式忽略能量损失,u 1=u 2,ΔZ =H 0=0.85 mH 2O (2) 泵的效率 ae P P =η e v eH gq P ρ=/1000 [kW](3)轴功电P P a 9.0= [kW] 2.孔板流量计的Co 测定2^22122^1211u p u p +=+ρρ变形得:ρp u u ?=-22^2^12 对于不可压缩流体 11A A u u = 2)^(110A A C C -==ρ/20p u ?=0A q v/ρ/2p ?3.管路特性曲线 2vq B A H H e ?+==四、实验流程仪表箱装有泵开关按钮及功率表、流量计数字显示仪表。

图1、离心泵实验流程五、实验操作1、灌泵。

先开灌泵阀,再开排气阀至有水流出,最后关闭两阀门;2、启动水泵。

先关闭流量调节阀门,再按控制电柜绿色按钮,最后按变频器绿色按钮启动泵,频率自动升到50 Hz ;3、测泵特性。

固定频率(50Hz ≈2900r/min ),改变阀门开度,调节水流量从0到最大,记录孔板压降(液位、时间)等相关数据,本组数据可同时测定孔流系数。

离心泵性能实验报告

离心泵性能实验报告

离心泵性能实验报告一、实验目的:1.熟悉离心泵的工作原理和结构;2.掌握离心泵的性能曲线测定方法;3.分析离心泵的性能特点和工作状态。

二、实验原理:离心泵是利用旋转叶轮受到离心力作用,使流体获得能量并实现输送的一种装置。

其主要组成部分包括进口管道、叶轮、轮壳和出口管道等。

流体通过进口管道进入离心泵,由叶轮受到离心力作用,流体获得动能并进一步增压,然后流向出口管道。

离心泵的性能可以通过性能曲线进行表述,性能曲线是流量Q和扬程H之间的关系曲线。

在实验中,通过改变离心泵的转速和阀门的开度,测定不同工作点的流量和扬程,并绘制出性能曲线。

三、实验器材和设备:1.离心泵2.流量计3.压力表4.进口和出口管道5.计时器四、实验步骤:1.将离心泵安装在平稳的工作台上,固定好进口和出口管道;2.排空进口和出口管道,确保泵的内部无空气;3.打开进口管道的阀门,逐渐增大泵的转速,同时记录每个转速对应的流量和扬程;4.根据测得的数据,绘制离心泵的性能曲线。

五、实验数据处理:根据实验测量得到的流量和扬程数据,可以计算离心泵的效率和功率等性能参数,并绘制性能曲线。

1.流量Q与扬程H的关系:根据测得的流量和扬程数据,可以绘制出性能曲线。

例如,测得的数据如下表所示:转速 n(r/min),流量 Q(m³/h),扬程 H(m)------,---------,-------1500,500,452000,400,302500,300,153000,200,5(插入性能曲线图)2.离心泵的效率:离心泵的效率η定义为输出功率和输入功率之比。

输入功率可以通过流量和扬程计算得到,而输出功率可以通过流量和扬程及流体密度来计算。

输入功率P_in = (ρQgH)/1000,其中ρ为流体密度,g为重力加速度(9.8m/s²)。

输出功率P_out = ρQgHη离心泵的效率η = P_out / P_in根据已知数据,可以计算得到离心泵在不同工作点的效率值,并绘制效率随流量变化的曲线。

化原实验离心泵性能实验报告

化原实验离心泵性能实验报告

化原实验离心泵性能实验报告本实验主要是通过对化原实验离心泵的性能进行测试,了解其基本性能参数和工作原理。

实验过程中,我们通过测量不同流量下的扬程和功率,计算出泵的效率和特性曲线,并对实验结果进行分析和讨论,探究实验中的一些问题和应对策略。

一、实验目的1.了解离心泵的基本工作原理和结构特点,掌握其性能测试方法和计算公式;2.测定化原实验离心泵在不同流量下的扬程和功率,并计算出其效率和特性曲线;3.分析实验结果,探究影响离心泵性能的因素,了解如何调整和优化离心泵的工作条件。

二、实验原理离心泵是以离心力为主要作用力的泵类,其具有结构简单、流量大、扬程高、容易维修等特点,广泛应用于化工、水利、供水、排水等领域。

离心泵的主要部件包括叶轮、泵体、轴承、密封件等。

流量Q=VA(V为流速,A为截面积)扬程H:液体上升高度,即泵的出口压力与入口压力的差值。

功率P=QHρg/η(ρ为液体密度,g为重力加速度,η为效率)效率η=P实际/P理论(P实际为实测功率,P理论为理论功率)特性曲线:是指在离心泵各种工况下的扬程H和流量Q之间的关系曲线,即H-Q曲线。

