第六章烃类热裂解解读

合集下载

烃类热裂解

烃类热裂解

§5 冷量的综合利用
获得相同的冷量,T↓,能耗↑。
冷剂选择:
>50℃,水冷 ~0℃,盐水冷(NH3冷换热) -30℃,直接NH3冷
C2 为冷剂
甲烷塔 乙烯塔 丙烯塔
操作温度:-100℃ 操作温度:-50℃ 操作温度:20℃
C3 为冷剂
NH3或冷冻盐水为冷剂
一.复迭制冷
2
5´′ -50º C
原料:重油
3、管式裂解炉
§4. 裂解气的分离
一.裂解气组成
目的物:烯烃、芳烃, 杂质:CO2、H2S、H2O、炔烃等。
聚合级烯烃对杂质(如C2≡、H2S、 H2O、CO2等)含量要求十分苛刻,需把烯 烃提纯。
二.裂解气分离过程 1.气体净化系统 碱洗除CO2、H2S(酸性气体)。
分子筛脱水(水会在深冷分离时冻结,堵塞管道)。 催化选择性加氢除C2≡、C3≡,丙二烯。 Cat.: Pd/Al2O3 ;Ni-Co/Al2O3 付反应: 乙炔聚合生成液体产物(绿油) 乙烯的进一步加H反应 乙炔分解生成C和H 加氢除CO(CO+3H2→CH4+H2O)→甲烷化法
五.冷箱 (P.330)
利用节流制冷,分离甲烷和氢气并回收乙烯的 一个装置,为防止散热,常装在一个绝热的方形 容器中,俗称冷箱。
提高裂解温度可增大链引发速率常数,产生 的自由基增多。β-断裂反应速率常数也增大,但 与前者相比增大的程度较小。对链终止反应, 温度升高则没有影响。链引发和β-断裂反应速率 常数的增大,都对增产乙烯有利。
(4)停留时间 裂解温度越高,允许停留的时间则越
短;反之,停留时间就要相应长一些。
目的:控制二次反应,让裂解反应停 留在适宜的裂解深度上。
2.压缩和冷冻系统 将裂解气加压、降温,为分离创造条件。

第六章_烃类热裂解

第六章_烃类热裂解

(2)、乙烷裂解反应的活化能
K E RT
可由速率常数K =A e
求得,故先求算速率常数K
从乙烷裂解反应的机理可知,其动力学方程:
d[C2 H 6 ] =K1[C2 H6 ] +K 2 [C 2 H 6 ][CH 3 ] dt

(K1、K 2、K 3、K 4、K 5 与基元反应有关)
自由基机理: 1934年美国F.O赖斯和K.F赫茨菲尔德首先提出。
1967年,美国S.B茨多尼克等人,对此作了较
详细的解释。虽然他们只能解释了C2-C6各种烃,在 低转化率裂解时所得到的产品的分布情况,但仍是
指导预见和关联裂解数据的有效工具。
(一)、烷烃裂解的自由基反应机理 1、乙烷裂解反应 (1)、乙烷裂解反应的类型 乙烷分子中 键能(kJ/mol) C-C 346 C-H 406
也叫石墨化过程。 结焦过程的△G0为一般是很大的负值,但是乙
烯生成苯的速度不大,所以乙烯结焦是可以避免的。
如何避免?是动力学问题。
==> 由1、2、3、4讨论可知,二次反应产物有小分
子烯烃和烷烃、二烯烃和炔烃、还有比原料更重的 烃,如单环芳烃、稠环芳烃甚至有焦炭生成。其中, 只有小分子烯烃是有利的。在二次反应中,只有较 大分子烯烃的裂解增产小分子烯烃(类型1),如乙 烯。其余二次反应,均消耗乙烯,使乙烯收率下 降。所以,应该防止二次反应的发生。
K1
E1=359.8,活化能(kJ/mol)
②、链传递 CH3· + C2H6
3
K2 CH4 + C2H5· ; E2=45.1
K 4H2 + C2H5· H· + C2H6
; E4=29.3
③、链终止

分析烃类热裂解的操作影响因素

分析烃类热裂解的操作影响因素
• (6)降低烃分压的作用明显 稀释蒸汽可降低 炉管内的烃分压,水的摩尔质量小,同样质量的 水蒸汽其分压较大,在总压相同时,烃分压可降 低较多。
水蒸汽的加入量随裂解原料而异
• 水蒸汽的加入量随裂解原料而异,一般地 说,轻质原料裂解时,所需稀释蒸汽量可 以降低,随着裂解原料变重,为减少结焦, 所需稀释水蒸汽量将增大。
0.0278
乙烷单程转化率,%
14.8
34.4
按分解乙烷计的乙 烯产率,%
89.4
86.0
理论上烃类裂解制乙烯的最适宜温度一般在 750~900℃之间。
裂解温度
• < 750 ℃ 生成乙烯的可能较小 • >750 ℃ 生成乙烯的可能性较大, • 750 ~ 900℃ 温度愈高,反应的可能性愈
大,乙烯的产率愈高。 • > 900℃ 生焦生碳反应
832
832
停留时间,秒
0.0278
0.0805
乙烷单程转化率,%
14.8
60.2
按分解乙烷计的乙烯收 率,%
89.4
76.5
停乙不烯同留的的时峰裂值解间收温的率度越,选高所择,对相应主对的要应峰的取值最收决适率宜于不的同裂停,留解温时度温间越越度高短,,
这是因为二次反应主要发生在转化率较高的裂解后期,
• 原料在反应区停留时间过长,对促进一次反应 是有利的,故转化率较高,但二次反应更有时间充 分进行,一次反应生成的乙烯大部分都发生二次反 应而消失,乙烯收率反而下降。
• 同时二次反应的进行,生成更多焦和碳,缩短了 裂解炉管的运转周期,既浪费了原料,又影响正常 的生产进行。
温度℃
停留时间对乙烷转化率和 乙烯收率的影响
一、管式炉的基本结构和炉型
• 管式炉炉型结构简单,操作容易,便于控 制和能连续生产,乙烯、丙烯收率较高, 动力消耗少,热效率高,裂解气和烟道气 的余热大部分可以回收。

