达州市通川区2019-2020年八年级下期末考试数学试题及答案
2019-2020学年八年级(下)期末数学试卷(含解析)
![2019-2020学年八年级(下)期末数学试卷(含解析)](https://img.taocdn.com/s3/m/9e383ad631126edb6e1a1011.png)
2019-2020学年八年级(下)期末数学试卷一、选择题(本大题共10小题,共40.0分)1. 把代数式根号外的因式移入括号内,则原式等于( ) A.B. C. D. 2. 用配方法解一元二次方程2x 2−3x −1=0,配方正确的是( )A. (x −34)2=1716B. (x −34)2=12C. (x −32)2=134D. (x −32)2=114 3. 如图,▱ABCD 的周长为36cm ,△ABC 的周长为28cm ,则对角线AC 的长为( )A. 28cmB. 18cmC. 10cmD. 8cm4. 下面性质中,平行四边形不一定具备的是( )A. 对角互补B. 邻角互补C. 对角相等D. 对角线互相平分5. 下列说法错误的是( ) A. 必然事件的概率为1B. 数据1、2、2、3的平均数是2C. 连续掷一枚硬币,若5次都是正面朝上,则第六次仍然可能正面朝上D. 如果某种活动的中奖率为40%,那么参加这种活动10次必有4次中奖6. 若x 1,x 2是方程2x 2+3x +1=0的两个根,则x 1+x 2的值是( )A. −3B. 32C. 12D. −32 7. 3、下列说法正确的是A. 若a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2B. 若a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2 C. 若a 、b 、c 是 △ABC 的三边,∠A =90°,则a 2+b 2=c 2D. 若a、b、c是△ABC的三边,∠C=90°,则a2+b2=c28.一个跳水运动员从10m高台上跳水,他每一时刻所在高度(单位:m)与所用时间(单位:s)的关系是:ℎ=−5(t−2)(t+1),则运动员起跳到入水所用的时间是()A. −5sB. 2sC. −1sD. 1s9.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a为实数,则|a|<0是不可能事件;④16的平方根是±4,用式子表示是√16=±4;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.其中正确的个数有()A. 1个B. 2个C. 3个D. 4个10.如图,四边形ABCD是正方形,直线a,b,c分别通过A、D、C三点,且a//b//c.若a与b之间的距离是3,b与c之间的距离是5,则正方形ABCD的面积是()A. 16B. 30C. 34D. 64二、填空题(本大题共4小题,共20.0分)11.分解因式:4x2−121=______.12.为了调查某小区居民的用水情况,随机抽查了10户家庭的月用水量,结果如下表:月用水量(吨)4569户数3421则关于这10户家庭的月用水量的中位数是______ ,平均数是______ ,众数是______ .13. 若m2+m−1=0,n2+n−1=0,且m≠n,则mn=______.14. 如图,四边形ABCD是矩形,AB=2,AD=√2,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是______.三、计算题(本大题共1小题,共8.0分)15. 解下列方程:(7分)(1)(2)X(X+4)=3(X+4)四、解答题(本大题共8小题,共82.0分)16. 计算:(1)√18÷√23×√43.(2)√48÷√3−√12×√12+√24.(3)(1+√5)(1−√5)+(1+√5)2.(4)√12+|√3−2|+(π−3.14)0−√3−1.17. 课外兴趣小组活动时,许老师出示了如下问题:如图1,己知四边形ABCD中,AC平分∠DAB,∠DAB=60°,∠B与∠D互补,求证:AB+AD=√3AC.小敏反复探索,不得其解.她想,若将四边形ABCD特殊化,看如何解决该问题.(1)特殊情况入手添加条件:“∠B=∠D”,如图2,可证AB+AD=√3AC;(请你完成此证明)(2)解决原来问题受到(1)的启发,在原问题中,添加辅助线:如图3,过C点分别作AB、AD的垂线,垂足分别为E、F.(请你补全证明)18. 现在要从甲、乙两名学生中选择一名学生去参加比赛,因甲乙两人的5次测试总成绩相同,所以根据他们的成绩绘制了尚不完整的统计图表进行分析.第1次第2次第3次第4次第5次甲成绩90708010060乙成绩709090a70请同学们完成下列问题:(1)a=______,x乙−=______;(2)请在图中完成表示乙成绩变化情况的折线;2=200,请你计算乙的方差;(3)S甲(4)可看出______将被选中参加比赛.(第1问和第4问答案可直接填写在答题卡的横线上) 19. 将一条长为20厘米的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形.要使这两个正方形的面积之和等于17平方厘米,那么这段铁丝剪成两段后的长度各是多少?20. 如图,在小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.(1)在方格纸中画出以AB为斜边的直角三角形ABE,点E在小正方形的顶点上,且△ABE的面积为5;(2)在方格纸中画出以CD为一边的△CDF,点F在小正方形的顶点上,△CDF的面积为4,射线CF与射线AB交于点N,且∠CNA=45°,连接EF,请直接写出线段EF的长.21. 根据频数分布表或频数分布直方图求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权,请你依据以上知识,解决下面的实际问题.为了解贵阳市19路公交车的运营情况,公交公司统计了某天19路公交车每个运行班次的载客量,并按载客量的多少分成A,B,C,D四组,得到如统计图:(1)求A组对应扇形圆心角的度数,并写出这天载客量的中位数所在的组;(2)求这天19路公交车平均每班的载客量;(3)如果一个月按30天计算,请估计19路公交车一个月的总载客量,并把结果用科学记数法表示出来.22. 如图,在平行四边形ABCD中,E、F分别是BC、AD上的点,且BE=DF.求证:AE=CF.23. 如图,花园围墙上有一宽1m的矩形门ABCD,量得门框对角线AC的长为2m.现准备打掉部分墙体,使其变为以AC为直径的圆弧形门,问要打掉墙体的面积是多少?(π≈3.14,√3≈1.73)【答案与解析】1.答案:B解析:本题考查二次根式的概念,由负数没有平方根求出a 的范围,判断出a −1为负数,将原式变形即可得到结果.注意a −1为负数,化简后的根式为负.∵ >0, ∴a −1<0, ∴故选B .2.答案:A解析:解:由原方程,得x 2−32x =12,x 2−32x +916=12+916, (x −34)2=1716,故选:A .化二次项系数为1后,把常数项−12移项,应该在左右两边同时加上一次项系数−32的一半的平方. 本题考查了解一元二次方程--配方法.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 3.答案:C解析:解:∵▱ABCD 的周长是36cm ,∴AB +AD =18m ,∵△ABC的周长是28cm,∴AB+BC+AC=28cm,∴AC=(AB+BC+AC)−(AB+AC)=28−18=10(cm).故选:C.平行四边形的周长为相邻两边之和的2倍,即2(AB+BC)=36,则AB+BC=18cm,而△ABC的周长=AB+BC+AC=28,继而即可求出AC的长.本题考查平行四边形的性质,解题关键是掌握平行四边形的周长为相邻两边之和的2倍,难度一般.4.答案:A解析:试题分析:根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行,即可得平行四边形的邻角互补;所以B、C、D正确.∵平行四边形的对角相等,对角线互相平分,对边平行,即可得平行四边形的邻角互补;∴B、C、D正确.