离散时间系统的数学模型

合集下载

离散时间系统的数学模型—差分方程

离散时间系统的数学模型—差分方程
?用差分方程描述线性时不变离散系统?由实际问题直接得到差分方程?由微分方程导出差分方程?由系统框图写差分方程?差分方程的特点一
一.用差分方程描述线性时不变离散系统
线性:均匀性、可加性均成立;
x (n) 1
离散时间系统
y (n) 1
x 2 ( n ) 离散时间系统
c x (n ) + c x (n )
x1n+ x2n
x2 n
乘法器:
x1n x1n+ x2n
x2 n
x1 n
x1n x2 n
x2 n
系统框图
乘法器
xn
延时器
axn
a
yn
1
yn 1
E
xn a axn
yn
yn 1
z 1
五.差分方程的特点
(1)输出序列的第n个值不仅决定同一瞬间的输入样值, 而且还与前面输出值有关,每个输出值必须依次保留。
11
22
离散时间系统
y2 (n )
c y (n ) + c y (n )
11
22
时不变性
xn yn,xn N yn N 整个序列右移 N位
x(n)
y(n)
1 1 0 1 2 3 n
1
系统
1 o 1 2 3 4 n
x(n N )
y(n N )
1
1
系统
1 0 1 2 3
yt ynT yn
f t f nT f n
yn yn 1 ayn+ f n
T
yn 1 yn 1+ T f n
1 aT
1 aT
当前输出 前一个输出 输入

离散系统的数学模型

离散系统的数学模型
信号与系统
离散系统的数学模型
1.1 离散时间系统的数学模型
为激励信号,
为响应信号
离散时间系统 将激励序列转换为响应序列的系统,其 输入输出都是离散信号。在数学上,离 散系统的输入-输出关系可表示为
离散系统可以用差分方程来描述 差分方程 由输入序列、输出序列以及它们的差分所组
成的方程。 例如:
无反馈差分方程 某ຫໍສະໝຸດ 时刻的输出只与输入有关,而余 ,月利率为1%。写出结余 与净存款

关系式。
解: 当月的净存款
月末结余
月末利息
所以有

例5.3.2 试写出第k 节点电压 的数学模型。
解: 整理得
例5.3.3 假设离散时间系统的差分方程为 求其传输算子
解:算子方程为 即
所以
离散系统的模拟框图表示
差分方程的基本元算符号
例5.3.4 某离散系统的差分方程为
与该时刻之前的输出无关 。
有反馈差分方程 某一时刻的输出不仅与输入有关,还 与该时刻之前的输出有关。
系统的差分方程的一般形式 :
前向差分方程
后向差分方程
差分算子 离散系统的传输算子
差分方程 算子方程
传输算子
系统的输入-输出模型
1.2离散时间系统数学模型的建立
例5.3.1 某一银行按月结余。设第 个月末的结
试用模拟框图表示此系统。 解:系统的差分方程可化为 框图来表示为
信号与系统

7-4离散系统的数学模型全篇

7-4离散系统的数学模型全篇
如何建立采样系统的差分方程,将在“脉冲 传递函数”小节中讨论。
2. 线性常系数差分方程及其解法
c(k
)
a1c(k b1r(k
11))ba22rc((kk22))bamnrc((kk
n) m);
n
m
c(k) aic(k i) bjr(k j);
i 1
j 1
后向差分方程:时间概念清楚,便于编制程序。
c(kn) a1c(kn 1) a2c(kn 2) anc(k) b1r(kn 1) b2r(kn 2) bmr(kn m);
n
m
c(k n) aic(k n i) bjr(k n j);
i 1
j 1
前向差分方程:便于讨论系统阶次、使用Z变换 法计算初始条件不为零的解。
上述几个差分方程在书写上都很烦琐,为书 写简便可采用时间移动算子。
0.1 0.4 16k 0.3 81k
c(nT
)
0.1 0.8 16k 0.1 1.6 16k
0.9 81k 2.7 81k
0.1 3.2 16k 8.1 81k
k 0, 1, 2, 3, 4, ;
n 4k
n 4k 1 ; n 4k 2
n 4k 3
3. 脉冲传递函数(定义、意义) 使用 脉冲传递函数,便于分析和校正线性离
c(k) 0.5c(k 1) 0.5c(k 2) r(k); r(k) 1(k); c(k) 0, k 0;
试用递推法计算输出序列c(k),k= 0,1,2,…。
解例7采-16用-1递续推关系 c(k) = 1+0.5c(k-1)– 0.5c(k-2);
c(0) 1; c(1) 1 0.5 1.5;
c(2) 1 0.51.5 0.5 1.25; c(3) 1 0.51.25 0.51.5 0.875;