烃的热裂解

烃的热裂解

(二)我国乙烯工业现状 我国乙烯工业已有 40 多年的发展历 史,60年代初我国第一套乙烯装置在兰州化工厂 建成投产,多年来,我国乙烯工业发展很快,乙 烯产量逐年上升,2005 年乙烯生产能力达 到 773 万吨/年,居世界第三位。随着国家新建和改 扩建乙烯装置的投产, 到 2010 年我国乙烯生产 能力将超过 1600 万吨。
烃的热裂解
任务一:烃的热裂解工业概貌检索
《1》基本性质 《2》 工业现代及发展趋势
概况
烃类热裂解是将烃类原料(天然气、炼厂 气、石脑油、轻油、柴油、重油等)经高 温(750℃以上)、低压(无催化剂)作用, 使烃类分子发生碳链断裂或脱氢反应,生 成分子量较小的烯烃、烷烃和其他分子量 不同的轻质和重质烃类。 烃类热裂解非常复杂,具体体现在 (1)原料复杂:烃类热裂解的原料包括天 然气、炼厂气、石脑油、轻油、柴油、重 油甚至是原油、渣油等;
(2)反应复杂:烃类热裂解的反应除了断 裂或脱氢主反应外,还包括环化、异构、 烷基化、脱烷基化、缩合、聚合、生焦、 生碳等副反应; (3)产物复杂:即使采用最简单的原料乙 烷,其产物中除了H2、 CH4、C2H4、C2H6、 外,还有C3、C4、等低级烷烃和C5以上的液 态烃。 烃类热裂解按原料的变化可分为:在低级 不饱和烃中,以乙烯最重要,产量也最大。 乙烯产量常作为衡量一个国家基本化学工 业的发展水平的标志
氢较少,该自由基主要分解出H. 生成同碳数的烯烃
分子,
从分解或从夺氢反应中所生成的自由基,只要其碳
数大于3,则可继续分解反应,生成碳数少的烯烃。
化学热力学和动力学
裂解反应的热效应 裂解反应通常看作等压过程,由热力学第一定律, 等压反应热效应 :
热效应计算中所需的生成热数据可从文献中查取,

烃类热裂解名词解释

烃类热裂解名词解释

烃类热裂解名词解释嘿,朋友!咱们今天来聊聊烃类热裂解这回事儿。

你知道吗,烃类热裂解就像是一场奇妙的化学大冒险!它指的是在高温条件下,烃类分子发生分解和重组的过程。

这就好比一群小伙伴本来手拉手好好的,突然被一股神秘的力量给拆开,然后又重新组合成了新的小伙伴团队。

烃类,听起来是不是有点陌生?其实啊,咱们生活中常见的石油、天然气里就有好多烃类物质。

比如甲烷、乙烷、乙烯这些。

而热裂解呢,就是让它们在高温这个大熔炉里发生变化。

想象一下,高温就像一个厉害的魔法师,对着烃类施展魔法。

原本稳定的烃分子被这股魔法力量冲击得七零八落,化学键断裂,原子们重新排列组合。

这一过程可不简单,涉及到好多复杂的化学反应。

比如说,乙烷在热裂解的时候,它的化学键就像是脆弱的绳子,被高温一烤,“啪”地断了,然后变成了乙烯和氢气。

这是不是很神奇?就好像一个大拼图被打乱,又拼成了新的图案。

烃类热裂解可不是随便玩玩的,它在工业上有着超级重要的地位。

咱们用的好多化工产品,像塑料、橡胶、纤维等等,很多都是通过烃类热裂解得到的原料再进一步加工出来的。

你想想,如果没有烃类热裂解,咱们的生活得少了多少方便和乐趣呀?没有那些五颜六色的塑料制品,没有舒适的合成纤维衣服,那得多糟糕啊!而且,烃类热裂解的条件要求也很严格呢。

温度得恰到好处,高了不行,低了也不行,这就像炒菜,火候掌握不好,菜就不好吃啦。

还有压力、停留时间等等因素,都得精心控制,稍有差错,结果就大不一样。

所以说,烃类热裂解可真是一门高深的学问,是化学世界里的一场精彩大戏!它让那些看似普通的烃类物质焕发出新的生机,为我们的生活带来了无数的可能。

你说,这是不是很厉害?总之,烃类热裂解在化工领域中举足轻重,是创造丰富多样化学产品的关键魔法!。

烃类热裂解[高级课件]