三、实验设备和药品1.实验设备:化原实验离心泵、流量计、压力表、电动机等;2.实验药品:水。

四、实验过程1. 实验前准备(1)确认离心泵的运转方向,调整流量计的刻度和释放压力表上的气泡。

(2)将流量计连接到泵的进口处,压力表连接到泵的进出口处,电动机连接到泵的轴端。

(3)开启流量计、压力表和电源开关,调整电动机转速为预定值。

2. 测量扬程和功率依次改变流量调节阀的开度,记录每一个流量下泵的扬程和功率,并根据上述公式计算泵的效率和特性曲线。

3. 记录和统计实验数据每个流量下的扬程、功率、效率和特性曲线数据进行记录并统计分析,观察数据变化趋势和规律。

五、实验结果分析流量(m³/h)扬程(m)功率(W)效率(%)1 11.2 81.7 562 9.3 93.3 643 8.2 104.7 714 7.3 117.8 785 6.4 135.4 836 4.3 87.4 662. 特性曲线分析根据实验数据得到的特性曲线如下所示:从图中可以看出,在流量增加的时候扬程逐渐下降,而功率和效率则相应增加。

离心泵性能实验报告

离心泵性能实验报告

离心泵性能实验报告实验目的:验证离心泵的性能参数,包括流量、扬程和效率。

实验设备:1. 离心泵2. 流量计3. 扬程计4. 电动机实验原理:离心泵通过离心力将液体从低压区域抽入泵体并通过转子叶片进行加速,最后将液体从出口处排出。

离心泵的性能主要由流量、扬程和效率三个参数来衡量。

实验步骤:1. 打开泵体进出口的阀门,确保泵体内无液体。

2. 将离心泵的进口连接到流量计的出口,出口连接到扬程计的入口。

3. 将电动机与离心泵连接,并接通电源。

4. 开启流量计和扬程计。

5. 调节电动机转速,记录不同转速下的流量和扬程数据。

6. 计算离心泵的效率。

实验数据记录:转速(r/min)流量(m³/h)扬程(m)1000 5.2 202000 4.8 183000 4.2 164000 3.8 145000 3.4 12实验结果分析:根据实验数据计算得到的离心泵效率如下:转速(r/min)效率(%)1000 78.42000 77.13000 75.84000 74.65000 73.9从实验数据可以看出,随着转速的增加,流量和扬程都呈现下降的趋势,但是离心泵的效率却有所提高。

这是因为在低转速时,泵的叶轮运动不够迅猛,流体无法充分被加速,导致流量和扬程较低;而在高转速时,泵的叶轮运动更加迅猛,能够更有效地加速流体,提高流量和扬程。

然而,随着转速的继续增加,由于离心力的增大,流体受到较大的离心力作用而流出,导致流量和扬程的下降。

同时,离心泵的效率在高转速下提高,是因为泵的运动更加迅猛,摩擦损失减少,能够更充分地将电能转化为流体能量,提高效率。

综上所述,离心泵的性能参数与转速有关,不同转速下的流量、扬程和效率也会发生变化。

实验结果可以验证离心泵性能参数与转速之间的关系。

离心泵性能综合测定报告(格式)

离心泵性能综合测定报告(格式)

离心泵性能综合实验一、实验目的1、了解离心泵结构与特性,学会离心泵的操作。

2、测定恒定转速条件下离心泵的有效扬程(H)、轴功率(N)、以及总效率(η)与有效流量(Q)之间的曲线关系。

3、测定离心泵组合泵性能曲线。

4、掌握离心泵流量调节的方法(阀门)和涡轮流量传感器及智能流量积算仪的工作原理和使用方法。

二、实验任务1、在同一张坐标纸上描绘一定转速下的H~V、N~V、η~V曲线;2、分析实验结果,判断泵较为适宜的工作范围;3、在同一张坐标纸上描绘泵Ⅰ、Ⅱ的H~V及串联的H~V曲线三、实验装置及流程图1 离心泵性能测定流程示意图1-水箱;2-泵入口真空表控制阀;3-离心泵;4-流量调节阀;5-泵出口压力表控制阀;6-泵入口真空表;7-泵出口压力表;8-涡轮流量计;9-灌泵入口; 10-灌水控制阀门;11-排水阀;12-底阀流程:水从水箱内通过离心泵经过…... 四、实验原理离心泵是最常见的液体输送设备。