故选A.5.答案:D解析:此题主要考查了概率的意义,正确掌握概率的意义是解题关键.直接利用概率的意义进而分别分析得出答案.解:A、必然事件的概率为1,正确,不合题意;B、数据1、2、2、3的平均数是2,正确,不合题意;C、连续掷一枚硬币,若5次都是正面朝上,则第六次仍然可能正面朝上,正确,不合题意;D、如果某种活动的中奖率为40%,那么参加这种活动10次不一定有4次中奖,故此选项错误,符合题意.故选:D.6.答案:D解析:解:根据题意得x1+x2=−32.故选:D.直接根据根与系数的关系求解.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=−ba ,x1x2=ca.7.答案:D解析:解:A、勾股定理只限于在直角三角形里应用,故A可排除;B、虽然给出的是直角三角形,但没有给出哪一个是直角,故B可排除;C、在Rt△ABC中,直角所对的边是斜边,C中的斜边应为a,得出的表达式应为,故C也排除;D、符合勾股定理,正确.故选D.8.答案:B解析:解:设运动员起跳到入水所用的时间是xs,根据题意可知:−5(x−2)(x+1)=0,解得:x1=−1(不合题意舍去),x2=2,那么运动员起跳到入水所用的时间是2s.故选:B.根据每一时刻所在高度(单位:m)与所用时间(单位:s)的关系是:ℎ=−5(t−2)(t+1),把ℎ=0代入列出一元二次方程,求出方程的解即可.可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.9.答案:B解析:解:①“明天降雨的概率是50%”表示明天降雨与不降雨可能性相同,此结论错误;②无理数是无线不循环的数,此结论错误;③若a为实数,则|a|<0是不可能事件,此结论正确;④16的平方根是±4,用式子表示是±√16=±4,此结论错误;⑤某班的5位同学在向“创建图书角”捐款活动中,捐款数如下(单位:元):8,3,8,2,4,那么这组数据的众数是8,中位数是4,平均数是5.此结论正确;故选:B.根据概率的意义、无理数概念、确定事件的概念、平方根的定义及众数、中位数、平均数的定义逐一求解可得.本题主要考查概率的意义,解题的关键是掌握概率的意义、无理数概念、确定事件的概念、平方根的定义及众数、中位数、平均数的定义.10.答案:C解析:解:作AE⊥直线b于点E,作CF⊥直线b于点F,∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°,∴∠ADE+∠CDF=90°,∵AE⊥直线b,CF⊥直线b,∴∠AED=∠DFC=90°,∴∠ADE+∠DAE=90°,∴∠DAE=∠CDF,在△AED和△DFC中,{∠AED=∠DFC ∠DAE=∠CDF AD=DC,∴△AED≌△DFC(AAS),∴AE=DF,∵AE=3,CF=5,∠CFD=90°,∴DF=3,∴CD=√CF2+DF2=√52+32=√34,∴正方形ABCD的面积是:√34×√34=34,故选:C.先作辅助线AE⊥直线b于点E,CF⊥直线b于点F,然后根据题目中的条件,可以证明△AED和△DFC 全等,即可得到DF=AE,然后根据勾股定理,即可得到CD的长,从而可以得到正方形ABCD的面积.本题考查正方形的性质、全等三角形的判定与性质、勾股定理,平行线之间的距离,解答本题的关键是明确题意,利用数形结合的思想解答.11.答案:(2x+11)(2x−11)解析:解:原式=(2x+11)(2x−11),故答案为:(2x+11)(2x−11).根据平方差公式,可得答案.本题考查了因式分解,利用平方差公式是解题关键.12.答案:5吨;5.3吨;5吨解析:本题考查了众数、加权平均数及中位数的知识,一组数据中出现次数最多的数据叫做众数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;利用加权平均数的计算方法求得其平均数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解:表中数据为从小到大排列,5t和5t处在第5位、第6位,其平均数5t为中位数,平均数为:3×4+4×5+2×6+910=5.3吨,数据5t出现了四次最多为众数.故答案为:5吨,5.3吨,5吨.13.答案:−1解析:解:由题意可知:m、n是方程x2+x−1=0的两根,∴mn=−1.故答案为:−1.根据根与系数的关系即可求出答案.本题考查根与系数的关系,解题的关键是熟练运用根与系数的关系,本题属于基础题型.14.答案:2√2−2解析:解:连接AE,∵∠ADE=90°,AE=AB=2,AD=√2,∴sin∠AED=ADAE,∴∠AED=45°,∴∠EAD=45°,∠EAB=45°,∴AD=DE=√2,∴阴影部分的面积是:(2×√2−45⋅π×22360−√2×√22)+(45⋅π×22360−√2×√22)=2√2−2,故答案为:2√2−2.根据题意可以求得∠BAE和∠DAE的度数,然后根据图形可知阴影部分的面积就是矩形的面积与矩形中间空白部分的面积之差再加上扇形EAF与△ADE的面积之差的和,本题得以解决.本题考查扇形面积的计算、矩形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.15.答案:解析:(1)用公式法解方程;(2)用因式分解法解方程。
2019—2020学年度第二学期期末考试八年级数学试题及答案
![2019—2020学年度第二学期期末考试八年级数学试题及答案](https://img.taocdn.com/s3/m/30036d4fde80d4d8d15a4fa4.png)
2019—2020学年度第二学期期末考试八年级数学试题注意事项:1.本试卷考试时间为100分钟,试卷满分120分.考试形式闭卷.2.本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分.3.答题前,务必将自己的学校、班级、姓名、准考证号填写在答题纸上相应位置.一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填写在答题纸相应位置上)1.下列图形中,既是轴对称图形又是中心对称图形的是A .B.C.D.2.下列调查中,最适宜采用普查方式的是A.对科学通信卫星上某种零部件的调查B.对我国初中学生视力状况的调查C.对一批节能灯管使用寿命的调查D.对“最强大脑”节目收视率的调查3.与5是同类二次根式的是A.3B.10C.25D.154.下列分式中,最简分式是A.24aB.21aa+C.22a ba b-+D.2a aba b++5.同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6),下列事件中是必然事件的为A.两枚骰子朝上一面的点数和为6 B.两枚骰子朝上一面的点数均为偶数C.两枚骰子朝上一面的点数和不小于2 D.两枚骰子朝上一面的点数均为奇数6.已知反比例函数y=3x,下列结论中,不正确...的是A.图像必经过点(1,3)B.y随x的增大而减小C.图像在第一、三象限内D.若x>1,则0<y<37.小峰不慎将一块平行四边形玻璃打碎成如图所示的四块,为了能在商店配到一块与原来相同的玻璃,他带了两块碎玻璃,其编号应该是A.①,②B.①,④C.③,④D.②,③八年级数学试题第1页共6页八年级数学试题 第2页 共6页8.如图,在矩形ABCD 中,AB =3,BC =4,若点P 是AD 边上的一个动点,则点P 到矩形 的对角线AC 、BD 的距离之和为A .2.4B .2.5C .3D .3.6二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题纸相应位置上).9. 使二次根式1x -有意义的x 的取值范围是 ▲ . 10.当x = ▲ 时,分式12x x +-的值为0. 11.若点A (1,m )在反比例函数2y x=的图像上,则m 的值为 ▲ . 12.比较大小:32 ▲ 23.(填“>”、“<”或“=”)13.