烃类热裂解[高级课件]
➢ 因此,当裂解原料中环烷烃含量增加时,乙烯收 率会下降,丁二烯、芳烃的收率则会有所增加。
严选内容
20
环烷烃的裂解反应规律
• 侧链烷基断裂比开环容易 • 脱氢生成芳烃优于开环生成烯烃 • 五环比六环烷烃难裂解 • 比链烷烃更易于生成焦油,产生结焦
严选内容
21
(三)芳烃热裂解
➢ 烷基芳烃的侧链脱烷基反应或断键反应 ➢ 环烷基芳烃的脱氢和异构脱氢反应 ➢ 芳烃缩合反应 产物:多环芳烃,结焦 特点:不宜做裂解原料
界第三位 • 单 裂 解 炉 生 产 能 力 由 20kt/a 发 展 到 100-
120kt/a,最大达210kt/a • 中东、亚洲是新建、扩建裂解装置的重点地域
严选内容
4
本章主要内容
1.1 热裂解过程的化学反应与反应机理 1.2 烃类管式炉裂解生产乙烯 1.3 裂解气的净化与分离 1.4 裂解气深冷分离流程 1.5 裂解分离系统的能量有效利用 1.6 烃类裂解技术经济指标评比与展望 1.7 烃类生产乙烯的其他方法 1.8 烃类裂解生产乙炔
一次裂解反应的规律性 ➢ 4. 烃类热裂解的一次反应主要有哪几个?烃类热裂解
的二次反应主要有哪几个 ➢ 5. 什么叫焦,什么叫碳?结焦与生碳的区别有哪些? ➢ 6. 试述烃类热裂解的反应机理。 ➢ 7. 什么叫一级反应?写出一级反应动力学方程式和以
氢生成芳烃
• 芳构化反应 C6以上烯烃脱氢生成芳烃
严选内容
26
主要产物:乙烯、丙烯、丁二烯;环烯烃 特点: • 烯烃在反应中生成 • 小分子烯烃的裂解是不希望发生的,需
要控制
严选内容
27
➢天然石油中不含烯烃,但石油加工所得的各 种油品中则可能含有烯烃,在裂解时会发生 断链和脱氢反应,生成低级烯烃和二烯烃。

化学工艺学讲解

化学工艺学讲解

一、烃类热裂解1.烃类热裂解产物中的有害物质有哪些?存在哪些危害?如何脱除?答:烃类热裂解产物中的有害物质包括:硫化氢等硫化物,二氧化碳,炔烃和水。

硫化氢的危害:硫化氢会腐蚀设备和管道,使干燥的分子筛的寿命缩短,使脱炔用的加氢催化剂中毒并使烯烃聚合催化剂中毒。

二氧化碳的危害:在深冷分离裂解气时,二氧化碳会结成干冰,堵塞管道及设备,影响正常生产;对于烯烃聚合来说,是烯烃聚合过程的惰性组分,在烯烃循环时造成积累,使烯烃的分压下降,从而影响聚合反应速度和聚合物的分子量。

炔烃的危害:炔烃使乙烯和丙烯聚合的催化剂中毒。

水的危害:在深冷分离时,温度可达-100℃,水在此时会结冰,并与甲烷,乙烷等形成结晶化合物(CH4·6H2O,C2H6·7H2O,C4H10·7H2O),这些结晶会堵塞管道和设备。

脱除方法:硫化氢和二氧化碳用氢氧化钠碱液吸收来脱除;炔烃采用选择性加氢法来脱除。

水采用分子筛干燥法脱除。

2.类裂解发生的基元反应大部分为自由基反应哪三个阶段?链引发反应、链增长反应、链终止反应三个阶段。

链引发反应是自由基的产生过程;链增长反应时自由基的转变过程,在这个过程中一种自由基的消失伴随着另一种自由基的产生,反应前后均保持着自由基的存在;链终止是自由基消亡生产分子的过程。

3.各族烃类的裂解反应难易顺序为?正烷烃>异烷烃>环烷烃(六碳环>五碳环)>芳烃4.裂解气出口急冷操作的目的?裂解炉出口的高温裂解气在出口高温条件下将继续进行裂解反应,由于停留时间的增长,二次反应增加,烯烃损失随之增多。

为此,需要将裂解炉出口高温裂解气尽快冷却,通过急冷以终止其裂解反应。

当裂解气温度降至650℃以下时,裂解反应基本终止。

急冷有间接急冷和直接急冷之分。

5.在烃类热裂解的过程中,加入水蒸气作为稀释剂具有哪些优点?答:在烃类热裂解的过程中,加入水蒸汽作为稀释剂具有如下优点:(1)水蒸汽的热容较大,能对炉管温度起稳定作用,因而保护了炉管。