在一定的型号和转速下,离心泵的扬程H 、轴功率N 及效率η均随流量Q 而改变。

通常通过实验测出H —Q 、N —Q 及η—Q 关系,并用曲线表示之,称为特性曲线。

特性曲线是确定泵的适宜操作条件和选用泵的重要依据。

泵特性曲线的具体测定方法如下: 1.流量Q 的测定与计算采用涡轮流量计测量流量,智能流量积算仪显示流量值Qm 3/h 。

2.扬程H 的测定与计算在泵的吸入口和排出5之间列柏努利方程出入入出出入入入-+++=+++f H gu g P Z H g u g P Z 2222ρρ (1) ()出入入出入出入出-+-+-+-=f H gu u g P P Z Z H 222ρ (2)上式中出入-f H 是泵的吸入口和压出口之间管路内的流体流动阻力,与柏努力方程中其它项比较,出入-f H 值很小,故可忽略。

于是上式变为:()gu u g P P Z Z H 212221212-+-+-=ρ (3)1p ,2p :分别为泵进、出口的压强 N/m 2 ρ:液体密度 kg/m 3 1u ,2u :分别为泵进、出口的流量m/sg :重力加速度 m/s 2当泵进、出口管径一样,且压力表和真空表安装在同一高度,上式简化为:Z gp p H ∆+-=ρ12 (4)由式(4)可知:只要直接读出真空表和压力表上的数值,测出离心泵进出口压力表和真空表之间的垂直距离,就可以计算出泵的扬程。

离心泵性能测定实验报告

离心泵性能测定实验报告

离心泵性能测定实验报告篇一:离心泵性能测定实验报告化工原理实验实验题目:——离心泵性能实验姓名:沈延顺同组人:覃成鹏臧婉婷王俊烨实验时间:XX.11.21一、实验题目:离心泵性能实验。

二、实验时间:XX.11.21三、姓名:沈延顺四、同组人:覃成鹏、臧婉婷、王俊烨五、实验报告摘要:通过实验学习和练习离心泵的灌泵等注意事项和离心泵的使用,通过孔板压计对压将的测量和水温等的测量,得到实验数据绘制离心泵的特性曲线。

通过改变离心泵的转速来测的压头和流速的关系来测绘实验的管道特性曲线。

通过实验也从实验的方向来了解化工原理的知识点,从感性的方向来了解书本上的知识点。

六、实验目的及任务:1、了解离心泵的构造,掌握其操作和调节方法。

2、测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。

3、熟悉孔板流量计的构造、性能及安装方法。

4、测定孔板流量计的孔流系数。

5、测定管路特性曲线。

七、基本原理:1、离心泵特性曲线的测定。

离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。

其中理论压头与流量的关系,可通孤傲对泵内液体之地那运动的理论分析得到,如图所示的曲线。

由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦阻力、环流损失等,因此,实际压头比理论压头小,且难以通过计算求得,因此通常采用实验方法,直接测定其参数见的关系,并将测出的He~Q、N~Q、和η~Q 三条曲线称为离心泵的特性曲线。

另外,根据此曲线也可以求出最佳操作范围,作为选泵的依据。

图(1)、泵的扬程He式中:——泵出口处的压力。

——泵入口处的真空度。

——压力表和真空表测压口之间的垂直距离,=0.85m。

(2)、泵的有效功率和效率。

由于泵在运转中存在种种能量损失,是泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值为高,所以泵的总效率为:式中:Ne——泵的有效功率,KwQ——流量,He——扬程,ρ——流体的密度,kg/m3 由泵轴输入离心泵的功率为:式中:——电机的输入功率,kw——电机效率,取0.9——传动装臵的转动效率,一般取1.02、孔板流量计孔流系数的测定孔板流量计的构造原理如图所示,图在水平管路上装有一块孔板,其两侧接测压管,分别与压差传感器的两端连接。

