音箱保护电路
立体声音频放大器保护电路μpc1237的运用
实 用影 音技 术
月 刊 ( 月 1日 出版 每si nynyni u hy gi i s o g jh
■ 于 卫 兵
E
方 法 尤 为 重 要 ,现 介 绍 如 下 。
这 款 专 门用 于 立 体 声 音 频 放 大 器 和 扬 声 器 的 单 片 集 成 保 护 电 路 p 1 3 为 8 单 列 封 装 ,因 其 功 能 完 善 、 c 2 7 脚 性 能 优 良 、 价 格 低 廉 而 厂 泛 用 于 国 内 外 各 类 音 响 产 品 中 ,在 使 用 过程 中又 能有 效消 除 功 放 开 / 机 冲 击 噪 声 、 关 防 止功 放 过 流 及 输 出 端 直 流 偏 移 损 坏 扬 声 器 。 因 此 成 为
p 1 3 外 围 电 路 部 分 元 件 要 求 各 不 相 同 。 若 取 值 不 C 2 7
将 扬
声 器 从 功 放 输 出 端 断 开 ,达 到 保 护扬 声器 的 目 的 。 l c 2 引 脚 ( 交 流 断 电 检 测 端 ,用 于 功 放 关 机 - 13  ̄ p 7 是 静 音 。当 关 闭 放 大 器 电 源 时 ,有 时 会产 生 关 机 噪 声 .因 此 需 要 在 关 机 的 瞬 间 让 继 电 器 来 控 制 音 箱 与 放 大 器 .使
输 出 端 直 流 电 平 ,一 旦 功 放 输 出 端 正 或 负 偏 移 电 压 超 过
设 定 的 阈 值 时 ,lp 1 3 内 部 电 路 使 继 电 器 释 放 - c 2  ̄ 7
,
广大发烧友 自制功放或打摩改造时乐于选用的器件。
p 1 3 的 扬 声 器 、 音 频 放 大 器 保 护 电 路 及 连 接 C 2 7 方 法 见 图 1 由 于 功 放 电 路 及 供 电 电 压 各 异 , 对 。
蓝牙音箱电路原理
蓝牙音箱电路原理
蓝牙音箱电路原理简介
蓝牙音箱是一种无线音箱,通过蓝牙技术实现音频的传输和播放。
它由多个电路组成,包括电源电路、音频放大电路和蓝牙模块。
1. 电源电路:蓝牙音箱需要一定的电源供应来工作。
电源电路通常由直流电源电池或者充电器提供电流。
电源电路还会包括一些电源管理电路,例如充电保护电路和低电量提醒电路,以保障音箱的正常工作和使用寿命。
2. 音频放大电路:蓝牙音箱的音频放大电路是关键的部分,它负责将蓝牙模块接收到的声音信号放大到合适的音量。
音频放大电路通常包括一个混合电路和一个功放电路。
混合电路用于将输入的模拟音频信号转换成数字信号,然后通过功放电路放大输出到音箱的扬声器。
3. 蓝牙模块:蓝牙音箱使用蓝牙模块来接收和传输音频信号。
蓝牙模块通常内置一个蓝牙芯片,它能够与其他蓝牙设备进行通信和连接。
通过蓝牙模块,音箱可以接收来自其他蓝牙设备(如手机、电脑等)传输的音频信号,然后播放出来。
蓝牙音箱电路原理的基本原理就是以上三个方面的组合。
电源电路提供电源供应,音频放大电路将输入的信号放大,蓝牙模块实现无线传输和连接。
通过这些电路的协同工作,蓝牙音箱可以实现音频的无线传输和播放。
为汽车音响加装扬声器保护电路
为汽车音响加装扬声器保护电路
廖建兴
【期刊名称】《电子世界》
【年(卷),期】2004(000)011
【摘要】一般汽车都配置有立体声音响系统,即一台磁带或CD收放机加一对音箱。
而多数低档汽车音响是不带扬声器保护功能的,每次开/关机时扬声器都有较大的冲击噪声,其造成的后果是大大缩短扬声器音圈的使用寿命。
为汽车音响加装了扬声器保护电路可以对其进行有效的保护。
【总页数】1页(P51)
【作者】廖建兴
【作者单位】无
【正文语种】中文
【中图分类】TN912.26
【相关文献】
1.改进型扬声器保护电路 [J], 李友德
2.北京东微推出立体声功放和扬声器保护电路 [J], 无
3.给汽车音响加装扬声器保护电路 [J], 廖建兴
4.扬声器保护电路分析及自制的保护电路 [J], 王有志
5.给汽车音响加装扬声器保护电路 [J], 廖建兴
因版权原因,仅展示原文概要,查看原文内容请购买。
speaker 保护电路
三、扬声器保护电路目前几乎所有的功放电路(特别是大功率的功放电路)都采用 OCL(或BTL)电路,即采用直接耦合输出级(其输出端无耦合电容)。
由于 OCL功放电路的输出端与功放电路直接相连,一旦功放电路出现中点直流偏位,直流电压直接加至音箱,低音扬声器则可能被烧毁。
扬声器保护电路在功放出现直流偏位时立即断开音箱,达到保护的目的。
AV放大器的扬声器保护电路一般还具有开机静噪和输出级过流保护功能,如图3所示:图3 (1)中点保护功能当放大器正常工作时,其输出只有交流信号而无明显的直流分量,桥式检测器不工作,保护电路不启动,继电器吸合。
当某声道出现正、负直流电压时,被R4(R5)及C1、C2低通滤波后加至桥式检测器的A点与地端,若直流偏位绝对值大于2V,T3获得正偏而导通,T4、T5导通,T6截止,继电器释放,D2截止,T7、T8组成的单稳态电路工作,LED1闪烁,电路处于保护状态。
(2)开机静噪功能接通电源瞬间,C3近似于短路,+15V经 R7、 R9、T5的b-e、R13为 T5提供正向基极偏流,T5迅速导通,T6截止,继电器不吸合,扬声器未接入放大器,避免了开机时浪涌电流对扬声器的冲击。
延时数秒后, C3两端已建立了较高的上正下负直流电压,此时 C3等效于开路,T5失去偏流转为截止。
+15电源经 R10、Rll和 R12分压为T6提供偏流,T6转为导通,继电器吸合,扬声器与放大器连通进入正常工作。
与此同时,因 T6导通,其集电极电位降低,+15V经LEDl、 R17、 D2、 T6的c-e、 R13构成回路,LED1点亮,由 T7、T8及其外围元件构成的多谐振荡器停振。