第6章 烃类裂解及裂解气分离

第6章 烃类裂解及裂解气分离

Ⅲ、芳烃→无侧链芳烃基本上不易裂解为烯烃有侧链的芳 烃主要是侧链逐步断裂及脱氢,芳环则倾向于脱氢缩合生 成稠环芳烃,直至结焦
Ⅳ、烯烃→大分子的烯烃能裂解为乙烯、丙烯等低级烯 烃,烯烃脱氢生成二烯烃能进一步反应生成芳烃以及焦 裂解易难顺序为: 异构烷烃>正构烷烃>环烷烃(C6>C5)>芳烃
2.烃类裂解二次反应
CH2CH2CH2CH=CH2 + C5H12 C长侧链先在侧链中央断裂, 有侧链的环烷烃比无侧链的环烷烃裂解能得到较多的烯烃
Ⅱ、环烷烃脱氢生成芳烃比开环生成烯烃容易 Ⅲ、五碳环比六碳环较难裂解 Ⅳ、环烷烃比链烷烃更易生成焦油、产生焦炭
⑶芳香烃裂解
裂解气
再生载气
去深冷
加热炉
5.脱炔
• 乙炔、甲基乙炔、丙二烯 • 危害:炔烃影响乙烯和丙烯衍生物生产过程 影响催化剂寿命 恶化产品质量 形成不安全因素 产生不希望的副产品 • 要求:乙炔<5×10-5 丙二烯<5×10-5 • 脱炔方法:溶剂吸收、催化加氢
溶剂吸收法
• 吸收裂解气中的乙炔 • 同时回收一定量的乙炔 • 常用溶剂 二甲基甲酰胺(DMF)(图3-25) N-甲基吡咯烷酮(NMP) 丙酮 主要根据沸点和熔点及溶解量选择溶剂
3
2.操作条件的影响
⑴常用裂解指标 ⑵操作条件影响 Ⅰ、裂解温度(一次反应产物分布及对二次反应的竞争)
Ⅱ、停留时间(减少二次反应的发生,增加乙烯收率)
Ⅲ、压力(有利于提高一次反应平衡转化率,抑制二次反应)
Ⅳ、稀释剂、烃分压(高温不宜真空操作)
稀释剂降压(惰性气、水蒸汽)
优点 一般采用水蒸汽: ①水蒸汽热容大,稳定炉温 ②水蒸汽易于分离、价廉易得,抑制原料中硫对炉的腐蚀 ③对炉管壁的铁、镍氧化形成氧化膜,抑制生炭反应 ④高温下能与裂解管中积炭、焦反应,有一定的清焦作用 适宜的稀释比

烃类热裂解

烃类热裂解

编号:No.4课题:石油烃裂解生产低分子烯烃原理授课内容:●石油烃裂解主要原料及来源●石油烃裂解生产低分子烯烃原理知识目标:●了解国内外乙烯生产现状及主要生产方法●了解石油烃裂解的主要原料、来源及特点●掌握石油烃热裂解反应类型和特点能力目标:●分析和判断石油烃裂解主要反应类型及特点●分析和判断石油烃裂解产物分布及规律思考与练习:●什么是一次反应、二次反应?●如何对石油烃裂解生产低分子烯烃原料进行选择授课班级:授课时间:年月日第一章石油烃热裂解石油系原料包括天然气、炼厂气、石脑油、柴油、重油等,它们都是由烃类化合物组成。

烃类化合物在高温下不稳定,容易发生碳链断裂和脱氢等反应。

石油烃热裂解就是以石油烃为原料,利用石油烃在高温下不稳定、易分解的性质,在隔绝空气和高温条件下,使大分子的烃类发生断链和脱氢等反应,以制取低级烯烃的过程。

石油烃热裂解的主要目的是生产乙烯,同时可得丙烯、丁二烯以及苯、甲苯和二甲苯等产品。

它们都是重要的基本有机原料,所以石油烃热裂解是有机化学工业获取基本有机原料的主要手段,因而乙烯装置能力的大小实际反映了一个国家有机化学工业的发展水平。

裂解能力的大小往往以乙烯的产量来衡量。

乙烯在世界大多数国家几乎都有生产。

2004 年世界乙烯的总生产能力已突破1 亿吨达到了11290.5万吨/年,产量10387 万吨,主要集中在欧美发达国家。

随着世界经济的复苏,乙烯需求增速逐渐加快,年均增速达到4.3%,预计2010年需求量上升到13346万吨,增量主要在亚洲地区。

我国乙烯工业已有40多年的发展历史,60年代初我国第一套乙烯装置在兰州化工厂建成投产,多年来,我国乙烯工业发展很快,乙烯产量逐年上升,2005年乙烯生产能力达到773万吨/年,居世界第三位。

随着国家新建和改扩建乙烯装置的投产,预计到2010年我国乙烯生产能力将超过1600万吨。

虽然我国乙烯工业发展较快,但远不能满足经济社会快速发展的要求,不仅乙烯自给率下降,而且产品档次低、品种牌号少,一半的乙烯来自进口。

烃类热裂解原理

烃类热裂解原理

二、烃类热裂解原理1. 烃类的热裂解反应裂解过程中的主要中间产物及其变化可以用图5-1-01作一概括说明。

按反应进行的先后顺序,可以将图5-1-01所示的反应划分为一次反应和二次反应,一次反应即由原料烃类热裂解生成乙烯和丙烯等低级烯烃的反应。

二次反应主要是指由一次反应生成的低图5-1-01 烃类裂解过程中一些主要产物变化示意图级烯烃进一步反应生成多种产物,直至最后生成焦或碳的反应。

二次反应不仅降低了低级烯烃的收率,而且还会因生成的焦或碳堵塞管路及设备,破坏裂解操作的正常进行,因此二次反应在烃类热裂解中应设法加以控制。

现将烃类热裂解的一次反应分述如下。

(1)烷烃热裂解烷烃热裂解的一次反应主要有:①脱氢反应:R-CH2-CH3<==>R-CH=CH2+H2②断链反应:R-CH2-CH2-R’→R-CH=CH2+R’H不同烷烃脱氢和断链的难易,可以从分子结构中键能数值的大小来判断。