线性离散系统的数学模型

线性离散系统的数学模型

解 :k 0 y(1) ay(0)bu(0)
k 1
y(2) ay(1)bu(1) a2y(0)abu(0)bu(1)
k1
y(k) ak y(0) ak1ibu(i) 通 解特 解
i0
线性离散系统的数学模型
解法二:解析法——差分方程通解求法
y ( k n ) a 1 y ( k n 1 ) a n y ( k ) b 0 u ( k m ) b 1 u ( k m 1 ) b m u ( k )
➢第二种形式:称为 (n,m) 阶差分方程,其中 m≤n,是在输入 输出的最低阶上统一。
y ( k n ) a 1 y ( k n 1 ) a n y ( k ) b 0 u ( k m ) b 1 u ( k m 1 ) b m u ( k )
连续定常系统的 n 阶微分方程(m≤n)
m0 线性离散系统的数学模型
例 3-3-1 已 知 离 散 系 统 脉 冲 响 应 h(k),求 在 u*(t)1*(t) 作 用 下 系 统 的 输 出 y*(t)。
1,k0 u*(t)1*(t) 0,k0
解: 由卷积和公式:
k
y(k) u(k)* h(k) u( j)h(k j) j0
k
3.2.2 差分方程解 =通解+特解
➢ 通解是齐次方程的解,为零输入解,代表系统在无外力 作用下的自由运动,反映了离散系统自身的特性。
➢ 特解是由非零输入产生的解,对应于非齐次方程的特解, 反映了系统在外作用下的强迫运动。 差分方程求解有两种方法:解析法与递推法。
线性离散系统的数学模型
解法一:递推法——从初始值递推求解
数 学 模
连续系统 微分方程 脉冲过渡函数
—— ——

数学模型之离散模型

数学模型之离散模型

离散模型的应用领域
计算机科学
离散模型在计算机科学中广泛 应用于算法设计、数据结构、
网络流量分析等领域。
统计学
离散模型在统计学中用于描述 和分析离散数据,如人口普查 、市场调查等。
经济学
离散模型在经济学中用于描述 和分析离散的经济现象,如市 场交易、人口流动等。
生物学
离散模型在生物学中用于描述 和分析生物种群的增长、疾病
强化学习与离散模型
强化学习通过与环境的交互来学习最优策略。离散模型可以用于描述环境状态和行为,为 强化学习提供有效的建模工具。
离散模型在人工智能中的应用
1 2
决策支持系统
离散模型在决策支持系统中发挥着重要作用,通 过建立预测和优化模型,为决策者提供科学依据 和解决方案。
推荐系统
离散模型常用于构建推荐系统,通过分析用户行 为和偏好,为用户提供个性化的推荐服务。
03
分布式计算与并行化
为了处理大规模数据集,离散模型需要结合分布式计算和并行化技术,
以提高计算效率和可扩展性。
机器学习与离散模型的结合
集成学习与离散模型
集成学习通过结合多个基础模型来提高预测精度。离散模型可以作为集成学习的一部分, 与其他模型进行组合,以实现更准确的预测。
深度学习与离散模型
深度学习具有强大的特征学习和抽象能力。将深度学习技术与离散模型相结合,可以进一 步优化模型的性能,并提高对复杂数据的处且依赖于过去误差项的平方。
GARCH模型
定义
广义自回归条件异方差模型(Generalized AutoRegressive Conditional Heteroskedasticity Model)的简称,是ARCH模型的扩展。
特点

离散控制系统的数学模型

离散控制系统的数学模型


Y (z)
z2
z 3z
2
(z
z 1)( z
2)
利用反演积分法求出z反变换,得 y(k) 1 2k k 0,1, 2,
y(t) (1 2k ) (t kT ) k 0
1.2 脉冲传递函数
1.脉冲传递函数定义
在线性定常离散控制系统中,当初始条件为零时,系统离散输出信号的z
变换与离散输入信号的z变换之比,称为线性定常离散控制系统的脉冲传递函
R(z) 1 G1 (z)HG2(z)
自动控制原理
例1-13 试用z变换法求解下列二阶前向差分方程 y(k 2) 3y(k 1) 2y(k) 0
其中,初始条件为 y(0) 0, y(1) 1 。
解:对方程两端取z变换,得
z2Y (z) z2 y(0) zy(1) 3zY (z) 3zy(0) 2Y (z) 0
即 (z2 3z 2)Y (z) y(0)z2 ( y(1) 3y(0))z 代入初始条件,得 (z2 3z 2)Y (z) z
(2)串联环节之间无采样开关时
设开环离散系统如图1-18所示,在两个串联连续环节G1(s)和G2(s)之间没 有理想采样开关。此时系统的传递函数为 G(s) G1(s)G2 (s)
上式作为一个整体进行z变换,由脉冲传递函数定义得
G(z)
Y (z) R(z)
G1G2 (z)
图1-18 环节之间无理想采样开关的开环采样系统
自动控制原理
离散控制系统的数学模型
1.1 线性常系数差分方程
对于线性定常离散控制系统,一般可用n阶后向差分方程描述,即
n
m
y(k) ai y(k i) bir(k j)
i 1
j 1