一个不透明的盒子里装有黑、白两种球共40个(除颜色外其它均相同),小明将盒子里 的球搅匀后,从中随机摸出一个记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000 摸到白球的次数m 65124 178 302 481 599 1803 摸到白球的频率mn0.650.620.5930.6040.6010.5990.601请估计摸到白球的概率为 ▲ (精确到0.01).14.平行四边形ABCD 的对角线AC 、BD 相交于点O ,当AC 、BD 满足 ▲ 时,平行四边形ABCD 为菱形.15.实数a 、b 在数轴上对应点的位置如右图所示,化简2()a b a --的结果是 ▲ .16.如图,过点P (5,3)作PM ⊥x 轴于点M 、PN ⊥y 轴于点N ,反比例函数ky x=(0)x >的图像交PM 于点A 、交PN 于点B .若四边形OAPB 的面积为10,则k = ▲ .ABP MNOxy 第16题图ABCDP第8题图ba第15题图第7题图① ②③④八年级数学试题 第3页 共6页三、解答题(本大题共有10小题,共72分.请在答题纸指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 17.(本题满分6分)计算:(1)282- (2)(32)(32)+-18.(本题满分6分)解方程:11322xx x-=--- 19.(本题满分6分) 先化简再求值:31(1)12x x x x -+-⋅--,其中x =3.20.(本题满分6分)关注“安全”是一个永恒不变的话题.某中学对部分学生就安全知识的了解程度,采取了随机抽样调查的方式,将收集到的信息分为4种类别:A.非常了解;B.基本了解;C.了解很少;D.不了解.请你根据统计图中所提供的信息解答下列问题.(1)接受问卷调查的学生共有 ▲ 人,扇形统计图中“了解很少”部分所对应扇形的圆心角为 ▲ °;(2)请补全条形统计图;(3)若该学校共有学生3000人,估计该学校学生中对安全知识达到 “非常了解”和“基 本了解”程度的总人数.ACB D50%扇形统计图10 20 30 40 0ABCD5 类别人数 条形统计图1530八年级数学试题 第4页 共6页21.(本题满分6分)如图,在□ABCD 中,∠BAD 的角平分线分别交BC 以及DC 的延长线于点E 、 F . (1)求证:BC =DF ;(2)若∠F =65°,求∠D 的度数.22.(本题满分6分)已知m 是3的整数部分,n 是3的小数部分. (1)m = ▲ ,n = ▲ ; (2)求代数式22m n - 的值.23.(本题满分8分)彭师傅检修一条长为900米的煤气管道,计划用若干小时完成,在实际检修过程中,每小时检修的管道长是原计划的1.2倍,结果提前3小时完成任务.彭师傅原计划每小时检修管道多少米?24.(本题满分8分)如图,点A (m ,4),B (n ,1)在反比例函数(0)ky x x =>的图像上,过点A 、B 分别作x轴的垂线,垂足为点C 和点D ,且CD =3. (1)求m 、n 的值,并写出反比例函数的表达式;(2)若直线AB 的函数表达式为(0)y ax b a =+≠,请结合图像直接写出不等式k ax b x+< 的解集.A B C D E F ABCDO xy八年级数学试题 第5页 共6页25.(本题满分10分)问题呈现:我们知道反比例函数(0)k y k x =≠的图像是双曲线,那么函数k y n x m =++(k 、m 、n 为常数且k ≠0)的图像还是双曲线吗?它与反比例函数(0)ky k x=≠的图像有怎样的关系呢?让我们一起开启探索之旅……探索思考:我们可以借鉴以前研究函数的方法,首先探索函数41y x =+的图像. (1)填写下表,并画出函数41y x =+的图像. ①列表:x … -5-3-20 1 3 … y……②描点并连线.(2)观察图像,写出该函数图像的两条不同类型的特征: ① ▲ ; ② ▲ . 理解运用:函数41y x =+的图像是由函数4y x=的图像向 ▲ 平移 ▲ 个单位,其对称中心的坐标为 ▲ .灵活应用:根据上述画函数图像的经验,想一想函数421y x =++的图像大致位置,并根据图像指出,当x 满足 ▲ 时,y ≥3.–1 –2 –3 –4 –5 –6 1 2 3 4 5 6 –1 –2 –3 –4 –5 –6 1 2 3 4 5 6 xy O八年级数学试题 第6页 共6页26.(本题满分10分) 在数学兴趣小组活动中,小悦进行数学探究活动.将边长为1的正方形ABCD 与边长为2的正方形AEFG 按图①位置放置,AD 与AE 在同一条直线上,AB 与AG 在同一条直线上.连接DG 、BE ,易得DG =BE 且DG BE ⊥(不需要说明理由).(1)如图②,小悦将正方形ABCD 绕点A 逆时针旋转,旋转角为α(30 º <α<180 º). (Ⅰ)连接DG 、BE ,求证:DG =BE 且DG BE ⊥.(Ⅱ)在旋转过程中,如图③连接BG 、GE 、ED 、DB ,求出四边形BGED 面积的最 大值.(2)如图④,分别取BG 、GE 、ED 、DB 的中点M 、N 、P 、Q ,连接MN 、NP 、PQ 、 QM ,则四边形MNPQ 的形状为 ▲ ,四边形MNPQ 面积的最大值是 ▲ .A B C D EF G 图① AB C DG E F图③ A B C D EF G MQ P N图④A BCD GEF 图②八年级数学试题 第7页 共6页八年级数学答题纸题号 1-8 9-16 17 18 19 20 21 22 23 24 25 26 总分得分一、选择题(本大题共8小题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8 答案二、填空题(本大题共8小题,每小题3分,共24分)9. 10. 11. 12. 13. 14. 15. 16. 三、解答题(本大题共有10小题,共72分) 17.(本题满分6分) (1) (2)18.(本题满分6分)19.(本题满分6分)20.(本题满分6分)(1)________;________.10 20 30 40ABCD5 类别人数条形统计图1530(3)21.(本题满分6分)(1)(2)22.(本题满分6分)(1)________;________.(2)23.(本题满分8分)AB CDEF八年级数学试题第8页共6页八年级数学试题 第9页 共6页24.(本题满分8分) (1)(2)25.(本题满分10分)探索思考:(1) ①x … -5-3-20 1 3 … y……② (2)①:________________________________________________________________; ②:________________________________________________________________.ABC DO xy–1 –2 –3 –4 –5 –6 12 3 45 6 –1–2 –3 –4 –5 –612 3 4 5 6 x y O理解运用:________________;________________;________________.灵活应用:__________________________________.26.(本题满分10分)(1)(Ⅰ)(Ⅱ)(2)________________;________________.ABCDGEF图②ABCDGEF图③八年级数学试题第10页共6页八年级数学试题 第11页 共6页八年级数学试题参考答案及评分细则一、选择题(每小题3分,共24分.) 1.D 2.A 3.C 4.B 5.C 6.B 7.D 8.A 二、填空题(每小题3分,共24分.)9.x ≥1 10.1- 11.2 12.>13.0.6014.AC ⊥BD15.b16.5三、解答题(本大题共有10小题,共72分) 17.解:(1)原式=222-=2. ················································································ 3分 (2)原式=92-=7. ··················································································· 3分 18.