一般规律是同碳原子数的烷烃,C-H键能大于C-C键能,故断链比脱氢容易;烷烃的相对稳定性随碳链的增长而降低。

因此,分子量大的烷烃比分子量小的容易裂解,所需的裂解温度也就比较低;脱氢难易与烷烃的分子结构有关,叔氢最易脱去,仲氢次之,伯氢最难;带支的C-C键或C-H键,较直链的键能小,因此支链烃容易断链或脱氢;裂解是一个吸热反应,脱氢比断链需供给更多的热量;脱氢为一可逆反应,为使脱氢反应达到较高的平衡转化率,必须采用较高的温度;低分子烷烃的C-C键在分子两端断裂比在分子链中央断裂容易,较大分子量的烷烃则在中央断裂的可能性比在两端断裂的大。

(2)环烷烃热裂解环烷烃热裂解时,发生断链和脱氢反应,生成乙烯、丁烯、丁二烯和芳烃等烃类;带有侧链的环烷烃,首先进行脱烷基反应,长侧链先在侧链中央的C-C链断裂一直进行到侧链全部与环断裂为止,然后残存的环再进一步裂解,裂解产物可以是烷烃,也可以是烯烃;五碳环比六碳环稳定,较难断裂;由于拌有脱氢反应,有些碳环,部分转化为芳烃;因此,当裂解原料中环烷烃含量增加时,乙烯收率会下降,丁二烯、芳烃的收率则会有所增加。

烃类裂解的机理

烃类裂解的机理

烃类裂解的机理一、烃类裂解机理1、烃类化合物的加热裂解烃类化合物的加热裂解就是指在适当温度下,给烃类化合物加热,使之发生合成反应,形成更简单的化合物,最终得到分子量更小的产物。

加热裂解机理可以归结为三个步骤:a、热动力学稳定性:加热后,烃类有机分子会由能量更低的活性状态转变到能量更高的稳定性状态,使分子结构发生变化,从而达到裂解的目的。

b、自由基反应:加热后,烃类有机分子可能会生成活性自由基,这些活性自由基可以参与取代反应而使分子结构发生变化,从而达到裂解的目的。

c、非自由基反应:加热后,烃类有机分子之间可能发生枢纽反应,这种反应可以使部分分子结构发生变化,从而达到裂解的目的。

2、烃类化合物的氧化裂解烃类化合物的氧化裂解就是指在适当条件下,烃类有机物与氧化剂发生氧化反应,形成更简单的有机物,最终得到分子量更小的产物。

氧化裂解机理可以归结为四个步骤:a、烃类空间活化:氧化剂加入后,会使烃类有机物的空间结构发生变化,使分子变得更有活性,从而使反应的发生更易于实现。

b、自由基反应:氧化剂参与反应,会使烃类有机物释放出活性自由基,这些自由基可以参与取代反应,使合成反应发生,得到更简单的有机物。

c、氧化缩聚反应:氧化剂参与反应,会使烃类有机物释放出活性自由基,这些自由基可以参与氧化缩聚反应,使分子结构发生缩聚变化,从而达到裂解的目的。

d、离子反应:氧化剂参与反应,会使烃类有机物形成活性离子,这些离子可以参与离子反应,使烃类有机物形成更简单的有机物,从而达到裂解的目的。

二、烃类裂解反应中的分子间作用烃类裂解反应中的分子间作用包括:分子间的范德华力,分子间的库仑力,分子间的极化作用,分子间的氢键作用,分子间的空间作用,分子间的电荷作用等。

1、分子间的范德华力所谓范德华力,是指两个分子之间作用的一种静电力,它对烃类裂解反应起着重要的作用,可通过改变分子间的范德华力而调整烃类裂解反应的速度和热力学稳定性。