(3)功放输出过流保护功能当功放输出电流超过一定限度(由输出管发射极电阻及T1基极回路电阻参数决定)时,T1导通,引起T4、T5导通,T6截止,继电器释放,负载(音箱)被断开,使过流不至持续持续下去。
四、输出级的偏置电路为了减小交越失真,功放输出必须设置偏置电路。
音箱保护电路[实用新型专利]
专利名称:音箱保护电路
专利类型:实用新型专利
发明人:林龙辉
申请号:CN201120389152.7申请日:20111013
公开号:CN202353799U
公开日:
20120725
专利内容由知识产权出版社提供
摘要:本实用新型涉及电子电路,尤其涉及音箱的保护电路。
本实用新型的音箱保护电路,设置于音箱,音箱至少包括并联于功放输出端的低音喇叭和高音喇叭组,高音喇叭组可由1个或多个高音喇叭组成。
其中,在功放输出端的干路上或者低音喇叭的支路上串接一热敏开关,且热敏开关设置在临近低音喇叭的散热区位置。
本实用新型音箱保护电路用于音箱的喇叭保护,特别是低音喇叭的保护,防止功放电流过大而烧坏喇叭或整个音箱。
申请人:厦门市派对屋电子有限公司
地址:361009 福建省厦门市枋湖工业小区1号厂房4楼
国籍:CN
代理机构:厦门市诚得知识产权代理事务所
代理人:方惠春
更多信息请下载全文后查看。
音响电路及工作原理
音响电路及工作原理音响电路是指用于放大、处理音频信号的电路,它是音响设备中至关重要的部分。
在音响系统中,音响电路起着放大、滤波、混音等功能,是保证音响设备正常工作的核心部分。
本文将介绍音响电路的工作原理及其在音响系统中的应用。
音响电路的基本组成包括电源部分、音频输入部分、信号处理部分和音频输出部分。
其中,电源部分主要负责为整个音响电路提供稳定的电源供电;音频输入部分负责接收外部音频信号,如来自CD播放器、MP3播放器、手机等的音频信号;信号处理部分负责对输入的音频信号进行放大、滤波、混音等处理;音频输出部分则将处理后的音频信号输出到音箱或耳机中。
音响电路的工作原理主要涉及到放大器、滤波器、混音器等电路的工作原理。
放大器是音响电路中最基本的部分,它的作用是将输入的音频信号放大到一定的幅度,以驱动音箱发出声音。
常见的放大器电路有功放电路、集成放大器电路等。
滤波器则是用于对音频信号进行滤波处理,以去除杂音、提高音质。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器等。
混音器则是用于将多路音频信号进行混合,以实现多路音频信号的混音输出。
在音响系统中,音响电路扮演着至关重要的角色。
它的性能直接影响到音响设备的音质、音量等方面。
因此,设计高性能的音响电路是音响设备制造商不断努力的方向。
随着科技的不断发展,音响电路的设计也在不断创新,例如采用数字信号处理技术、功率放大技术等,以提高音响设备的性能。
总之,音响电路是音响设备中不可或缺的一部分,它通过放大、滤波、混音等处理,将输入的音频信号转化为我们能听到的声音。
在音响系统中,音响电路的性能直接关系到整个音响设备的音质和性能。
因此,对音响电路的研究和设计具有重要的意义,它将不断推动音响设备的发展和进步。
音响报警电路的工作原理
音响报警电路的工作原理输入信号处理部分主要是对输入信号进行放大、滤波和检测等处理,以使其能够被音响设备正确识别并触发报警。
通常,输入信号可以是来自外部传感器的电压信号,例如红外传感器、光敏传感器、温度传感器等。
首先,输入信号经过放大电路的放大增益,以提高信号幅度并保证后续处理的灵敏度。
接下来,信号可能经过滤波,以消除噪声和干扰,保留有效的信号。
滤波可以通过使用滤波器电路或者控制芯片内部的滤波功能来实现。
然后,信号经过检测电路,检测信号是否达到报警的阈值条件。
检测电路通常使用比较器或其他电子元件实现,一旦输入信号满足特定条件,比如超过设定的阈值,检测电路就会触发报警信号输出。
报警信号输出主要是通过将报警信号转换为音频信号,使其能够通过音响设备的扬声器发出警报声音。
常用的方法有两种:直接输出和控制输出。
直接输出是将检测到的报警信号直接连接到音响设备的扬声器,通过扬声器放大报警信号以产生高响度的报警声音。
这种方法简单直接,但可能会对音响设备产生损坏,并且无法对报警声音进行控制。
为了避免直接输出可能带来的问题,通常采用控制输出的方式。
控制输出是将报警信号通过控制芯片或其他电子元件进行控制,以产生与报警状态相匹配的相应声音。
控制芯片可以提供不同语音、音效和音调的模拟信号或数字信号,来产生不同的报警声效。
然后通过连接到音响设备的功率放大器,将信号放大并驱动扬声器产生报警声。
此外,报警电路还可能包括其他功能,例如报警信号的延时器、音量控制和灯光提示等,以满足不同的应用需求。
总结起来,音响报警电路的工作原理是通过对输入信号进行处理和检测,然后将报警信号输出转换为声音信号,最终通过音响设备的扬声器发出警报声音。
该电路可通过放大、滤波、检测和控制等步骤实现。
不同的应用还可能包括其他功能以满足特定需求。
功放喇叭保护电路工作原理
功放喇叭保护电路工作原理
哎呀呀,今天咱就来好好唠唠功放喇叭保护电路工作原理这回事儿!
你想想,喇叭就好比是咱家里的大宝贝,平时为咱发出好听的声音,让咱享受音乐的美妙。
那要是没有保护电路,它可就容易受伤啦!比如说,要是音量突然开得太大,喇叭可不得被震得“嗡嗡”响,就像人被吓了一跳似的。
这时候,保护电路就登场啦!
它就像一个守护天使,时刻留意着喇叭的情况。
当它察觉到电流或者电压不对劲的时候呀,立马就采取行动啦!比如,它可能会限制电流,就像是给湍急的水流加上一个闸门,让电流平稳地通过,不至于伤害到喇叭。
举个例子吧,有一次我在家里放音乐,那可真是嗨起来了,结果不小心把音量调得老大了。
就在这时,我听到“噗”的一声,音箱的声音变得怪怪的。
哎呀,我心想坏了,这不会是把喇叭弄坏了吧?还好有保护电路呀,它及时发挥了作用,就像一个救生员一样,挽救了喇叭。
你说要是没有保护电路,那我的喇叭不就完蛋了吗?