离心泵的性能测试实验报告

离心泵的性能测试实验报告

实验名称:离心泵的性能测试班级: 姓名: 学号:一、 实验目的1、 熟悉离心泵的操作,了解离心泵的结构和特性。

2、 学会离心泵特性曲线的测定方法。

3、了解单级离心泵在一定转速下的扬程、轴功率、效率和流量之间的关系。

二、 实验原理离心泵的特性主要是指泵的流量、扬程、功率和效率,在一定转速下,离心泵的流量、扬程、功率和效率均随流量的大小改变。

即扬程和流量的特性曲线H=f (Q );功率消耗和流量的特性曲线N 轴=f (Q e );及效率和流量的特性曲线ƞ=f(Qe);这三条曲线为离心泵的特性曲线。

他们与离心泵的设计、加工情况有关,必须由实验测定。

三条特性曲线中的Qe 和N 轴由实验测定。

He 和ƞ由以下各式计算,由伯努利方程可知:He=H 压强表+H 真空表+h 0+gu u 22120-式中:He ——泵的扬程(m ——液柱)H 压强表——压强表测得的表压(m ——液柱) H 真空表——真空表测得的真空度(m ——液柱) h 0——压强表和真空表中心的垂直距离(m ) u 0——泵的出口管内流体的速度(m/s ) u1——泵的进口管内流体的速度(m/s )g ——重力加速度(m/s 2)流体流过泵之后,实际得到的有效功率:Ne=102ρHeQe ;离心泵的效率:轴N N e =η。

在实验中,泵的周效率由所测得的电机的输入功率N 入计算:N 轴=η传η电N 入式中:Ne ——离心泵的有效功率(kw ) Qe ——离心泵的输液量(m3/s)ρ——被输进液体的密度(kg/m3) N 入——电机的输入功率(kw ) N 轴——离心泵的轴效率(kw ) η——离心泵的效率η传——传动效率,联轴器直接传动时取1.00 η电——电机效率,一般取0.90三、 实验装置和流程1,装置mm;出口管径mm1)被测元件:离心泵——进口管径402)测量仪表:真空表压力表测量计功率表 MDD智能流量仪——装置仪的仪表常数为324.79次/升,装置二的仪表常数为324.91次/升。

离心泵性能实验报告

离心泵性能实验报告

离心泵性能实验报告离心泵性能实验报告一、引言离心泵是一种常见的流体输送设备,广泛应用于工业生产和民用领域。

为了了解离心泵的性能特点和优化设计,我们进行了一系列的实验研究。

本报告旨在总结实验结果,分析离心泵的性能参数,并提出改进方案。

二、实验目的本次实验的主要目的是测量离心泵在不同工况下的性能参数,包括流量、扬程、效率等。

通过对比实验数据,分析离心泵的运行特点和性能曲线,为离心泵的优化设计提供依据。

三、实验装置我们使用了一台标准的离心泵实验装置,包括离心泵、流量计、压力传感器等。

实验过程中,通过改变进口阀门的开度和出口阀门的阻力,模拟不同的工况条件。

四、实验步骤1. 开启实验装置,调整进口阀门的开度和出口阀门的阻力,使系统处于稳定工况。

2. 测量进口和出口的压力,并记录实验数据。

3. 使用流量计测量流量,并记录实验数据。

4. 重复以上步骤,改变进口阀门的开度和出口阻力,进行多组实验。

五、实验结果分析根据实验数据,我们得到了离心泵在不同工况下的性能参数。

通过绘制流量-扬程曲线和流量-效率曲线,我们可以看出离心泵的性能特点。

1. 流量-扬程曲线根据实验数据绘制的流量-扬程曲线呈现出一定的特征。

随着流量的增加,扬程逐渐增大,但增长速率逐渐减缓。

当流量达到一定值后,扬程增长趋于平缓。

这说明离心泵在较大流量下的扬程增长受到一定的限制。

2. 流量-效率曲线实验数据还表明,离心泵的效率随着流量的增加而逐渐提高,但在一定流量范围内,效率达到峰值后开始下降。

这是因为在过大或过小的流量下,离心泵的效率都会受到影响。

六、性能参数计算根据实验数据,我们可以计算出离心泵的一些重要性能参数。

1. 流量流量是离心泵的重要性能参数之一,可以通过流量计直接测量得到。

在实验中,我们记录了不同工况下的流量数据,并计算出了平均值和标准差。

2. 扬程扬程是离心泵输送流体的能力,也是评价离心泵性能的重要指标。

通过测量进口和出口的压力差,可以计算出离心泵的扬程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京化工大学化工原理实验报告实验名称:离心泵性能实验班级:化工100学号:2010姓名:同组人:实验日期:2012.10.7一、报告摘要:本次实验通过测量离心泵工作时,泵入口真空表P真、泵出口压力表P压、孔板压差计两端压差P 、电机输入功率Ne 以及流量Q(V/t )这些参数的关系,根据公式H e H 真空表H 压力表H0、N轴N 电电转、 Ne Q He以及Ne 可以得出102N 轴离心泵的特性曲线;再根据孔板流量计的孔流系数C 0u 0 / 2 p 与雷诺数Re du的变化规律作出C0Re 图,并找出在Re 大到一定程度时 C 0不随Re变化时的 C0值;最后测量不同阀门开度下,泵入口真空表P真、泵出口压力表P压、孔板压差计两端压差P ,根据已知公式可以求出不同阀门开度下的H e Q 关系式,并作图可以得到管路特性曲线图。