解:两边同乘以(2)x -1(1)3(2)x x =----2x = ································································································· 4分 检验:当2x =时,(2)x -=0 ································································· 5分 ∴2x =是原分式方程的增根,原分式方程无解. ······································· 6分 19.解:原式24112x x x x --=⋅-- 2x =+ ························································································ 4分 把3x =代入(2)x + 原式32=+5=. ·························································································· 6分 20.解:(1)60;90; ··············································································· 2分 (2)如图所示,就是我们所要补全的条件统计图; ······················· 4分 (3)30103000200060+⨯=(人) 答:该学校学生中对安全知识达到 “非常了解”和“基本了解”程度的 总人数为2000人. ········································································ 6分21.解:(1)∵四边形ABCD 为平行四边形1010 20 30 40 0ABCD5 类别人数 条形统计图1530八年级数学试题 第12页 共6页∴BA ∥CD ,AD =BC ···································································································· 1分 ∴∠BAF =∠F ∵AE 平分∠BAD ∴∠BAF =∠DAF∴∠DAF =∠F ··············································································································· 2分 ∴AD =DF∴BC =DF ······················································································································ 3分 (2)∵AD =DF∴∠F =∠DAF =65° ············································································ 5分 ∴∠D =50°. ····················································································· 6分 22.解:(1)1;31- ························································································ 2分 (2)原式()()m n m n =+⋅- ········································································ 3分 3(131)=⋅-+233=-. ··························································· 6分23.解:设彭师傅原计划每小时检修管道x 米,根据题意可得:90090031.2x x =+ ····················································································· 3分 解得:50x = ······················································································ 4分 经检验:50x =是原分式方程的解. ························································ 5分 答:彭师傅原计划每小时检修管道50米. ················································ 6分 24.解:(1)根据题意得:43m nn m =⎧⎨-=⎩·······································2分 解得:14m n =⎧⎨=⎩·································· 4分把(14),代入ky x= ∴4k =∴反比例函数的表达式为4y x=. ·························································· 6分 (2)01x <<或4x >. ········································································ 8分ABCO xy八年级数学试题 第13页 共6页25.解: (1)探索思考: ①列表:···························································································· 1分x … -5 -3 -2 0 1 3 … y…-1-2-4421…② ······································································································ 3分(2)①图像是中心对称图形; ········································································· 4分 ②当1x >-时,y 随着x 的增大减小. ························································ 5分 ③图像是轴对称图形 ④图像经过点(0,4) ⑤与x 轴没有交点…… (注:仅写两条即可) 理解运用:左;1;(1,0)-. ···················································································· 8分 灵活应用:13x -<≤. ························································································· 10分 26.