再比如说,有时候可能会出现短路的情况,这就像是路上突然出现了一个大坑。
保护电路这时候就迅速做出反应,切断电源,避免喇叭受到更大的伤害。
总之,功放喇叭保护电路那真是超级重要啊!它默默地守护着喇叭,让我们能安心地享受音乐的快乐。
所以呀,大家可别小看了它,没有它,咱们的喇叭可就危险咯!我的观点就是,功放喇叭保护电路是必不可少的,它让我们的音响系统更可靠,更耐用!。
多媒体 2.1声道音箱系统喇叭保护器
多媒体 2.1声道音箱系统喇叭保护器莫爱雄多媒体电脑的拥有者日渐增多,而且都配置有2.1声道音箱系统,即两个小音箱加一只低音炮(低音炮带变压器及三声道的功放、音量音调控制等),而多数的中低档2.1声道的音箱系统是不带喇叭保护电路的,因为厂家为了节省成本,把外观设计得特别漂亮来吸引顾客。
相信拥有这些音箱的读者都会有以下的现象:每次给音箱通电时和关电时三个音箱都会有电流冲击声。
冲击电流其实是通电和断电的瞬间直流输出造成的,其造成的后果是:小则喇叭音圈寿命减短,大则即时烧毁喇叭音圈。
没有喇叭保护电路时,万一当功放有故障输出直流电压时,直流电压只需几秒钟即可摧毁喇叭音圈!因此我们为了放心一点,还是给音箱加一个三声道喇叭保护器给心爱的2.1声道音箱系统吧!让保护器她时刻呵护你的音箱。
原理图如图:开机时由于T2的基极处于低电平而令T1不导通,继电器不会吸合,T2的基极电压随R1对C2充电,约5秒钟后T2的基极转为高电平,T2导通从而T1的基极也变为高电平而使T1导通,这时继电器吸合,从而实现了开机延时约5秒钟才把功放与喇叭接通,避免了开机瞬间功放输出直流电冲击喇叭,起到保护喇叭的功能。
关机时由于C1只有47uF,很快就没电了,继电器马上切断了功放与喇叭的通路,而功放是没有那么快消耗完电的,因此功放断电的直流并没有冲击到喇叭,起到了保护喇叭的功能。
当三路功放中任何一路有故障输出直流电压时,被R2—R4传至T3、T4进行检测,当是正电压时T4导通,C2被放电,T2基极为低电平使T1不导通,继电器马上切断了功放与喇叭的通路,从而避免了直流对啦叭的损害,当是负电压时T3导通,C2被放电,T2基极为低电平使T1不导通,继电器马上切断了功放与喇叭的通路,从而避免了直流对喇叭的损害。
元件选择与使用:T1、T2、T3、T4用NPN三极管C945,C1的耐压要35V或以上,电阻用1/4W的五色环金属膜电阻,继电器用四联的(左右各用一组,低音炮用两组并联使用,增加电流的导通量),线路板设计要美观、镀银印蓝色油高档化、面积要小、放便加装,加装使用该保护板的交流电源直接使用原功放的即可。
音响电路
一般市售电脑所配备的音响系统往往是低价位的多媒体有源音响,音质、听感较差。
笔者介绍一款自制的音响电路,采用上世纪九十年代美国国家半导体制造公司(NSC)专门为音频而发的功放集成电路LM1875T,其主要参数如下:TO-220单列5脚塑料封装,工作电压范围:+8V~±30V。
不失真输出功率:Po>25W,静态电流:50mA,最大电流:4A,输入灵敏度:630mV,开环增益:90dB,额定增益:26dB,失真度:1kHz20WB时,THD=0.015%,转换速率:18V/μs,具有过载、过流、超温及感性负载反向电势保护。
该功放集成块体积小巧,外部电路简单,输出功率较大,失真小,不但音质音色颇好,且听感带有电子管机的圆润味道。
它自身具有比较完善的保护功能,电路见图(一个声道,电源共用)。
电路非常简洁,先用屏蔽线从电脑音频线路输出插口LINE-OUT引入信号驳接至本放大器,2x100kΩ音量电位器尽量选用一致性好的产品,阻抗较大是考虑到电脑声卡音频输出电容量一般取值较小,输入阻抗大一些,低频端响应会更好一些。
信号通过耦合电容输入到功放块的①脚。
集成块与简单的外围电路组成放大电路。
改变跨导电阻RD的阻值能改变本机放大量,电阻越大增益就越高,以取得合适的本机灵敏度和放大系数,其阻值常在22kΩ~47kΩ之间选取。
功放块输出端加有RC网络,防止产生低频自激,保护喇叭和功放电路。
元器件的选用耦合电容器选用3.3μF~4.7uF耐压为63V的蓝色金属膜CBB无感聚丙烯电容,声音清晰动听,高频飘逸,音色韵味好。
经过实验,任何电解电容其音质均不能与CBB电容相比。
电源变压器选用功率>70W的R型或环型,亦可使用质量较好的EI型。
次级电压为AC 2×18V~AC 2×22V,整流滤波后为DC±25V左右。
整流桥电流应在10A以上。
主滤波电容为2×4700μF,应选用日本ELNA高速音频专用电解电容。
关于upc1237保护电路
关于µPC1237保护电路的疑问文/沙迦对于一块刚接触的集成电路,如果想要尽快了解它的工作参数和性能,最好的方法就是到该IC的公司网站去查询其相关PDF资料,根据PDF文档的介绍我们可以尽快掌握这个IC的性能。
我一直比较相信PDF上面的推荐电路,多次应用也从来没发生过问题,但这次对µPC1237却是碰到了例外。
事情起源在于我在淘宝购买的几套µPC1237的音响功放保护电路成品。
由于自己不会设计保护电路,所以就一直是买保护电路的成品板。
保护电路的基本工作原理是在功放开机时产生延迟,将功放输出通过继电器延迟5~10秒后与音箱接通以防止功放电路在电源接通瞬间产生的电压冲击音箱中的扬声器。
在功放工作的过程中,保护电路时刻监测功放输出中的直流漂移电压,当功放由于故障输出的直流漂移电压大于保护电路设定阈值时,保护电路能迅速释放继电器,断开功放电路与音箱的通路,保护音箱不被烧毁。
因此,保护电路可以看做是音箱的保护神。
功放保护电路买来后,我习惯按照保护板推荐的供电电压给保护电路通电测试,看看工作是否正常。
因为保护板自身故障导致音箱扬声器烧毁的事例也不在少数。
测试主要有两个方面:第一,通电后测试继电器延迟吸合时间,基本上在5~10秒都可以接受;第二,模拟功放故障,产生不同的直流电压(如:1.5V、4.0V、9V)看保护电路能否检测到直流成分并控制继电器立即释放。
经过这样的测试确认该保护电路正常工作后,我才会放心地将它和功放板连在一起。
像往常一样,该µPC1237保护电路成品板是完全按照官方PDF文档上的一个典型电路进行设计的(见图1)。
我根据板子电压要求给它通了18V的交流电(理论工作电压可以在18V~38V交流电),5秒后,继电器吸合,然后我用1.5V的电池搭在板子的扬声器输入口上模拟直流漂移电压,1秒、2秒……没反应,难道电池没电了?于是换了一个自己感觉电压充足的锂电池(4.0V),1秒、2秒……还是没反应。
新型功放保护电路ta7317p原理与应用
新型功放保护电路ta7317p原理与应用TA7317P是一款新型的功放保护电路芯片。