matlab离散化状态空间模型 -回复

matlab离散化状态空间模型 -回复

matlab离散化状态空间模型-回复如何使用MATLAB 进行离散化状态空间模型的建模和分析离散化状态空间模型是一类广泛应用于系统建模和分析的数学工具。

它在控制论和动态系统理论中有着重要的作用。

MATLAB 是一个功能强大的数学软件,可以方便地进行离散化状态空间模型的建模和分析。

本文将介绍如何使用MATLAB 进行离散化状态空间模型的建模和分析。

一、离散化状态空间模型的概念和原理离散化状态空间模型是描述离散时间系统动态特性的一种数学模型。

它由状态方程和输出方程组成。

状态方程描述了系统状态的演化规律,输出方程描述了系统输出与状态的关系。

离散时间系统的状态方程和输出方程可以用矩阵形式表示如下:x(k+1) = Ax(k) + Bu(k)y(k) = Cx(k) + Du(k)其中,x(k) 表示系统在时刻k 的状态向量,u(k) 表示系统在时刻k 的输入向量,y(k) 表示系统在时刻k 的输出向量,A、B、C、D 分别为系统的状态矩阵、输入矩阵、输出矩阵和直接传递矩阵。

离散化状态空间模型的建模需要将连续时间系统的状态空间模型进行离散化处理。

离散化的基本原理是将连续时间系统的状态方程和输出方程在一段时间内进行离散化处理,使得系统的状态和输出在该离散时间内近似地描述系统的动态特性。

二、使用MATLAB 进行离散化状态空间模型的建模和分析的步骤1. 定义系统的连续时间状态空间模型首先,需要定义连续时间状态空间模型的状态矩阵A、输入矩阵B、输出矩阵C 和直接传递矩阵D。

这些矩阵的维度和元素值反映了系统的动态特性。

例如,假设我们有一个连续时间状态空间模型:dx(t)/dt = Ax(t) + Bu(t)y(t) = Cx(t) + Du(t)其中,状态向量x(t) 的维度为n,输入向量u(t) 的维度为m,输出向量y(t) 的维度为p。

那么,我们可以用MATLAB 编写如下代码定义连续时间状态空间模型:A = [a11, a12, ..., a1n; a21, a22, ..., a2n; ..., an1, an2, ..., ann];B = [b11, b12, ..., b1m; b21, b22, ..., b2m; ..., bn1, bn2, ..., bnm];C = [c11, c12, ..., c1n; c21, c22, ..., c2n; ..., cp1, cp2, ..., cpn];D = [d11, d12, ..., d1m; d21, d22, ..., d2m; ..., dp1, dp2, ..., dpm];2. 将连续时间状态空间模型离散化在MATLAB 中,可以使用c2d 函数将连续时间状态空间模型离散化为离散时间状态空间模型。

数学建模简明教程第六章离散模型

数学建模简明教程第六章离散模型
根据问题背景,确定模型的研究 目标,如预测、优化、分类等, 为后续模型建立提供方向。
收集数据与信息
数据来源
确定数据来源,包括实验数据、调查数据、公开数据等,确保数据的准确性和 可靠性。
数据预处理
对收集到的数据进行清洗、整理和转换,以适应离散模型的建立和应用。
选择合适的离散模型
模型类型
根据问题特点和目标,选择合适的离 散模型类型,如概率模型、统计模型 、逻辑模型等。
离散模型的优化
参数调整
根据验证结果,调整离散 模型的参数,以提高模型 的预测精度和稳定性。
算法改进
探索更高效的算法,以降 低计算复杂度和提高模型 训练速度。
特征选择
根据模型需求,选择与问 题相关的特征,去除冗余 和无关特征,提高模型性 能。
离散模型的改进建议
深入研究数据
持续学习
深入了解数据分布和特性,为模型改 进提供更有针对性的指导。
等方面。
在交通运输领域,离散模型用于 描述交通流量的变化和预测交通
状况。Βιβλιοθήκη 在经济学和社会学领域,离散模 型用于研究人口增长、市场行为、
社会网络等方面的问题。
02
离散模型的建立
确定问题与目标
明确问题背景
在建立离散模型前,需要明确问 题的背景、研究目的和相关领域 ,以便确定模型的应用范围和针 对性。
确定研究目标
数学建模简明教程第六章 离散模型
• 离散模型概述 • 离散模型的建立 • 离散模型的求解 • 离散模型的验证与优化 • 离散模型案例分析
01
离散模型概述
离散模型的定义
离散模型是指对研究对象进行离散化 处理,将其划分为若干个离散的单元 或状态,然后对每个单元或状态进行 数学描述和分析的模型。