解:(1) (Ⅰ)证明:∵正方形ABCD 和正方形AEFG∴AD =AB ,AE =AG ,∠BAD =∠GAE =90° ··············································· 1分 ∴∠DAG =∠BAE–1 –2 –3 –4 –5 –6 1 2 34 56 –1–2 –3 –4 –5 –612 3 4 5 6 xyO八年级数学试题 第14页 共6页在△DAG 和△BAE 中, DA BA DAG BAE GA EA =⎧⎪=⎨⎪=⎩∠∠ ∴△DAG ≌△BAE ·················································································· 2分 ∴DG =BE ···························································································· 3分 ∴∠DGA =∠BEA∵∠DGA +∠GHE =∠BEA +∠GAE ∴∠GHE =∠GAE =90°∴DG ⊥BE ···························································································· 4分 (Ⅱ)连接BE 、DG 相交点H ∵BE ⊥DG∴S 四边形BGED =S △BGE +S △BDE=1122GH BE DH BE ⋅+⋅ =12DG BE ⋅ =212BE ······························································································ 6分 当α=90°时BE 最大值=BA +AE =21+∴S 四边形BGED 的最大值为21(21)2+即为3222+. ········································· 8分(2)正方形;3224+. ······································································· 10分ABCDGEF图②ABCDG EF图③ HH。
2019-2020年八年级下册期末考试数学试题含答案解析
![2019-2020年八年级下册期末考试数学试题含答案解析](https://img.taocdn.com/s3/m/743c37ae6bec0975f465e2bf.png)
CBA2019-2020年八年级下册期末考试数学试题含答案解析学校 姓名 准考证号考 生 须 知1.本试卷共6页,共三道大题,26道小题.满分100分,考试时间100分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和考号.3.试卷答案一律填涂或书写在答题卡上,在试卷上作答无效.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 4.考试结束,将本试卷和答题卡一并交回.下面各题均有四个选项,其中只有一个..是符合题意的. 1.在平面直角坐标系xOy 中,点P (-3,5)关于y 轴对称的点的坐标是( ) A .(-3,-5)B .(3,-5)C .(3,5)D .(5,-3)2.下列图形中,既是中心对称图形又是轴对称图形的是( )3.一个多边形的内角和为540°,则这个多边形的边数是( ) A .4B .5C.6D .74.菱形ABCD 的边长为4,有一个内角为120°,则较长的对角线的长为( ) A .43B .4C .23D .25.如图,利用平面直角坐标系画出的正方形网格中, 若A (0,2),B (1,1),则点C 的坐标为( ) A .(1,-2) C .(2,1)B .(1,-1) D .(2,-1)6.如图,D ,E 为△ABC 的边AB ,AC 上的点,DE ∥BC , 若:1:3AD DB =,AE =2,则AC 的长是( ) A .10 B.8 C .6 D .47.关于x 的一元二次方程2210mx x -+=有两个实数根,则m 的取值范围是( )A .1m ≤ C .1m <且0m ≠B .1m <D .1m ≤且0m ≠8.如图,将边长为3cm 的等边△ABC 沿着边BC 向右平移2cm ,得到△DEF ,则四边形ABFD 的周长为( ) A .15cmB .14cmC .13cmD .12cmA .B .C .D .EDA B CS t /平方米/小时16060421ODA FE CBDABCP第13题图 第14题图 8题图 第9题图9.园林队在某公园进行绿化,中间休息了一段时间.绿化面积S (单位:平方米)与工作时间t (单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为( ) A .40平方米B .50平方米C .80平方米D .100平方米10.如右图,矩形ABCD 中,AB =2,BC =4,P 为矩形边上的一个动点,运动路线是A →B →C →D →A ,设P 点 经过的路程为x ,以A ,P ,B 为顶点的三角形面积为y , 则下列图象能大致反映y 与x 的函数关系的是( )二、填空题(本题共18分,每小题3分)11.如图,点D ,E 分别为△ABC 的边AB ,BC 的中点,若DE =3cm ,则AC = cm .12.已知一次函数2()y m x m =++,若y 随x 的增大而增大,则m 的取值范围是 .13.如图,在△ABC 中,D 是AB 边上的一点,连接CD ,请添加一个适当的条件 ,使△ACD ∽△ABC (只填一个即可).14.如图,在□ABCD 中,BC =5,AB =3,BE 平分∠ABC 交AD 于点E ,交对角线AC 于点F ,则AEFCBF S S △△=.15.如图,矩形ABCD 中,AB =8,AD =10,点E 为DC 边上的一点,将△ADE 沿直线AE 折叠,点D 刚好落在D AB CFE D B C A EDABCEFCD AB第15题图BC 边上的点F 处,则CE 的长是 .16.如图,在平面直角坐标系xOy 中,一次函数y =x +1与x 、y 轴分别交于点A 、B ,在直线 AB 上截取BB 1=AB ,过点B 1分别 作x 、y 轴的垂线,垂足分别为点A 1、C 1, 得到矩形OA 1B 1C 1;在直线 AB 上截取B 1B 2= BB 1,过点B 2分别 作x 、y 轴的垂线,垂足分别为点A 2 、C 2, 得到矩形OA 2B 2C 2;在直线AB 上截取B 2B 3= B 1B 2,过点B 3分别 作x 、y 轴的垂线,垂足分别为点A 3、C 3, 得到矩形OA 3B 3C 3;……;则点B 1的坐标是 ;第3个矩形OA 3B 3C 3的面积是 ; 第n 个矩形OA n B n C n 的面积是 (用含n 的式子表示,n 是正整数).三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分)解答应写出文字说明,演算步骤或证明过程. 17.用适当的方法解方程:2610x x --=.18.如图,在□ABCD 中,E ,F 是对角线BD上的两点且BE =DF ,联结AE ,CF . 求证:AE =CF .19.一次函数1y kx b =+的图象与正比例函数2y mx =交于点A (-1,2),与y 轴交于点B (0,3). (1)求这两个函数的表达式;(2)求这两个函数图象与x 轴所围成的三角形的面积.20.如图,在矩形ABCD 中,E 为AD 边上的一点,过C 点作CF ⊥CE 交AB 的延长线于点F . (1)求证:△CDE ∽△CBF ;yxy =x+1C 3C 2A 3A 2C 1B 3B 2B 1A B A 1OFE CADBEDAFB C(2)若B 为AF 的中点,CB =3,DE =1,求CD 的长.21.已知关于x 的一元二次方程2(32)60mx m x -++=(0)m ≠. (1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m 的值.22.如图,Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB上的中线,分别过点A ,C 作AE ∥DC ,CE ∥AB , 两线交于点E .(1)求证:四边形AECD 是菱形;(2)若602B BC ∠=︒=,,求四边形AECD 的面积.23.列方程解应用题:某地区2013年的快递业务量为2亿件,受益于经济的快速增长及电子商务发展等多重因素,快递业务迅猛发展,2015年的快递业务量达到3.92亿件.求该地区这两年快递业务量的年平均增长率.24.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过240度时实行“基础电价”;第二档是当用电量超过240度时,其中的240度仍按照“基础电价”计费,超过的部分按照 “提高电价”收费.设每个家庭月用电量为x 度时,应交电费为y 元.