它的原理是通过对功放和扬声器连接线路进行监测和控制,以保护扬声器和功放电路的安全。
接下来,我们将详细介绍TA7317P的原理及其应用。
TA7317P的原理主要是通过监测输入和输出电压来判断功放电路的工作状态,以及对电流进行限制和保护。
当输入和输出电压超出设定的范围时,TA7317P会自动触发保护功能,以防止功放电路和扬声器受到损坏。
TA7317P具有以下几个主要功能:1.输入和输出电压监测功能:TA7317P可监测功放电路的输入电压和扬声器的输出电压,并将监测结果进行比较,以判断功放电路是否正常工作。
如果输入和输出电压超出设定的范围,TA7317P会触发保护功能。
2.电流限制和保护功能:TA7317P还通过监测功放电路的电流来判断功放电路的负载情况。
当电流超过设定的范围时,TA7317P会自动限制电流,并触发保护功能,以保护功放电路和扬声器不受损坏。
3.输入和输出电压控制功能:TA7317P可以控制输入和输出电压,以保证功放电路的正常工作。
当输入和输出电压超出设定的范围时,TA7317P会自动调整输出电压,以避免功放电路和扬声器受到损坏。
TA7317P的应用范围非常广泛,特别适用于功放电路和扬声器的保护。
它可以用于各种音频设备,如音响系统、电视机、收音机等。
在音响系统中,TA7317P可以监测功放电路的输入和输出电压,以及控制功放电路的输入和输出电压,以保证音响系统的安全运行。
例如,在音响系统的主动音箱中,TA7317P可以监测功放电路的输入电压和扬声器的输出电压,并在超出设定范围时自动触发保护功能,以防止过载和短路等故障。
此外,在电视机和收音机等设备中,TA7317P也可以起到保护功放电路和扬声器的作用。
它可以监测功放电路的输入和输出电压,并在异常情况下自动触发保护功能,以防止电视机或收音机的功放电路和扬声器受到损坏。
音响报警电路的工作原理
音响报警电路的工作原理音响报警电路是一种常见的安全防护装置,它能够在发生危险或紧急情况时发出警报声音,提醒人们注意和采取相应的措施。
其工作原理主要包括传感器检测、信号放大和警报发声三个步骤。
音响报警电路需要通过传感器来检测外界的危险信号。
传感器可以是各种不同类型的设备,例如烟雾传感器、红外线传感器、声音传感器等等。
这些传感器能够感知到特定的物理量或信号,如烟雾、热量、声音等,并将其转化为电信号。
传感器检测到危险信号后,会将信号传输给音响报警电路中的信号放大器。
信号放大器的作用是将传感器接收到的微弱电信号放大,以便后续的处理和警报发声。
信号放大器通常采用放大电路来实现,它能够增加电信号的幅度,使其能够被后续的电路模块正确处理。
在信号放大之后,音响报警电路会将放大后的信号传输给警报发声器。
警报发声器是音响报警电路中最重要的部分,它能够将电信号转化为声音信号,并发出高音量的警报声。
警报发声器通常采用扬声器或蜂鸣器来实现,它们能够产生高频率的声音,以吸引人们的注意并引起警觉。
除了传感器、信号放大器和警报发声器之外,音响报警电路还包括供电电源和控制电路。
供电电源为整个电路提供电能,以确保各个部分正常工作。
控制电路则负责监控传感器的状态,并控制警报发声器的开关,以便在检测到危险信号时及时发出警报声。
音响报警电路的工作原理是通过传感器检测危险信号,信号放大器放大信号,并通过警报发声器发出警报声。
这种电路能够在紧急情况下迅速提醒人们并引起他们的警觉,起到保护人身财产安全的作用。
需要特别注意的是,音响报警电路的工作原理可以根据实际需要进行调整和改变。
例如,可以根据具体情况选择不同类型的传感器,调整信号放大的倍数,或者改变警报发声器的音量和频率。
这样可以根据不同的使用场景和要求,使音响报警电路更加适用和有效。
音箱电子保护器
音箱电子保护器
在音响系统中,喇叭是音效输出终端,如果音质追求较高,其成本也相对较高、在使用过程中,如果功率放大器的输出过大,如麦克风产生声音回受时高、中音频由于正反馈产生自激放大或人为操作失误等情况下,使功放输出终端喇叭需要承受较高的驱动电压和较大的驱动电,当输出功率超过喇叭所承受的峰值功率时,喇叭就会被烧毁,造成很大的损失。
因此需要设备相应的保护电路以防止喇叭的烧毁,目前常见的保护措施有以下几种形式;1、采用热敏电阻(PTC)、压敏电阻;2、采用保护灯泡的热阻;3.继电器式的保护电路。
以上电路的保护动作都较慢,尤其是热敏、压敏电阻,启动和恢复过程都需要几秒到几十秒,而且必须在降低其输入功率一半以下,器件才会恢复正常工作状态,这种保护器在动作期间大多都是高音喇叭中没有声音或者声音很少和音质变差,而且器件本身耐压低,故保护范围窄,故不能起到有效的保护作用.而采用灯泡作保护时,相当于在高音喇叭中串入一个随音频功率信号变化的动态热敏电阻,所以在正常放音的情况下,声音浑渎不清,发毛噪音,而且在大功率状态下灯泡在箱内发亮光而使人不放心等.因此它们不是理想的喇叭保护器.
电子保护器:当麦克风至与音箱喇叭之间产生啸叫反馈后如果音箱分频器中没有保护措施,几秒中内即可烧毁喇叭,当装上这种保护器后可使啸叫达到几分钟以上也不至于损坏喇叭,并能吸收部分过载功率,使啸叫声减弱,特别在过载音乐信号保护中,在听感上还能听到音乐的连续性,没有明显的失真,由于对音乐信号的及时跟踪,运行速度快,器件的动作和恢复期间的工作速度可超出音频以外,人耳无法听到它超音频的工作速度,能保持了人耳的听觉特性,同时又能有效的保护了喇叭,克服了以上缺点,。
音响保护电路课件资料
VD1~VD4组成桥式整流电路,V1~V3组成继电器驱动电路,JR、JL是继电器两组常闭触点。 3、切断信号式和切断电源式保护电路
切断信号式和切断电源式保护电路如下图所示。
3、关机延时保护的作用 为了防止关机时工作不稳定产生的冲击电流对音箱和功 率放大电路的危害;
(二)音响保护电路类型及工作原理
1、切断负载式保护电路 电路组成: 切断负载式保护电路主要由过载检测及放大电路、继电器 两部分组成,如下图所示。 工作原理: 当放大器输出过载或中点电位偏离零点较大时,过载检测电路 输出过载信号,经放大后启动继电器动作,使扬声器回路断开。 这种保护方式在实际应用中用得较多。
V1导通后,(2)点电压降低,V2截止,V3导通,继电器通电,常 闭触点JR、JL均断开。
ቤተ መጻሕፍቲ ባይዱ、小结:
1、音响保护电路的作用 2、保护电路类型 3、保护电路工作原理
四、课后思考题
怎样实现过流保护功能。
1、切断负载式保护电路 下图所示是一个桥式检测切断负载式保护电路。