离散控制系统中的模型控制设计

离散控制系统中的模型控制设计

离散控制系统中的模型控制设计离散控制系统是现代控制领域中的重要研究方向之一。

它涉及到对离散时间信号进行采样、量化和控制的技术。

离散控制系统的模型控制设计是对这些系统的建模和控制器设计的过程,具有广泛的应用价值和实际意义。

1. 离散控制系统的基本模型在离散控制系统中,系统的输入和输出信号在时间上是离散的。

常见的离散控制系统模型包括差分方程模型和状态空间模型。

对于线性时不变系统,可以使用差分方程模型描述系统的输入输出关系。

而对于非线性或时变系统,常常使用状态空间模型来描述系统的动态行为。

2. 模型控制设计的目标离散控制系统的模型控制设计的目标是设计一个控制器,使得系统的输出能够满足预期的性能指标。

通常的性能指标包括系统的稳定性、快速性和抗干扰能力。

在模型控制设计中,需要根据系统的数学模型和性能指标,选择合适的控制器结构和参数,以实现对系统的精确控制。

3. PID控制器设计PID控制器是离散控制系统中最常用的控制器之一。

它由比例(P)、积分(I)和微分(D)三个部分组成,通过对系统的误差信号进行加权运算,调节系统的输出。

PID控制器的设计可以通过经验法则或者优化算法来实现。

常用的经验法则包括Ziegler-Nichols法则和Chien-Hrones-Reswick法则。

4. 线性二次调节器设计线性二次调节器(LQR)是离散控制系统中一种优化控制方法。

它通过最小化系统输出与期望输出之间的误差的平方和,设计一个线性状态反馈控制器。

LQR控制器采用系统的状态反馈控制策略,通过对状态变量进行测量和调节,实现对系统的稳定性和性能的优化。

5. 系统辨识与模型预测控制系统辨识是离散控制系统中的关键技术之一,它通过对实际系统的输入输出数据进行分析和处理,确定系统的数学模型。

基于系统辨识得到的数学模型,可以应用模型预测控制(MPC)方法进行系统控制。

MPC控制器通过对未来一段时间内系统的状态进行预测,计算控制信号,实现对系统的控制和优化。

离散时间和连续时间模型的仿真

离散时间和连续时间模型的仿真

计算机仿真
用于模拟计算机系统的性能和行为,如操作系 统、网络通信等。
数字电路仿真
用于模拟数字电路的行为和性能,如逻辑门电路、微处理器等。于模拟控制系统的动态行为,如飞机、汽 车、机器人等。
电路仿真
用于模拟电路的动态行为和性能,如模拟电 路、数字电路等。
流体动力学仿真
05
离散时间和连续时间模型仿
真的发展趋势
离散时间模型仿真的发展趋势
01
离散时间模型仿真在计算机技 术的推动下,正朝着高精度、 高效率、高逼真度的方向发展 。
02
随着数值计算方法的改进,离 散时间模型仿真在处理复杂系 统时能够更准确地反映其动态 特性。
03
离散时间模型仿真在工程设计 、产品开发、生产制造等领域 的应用越来越广泛,成为解决 实际问题的有力工具。
骤或过程来模拟仿真过程。
02
连续时间模型仿真
连续事件的定义
连续事件
在连续时间模型中,事件的发生是在一个连续的时间段内,而不是离散的时刻。这些事 件通常与物理过程或自然现象相关,如温度变化、速度变化等。
时间变量
在连续时间模型中,时间是一个连续变化的变量,可以表示为实数轴上的一个点或一段 长度。
状态变化
用于模拟流体动力学系统的行为和性能,如 流体流动、热传导等。
离散时间和连续时间模型的适用性分析
离散时间模型适用于模拟离散事件系统,而连续时间模型适用于模拟连续 动态系统。
在选择使用离散时间模型还是连续时间模型时,需要考虑系统的特性和需 求,以及仿真的精度和计算成本等因素。
在某些情况下,可能需要结合离散时间模型和连续时间模型进行仿真,以 获得更准确的结果。
感谢观看
THANKS