具体收费情况如折线图所示,请根据图象回答下列问题: (1)“基础电价”是_________元/度;(2)求出当x >240时,y 与x 的函数表达式; (3)小石家六月份缴纳电费132元,求小石家这个月用电量为多少度?25.已知正方形ABCD 中,点M 是边CB (或CB的延长线)上任意一点,AN 平分∠MAD ,交射线DC 于点N .y x (元)(度)400120240216B AOEDBAC图1 图2(1)如图1,若点M 在线段CB 上 ①依题意补全图1;②用等式表示线段AM ,BM ,DN 之间的数量关系,并证明;(2)如图2,若点M 在线段CB 的延长线上,请直接写出线段AM ,BM ,DN 之间的数量关系.ADBCM26.在平面直角坐标系xOy 中,过象限内一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等, 则这个点叫做“和谐点”.如右图,过点H (-3,6)分 别作x 轴,y 轴的垂线,与坐标轴围成的矩形OAHB 的周长与面积相等,则点H (3,6)是“和谐点”.(1)H 1(1,2), H 2(4,-4), H 3(-2,5)这三个点中的“和谐点”为 ; (2)点C (-1,4)与点P (m ,n )都在直线y x b =-+上,且点P 是“和谐点”.若m >0,求点P 的坐标.——————————————草 稿 纸——————————————石景山区2015—2016学年第二学期期末试卷初二数学 试卷答案及评分参考阅卷须知:为便于阅卷,解答题中的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可.若考生的解法与给出的解法不同,正确者可参照评分参考给分.评分参考中所注分数,表示考生正确做到此步应得的累加分数.一、 选择题(本题共30分,每小题3分)ADB C MADBCM y x1A BHO题号 1 2 3 4 5 6 7 8 9 10 答案CABADBDCBB二、填空题(本题共18分,每小题3分)11.6 12.2m >- 13.ACD B ∠=∠(或ADC ACB ∠=∠或AD ACAC AB=) 14.925 15.3 16.(1,2);12(1)n n +;或2n n +(每空1分) 三、解答题(本题共52分,第17-24题,每小题5分;第25-26题,每小题6分) 17.18.证明一:联结AF ,CE ,联结AC 交BD 于点O.∵四边形ABCD 是平行四边形 ∴OA =OC ,OB =OD ⋯⋯⋯⋯⋯2分 又∵BE =DF∴OE =OF ⋯⋯⋯⋯⋯3分 ∴四边形AECF 是平行四边形 ⋯⋯4分 ∴AE =CF ⋯⋯⋯⋯⋯5分证明二:∵四边形ABCD 是平行四边形∴AB =CD ,AB ∥CD ⋯⋯⋯⋯⋯1分 ∴∠1=∠2 ⋯⋯⋯⋯⋯2分在△ABE 和△CDF 中12 AB CD BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF (SAS ) ⋯⋯⋯⋯⋯4分∴AE CF = ⋯⋯⋯⋯⋯5分 19.解:(1)∵2y mx =过点A (-1,2)OFECADB21FECADB解法一: 26919x x -+=+ ⋯⋯⋯⋯⋯1分2310x -=() ⋯⋯⋯⋯⋯3分310x -=± ⋯⋯⋯⋯⋯4分12310,310x x ∴==+-⋯⋯5分解法二:2140⨯⨯=---=△(6)41() ⋯⋯1分6402x ±∴=⋯⋯⋯⋯⋯3分 62102x ±∴= ⋯⋯⋯⋯⋯4分12310,310x x ∴==+- ⋯⋯5分∴-m =2 ∴m =-2 ⋯⋯⋯⋯⋯1分 ∵点A (-1,2)和点B (0,3)在直线1y kx b =+上2133k b k b b -+==⎧⎧∴∴⎨⎨==⎩⎩⋯⋯⋯⋯⋯3分 ∴这两个函数的表达式为:13y x =+和2-2y x=⋯⋯⋯⋯⋯3分(2)过点A 作AD ⊥x 轴于点D ,则AD =2∵13y x =+交x 轴于点C (-3,0) ⋯⋯4分∴1=2AOC S OC AD⨯⨯△ 1=322⨯⨯ =3 ⋯⋯5分即这两个函数图象与x 轴所围成的三角形的面积是3.20.(1)证明:∵四边形ABCD 是矩形∴∠D=∠1=∠2+∠3=90° ⋯⋯⋯⋯⋯1分 ∵CF ⊥CE ∴∠4+∠3=90°∴∠2=∠4∴△CDE ∽△CBF ⋯⋯⋯⋯⋯2分(2) 解:∵四边形ABCD 是矩形∴CD =AB ∵B 为AF 的中点∴BF =AB ∴设CD=BF= x ⋯⋯⋯3分 ∵△CDE ∽△CBF21.(1)证明:∵0m ≠ ∴2(32)60mx m x -++=是关于x 的一元二次方程∵2[(32)]46m m =-+-⨯△ ⋯⋯⋯⋯⋯1分2912424m m m =++- 29-124m m =+23-20m =()≥ ⋯⋯⋯⋯⋯2分∴此方程总有两个实数根. ⋯⋯⋯⋯⋯3分(2) 解:∵(3)(2)0x mx --=∴1223,x x m ==⋯⋯⋯⋯⋯4分∵方程的两个实数根都是整数,且m 是正整数∴m =1或 m =2 ⋯⋯⋯⋯⋯5分22.(1)证明:∵AE ∥DC ,CE ∥AByx–11–1–2–3–41234D CBA O4321EDAFBC∴CD DE CB BF = ⋯⋯4分 ∴13x x =∵x >0 ∴3x =⋯⋯⋯5分即:3CD =∴四边形AECD 是平行四边形 ⋯⋯⋯⋯⋯1分 ∵Rt △ABC 中,90ACB ∠=︒,CD 是斜边AB 上的中线 ∴CD =AD∴四边形AECD 是菱形 ⋯⋯⋯⋯⋯2分(2) 解:联结DE .∵90ACB ∠=︒,60B ∠=︒∴30BAC ∠=︒ ∴423A ABC ==, ⋯⋯⋯⋯⋯3分∵四边形AECD 是菱形 ∴EC =AD =DB 又∵EC ∥DB ∴四边形ECBD 是平行四边形∴ED = CB =2 ⋯⋯⋯⋯⋯4分∴2322322AECD AC ED S ⨯⨯===菱形 ⋯⋯⋯⋯⋯5分23. 解:设该地区这两年快递业务量的年平均增长率为x . 根据题意,得 ⋯⋯1分 22(1) 3.92x += ⋯⋯⋯⋯⋯3分解得120.4, 2.4x x ==-(不合题意,舍去) ⋯⋯⋯⋯⋯4分 ∴0.440x ==%答:该地区这两年快递业务量的年平均增长率为40%. ⋯⋯⋯⋯⋯5分24.(1)0.5 ⋯⋯⋯⋯⋯ 1分 (2)解:当x >240时,设y =kx+b ,由图象可得:2401200.6 40021624k b k k b b +==⎧⎧∴⎨⎨+==-⎩⎩ ⋯⋯⋯⋯⋯2分 ∴0.624(240)y x x =-> ⋯⋯⋯⋯⋯3分(3)解:∵132120y =>∴令0.624=132x -, ⋯⋯⋯⋯⋯4分 得:=260x ⋯⋯⋯⋯⋯5分∴小石家这个月用电量为260度.25.(1)①补全图形,如右图所示. ⋯⋯⋯⋯⋯1分 ②数量关系:AM BM DN =+ ⋯⋯⋯⋯⋯2分 证明:在CD 的延长线上截取DE =BM ,联结AE .∵四边形ABCD 是正方形∴190B ∠=∠=︒,AD AB =,AB CD ∥EDBACNADB CM∴6BAN ∠=∠ 在△ADE 和△ABM 中1 AD AB B DE BM =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△ABM (SAS ) ∴AE AM =,32∠=∠ ⋯⋯⋯⋯⋯⋯3分又∵54∠=∠ ∴EAN BAN ∠=∠ 又∵6BAN ∠=∠ ∴6EAN ∠=∠∴AE NE = ⋯⋯⋯⋯⋯4分 又∵AE AM =,NE DE DN BM DN +=+=∴AM BM DN =+ ⋯⋯⋯⋯⋯5分 (证法二:在CB 的延长线上截取BF =DN ,联结AF ) (2)数量关系:AM DN BM =- ⋯⋯⋯⋯⋯6分26.