1、音响保护电路的作用 当输出管击穿导致中点电位偏离零点较大时,输出信号经R1或R2和C1、C2滤波平滑后,在(1)点产生一个直流电压U1,设VD1~VD4 和V1的临界导通电压为Ur(硅管时Ur≈0. 为了防止关机时工作不稳定产生的冲击电流对音箱和功率放大电路的危害;
(2)过压保护 当输出管击穿导致中点电位偏离零点较大时,输出信号经R1或 R2和C1、C2滤波平滑后,在(1)点产生一个直流电压U1,设VD1~ VD4和V1的临界导通电压为Ur(硅管时Ur≈0.7V),若(1)点电压 U1>3Ur,则U1通过VD1→V1发射极→VD4→地,给V1提供基极电 流,V1导通;若U1<-3Ur,则U1通过地→VD3→V1发射极→VD2 提供电流,同样使V1导通。由此可知,只要左声道输出中点电压偏 离零电位一个额定值,即至少要大于VD1、VD4或VD2、VD3及V1 的导通电压之和,(1)点电压U1便会使V1导通。
扬声器保护电路的作用、结构及电路分析
扬声器保护电路的作用、结构及电路分析1、扬声器保护电路的作用、结构扬声器保护电路的作用是对功率放大电路和扬声器进行有效的保护。
当OCL功率放大电路发生故障时,输出端常会有较高的直流电压,如果没有适当的保护措施,将有直流电流流过音箱中的分频器和扬声器,轻则使音圈移位,重则烧毁扬声器,,若用户操作不当,如音量开得过大、音箱连线碰头等,很容易造成功率管损坏,并烧毁分频器、扬声器。
为此多数功放机设计有扬声器保护电路(也有一些低档功放不设)。
一般,左、右声道共用一个扬声器保护电路。
,扬声器保护电路有分立元件式和集成电路式两种,其方框图如下图所示。
它由直流检测电路、过流检测电路、开机延时控制电路、继电器及其驱动电路等组成。
扬声器保护电路通常具有放大器输出端电位偏移保护、输出过载保护、开机延时接通扬声器和关机瞬时断开扬声器兰种保护方式。
(1)放大器输出端电位偏移保护输入监测点是OCL电路的输出中点。
由该点得到的取样电压先经过低通滤波器,把功放输出的交流信号滤掉,留下直流成分。
在功放正常工作时,其输出电压只有交流成分,没有明显的直流成分,保护电路的低通滤波器无输出如果OCL功率放大电路发生故障,其输出端出现正或负的直流电压,只要这个直流电压的绝对值超过设计限度,保护电路的直流检测器就能把它检测出来,变成保护控制信号,经驱动电路驱动保护继电器动作,将继电器触点断开,使扬声器脱离电路,从而使扬声器得到保护。
在扬声器保护电路中,直流电压检测方式有桥式、互补式、差分式等多种。
(2)过载保护过载保护也叫过流保护。
过载保护电路由过载取样电路和过流检测器组成。
常用的过载保护检测办法有两个:一是将串联在功率管发射极的均衡电阻作为过载取样电阻,从其两端取出反映电流大小的电压,提供给过流检测器进行监测;二是对输出的功率信号的幅度进行取样,通过整流、滤波后取出过载电压,送给过流检测器判别、一般的功放机采用前一种检测办法。
(3)开机延时接通扬声器和关机瞬时断开扬声器通过开机延时电路,控制继电器驱动电路的1:作状态,使继电器在开机时,延时1~4秒钟才接通扬声器,从而避免开机过程产牛的浪涌电流冲击扬声器,使其音圈移位。
家用音响产品原理与维修
目录第一章概述第一节音响产品的现状一、数字音响的发展二、网络音乐MP三、Div X-MPEG四、功放机技术性能的发展方向五、数字音响的连接材料六、国外扬声器新技术第二节音响产品的选购与配置一、家庭组合音响的选择二、家庭组合音响的配置三、其他音响器材的选择第三节音响产品的使用与维护1.音响开关机的正确方法2.卡拉OK机的使用技巧3.多段频率均衡器的使用4.CD唱机及唱片的使用与维护5.动圈式话筒的使用与维修6.音响器材的日常维护第二章组合音响第一节电路分析举列一、遥控电路1.红外遥控发射器2.红外遥控接收电路3.解码与控制接口电路二、AS9300家庭组合音乐系统1.电源及功放部分2.特性及音量控制部分3.选择输入部分4.磁带信号前置放大部分5.调谐电路三、卡拉OK数字混响变调系统1.M65839SP电路和M658040SP电路2.系统原理四、逻辑卡座控制系统1.控制对象2.控制电路3.控制程序4.逻辑卡座控制系统的工作原理五、组合音响卡座电子开关录放转换电路1.电子开关管录放开关构成的输入电路2.开关集成电路构成的输入电路六、组合音响双卡录音座连续放音功能控制电路1.单电机连续放音控制电路2.电子开关管控制的连续放音电路3.全逻辑多功能连续放音控制电路七、组合音响频谱式LED电平指示器电路八、卡座电机常速/倍速控制电路1.电子开关管式常速/倍速控制电路2.双卡单电机电路3.电机转速调整方法九、组合音响音箱保护电路1.常开式音箱保护电路2.常闭式音箱保护电路第二节故障检修方法一、兰光LG-903CD1组合音响的检修1.数字调谐电路2.遥控电路3.CD唱机4.卡拉OK混响电路5.其他部分常见故障的检修二、兰光LG-903D1组合音响功放电路维修1.低音输出功率变小2.低音不浑厚,显得发干3.低音输出有很大的交流嗡声并伴有阻塞现象4.低音无输出5.低音输出失真6.中高音无输出三、组合音响集成功放级分析与检修1.功放集成电路原理及标准接法2.功放级故障检修3.集成功放电路代换四、组合音响音箱保护电路故障检修1.音箱不能接入电路2.开机时不能静噪3.检查注意事项五、组合音响机芯自停机构故障检修1.TN33ZFC型机芯2.TN21SW型机芯六、飞利浦F1395型组合音响唱机的修理1.无声2.单声道输出或不平衡3.转盘不转4.单速、转速不准5.抖晃大6.嗡嗡声7.循迹能力差8.回臂早或晚七、分立件Hi-Fi功放无声故障的分析检修1.故障部位的初步检查判断2.各部分电路故障的分析与检修3.美佳PA-600功放无声故障检修实例八、组合音响卡座电子开关录放转换电路故障检修1.电子开关管录放开关构成的输入电路的故障检修2.开关集成电路构成的输入电路的故障检修九、组合音响双卡录音座连续放音功能控制电路故障检修1.单电机连续放音控制电路故障检修2.电子开关管控制的连续放音电路的故障检修3.全逻辑多功能单卡连续放音控制电路故障检修4.全逻辑多功能两卡连续放音控制电路故障检修十、组合音响AM/FM中放电路分析与检修1.电路分析2.故障检修3.检修实例第三节组合音响故障检修实例1.兰光LG-938组合音响检修实例2.星河组合音响故障检修实例3.华强HQ-809、819组合音响故障检修实例4.爱华Z-D9100M组合音响显示屏不亮的检修5.屡烧功放管的故障检修6.索尼HCD-V800型组合音响故障检修7.松下VC-918X组合音响显示“F61”的检修8.爱华组合音响检修实例第三章收音机第一节收音机电路分析1.HS-490数字调谐收音机2.迪桑R-737型收音机3.高灵敏度全球调谐短波收音机4.