《自动控制原理》离散系统的数学模型

《自动控制原理》离散系统的数学模型

K (t) L1[G(s)]
(7-55)
再将 K (t) 按采样周期离散化,得加权序列 K (nT ) ;最后将 K (nT ) 进
行 z 变换,按式(7-53)求出 G(z) 。这一过程比较复杂。其实,如果把 z 变
换表 7—2 中的时间函数 e(t) 看成 K (t) ,那么表中的 E(s) 就是 G(s) (见式 (7-55),而 E(z) 则相当于 G(z) 。因此,根据 z 变换表 7—2,可以直接从 G(s) 得到 G(z) ,而不必逐步推导。
本章所研究的离散系统为线性定常离散系统。 注意 zx:离散系统有本质连续和本质离散两种情况
本质连续的离散系统:如液位 炉温采样控制系统中的被控对象 本质离散的离散系统:如计算机。系统直接进行离散计算 问题:如何建立离散系统的数学模型? c(n) F[r(n)] F 的具体形式? 分析:本质连续的离散系统的方框图, 能否 G(s)?G(z)=?
众所周知,利用传递函数研究线性连续系统的特性,有公认的方便 之处。对于线性连续系统,传递函数定义为在零初始条件下,输出量的 拉氏变换与输入量的拉氏变换之比。对于线性离散系统,定义类似。
设开环离散系统如图 7-22 所示,如果系统的初始条件为零,输入信号
为 r(t) ,采样后 r*(t) 的 z 变换函数为 R(z) ,系统连续部分的输出为 c(t) ,
微分方程的经典解法类似,差分方程的经典解法[EX]*也要求出齐次方程 的通解和非齐次方程的一个特解,非常不便。这里仅介绍工程上常用的 后两种解法。
(1)迭代法 又称递推法 若已知差分方程(7-49)或(7-50),并且给定输入序列和输出序列的初 值,则可以利用递推关系可以一步一步地算出输出序列。 例 7-14 已知差分方程

纸带模型知识点总结

纸带模型知识点总结

纸带模型知识点总结纸带模型是一种常用于描述动力系统的动态行为的一种建模和分析工具。

它是利用纸带图形表示动力系统的状态变量和状态方程,以及对系统的输入和输出进行描述和分析的方法。

在本文中,我们将对纸带模型的基本知识点进行总结,包括纸带模型的定义、特点、构建方法和应用等方面。

一、纸带模型的定义纸带模型是一种描述离散事件系统的数学模型,它由一个以时间为纵轴、状态变量为横轴的二维图形表示,该图形用不同的颜色或符号表示系统的状态,通过图形的变化来表示系统在不同时间点上的状态变化。