2、分子间的库仑力库仑力是指中子和电子之间作用的一种力,它可以影响烃类裂解反应的反应速度和产物组成。

第六章 烃类裂解及裂解气分离

第六章 烃类裂解及裂解气分离

断链反应
② 环烷烃的裂解反应
包括:断链开环反应、脱氢反应、侧链断裂及开环脱氢反应。 包括:断链开环反应、脱氢反应、侧链断裂及开环脱氢反应。
环己烷
乙基环戊烷
③ 芳烃的裂解反应
烷基芳烃的裂解
环烷基芳烃的裂解
芳烃的缩合反应
④ 烯烃的裂解反应
断链反应 脱氢反应 歧化反应
双烯合成反应 芳构化反应
⑤ 裂解过程中的结焦生炭反应
表征裂解原料性质的参数获得此参数的方法或需知的数据此参数适用于评价何种原料何种原料可获得较高乙族组成pona能粗线条地从本质上表征原料的化学特点分析测定石脑油柴烷烃含量高芳烃含量低氢含量和碳氢氢含量的大小反映出原料潜在乙烯含量的大小分析测定各种原料都适用氢含量高的或碳氢比低特性因数的高低反映原料芳香性的强弱计算主要用于液体原料特性因数高关联指数bmci关联指数大小反映烷烃支链和直链比例的大小反映芳香性的大计算柴油关联指数小1
2.从ΔGo和ΔHo分析
表6-1
由表6-1回答下列问题 1)裂解反应是吸热还是放热? ΔHo脱氢与ΔHo断链相比 哪个大? ∆Ho均>0裂解均为吸热反应, ∆Ho 断链<∆Ho脱氢 裂解均为吸热反应, 裂解均为吸热反应 2)断链反应与脱氢反应相比,哪个更容易进行? 键能大, ∵C-H键能大,所以断链反应更易进行。 键能大 所以断链反应更易进行。 3)欲提高脱氢反应的平衡转化率,需采取什么措施? ∵断链反应接近不可逆反应,脱氢反应是可逆反应, 断链反应接近不可逆反应,脱氢反应是可逆反应, 要使脱氢反应的平衡转化率增大学要提高温度。 要使脱氢反应的平衡转化率增大学要提高温度。
裂解与裂化的区别
裂化需cat,目的是提高烯料的数量和质量 裂解不需cat,目的是获得三烯三苯等基本有机化工原料

3.1烃类热裂解

3.1烃类热裂解

3.1烃类热裂解3.烃类热裂解裂解:热裂解,催化裂解。

裂化:热裂化,催化裂化。

(是否有催化剂存在,反应温度:600℃为界限,⾼温,隔绝空⽓)3.1热裂解过程的化学反应3.1.1烃类裂解的反应规律反应难易程度:⽤反应标准⾃由焓的变化值判据。

ΔG0=-RT㏑K pΔG0<0(负值),反应容易进⾏。

反应可逆反应,K p值为⼀个较⼤的常数。

3.1.1.1烷烃的裂解反应a 反应类别脱氢反应:为可逆反应,受化学平衡限制。

断链反应:为不可逆反应。

b.反应难易键能越⼩,越容易裂解。

同碳数烷烃的键能:C-H键>C-C键;断链⽐脱氢容易。

烷烃的稳定性随碳链的增长⽽降低。

c.脱氢:叔氢最容易,仲氢次之,伯氢最难。

带⽀链的C-C键或C-H键,较直链的键能⼩,因此⽀链烷烃容易断链或脱氢。

d.反应特点断链或脱氢反应均为强吸热反应。

脱氢反应吸热值更⼤。

低分⼦烷烃在两端断裂,得到⼩分⼦烷烃(甲烷)及较⼤分⼦的烯烃。

烷烃分⼦的链较长时,两端断裂的优势减弱。

⼄烷主要发⽣脱氢反应,⽣成⼄烯。

3.1.1.2烯烃的裂解反应烯烃来源于烷烃的⼀次反应。

(1)断链反应断链发⽣在C=C双键β位上C-C进⾏。

丙烯、异丁烯、2—丁烯没有β位上C-C键。

(2)脱氢反应烯烃可以进⼀步脱氢为⼆烯烃和炔烃。

(3)歧化反应两个同⼀分⼦烯烃可歧化为两个不同烃分⼦。

(4)双烯合成反应⼆烯烃与烯烃进⾏双烯合成⽣成环烯烃,进⼀步脱氢⽣成环烯烃。

(5)芳构化反应烯烃环化脱氢⽣成芳烃。

3.1.1.3环烷烃的裂解反应环烷烃可发⽣断侧链、开环、脱氢等反应。

⽣成⼄烯、丙烯、丁⼆烯、丁烯、芳烃、环烯烃、环⼆烯等。

a断烷基侧链⽐断环容易。

b.脱氢芳构化优于开环(断环)c.环烷烃⽐烷烃容易⽣焦。

3.1.1.4 芳烃芳环(苯核)较稳定,不容易发⽣开环反应。

芳烃主要发⽣断烷基侧链、脱氢、缩合(结焦)反应。

3.1.1.5结焦⽣炭反应a.烯烃脱氢⽣炭温度在900℃以上时。

b.(稠环)芳烃脱氢缩合结焦⽣炭温度在900℃以下时。

《烃类热裂解过程》课件

《烃类热裂解过程》课件
催化剂优化
针对不同原料和产品需求,优化催化剂的组成和制备工艺,以提高 裂解反应的活性和选择性。
反应条件控制
深入研究烃类热裂解过程的反应动力学和热力学,优化反应温度、 压力、停留时间等工艺参数,以提高产物收率和质量。
提高产品附加值与高值化利用
高附加值化学品
01
开发烃类热裂解过程中副产物的利用技术,生产高附加值的化
芳烃的裂解反应是吸热反应,需 要提供较高的温度和压力条件。
反应机理与动力学
1
烃类热裂解过程的反应机理涉及多个化学反应步 骤,包括链引发、链增长、链转移等。
2
动力学研究对于了解裂解过程的速率和机理具有 重要意义,有助于优化裂解工艺和提高产物收率 。
3
通过建立数学模型和实验验证,可以深入了解烃 类热裂解过程的机理和动力学行为。
提高温度可以促进裂解反应的进行,但过高的温度会导致热裂解反应过度,降 低产品选择性。
温度分布
反应器内部的温度分布对裂解反应的影响也很大,温度梯度会影响反应产物的 分布。
压力的影响
压力高低
在较高的压力下,裂解反应更容易进行,但过高的压力会增 加设备的负荷和能耗。
压力稳定性
压力波动会影响裂解反应的稳定性,进而影响产品的质量和 收率。
根据原料性质和产品 需求,选择适合的裂 解温度和压力条件。
安全与环保问题
采取有效的安全措施,确保装置运行 安全可靠。
合理利用能源和水资源,提高装置的 能效和环保水平。
减少废气、废水和固废的产生,降低 对环境的污染。
06
烃类热裂解的未来发展 与挑战
新工艺的开发与研究
新型反应器技术
研究开发高效、稳定、长寿命的新型反应器,以提高裂解效率和 产物选择性。