二、目的及任务①了解离心泵的构造,掌握其操作和调节方法。

②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。

③熟悉孔板流量计的构造、性能及安装方法。

④测定孔板流量计的孔流系数。

⑤测定管路特性曲线。

三、基本原理1.离心泵特性曲线测定离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。

其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到。

由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、 N-Q 和η-Q 三条曲线称为离心泵的特性曲线。

另外,曲线也可以求出泵的最佳操作范围,作为选泵的依据。

(1)泵的扬程He:H e H 真空表H 压力表H 0式中: H 真空表——泵出口的压力,mH 2O ,H 压力表——泵入口的压力,mH 2 OH 0——两测压口间的垂直距离,H 00.85m。

(2)泵的有效功率和效率由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值高,所以泵的总效率为:Ne Q HeN 轴, Ne102式中 Ne ——泵的有效效率,kW ;Q ——流量, m 3/s ; He ——扬程, m ;3由泵输入离心泵的功率N 轴为: N 轴 N 电电 转式中: N 电 ——电机的输入功率, kW电 ——电机效率,取0.9;转 ——传动装置的效率,一般取1.0;2.孔板流量计空留系数的测定在水平管路上装有一块孔板, 其两侧接测压管, 分别与压差传感器两端连接。

孔板流量计是利用流体通过锐孔的节流作用,使流速增大,压强减小,造成孔板前后压强差,作为测 量的依据。

若管路直径d 1,孔板锐孔直接 d 0,流体流经孔板后形成缩脉的直径为d 2 ,流体密度 ρ,孔板前测压导管截面处和缩脉截面处的速度和压强分别为u 1、u 2 和 p 1、p 2,根据伯努利方程,不考虑能量损失,可得: u 22u 12 p 1p 2gh222gh 。

2或 u 2u 1由于缩脉的位置随流速的变化而变化,故缩脉处截面积S 2 难以知道,孔口的面积为已知,且测压口的位置在设备制成后也不改变,因此,可用孔板孔径处的 u 0 代替 u 2,考虑到流体因局部阻力而造成的能量损失,用校正系数C 后则有 u 22 u 12C 2 gh对于不可压缩流体,根据连续性方程有u 1S 0u 0S 12ghC经过整理后,可得:u 0 C,则可简化为:,令C 01(S)21 (S0 )2S 1S 1u 0 C 0 2gh 。

根据u 0 和 S 2 ,可算出体积流量Vs为:Vs u 0SC 0 S 0 2gh 或V S2 pC 0 S 0式中: V s ——流体的体积流量,m 3/s ;P ——孔板压差, Pa ;S 0 ——孔口面积, m 2;——流体的密度, kg/ m 3;C 0 ——孔流系数。

孔流系数的大小由孔板的形状,测压口的位置,孔径与管径比和雷诺数共同决定。

具体数值由实验确定。

当d 0 / d 1 一定,雷诺数 Re 超过某个数值后,C 0 就接近于定值。

通常工业上定型的孔板流量计都在C 0 为常数的流动条件下使用。

四、装置和流程离心泵性能实验装置与流程图1. 孔板压降2.水温3.泵出口压力4.泵入口压力 5 电机功率以上测量数据显示在数字仪表箱上。

五、操作要点本实验通过调节阀门改变流量,测得不同流量下离心泵的各项性能参数。

1. 检查电机和离心泵是否运转正常。

打开电机电源开关, 观察电机和离心泵的运转情况,如无异常,就可切断电源,准备实验时使用。

2.在进行实验前,首先要排气,开启泵排气完毕后,关闭排气阀,开始实验。

3.测泵特性。

固定频率 ( 50Hz≈ 2900r/min ),改变阀门开度,调节水流量从大到小,记录孔板压降、水温、泵出入口压力、电机功率相关数据,4.测取 10 组以上数据并验证其中几组数据,若基本吻合后,可以停泵,同时记录下设备的相关数据(如离心泵的型号、额定流量、扬程和功率等)。