(1)H 2 ⋯⋯⋯⋯⋯1分 (2)解:∵点C (-1,4)在直线y x b =-+上∴14b += ∴3b =∴3y x =-+ ⋯⋯⋯⋯⋯2分 ∴3y x =-+与x 轴,y 轴的交点为N (3, 0),M (0,3) ∵点P (m ,n )在直线3y x =-+上 ∴点P (m ,-m +3)过点P 分别作x 轴,y 轴的垂线,垂足为D ,E ∵m >0∴点P 可能在第一象限或第四象限(解法一) ① 若点P 在第一象限,如图1,则,3OD m PD n m +=== -∴3)6PEOD C m m ++==2(-矩形3)PEOD S m m +=(-矩形∵点P 是“和谐点”∴3)6m m +(-= ⋯⋯⋯3分260m m +-3= 2(-3)460=-⨯△<∴此方程无实根∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分654321EN AD B CMyx 33y = -x+3E D MN OP (m ,-m +3)图1② 若点P 在第四象限,如图2,则,3)3OD m PD n m m -=+=-== --( ∴3)46PEOD C m m m +=-=2(-矩形3)PEOD S m m =(-矩形 ∵点P 是“和谐点”∴3)46m m m -(-= ⋯⋯5分 260m m +-7=1261m m ==,∵点P (m ,-m +3)在第四象限 ∴3m > ∴6m =∴点P (6,-3) ⋯⋯⋯⋯⋯6分综上所述,满足条件的点P 的坐标为P (6,-3).(解法二)① 若点P 在第一象限,如图1,则,3OD m PD n m +=== - ∴3)6PEOD C m m ++==2(-矩形∵133 4.52MON S ⨯⨯==△ ⋯⋯⋯3分而MONPEOD S S <△矩形 ∴PEOD PEOD C S 矩形矩形≠∴第一象限的直线上的点不可能是“和谐点”. ⋯⋯⋯⋯⋯4分 ② 若点P 在第四象限,如图2,则,OD m PD n == -∴)PEOD C m n =2(-矩形PEOD S mn =-矩形∵点P 是“和谐点”∴2)m n mn (-=- ⋯⋯⋯⋯⋯5分 ∴22mn m =-∵点P (m ,n )在直线3y x =-+上 ∴3n m =-+ ∴232mm m=-+- 260m m +-7=1261m m ==,经检验,1261m m ==,是方程232mm m=-+-的解∵点P (m ,-m +3)在第四象限 ∴3m > ∴6m =yxy = -x+3EDP (m ,-m +3)O yxy = -x+3EDP (m ,-m +3)O y x 33y = -x+3E D MN OP (m ,-m +3)图1图2∴点P(6,-3)⋯⋯⋯⋯⋯6分综上所述,满足条件的点P的坐标为P(6,-3).。
2019~2020学年度第二学期期末考试八年级数学答案
![2019~2020学年度第二学期期末考试八年级数学答案](https://img.taocdn.com/s3/m/d5bd7ed01711cc7930b71651.png)
2019~2020学年度第二学期期末考试八年级数学参考答案一.选择题(共10小题,每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案BDDCADCDCB二.填空题(共6小题,每小题3分,共18分)11. 3 12.86 13. 45°14.y =5x ,y =4x +2; 15.-3≤k ≤2 且k ≠0; 16. 102-. 第14题第1个空2分,第2个空1分第15题 左、右端点值各1分;没写k ≠0扣1分;没带等号扣1分第15题 代数法: 解析:∵y 1<y 2 ∴kx -2<2x +3 ∴(k -2)x <5 经分析得:k -2≤0 且2-5k ≥-1 解得:-3≤k <0或 0<k ≤2 几何法:-3≤k <0或 0<k ≤2第16题三.解答题(共8小题,共72分)17.解:(1)∵直线y =kx +b 与直线y =x 平行,∴k =1,……………2分把(1,-1)代入y =x +b 得:b +1=-1,∴b =-2, ………………………………3分 (2)把(1,-1),(-1,3)代入y =kx +b 得:13k b k b +=-⎧⎨-+=⎩, 解得:21k b =-⎧⎨=⎩, ……………………………6分 把(m ,7)代入y =-2x +1得:-2m +1=7, ∴m =-3,……………………………8分18.证明:(1)∵E 是CD 的中点,∴DE =CE , …………………1分∵CF //OD ,∴∠ODE =∠FCE , ………………………………………3分在△EDO 和△ECF 中,,,,ODE FCE DE O E CE DE B F ⎧⎪⎨⎪∠=∠∠∠=⎩= ∴△EDO ≌△ECF ,…………………4分 (2)∵△EDO ≌△ECF ∴OD=CF , ……………………………………5分 ∵CF //OD ,∴四边形OCFD 是平行四边形形, ……………………………………6分 ∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠COD =90°, ……………………………7分 ∴四边形OCFD 是矩形. ……………………………………8分19. (1)a =20,b =28, ………………………………2分 (2)72°, ………………………………3分 (3)814181088714618510+++×+×+×+×=6.4, ………………………………5分答:所有被调查学生课外阅读的平均本数为6.4本.………………………………6分 (4)12008141810814×++++=528, ……………………………7分答:估计该校八年级学生课外阅读7本及以上的人数约有528人.………………8分 20.解:(1)画图如图:………3分 (2)画图如图:………6分 (3)画图如图:………8分21.解:(1)把D (3,m )代入y =x -2得:m =3-2=1, ………1分 ∴点D 的坐标为(3,1)把D (3,1)代入y =kx +7得:3k +7=1,∴k = -2, …………………………3分 (2)由(1)得:直线AB 的解析式为y = -2x +7,当y =n 时,x -2=n ,x = n +2 ∴点M 的坐标为(n +2,n )当x =n 时,y = -2n +7 ∴点N 的坐标为(n ,-2n +7) …………………………5分 ∵点P (n ,n ), ∴PM = 2,PN =7-3n , ∵PN =2PM , ∴47-3=n , ∴n = 1或311, …………………………8分22.(A B 总计(t)C x-60300-x240D 260-x x260总计(t)200 300 500(2)①y1 = -5x+5300;y2 = 20x+4500;………………………………5分②由题意得:60030002600xxxx⎧≥≥≥⎪≥⎪⎪⎨⎪⎩---,解得60≤x≤260,………………………………6分∴y1-y2= -25x+800<0,∴y1<y2,∴A城总运费比B城总运费少………………………………7分(3)设两城总运费为W元,则W= -5x+5300+15(300﹣x)+(35﹣a)x=(15﹣a)x+9800;若0<a<15时15﹣a>0,W随x的增大而增大,∴当x=60时y取最小值,∴60(15﹣a)+9800≥10160,解得a≤9,∴0<a≤9 ………………8分若a=15时W=9800,不符合题意;若a>15时15﹣a<0,W随x的增大而减少,∴当x=260时y取最小值,∴260(15﹣a)+9800≥10160,解得a≤13813,不符合题意;………………9分综合可得:0<a≤9.……………………………………………10分23.(1)①证明:连接AG,∵四边形ABCD是矩形,∴∠ABC=∠BAD=90°,AD=BC,∵∠BAD=90°,BG=GF,∴AG=BG,……………………………………1分∴∠BAG=∠ABG,∴∠GAD=∠GBC,………………………2分在△GAD和△GBC中,AD BCDAG CBGAG BG=⎧⎪∠=∠⎨⎪=⎩∴△GAD≌△GBC,∴DG=CG;…………………………………………………………………………3分②解:连接FC 交DG 于点Q ,取FC 的中点H ,连接DH , ∵CE 垂直平分BF , ∴FC =BC ,∵四边形ABCD 是矩形, ∴AD =BC ,AB =DC , ∵BC =2AB , ∴FC =2CD ,∵∠FDC =90°,FH =HC , ∴FH =HC =DH ,∴CD =HC =DH , ∴△CDH 是等边三角形,∴∠FCD =60°,∴∠DFC =90°-∠FCD =30°, ………………5分 ∵FC =BC ,BG =GF , ∴∠FCG =∠BCG ,∵△GAD ≌△GBC ,∴∠ADG =∠BCG , ∴∠ADG =∠FCG ,∴∠FQG -∠ADG =∠FQG -∠FCG , ∴∠DGC =∠DFC =30°; ………………7分 (2)34; …………………………………………………………………………10分 24.