全键控电调谐AM/FM立体声微型收音机5.德生R101袖珍式高保真收音机6.DTS-12全波段数字调谐收音机7.飞利浦D1875型调频/调幅12波段收音机8.调频/调幅/辅助信道(FM/AM/SCA)收音机9.微型电调谐FM立体声收音机10.微型太阳能立体声收音机第二节收音机电路分析与检修一、晶体管收音机故障检修1.检修的基本知识2.晶体管收音机变频级故障分析与检修3.晶体管收音机中放级故障分析与检修4.晶体管收音机检波器与自动增益控制电路故障分析与检修5.晶体管收音机前置放大器故障分析与检修6.晶体管收音机功率放大器故障分析与检修二、咏梅9111型收音机故障检修1.键盘输入、输出及显示电路故障检修2.DTS控制电路故障检修3.DC/DC转换电路故障检修4.FM调谐电路故障检修5.AM、FM立体声收音电路和双通道功放电路故障检修三、咏梅S203型收音机故障检修1.电路分析2.故障检修四、咏梅899F型收音机故障检修1.电路分析2.故障检修五、伯龙HS-30型AM/FM立体声收音机故障检修1.电路分析2.故障检修六、伯龙HS-902型调频调幅九波段立体声收音机故障检修1.电路分析2.障障检修第三节收音机故障检修20例第四章录音机第一节盒式录音机的传动机构一、主导机构二、供、卷带机构1供带机构2卷带机构3快进与倒带机构三、制动机构四、操作机构五、自动停止机构1自停机构2全自停机构六、暂停机构七、防误抹机构八、磁带计数机构九、驱动电机1机械式稳速电机2电子式稳速电机3FG式稳速电路第二节盒式录音机电路分析一、录音电路1录音输入电路2录音输出电路3录音频率补偿电路4偏磁振荡电路5自动电平控制电路6电平指示电路二、放音电路1放音输入电路2放音频率补偿电路3放音输出电路4音调调节电路三、电源电路1全波整流电路2桥式整流电路3稳压电路第三节盒式录音机故障检修方法1.盒盖门关不上2.盒盖门打不开3.暂停键失灵4.出盒键失灵5.放音键等锁不住6.各按键复位均不良7.活塞式慢开门故障8.传动机构不转动9.开机后卷带机不转动10.卷带力矩小或不稳定11.走带完毕自停机构不起作用12.光电式全自停机构失灵13.霍尔IC磁电式全自停机构失灵14.按下放音键,磁带不走带15.抖晃过大16.轧带故障17.驱动电机启动无力或不转动18.电机转速失常19.磁头严重磨损,需另换新20.电源整流部分故障21.走带正常,但收、录、放音均无声22.仅有一个通道输出23.收音正常,放音时噪声电平大24.发光二极管电平显示器失常25.收录机的时钟部分发生故障26.自动选曲系统失灵27.收音正常,放音音轻且频响差28.放音时有啸叫声29.收、放音正常,内录外录均无声30.放音正常,录音音轻第四节盒式录音机故障检修30例第五章激光唱机第一节基本原理简述一、CD系统基本知识1.CD、CD唱片、CD唱机2.数字音响、数字信号、PCM3.音响信号变成适于记录的数字信号4.CD记录时的通道调制5.误码校正基础6.激光唱机的构成及各部分的作用7.CD的子码和通道8.子码帧的结构9.编码过程各步的比特率10.CD唱片的制造过程二、激光唱头1.激光二极管的工作原理2.光电子学3.激光唱头的结构和工作原理三、伺服集成电路1.控制逻辑电路2.自动功率控制(APC)电路3.RF放大器和失落检测电路4.聚焦伺服电路5.循迹伺服电路6.伺服IC和系统CPU的关系7.横动伺服电路8.线性电机的工作情况9.主轴(CLV)伺服电路10.PLL伺服电路四、数字信号处理及D/A变换1.数字信号处理电路2.D/A变换及模拟电路3.系统控制五、激光唱机的调整1.调整前的准备及专用工具2.调整点和测试点位置3.各个可变电阻(VR)的最初定位4.电气调整步骤和方法六、激光唱头的拆装与调整1.拆卸激光唱头的注意事项2.激光唱头的拆卸方法3.激光唱头的调整方法4.机械调整方法5.整个电路的检查程序第二节电路分析与故障检修一、索尼CD唱机的机芯结构与维修1.激光唱头2.驱动机构3.装载机构4.减震机构5.机芯结构的维修二、其他机型的CD唱机原理与维修1.数字音响系统的原理与组成2.CD唱片与唱机3.激光拾音器4.聚焦伺服和循迹伺服5.CD唱机的调整6.故障检修一般方法7.激光唱头的检修8.CD唱机的还音动作和故障判断9.CD唱机“死机”故障的检修10.CD唱机跳槽故障分析与检修11.夏普音响CD唱机电源部分的检修12.爱华组合音响CD唱机的故障检修第三节CD唱机故障检修20例第六章功率放大器第一节AV功率放大电路分析一、输入选择与前置处理电路1.输入选择电路2.前置处理电路二、卡拉OK电路1.话筒放大电路2.混响处理电路3.话筒信号与音乐信号的混合电路4.卡拉OK其他附属电路三、杜比定向逻辑环绕声解码电路1.编码电路2.解码电路3.解码电路实例四、数字声场处理器(DSP)和声音恢复系统(SRS)1.数字声场处理器(DSP)2.声音恢复系统(SRS)五、荧光屏显示和驱动原理六、频谱均衡控制及显示1.均衡器的分类2.频谱显示3.频谱均衡控制与显示的实际应用电路七、红外线遥控系统和微电脑控制电路1.红外线遥控系统2.微电脑控制电路八、功率放大电路1.晶体管功率放大电路基本结构2.实用功率放大电路九、电源电路1.AV功放电源的特点2.AV功放常用的稳压电源电路第二节功放电路实例分析一、和韵M99功放电路二、晶体管甲类音频功率放大器1.电路结构与特点2.安装、调试与技术指标三、雄鹰FD-2005型功放电路1.电源电路2.前置放大电路3.功率放大电路4.数码卡拉OK延时混响电路5.保护电路四、晶体管15W甲类功率放大器1.电路原理与特点2.制作与调整要点3.主要技术指标五、奇声AV-747DB功率放大器六、凤之声AV-999五声道高保真功率放大器1.功放电路2.杜比专业逻辑与卡拉OK系统3.主要技术指标4.器材搭配要点七、奇声AV-2100杜比功率放大器八、星辉AV-769功率放大器1.电源电路2.卡拉OK电路3.输入信号选择开关电路4.音调和音量调节电路5.功放电路6.荧光屏显示电路九、SRS-3D功放电路十、胆管集成电路混合型功率放大器1.电路特点2.功放制作3.元器件选择4.组装试听十一、奇声AV-982功率放大电路十二、电子管与晶体管混合式功率放大器1.简洁至上的胆石混合机2.超甲类胆石混合机3.采用UHC-MOS管的胆石混合机十三、并联推挽功率放大器十四、HAD-8型数字遥控前级放大器十五、采用SAP15N/P音响对管的甲类功率放大器第三节功放电路故障检修一、AV功放常见故障检修1.无声2.声音小3.噪声大4.荧光屏不显示5.维修注意事项二、用“对比法”和“模糊法”检修功放电路故障1.基本工作原理2.故障检修三、新科HG5300A功放无声故障的检修1.