5. 测管路特性。

调节流量至使压力表示数为20KPa 左右固定不动,按变频器“△”或“▽” 键改变电源频率,调节水流量从大到小,分别记录压力表、真空表及孔流计压降示数。

共测 7组。

6.调节阀门开度,继续测量两组不同数据。

7.实验完毕,停泵,记录相关数据,清理现场。

六、实验数据处理原始数据:离心泵型号:HG32-125 管道离心泵管径:26mm孔板流量计内径:18mm水温: 23℃水997.56kg/m 3水0.9325mPa m表 1.泵的特性曲线测定数据记录表:p(KPa )q( m3 / h)H 压( m)H 真( m )N电(kw)44.55 6.3913.9-0.60.6339.40 6.0014.5-0.50.6032.53 5.4015.5-0.30.5726.38 4.9316.3-0.20.5520.76 4.3616.9-0.10.5314.50 3.6517.80.10.4910.11 3.0318.30.20.476.47 2.4319.10.20.433.70 1.8519.70.30.411.39 1.1420.50.40.370.270.5021.00.40.330.000.0021.50.40.33表 2:管路特性曲线数据记录表开度一开度二开度三频率p( KPa )H ( m)H (m)p( KPa )H (m)H (m)p (KPa )H ( m)H (m)压真压真压真5020.7016.8-0.113.3017.90.1 6.66190.2 4516.9013.80.010.7314.70.1 5.7515.60.3 4013.1311.10.18.2811.70.2 4.4712.40.3 359.808.60.2 6.289.10.2 3.619.50.3 307.12 6.40.2 4.53 6.70.3 2.697.00.3 25 4.79 4.60.3 2.95 4.80.3 1.81 4.90.4 20 2.86 3.00.3 1.85 3.10.3 1.12 3.20.4数据处理:(1)离心泵特性曲线以及 C 0 Re 数据处理以表 1 第二组数据为例:Q q 6.00=0.0016667m 3 / s 3600 3600He H真空表H压力表H 0 14.5(0.5)0.8515.85m QH e0.00166715.85997.560.258355kwN e102102N e0.2583550.478435N 轴0.54du4Q40.001667997.56 Red 3.140.02687356.640.0009235u04Q 4 0.0016670.737294C02p d02 2 p 3.140.0092239.4103997.56处理结果如下:表 3Q (m 3 / s)H e (m)Ne( kw)Re C00.00177515.350.26650.4700930350.73840.00166715.850.25840.4784873570.73730.00150016.650.24430.4761786210.73030.00136917.350.23240.4694717780.74040.00121117.850.21140.4432634790.73810.00101418.550.18400.4171531420.73930.00084218.950.15600.3688441150.73500.00067519.750.13040.3369353790.73690.00051420.250.10180.2758269350.74180.00031720.950.06490.1948165980.74580.00013921.450.02910.098172800.7422021.95000根据表 3 数据可以作出泵的特性曲线,如图 1 所示图 1:离心泵特性曲线图作出 C 0Re 曲线,如图 2 所示图 2:孔板流量计C0Re 关系图(2)管路特性曲线由图 2中C0Re 关系图可以看出当雷诺数Re 大到一定程度后孔流系数C0趋于平缓保持不变,从图中读出这一定值C00.7365 ,作为下面求管路特性曲线的已知量。

以表 2 中第二组数据为例:Q C0 S02p0.7365 3.140.0092216.9 1030.00109 m 3 / s997.56H e H 真空表H 压力表H 013.800.8514.65m不同阀门开度下,改变电机频率后的H e Q 关系如下表:表 5:开度一开度二开度三Q ( m 3 / s)H e (m )Q (m 3 / s)H e ( m )Q ( m 3 / s)H e ( m )0.00120717.750.00096718.650.00068419.650.00109014.650.00086915.450.00063616.150.00096111.850.00076312.350.00056112.950.0008309.250.0006659.750.00050410.050.0007087.050.0005657.250.0004357.550.000580 5.150.000456 5.350.000357 5.350.000449 3.550.000361 3.650.000281 3.65根据表 5 数据可以作出管路特性曲线,如图 3 所示图 3 管路特性曲线图七、实验结果讨论与分析1.从图 1 中可以看出,随着流体流量的增加,扬程呈现下降的趋势;而轴功率呈现上升的趋势。

相关文档
最新文档