纸带模型包括系统状态的表示以及状态转移方程的描述。

二、纸带模型的特点1. 离散性:纸带模型是用一系列离散的状态来描述系统的动态行为,而不是连续的状态表示。

2. 可视化:纸带模型通过图形的方式直观地表示系统的状态和状态转移,便于人们理解和分析系统的特性。

3. 简洁性:纸带模型将系统的动态行为简洁地表达在一个平面图形上,易于分析和推导系统的性质。

4. 直观性:纸带模型能够直观地表示系统的动态行为和状态转移过程,让人们直接感受到系统的运行情况。

三、纸带模型的构建方法纸带模型的构建方法主要包括系统状态的表示和状态转移方程的描述两个方面。

1. 系统状态的表示:系统状态通常由一组状态变量描述,使用不同的颜色或符号表示系统的不同状态,将系统状态按时间顺序绘制在纵轴上,构成一个纸带图形。

2. 状态转移方程的描述:通过状态转移方程描述系统状态之间的转移规律,包括系统的输入和输出,以及状态变量之间的相互作用。

四、纸带模型的应用纸带模型作为一种表示离散事件系统动态行为的工具,在各种领域都有广泛的应用。

1. 控制系统:纸带模型可用于描述控制系统的状态变化和控制规律,对于控制系统的设计和分析具有重要的作用。

2. 通信系统:纸带模型可用于描述通信系统中信息传输的状态和转移规律,对于通信系统的性能分析和优化有一定的帮助。

3. 生产系统:纸带模型可用于描述生产系统的状态变化和生产过程的控制,对于生产系统的优化和管理有一定的作用。

第七章 离散系统的数学模型

第七章 离散系统的数学模型

第四节 离散系统的数学模型

系统结构如上图所示,求G(z).
-1)G (z) 1 1 G ( z ) = (1 -z G1(s)= S(S+1) G2(s)=2S2(S+1) T = 1S (z-1) z[(z-e-1)-(-Ts z-1)( z-e-1) + (z-1)2] (1-e ) 2 1 = 解: -1) z · G(s)= ( z-1) S (z-e (S+1) S e-1z+(1-2e-1) 0.386 z +0.264 1 1 1 1 = = 1 ] 2-1.368 ] + = Z [ G2(z)(= Z[ z-e z-1)( ) z z+ 0.386 S+1 S S2 S2(S+1)
四、开环系统的脉冲传递函数
采样系统的脉冲传递函数的求取与 连续系统求传递函数类似。但脉冲传递 函数与采样开关的位置有关。当采样系 统中有环节串联时,根据它们之间有无 采样开关,其等效的脉冲传递函数是不 相同的。
第四节 离散系统的数学模型
1.串联环节间无采样开关
G1(s)和G2(s)的两个环节相串联如图:
n阶离散定常系统脉冲传递函数为: b0 b1 z 1 bm1 z ( m1) bm z m C( z) G( z ) R( z) 1+a1 z 1 a2 z 2 an1 z ( n1) an z n
第四节 离散系统的数学模型
例:已知差分方程 c(k ) r (k ) 5c(k 1) 6c(k 2) 输入序列r(k)=1,初始条件c(0)=0,c(1)=1,试用迭代法求 输出序列c(k),k=0, 1, 2, · · · , 10。 解:根据初始条件及递推关系,得 c ( 0) 0

离散事件系统的建模及仿真

离散事件系统的建模及仿真

离散事件系统的建模及仿真离散事件系统(DES)是由一组离散的事件组成的系统,这些事件发生的时间是不连续的,而是符合某些随机分布的。

其中最典型的例子就是计算机网络系统和制造业系统。

为了研究系统的行为和性能,需要进行建模和仿真。

一、离散事件系统模型离散事件系统模型主要分为:1. 离散时间模型离散时间模型将时间视作离散的时间点,系统状态在各个时间点之间发生变化。

变化是由离散事件引起的。

2. 连续时间模型连续时间模型将时间视作连续的时间流,系统状态是在时间流中按照连续方式演化的。

如具有阶段性和可重复性的工业生产过程。

3. 混合时间模型混合时间模型同时兼具离散和连续的特点。

如涉及到无线网络时,用户的驻留时间属于连续时间,用户数量的变化属于离散事件。

二、离散事件系统仿真离散事件系统仿真一般采用事件驱动的方法。

将系统分为若干模块,在每个模块中,定义被模拟的事件,并计算事件发生的时间和所带来的影响。

事件驱动仿真的主要思路是:1. 仿真的初期,将系统的状态初始化为所设定的状态,用“时钟”来模拟时间。

2. 仿真系统通过时钟来不断加倍地运行,等到仿真过程中需要出现事件的时候,就跳出当前仿真的运动,而声明事件的发生时间。

3. 标记事件后,仿真系统可以基于某种策略对事件进行排队,然后按照时间的先后顺序进行运行。

4. 在仿真的过程中,会根据发生的事件得出相应的结果,保存在仿真结果的数据结构中,用于后续的仿真分析。

离散事件系统仿真时要注意的地方:1. 对于大型系统,由于其状态空间太大,会导致模型的运行时间过长,从而影响仿真的效率。

2. 因为模型已经不仅仅是数学模型而是物理模型,所以需要考虑仿真结果的表示方法。

3. 仿真结果的分析是非常必要的,而且分析需要进行统计,统计方法必须要掌握。

三、离散事件系统的应用1. 计算机网络系统计算机网络系统中涉及到的很多问题都可以使用离散事件系统模型进行仿真。

如路由选择问题、网络拥塞问题、网络性能评估等。

差分方程与傅里叶

差分方程与傅里叶

差分方程与傅里叶变换一、差分方程的概念及应用1.1 差分方程的定义差分方程是指用数学语言描述离散时间系统的数学模型,它是一种递推关系式。

通常用来描述离散时间系统中各个时刻之间的关系。

1.2 差分方程的应用差分方程在各个领域都有广泛应用,例如:(1)物理学:描述物理系统中的运动规律。

(2)经济学:描述经济系统中的变化规律。

(3)生物学:描述生态系统中各种生物群体之间的相互作用。

二、傅里叶变换的概念及应用2.1 傅里叶变换的定义傅里叶变换是一种将时间域信号转换为频率域信号的方法,它可以将任意周期函数表示成一组正弦和余弦函数之和。

傅里叶变换是信号处理领域中最重要、最基本、最常见、最有效的工具之一。

2.2 傅里叶变换的应用傅里叶变换在各个领域都有广泛应用,例如:(1)通信领域:调制与解调技术、滤波器设计等。

(2)图像处理领域:图像压缩、图像增强等。

(3)声学领域:音频信号分析与合成、语音识别等。

三、差分方程与傅里叶变换的关系3.1 差分方程与离散傅里叶变换差分方程可以看成是一个离散时间信号的递推式,而离散傅里叶变换则是将一个离散时间信号转换为频率域信号。