检修方法2.检修实例四、直流功放板的快速检修1.直流功放基本工作原理和电路关键点正常电压2.功放板的检修方法3.直流功放检修实例与技巧第七章音箱第一节扬声器(音箱)简介一、丹麦尊宝扬声器1Oriel扬声器系统2.Concert(音乐会)系列扬声器3.Professional(专业)系列扬声器4.装饰性、多功能扬声器二、静电扬声器系统三、雅听平面扬声器四、THX家庭影院扬声器系统1.THX Cinema Series扬声器系统2.HT Series扬声器系统3.Snell Music & Cinema 1800扬声器系统4.HT THX扬声器系统5.KT THX System扬声器系统6.THX One System扬声器系统五、混凝土音箱六、球顶形扬声器七、SOWEI同轴扬声器八、JBL MR900系列音箱第二节音箱制作一、材料的选择二、分频器的设计与制作三、箱体的制作四、音箱制作实例1.圆柱形混凝土音箱2.Eagle-60书架式音箱3.有源音箱4.倒相式三分频音箱5.低音炮音箱五、国产高级音响线材介绍1.智能型喇叭线JSPC-2.双芯平衡信号线JASC-3.光纤信号线JFIC-4.高级电源线JPOC-第三节音箱的选配与摆位一、选配1.音箱的主要技术指标2.一般选购法3.“傻瓜”选购法二、装配1.与音源的搭配2.与功放的搭配三、布置1.摆位方法2.统一计算法第八章家庭影院第一节家庭影院的配置一、什么是家庭影院二、家庭影院设置的三种模式1.以模拟制电视机和声像录放系统为中心的家庭影院2.以多媒体PC机为中心的家庭影院3.采用虚拟音响环境的家庭影院三、家庭影院的基本配置1.软件播放设备2.环绕声解码器及功率放大器3.音箱4.彩色电视机四、家庭影院的配置实例1.用VCD小影碟机组建家庭影院系统2.一套价廉物美的家庭影院系统3.一套性能优异的Hi-Fi级家庭影院器材4.以DVD影碟机组建的家庭影院系统5.多媒体家庭影院系统6.AV环绕声家庭影院系统第二节家庭影院视听室的布置一、视听室对声学条件的要求二、视听室与彩色电视机屏幕尺寸的关系三、前方扬声器系统的布置四、后方环绕声扬声器的布置五、超低音音箱的布置第三节家庭影院应知应会专题1.环绕立体声2.杜比环绕声与杜比定向逻辑3.THX影音系统4.杜比数字声(AC-3)系统5.DSP家庭影院系统6.3D立体环绕声7.8种声场格式8.环绕声编解码器工作原理9.识别“家庭影院”的真伪10.家庭影院音频系统配置技巧11.彩色电视机选购技巧12.家庭影院中影碟机的选购13.家庭影院音箱的选购技巧14.重视房间吸声,创造良好听音环境15.音箱摆位二重说。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奇声AV-388D后级功放音箱喇叭保护电路图及原理详解奇声AV-388D后级功放电路及原理详解图3是奇声AV-388D后级功放的保护触发、驱动电路。
直流检出电路由D4~D7组成的桥式整流电路,再由Q15、Q14加以放大,推动施密特触发器工作。
无论左右声道出现正的或负的电压都可能使Qi5、Q14导通驱动后级释放继电器,使功放和音箱得到保护。
图奇声AV-388D后级功放电路(可另存至本地电脑放大观看)图中。
保护驱动电路是一个以Q13、Q12为核心的施密特触发器。
选择合适的R28、R27、R26的电阻值,保证Qi2基极起始状态为高电平,Q12饱和导通。
此时,Q12的射极电流流过R26时,在R26两端形成电压,使Q13发射极(即触发器的入端)无高控制电压时.Qi3处于截止状态,实现第一稳态.继电器处于吸合状态,功放进行正常的输出。
当检测电路或开机延时电路输出的高电平(此电平必须高于触发器的触发门电平)加到Ot3的基极时,Q13由截止翻转到导通状态,同时出现正反馈过程:UQl3b↑→IQl3b↑→IQl3c↑→UQl3c↓→LIQl2b↓→IQl2e↓→IR26↓→UR26↓→IQl3b↑。
Q13迅速地饱和导通,其集电极电压几乎O,使Q12由饱和导通变为截止,触发器的输出翻转为第三稳态,继电器释放,进入保护状态。
当触发器输入端的保护电压下降(如:开机延时保护结束或过载状态解除),达到关门电平时,Q13退出饱和,并引发另一次与第一稳态过程相反的正反馈。
Q12由截止再次变为饱和导通,电路又返回到第一稳态,继电器吸合,保护取消。
电路中R43为限流电阻,D3为继电器反电动势释放二极管,以防反电动势损坏Q12。
另外.由于继电器需要的吸合启动电流较大,该电路在电阻R43两端电路并联了电容C22。
继电器吸合启动前,电容被R43放电;Q12饱和导通瞬间,由于C22两端电压不能突变,启动电流绕过R43的阻碍,经C22直通,使继电器迅速吸合。
吸合后,C22也被充满电,继电器的维持电流经R43衰减提供。
C8为延时电容,R3l是C8的限流电阻。
它们与R32、R30、Q13、R26组成延时电路,调整C8、R31值。
可以改变延时时间。
开机时,电源电压通过C8、R3l 提供给Q13、Q12组成的触发器控制端。
触发器处在Q12截止状态,继电器不吸合,功率输出电路暂时断开,直到C8被充到一定电荷为止。
灵敏的分立元件喇叭音箱保护器电路图有烧友找动作灵敏(1V动作)的喇叭保护/延时电路,论坛里不好找,只好从资料堆中翻出来,好人做到底,又做了张新风格的PCB,一并发了,需要的快收藏。
电路图如下:音响辅助电路--保护电路/ 2007-10-4 20:41:58音响辅助电路--保护电路一、扬声器保护电路(1)图1是采用集成运放制作的扬声器保护电路,具有开机防浪涌电流冲击保护、功放输出中点电压偏移(正或负)保护功能。
双运放LM358构成两个电压比较器,电源电压(+12V)经R4、R5分压后,为两个比较器提供+1V的基准电压。
所不同的是,Icl-1的基准电压接人其正输入端③,检测大于+lV的电压;ICl-2的基准电压接入其负输入端⑥,检测小于+lV的电压。
功放L、R声道输出分别经R1、R2隔离,Cl、C2滤除交流成份后,加至VDl-VD4组成的检测桥。
如功放输出(L或R)偏离中点、出现正的直流电压时,则检测桥输出正电压加至电压比较器Icl—1的负输入端②,因检测桥硅二极管产生0.7V的管压降,因此当功放中点直流电压大于+1.7V时,ICl—l的②脚电压大于+lV,①脚变为“0”,使VTl失去基流而截止,继电器K1释放,切断扬声器。
+12V经R3加至检测桥负端,与R2分压产生+2.4V电压加至电压比较器ICl—2的正输入端⑤,如功放中点电位负向偏离,则ICl~2的⑤脚电压随之下降,当功放中点电压小于-1.7v时。
