中考数学一轮复习数学勾股定理试题及解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.如图:在△ABC 中,∠B=45°,D 是AB 边上一点,连接CD ,过A 作AF ⊥CD 交CD 于G ,交BC 于点F .已知AC=CD ,CG=3,DG=1,则下列结论正确的是( )
①∠ACD=2∠FAB ②27ACD S ∆= ③272CF =- ④ AC=AF
A .①②③
B .①②③④
C .②③④
D .①③④
2.如图,等边ABC ∆的边长为1cm ,D ,E 分别是AB ,AC 上的两点,将ADE ∆沿直线DE 折叠,点A 落在点'A 处,且点'A 在ABC ∆外部,则阴影部分图形的周长为( )
A .1cm
B .1.5cm
C .2cm
D .3cm
3.如图,在ABC 中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若3CM =,则22CE CF +的值为( )
A .36
B .9
C .6
D .18
4.我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直
角三角形的两直角边分别是a 、b ,那么2
()a b + 的值为( ).
A .49
B .25
C .13
D .1 5.已知△ABC 的三边分别是6,8,10,则△ABC 的面积是( ) A .24
B .30
C .40
D .48
6.下列长度的三条线段能组成直角三角形的是( )
A.9,7,12 B.2,3,4 C.1,2,3D.5,11,12
7.下列各组线段能构成直角三角形的一组是()
A.30,40,60B.7,12,13C.6,8,10D.3,4,6
8.以下列各组数为边长,能构成直角三角形的是()
A.236
、、B.3、4、5
C.3、4、7D.2、3、4
9.如图,直角三角形两直角边的长分别为3和4,以直角三角形的两直边为直径作半圆,则阴影部分的面积是()
A.6 B.3
2
C.2πD.12
10.有下列的判断:
①△ABC中,如果a2+b2≠c2,那么△ABC不是直角三角形
②△ABC中,如果a2-b2=c2,那么△ABC是直角三角形
③如果△ABC是直角三角形,那么a2+b2=c2
以下说法正确的是()
A.①②B.②③C.①③D.②
二、填空题
11.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是_________.
12.如图,Rt△ABC中,∠ACB=90o,AC=12,BC=5,D是AB边上的动点,E 是AC边上的动点,则BE+ED的最小值为.
CD=,
13.如图,在四边形ABCD中,22
AD=,3
∠=∠=∠=︒,则BD的长为__________.
45
ABC ACB ADC
14.如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=13,EF=7,那么AH等于_____.
15.如图,已知△DBC是等腰直角三角形,BE与CD交于点O,∠BDC=∠BEC=90°,
BF=CF,若BC=8,OD=2,则OF=______.
16.以直角三角形的三边为边向外作正方形P,Q,K,若S P=4,S Q=9,则K S=___ 17.如图,长方体纸箱的长、宽、高分别为50cm、30cm、60cm,一只蚂蚁从点A处沿着纸箱的表面爬到点B处.蚂蚁爬行的最短路程为_______cm.
18.四边形ABCD中AB=8,BC=6,∠B=90°,AD=CD=52ABCD的面积是_______.
19.我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“爽弦
图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为1S ,2S ,3S ,若
12315S S S ++=,则2S 的值是__________.
20.如图所示,圆柱体底面圆的半径是
2
π
,高为1,若一只小虫从A 点出发沿着圆柱体的外侧面爬行到C 点,则小虫爬行的最短路程是______
三、解答题
21.(1)计算:1
3122
48233⎛⎫-+÷ ⎪ ⎪⎝; (2)已知a 、b 、c 满足2|23|32(30)0a b c +-+--=.判断以a 、b 、c 为边能否构成三角形?若能构成三角形,说明此三角形是什么形状?并求出三角形的面积;若不能,请说明理由. 22.阅读与理解:
折纸,常常能为证明一个命题提供思路和方法.例如,在ABC 中,AB AC >(如图),怎样证明C B ∠>∠呢?
分析:把AC 沿A ∠的角平分线AD 翻折,因为AB AC >,所以,点C 落在AB 上的点
C '处,即AC AC '=,据以上操作,易证明AC
D AC D '△△≌,所以AC D C '∠=∠,
又因为AC D B '∠>∠,所以C B ∠>∠.
感悟与应用:
(1)如图(a ),在ABC 中,90ACB ∠=︒,30B ∠=︒,CD 平分ACB ∠,试判断