因此,差分方程和离散傅里叶变换有着密切的关系。

3.2 差分方程与连续傅里叶变换连续时间系统中的微分方程可以通过拉普拉斯变换转化为复平面上的函数,而复平面上的函数可以通过傅里叶变换表示为频率域中的函数。

因此,连续时间系统中的微分方程和傅里叶变换也有着密切的关系。

四、差分方程和傅里叶变换在数学建模中的应用4.1 数学建模中常用到的差分方程在数学建模中,常用到一些具有递推性质的差分方程,例如:(1)斐波那契数列:f(n)=f(n-1)+f(n-2)。

(2)复利计算:S(n)=S(n-1)+r*S(n-1),其中r为利率。

(3)人口增长模型:N(t+1) = N(t) + rN(t)(1-N(t)/K),其中r为出生率,K为环境容量。

4.2 数学建模中常用到的傅里叶变换在数学建模中,傅里叶变换也有着广泛的应用,例如:(1)信号处理领域:对信号进行滤波、降噪、分析等操作。

线性离散系统的数学模型

线性离散系统的数学模型

T
G1(s)
X * ( s)
G2(s)
C (s)
•采样开关使脉冲传递函数的零点发生变化。
5、闭环系统脉冲传递函数
r* (t ) R( z)
r (t )

e(t )
e* (t )
c* (t ) C ( z)

T
E( z)
G (s)
c(t )
H (s)
E (s) R(s) H (s)C (s)
G( z)
G1 ( z)
例7-20
X (s)
G2 ( z)
C * ( s)
R( s )
R* (s)
1 a z az 传递函数G1 ( s ) , G2 ( s ) G1 ( z ) , G2 ( z ) s sa z 1 z e aT az 2 G1 ( z )G2 ( z ) ( z 1)( z e aT ) az 3 C ( z ) G1 ( z )G2 ( z ) R ( z ) ( z 1) 2 ( z e aT ) a z (1 e aT ) G1G2 ( z ) Z 2 aT s ( s a ) ( z 1) ( z e ) z 2 (1 e aT ) C ( z ) G1G2 ( z ) R ( z ) ( z 1) 2 ( z e aT ) G1 ( z )G2 ( z ) G12 ( z )
c(nT ) ai c[(n i )T ] b j r[(n j )T ]
i 1 j 0 n m
z变换得:C ( z ) ai C ( z ) z b j R ( z ) z j
i i 1 j 0

离散系统数学模型

离散系统数学模型

零阶保持器的幅频特性及相频特性
sin(T / 2) 2π sin( π / s ) Gh ( j ) T T / 2 s π / s
h ( )
π
s

sin( π / s ) π / s
---零阶保持器有无限多个 截止频率c=ns(n=1, 2,…),在0s内,幅值 随增加而衰减。 ---零阶保持器允许采样信 号的高频分量通过,幅 值是逐渐衰减的。 ---零阶保持器是相位滞后 环节,相位滞后与信号 频率及采样周期T成正 比 T π , 0 T / 2 2 s h ( ) ( T ), T / 2 2 2
理想采样信号的时域描述
1)理想采样开关的数学描述 用函数来描述 理想采样开关---其时域数学表达式为
T
k