Icl—2的⑤脚电压小于+1V,⑦脚变为“0”,VTl截止,Kl释放,切断扬声器。
R6、R7、C3组成开机延时电路,刚接通电源时,因C3两端电压不能突变,VT1截止;随着C3的充电,1-2s后,vTl导通,继电器Kl才吸合接通扬声器,从而避开了浪涌电流的冲击。
ICl也可选用TL082等其它型号的双运放。
继电器K1选用12V小型电磁继电器,其工作电流小于80mA。
二、扬声器保护电路(2)图2是采用开关集成电路的扬声器保护电路,具有电路结构简单、反应灵敏迅速的特点。
TWH8778是高速开关集成电路,内部设有过压、过流、过热保护电路,工作稳定可靠;控制极触发电流极小,为50~100uA,触发电压约1.6v;输出驱动电流可达lA。
图2电路中,开机防浪涌电流冲击保护由延时电路R3、C3完成。
刚开机时,ICl因控制极⑤脚无触发电压而截止,2~3s后,C3上电压充至1.6V时,才触发ICl导通,继电器Kl吸合接通扬声器,避开了开机冲击。
功放的L、R输出端分别经电阻Rl、R2隔离后混合,Cl、C2滤除其交流成分。
当功放中点直流电位偏离中点:(1)出现正直流电压时,该正电压~VDl~VTlbe 结~VD4~地,形成电流,VTl导通,使ICl失去触发电压而截止,继电器K1释放,切断扬声器;(2)出现负直流电压时,地~VD3~VT1be结~VD2~负电压,形成电流,也使VT1导通,ICl截止,K1释放,切断扬声器;从而实现功放输出中点直流电位偏移保护功能。
VDI~VD4、vTlbe结压降决定了该电路的保护阀值,当功放中点直流电位偏移电压的绝对值大于1.4V时,保护电路动作。
该保护电路可适用+(6~24)v电源电压,只需注意根据电源电压选取相应的继电器即可。
三、扬声器保护电路(3)图3是采用555时基电路的扬声器保护电路。
555时基电路是一种模数结合的多用途集成电路,双极型时基电路驱动电流可达200mA(CMOS时基电路不适合本电路应用),可直接驱动直流电磁继电器,很适合制作扬声器保护电路。
图3左半边功放中点电位偏移检测电路部分,与上例基本相同。
当检测到大于±1.4v的绝对值的偏移直流电压时,VTl导通,使ICl 主复位端④脚为“0”,强制ICl复位,③脚输出变为“0”,继电器K1失电释放,切断扬声器免受损坏。
C3、R4为开机保护延时电路,开机瞬间,+12V电源经C3加至Icl的②⑥脚,使③脚输出为“0”;随着C3的充电,约2s后,②⑥脚电压降至告1/3 Vcc以下,ICl触发,③脚输出为“1”,K1吸合接通扬声器。
该电路电源电压适用范围+(5~18)V。
四、扬声器保护电路(4)图4是采用专用集成电路uPC1237设计的扬声器保护电路,具有开机防浪涌电流冲击、功放输出端中点直流电位偏移保护、关机防冲击保护等功能。
uPC1237是扬声器保护专用集成电路,内部包括开机延时、中点电位检测、过负荷检测、交流电源检测、双稳态触发器、继电器驱动等电路,仅需增加少量阻容等元件,即可构成保护功能完备、外围电路简洁的扬声器保护电路。
(一)功放输出中点电位偏移保护:ICl的②脚分别通过Rl、R2检测功放左、右声道输出端的直流电位,当输出端偏移中点出现正或负的直流电压时,都会使内部双稳态触发器翻转,驱动级截止,继电器K1释放而切断扬声器。
(二)开机保护:R3、R4、C3组成开机延时电路,刚开机瞬间,因C3上电压不能突变,ICl⑦脚电位为0,内部电路截止,继电器Kl不吸合;随着C3的充电,2~3s后,⑦脚电压升至足够高,内部电路导通,K1吸合接通扬声器。
(三)关机保护:电源变压器次级绕组交流电压经VDl半波整流、R5限流降压、c4滤波后,在ICl 4脚产生+(6~8)v直流电压,由于C4(仅4.7uF)远小于主电路的滤波电容(2000~20000uF),关机时,主电路的滤波电容尚未放完电,④脚即先失电而使内部电路截止,实现关机防冲击保护功能。
该保护电路采用单电源,电源电压范围+(25-60)v,最大继电器驱动电流80mA,允许功耗32mW。
五、扬声器保护电路(5)图5是采用专用集成电路TA7317组成的扬声器保护电路,具有开、关机防冲击保护、功放输出中点电位偏移保护、电源电压异常保护等功能,其工作原理与上例大同小异,主要区别在于:(一)ICl的②、③脚分别检测左、右声道的输出中点电位;(二)交流电源检测端①脚正常时为负值;(三)使用双电源供电,电源电压范围±(25~50)v;(四)继电器驱动电流可达130mA,允许功耗500mW。
六、电子音源切换电路图6为采用TDA1029构成的电子开关式音源切换电路,可用于立体声音响设备中,作为音源切换开关。
传统的方法采用波段开关来进行音源的切换,走线较长,虽采用屏蔽线,也难免受到干扰。
采用电子音源切换电路,集成块可直接安装在印制电路板上,消除了波段开关切换的弊端,控制线可以很长,且不必用屏蔽线,利于面板设计。
TDA1029内部包含有两组相同的电子开关,每组均为4选l,两组同步动作,由单刀开关S-1控制,具有开关隔离度好、插入损耗小、切换音源便利的特点,非常适合制作立体声音响系统的音源切换电路。
该音源切换电路电源电压范围:+(6-25)v;最大允许输入信号:6V;失真:小于0.01%;通道隔离度:大于70dB;信噪比:大于120dB。
发光二极管VDl-VD4分别为4个音源输入的工作指示。
R9为VD限流电阻,其阻值应根据电路的电源电压来确定,R9=(Vcc—Vvd)/Ivd,式中:Vcc为电源电压;Vvd为发光二极管压降,为1.8~2V;Ivd为发光二极管电流,一般取6~10mA。
七、继电器音源切换电路图7是专用集成电路控制、继电器执行的音源切换电路。
从信号传输的角度看,继电器触点是理想的直通转换形式,避免了电子开关转换信号所带来的附加失真、附加噪声和音染。
继电器靠近信号传输线安装,而控制继电器的直流控制线可以任意延长,绝无干扰之虑,便于印板和面板的设计安装。
继电器由专用集成电路TC9135控制。
TC9135具有6路触发功能:当控制按键SBl~SB6中任一键按下时,与之相对应的输出端导通、继电器吸合,而其它各输出端均关闭(不论原来是否导通),从而实现”六选一“音源切换。
如果同时有两个或两个以上按键被按下,则所有6路输出端全部关闭,防止了误操作造成混乱。
电容Cl的作用,是实现开机自动接通第一路音源信号,可将最常用的音源安排在第一路。
该电路电源电压范围+(3~16)V,应根据所用电源电压选取继电器和发光二极管限流电阻R7(参阅上例)。
八、音频电平显示器图8是一种音频电平显示器电路,采用两块LM324四运放集成电路,由8只发光二极管排列成条状光柱来显示音频电平的大小,电平越高,点亮的光柱越长。