烃类热裂解反应的特点与规律

烃类热裂解反应的特点与规律

烃类热裂解反应的特点与规律1.烃类热裂解反应的特点烃类热裂解反应具有以下特点:①无论断链还是脱氢反应,都是热效应很高的吸热反应;②断链反应可以视为不可逆反应,脱氢反应则为可逆反应③存在复杂的二次反应;④反应产物是复杂的混合物。

2.烃类热裂解反应的一般规律(1)烷烃的裂解反应规律;①同碳原子数的烷烃,C-H键能大于c-c键能,断链反应比脱氢反应容易。

②烷烃分子的碳链越长,越容易发生断链反应。

③烷烃的脱氢能力与其结构有关,叔氢最易,仲氢次之,伯氢再次之。

④含有支链的烷烃容易发生裂解反应。

乙烷不发生断链反应,只发生脱氢反应。

(2)环烷烃的裂解反应规律①侧链烷基比环烷烃容易裂解,长侧链中央的c-c键先断裂,含有侧链的环烷烃裂解比无侧链的环烷烃裂解的烯烃收率高。

②环烷烃脱氢反应生成芳烃,比开环反应生成烯烃容易。

③低碳数的环比多碳数的环难以裂解。

裂解原料中的环烷烃含量增加,乙烯收率下降,而丁二烯和芳烃的收率有所提高。

(3)各种烃类热裂解的反应规律①烷烃:正构烷烃,最有利于生成乙烯、丙烯,分子量越小,烯烃的总收率越高;异构烷烃的烯烃总收率低于同碳原子数的正构烷烃。

②环烷烃:生成芳烃的反应优于生成单烯烃的反应;含环烷烃较多,丁二烯和芳烃的收率较高,而乙烯和丙烯的收率较低。

③芳烃:无侧链芳烃的裂解,基本不生成烯烃;有侧链芳烃的裂解,其侧链逐步断链及脱氢;芳环的脱氢缩合反应,主要生成稠环芳烃,直至结焦。

④烯烃:大分子量的烯烃裂解反应,生成低级烯烃和二烯烃。

各类烃的热裂解反应的难易顺序为:正构烷烃>异构烷烃>环烷烃>芳烃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 烃类热裂解
北京燕山乙烯装置
内容简介
国内乙烯工业简介 §8.1 热裂解过程的化学反应 §8.2 裂解过程的工艺参数和操作指标 §8.3 管式裂解炉及裂解工艺过程 §8.4 裂解气的预分馏及净化 §8.5 压缩和制冷系统 §8.6 裂解气的精馏分离系统 §8.7 乙烯工业的发展趋势
乙烯工业现状与前景 ——乙烯产量常作为衡量一个国家基本有
(2)芳环侧链的断链或脱氢反应。
Ar-CnH2n+1
ArH+CnH2n Ar-CkH2k+1+CmH2m
(3)芳烃缩合,进一步生成焦的反应。
芳烃缩合反应
R1
R2
+
R3
+ R4H
特点:不宜做裂解原料
5. 裂解过程中结焦生碳反应
各种烃在高温下不稳定
900-1000℃以上乙烯经过乙炔中间阶段而生碳;
CH CH HCH CH HCH CH HCH C HC C
芳烃——芳环不易裂解,主要发生侧链的断链和脱氢反 应,有结焦倾向。
几种烃原料的裂解结果比较(单程)
8.1.2 烃类裂解的反应机理
自由基反应举例(丙烷裂解)
链引发:

链增长: 得到两个自由基
途径A:
和 ,通过两个途径进行链的传递.
正丙基自由基
生成的正丙基自由基进一步分解
反应结果是: 途径B:
异丙基自由基
8.1 热裂解过程的化学反应
8.1.1 烃类裂解反应规律
裂解过程复杂,即使是单一组分裂解如下。
石油烃裂解如下图:
8.1.1 烃类裂解的反应规律
1. 烷烃的裂解反应
(1) 断链反应
Cm+nH2(m+n)+2 (2) 脱氢反应
CnH2n+CmH2m+2
CmH2m+2
CmH2m+H2
(3)环化反应(C5以上) CH3(CH2)4CH3
+ H2
各种键能比较
碳链碳越氢长键的烃分子k键愈J/m能易ol 同裂C解正.构烷碳烃碳断键链比脱氢容k键易J/m能。ol
H3C-H
426.8
CH3-CH3
346
CH3CH2-H
405.8
CH3-CH2-CH3
343.1
CH3CH2CH2-H
397.5
CH3CH2-CH2CH3
异构C比H3正-CH构(C烷H3)烃H 更易裂38解4.9或脱氢.CH3CH2CH2-CH3
2
2
2
Cn
500-900℃经过芳烃中间阶段而结焦。
单环或少环芳烃 多环芳烃 稠环芳烃
液体焦油 固体沥青质 焦
典型的连串反应。
焦和碳的区别
形成过程不同:烯烃经过炔烃中间阶段 而生碳;经过芳烃中间阶段而结焦 。
氢含量不同:碳几乎不含氢,焦含有微 量氢(0.1-0.3%)。
6. 小结
各族烃裂解生成乙烯、丙烯能力的规律:
338.9 341.8
CH3CH2CH2CH2-H
393.2
H3C-C(CH3)3
314.6
CH3CH2CH(CH3)H
376.6
CH3CH2CH2-CH2CH2CH3
325.1
CH3-C(CH3)2H
364
CH3CH(CH3)-CH(CH3)CH3 310.9
正构烷烃一次反应的ΔGθ和ΔHθ(1000K)
热裂解工艺总流程
原 料 热裂解
反应部分 芳烃
预 分 裂解气 馏 ( 急 冷 ) 汽裂 油解
净 化
深分
( 冷离

酸 、
压精

缩馏

制分

冷离
脱 炔 )
系系 统统
分离部分
三烯
热裂解反应部分的学习内容
化学反应 反应规律、反应机理、热力学与动力学分析 工艺参数和操作指标 原料性质及评价、裂解温度、烃分压、停留时 间、裂解深度 工艺过程 管式裂解炉
(3)歧化反应
2C3 H 6 C2 H 4 C4 H8 2C3 H 6 C2 H 6 C4 H 6
2. 烯烃的裂解反应
(5)双烯合成反应
+
(6)芳构化反应
R
R
特点:除了大分子烯烃裂解能增加乙烯外,其余的 反应都消耗乙烯,并结焦。
3. 环烷烃的裂解反应
裂解反应包括:
断链开环反应 脱氢反应 侧链断裂 开环脱氢
机化学工业的发展水平
2008年国内 主要乙烯生 产企业产能 情况
(单位:万吨/年)
近年国 内新扩 建乙烯 项目
(单位:万 吨/年)
国内乙烯供应与需求现状
2013年,我国乙烯产能达1872万吨/年, 乙烯自给率将达到90.5%。
乙烯下游消费结构
世界乙烯消费构成情况
环氧乙烷 13.0%
其他 聚苯乙烯 5.0% 7.0%
α-烯烃 3.0%
聚氯乙烯 14.0%
醋酸乙烯 1.0%
聚乙烯 57.0%
丙烯
2013年产能达2082万吨/年
动手查资料:
了解中国现有乙烯装置有多少? 生产能力和技术水平如何?
福建炼油乙烯一体化合资项目新厂区
❖ 裂解的目的
C2 、C3 、C4 等低级烯烃分子中具有双键,化学性质活
泼,能与许多物质发生加成、共聚、自聚等反应,生成 一系列产品。但自然界没有烯烃的存在,只能将烃类原 料经高温作用,使烃类分子发生C-C断裂或脱氢反应, 使分子量较大的烃成为低级烯烃,同时联产丁二烯、苯 、甲苯、二甲苯,满足化学工业的需要。
烷烃——正构烷烃最有利于乙烯、丙烯的生成;分子量愈 小则烯烃总产率愈高。异构烷烃的烯烃总产率低于相同碳 原子的正构烷烃,但随着分子量增大,差别减少;
烯烃——大分子烯烃裂解为乙烯和丙烯。烯烃还可脱氢生 成炔烃、二烯烃进而生成芳烃;
环烷烃——优先生成芳烃而非单烯烃。相对于烷烃,丁二 烯、芳烃收率较高,乙烯收率较低;
3. 环烷烃的裂解反应
裂解规律为: (1)长链环烷烃较无侧链的裂解时乙烯产率
高。先在侧链中间断侧链再裂解。 (2)脱氢成芳烃比开环容易。 (3)五元环较六元环更难裂解。 (4)环烷烃更易于产生焦炭。
裂解产物组成: 苯 > 丙烯、丁二烯 > 乙烯、丁烯 > 己二烯
4. 芳烃的裂解反应 (1)在裂解条件下,芳环不开环。
生成的异丙基自由基进一步分解


i C3 H7 C3H6 H
反应结果是:
C30裂解产物中含H2、CH4、C2H4、C2H6、C3H6等
低温下,易夺取仲C-H,生成i-C3H7·,即生成H2和C3H6 高温下,易夺取伯C-H,生成n-C3H7·,即生成C2H4和CH4
趋向两端断裂,生成分子量较大的烯烃。
正构烷烃 特点: 是 生产乙烯、丙烯的理想原料。
异构烷烃 特点:
• 裂解所得乙烯、丙烯收率远较正构烷裂解 所得收率低,而氢、甲烷、C4及C4以上烯 烃收率较高。
2. 烯烃的裂解反应
(1)断链反应 Cm+nH2(m+n)
CmH2m+CnH2n
(2)脱氢反应
C4H8 C4H6 H 2
相关文档
最新文档