(t kT )
(t kT )
---表示延迟kT时刻出现的脉冲,定时作用.
理想采样信号x*(t)可以看作是连续信号x(t) 被单位 脉冲序列串T调制的过程。
f (k 2) 2 f (k 1) f (k )
n 阶向前差分-- 一阶向后差分--二阶向后差分--n 阶向后差分---
n f (k ) n1 f (k 1) n1 f (k )
f (k ) f (k ) f (k 1)
2 f (k ) [f (k )] f (k ) 2 f (k 1) f (k 2)
数字 调节器
u (kT )
D/ A 转换器
u * (t )
u * (t )
保持器
u (t )
e(t )
e * (t )
e(kT )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n-k)= k 称为差分 方程的阶数。
2.线性差分方程 a0(n)y(n)+ a1(n)y(n-1)+ …... aN(n)y(n-N)
= b0(n)x(n)+ b1(n)x(n-1)+ …... bM(n)x(n-M) 其中ai(n) 、bj(n)、 x(k) ,i=0,1,……N; j=0,1,……M; k=n-M,……n。
返回
二、差分方程
在连续时间系统中,系统内部的数学运算关系可归结 为微分(积分)、乘系数、相加的关系,即:微分方程。
在离散时间系统中,基本运算关系是延时(移位)、 乘系数、相加的关系,即:差分方程。 这是由于系统的组成以及所处理的信号的性质不同, 因此描述系统的数学手段也不同。
(一)数学模型的基本单元 (二)差分 (三)差分方程 (四)差分方程的建立 (五)差分方程的特点
i
2
2
d i un
n
n
i
n
in+1 u n u
n
1 iu i n n + 1 u n 2 i
i
1 2 i u i n n + 1 2 n + 1 u n 6 i
n + 1 1 a i a u i u n 1 a i n
xi xn
n
a 1
返回
(三)差分方程
1.一般差分方程
ky(n))=0 表达式F(n,y(n), y(n), …… 或 Q(n,y(n), y(n-1), ……, y(n-k))=0 称为未知序列y(n)的差分方程,F、Q是已知函数。
k
(k阶差分)
3.典型序列的差分(后向) n = n -(n-1)=1 u(n) = u(n) -u(n-1)=d (n) n2= n2 -(n-1)2= 2n - 1 n2u(n) = n2u(n) - (n-1)2u(n-1)= (2n-1)u(n-1) 2 n 1 sin n sin n sin n 1 2 sin cos 4.差分的逆运算———求和 典型序列的求和
因果系统的充要条件: h(n) 0, n<0
h(n)为单位脉冲响应。
返回
(四)稳定系统
有界输入、产生有界输出的系统称为稳定系统。 稳定系统的充要条件: hn
n
即:单位脉冲响应绝对可和。 注意: ,只是系统稳定的必要条件, lim h (n)0
n
而非充分条件。
(二)时不变系统
如果: T[x(n)]= y(n),若有T[x(n-N)]= y(n-N); 则称为时不变系统。
x ( n)
y( n)
1
1 O 1 2 3 n x( n N )
x(n)
T[ . ]
y(n)
1
1 O 1 2 3 4
y( n N )
n
x(n-N)
1
T[ . ]
y(n-N)
整个序列右移N位

2x(n)
= x(n) - x(n-1) = x(n) -2x(n-1)+x(n-2)
3x ( n ) = 2x ( n ) 2x(n-1)
k
=x(n) -3x(n-1)+ 3x(n-2)- x(n-3)
m 0 m m k
Cx x n 1 n m
返回
(一)线性系统
具有均匀(齐次)性、叠加性的系统称为线性系统。 若:
x1 ( n ) y1 ( n )
离散时间系统
x2 ( n )
则有:
离散时间系统
离散时间系统
y2 ( n )
c1 x1 ( n ) + c2 x2 ( n )
c1 y1 ( n ) + c2 y2 ( n )
(c1、c2为任意常数) 返回
§7.3离散时间系统的数学模型——
差分方程
一、线性、时不变离散系统
二、差分方程 三、离散时间系统的模拟
返回
一、线性、时不变离散系统
系统功能的本质:是将输入序列转变成输出序列
的运算(映射)。即:y(n)=T[x(n)]
运算关系
x(n) (一)线性系统
T[ . ]
y(n)
(二)时不变系统 (三)因果系统 (四)稳定系统
中心差分dx(n)定义为: dx(n) = x(n+h/2) - x(n- h/2)
式中h( h>0)为步长,一般取步长h=1。 1.序列x(n)的前向差分 Dx(n) = x(n+1) - x(n) (一阶差分) D2x(n) = Dx(n+1) -Dx(n) = x(n+2) -x(n+1)-[x(n+1) -x(n)] = x(n+2) -2x(n+1)+x(n) (二阶差分)
x2n
x n x2n 1
乘法器:
x n 1
x2n
若x2(n)=a,则为标量乘法器 返回
(二)差分
对于一个离散信号x(n) ,差分运算有三种形式: 前向差分Dx(n)定义为: Dx(n) = x(n+h) - x(n)
后向差分 x(n)定义为: x(n) = x(n) - x(n- h)
D3x(n) = x(n+3) -3x(n+2)+ 3x(n+1)- x(n)
(三阶差分) (k阶差分)
Cx D x n 1 n + k m
k m 0 mm k
k
2.序列x(n)的后向差分 x(n) = x(n) - x(n-1)
(一阶差分)
(二阶差分) (三阶差分)
返回
(一)数学模型的基本单元
延时器
y n
1 E
y n 1
或T、D
a
y n
z
1
y n 1
标量乘法器 加法器:
x n 1
x n
ax n
x n 1
x n
n a ax
x n+ x2n 1
x n+ x2n 1

x2n
1 2 3
n
1
1 2 3
n
1 O
1 O
返回
(三)因果系统
系统的输出y(n)只取决于此时刻、以及此时刻以前 的输入,即 : x(n)、 x(n-1)、 x(n-2)……。则称为 因果系统。
{若y(n)取决于x(n+1)、 x(n+2)……,即:系统的 输出取决于未来的输入,这在时间上就违背了因果关 系,因而是非因果系统。}
相关文档
最新文档