解:(1)∵y =k (x -3)+4 ……………………………………2分∴当x =3时,y =4 ∴点P 的坐标为(3,4). ……………………………………3分 (2)延长AB 交x 轴于点E ,直线y =kx -3k +4交y 轴于点G ,∵当x =0时,y =4-3k , ∴G (0,4-3k ), ∴OG =4-3k .……………………4分 ∵BP 平分∠OBA , ∴∠ABP=∠OBP ,∵AB //y 轴, ∴∠ABP=∠OGB , ……………5分 ∴∠OBG=∠OGB , ∴OB =OG =4-3k . ……………6分 在Rt △OBE 中,222OB BE OE =+, ∴222)3-4()34(6k k =++,∴43-=k . …………………………………………7分(3)作PS ⊥x 轴于点S ,NT ⊥x 轴于点T , 在Rt △OPS 中,522=+=PS OS OP ,设M (m ,0) 当m =3时,PM =NM =4, ∴N (7,0) 当0<m <3时,可证△PMS ≌△MNT ,PS =MT =4,MS =NT =3-m , ∴N (4+m ,m -3) 当m >3时,可证△PMS ≌△MNT ,PS =MT =4,MS =NT =m -3, ∴N (4+m ,m -3) ∴点N 在直线y =x -7上 ………………………9分若直线y =x -7与y 轴交于点Q (0,7),则∠OQN =45°,作点O 关于直线y =x -7的对称点O '(7,-7),当点P 、N 、O '三点共线时,ON+PN 最小为PO ',此时,△OPN 的周长最小为OP+PO ',在Rt △O 'PR 中,137''22=+=PR RO PO ,………………10分 设直线PO '的解析式为y =kx +b , 把(3,4),(7,-7)代入得:3477k b k b +=⎧⎨+=-⎩, 解得:11-4494k b ⎧=⎪⎪⎨⎪=⎪⎩………11分 ∴直线PO '的解析式为449411-+=x y , 71149-44y x y x =-⎧⎪⎨=+⎪⎩, 解得:771528-15x y ⎧=⎪⎪⎨⎪=⎪⎩∴点N 的坐标为(1577,1528-).………12分。
达州市八年级下学期数学期末考试试卷
![达州市八年级下学期数学期末考试试卷](https://img.taocdn.com/s3/m/5384dc69960590c69fc37678.png)
达州市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题10小题,每小题3分,共30分) (共10题;共30分)1. (3分)(2019·成都) 2019年4月10日,人类首张黑洞图片问世,该黑洞位于室女座一个巨椭圆星系的中心,距离地球万光年.将数据万用科学计数法表示为()A .B .C .D .2. (3分)下列说法正确的是A . 相等的圆心角所对的弧相等B . 无限小数是无理数C . 阴天会下雨是必然事件D . 在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k3. (3分) (2019八下·江城期末) 把直线y=-x+1向上平移3个单位长度后得到的直线的解析式为()A . y=-x+4B . y=-x-2C . y=x+4D . y=x-24. (3分) (2019八下·江城期末) 在某校“建国70周年演讲比赛”中,有7名学生参加了决赛,他们决赛的最终成绩均不相同。
其中的一名学生想要知道自己能否进入前3名,那么他不仅要知道自己的成绩,还要了解这7名学生成绩的()A . 平均数B . 众数C . 中位数D . 方差5. (3分) (2019八下·江城期末) 如图,在平行四边形ABCD中,∠A=40°,则∠B的度数为()A . 100°B . 120°C . 140°D . 160°6. (3分) (2019八下·江城期末) 已知a= ,b= -2,则a,b的关系是()A . ab=1B . ab=-1C . a=bD . a+b=07. (3分) (2019八下·江城期末) 已知关于x的一次函数y=(1-m)x+2的图象如图所示,则实数m的取值范围为()A . m>1B . m<1C . m>0D . m<08. (3分) (2019八下·江城期末) 如图,在菱形ABCD中,对角线AC,BD交于点O,AO=3,BO=3 ,则菱形ABCD的面积是()A . 18B . 18C . 36D . 369. (3分) (2019八下·江城期末) 小李家距学校3千米,中午12点他从家出发到学校,途中路过文具店买了些学习用品,12点50分到校。
达州市初中数学八年级下期末测试(含答案)(1)
![达州市初中数学八年级下期末测试(含答案)(1)](https://img.taocdn.com/s3/m/d343964e69dc5022abea00b2.png)
一、选择题1.(0分)[ID :10230]当12a <<时,代数式2(2)1a a -+-的值为( ) A .1 B .-1C .2a-3D .3-2a2.(0分)[ID :10224]直角三角形两直角边长为a ,b ,斜边上高为h ,则下列各式总能成立的是( ) A .ab=h 2B .a 2+b 2=2h 2C .111a b h+= D .222111a b h+= 3.(0分)[ID :10222]一次函数y kx b =+的图象如图所示,点()3,4P 在函数的图象上.则关于x 的不等式4kx b +≤的解集是( )A .3x ≤B .3x ≥C .4x ≤D .4x ≥4.(0分)[ID :10215]已知△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,下列条件不能判断△ABC 是直角三角形的是( ) A .b 2﹣c 2=a 2B .a :b :c =3:4:5C .∠A :∠B :∠C =9:12:15D .∠C =∠A ﹣∠B5.(0分)[ID :10212]如图,矩形ABCD 中,对角线AC BD 、交于点O .若60,8AOB BD ∠==,则AB 的长为( )A .3B .4C .43D .56.(0分)[ID :10199]将一张长方形纸片按如图所示的方式折叠,,BC BD 为折痕,则CBD ∠的度数为( )A .60︒B .75︒C .90︒D .95︒7.(0分)[ID :10197]随机抽取某商场4月份5天的营业额(单位:万元)分别为3.4,2.9,3.0,3.1,2.6,则这个商场4月份的营业额大约是( ) A .90万元 B .450万元 C .3万元 D .15万元8.(0分)[ID :10147]正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是( )A .B .C .D .9.(0分)[ID :10141]12751348)的结果是( ) A .6B .3C .3D .1210.(0分)[ID :10136]已知一次函数y=-0.5x+2,当1≤x≤4时,y 的最大值是( ) A .1.5B .2C .2.5D .-611.(0分)[ID :10193]如图,以 Rt △ABC 的斜边 BC 为一边在△ABC 的同侧作正方形BCEF,设正方形的中心为 O ,连接 AO ,如果 AB =4,AO =62,那么 AC 的长等于( )A .12B .16C .43D .8212.(0分)[ID :10185]若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是( ) A .矩形B .一组对边相等,另一组对边平行的四边形C .对角线互相垂直的四边形D .对角线相等的四边形13.(0分)[ID :10180]如图,一次函数y =mx +n 与y =mnx (m ≠0,n ≠0)在同一坐标系内的图象可能是( )A .B .C .D .14.(0分)[ID :10164]某商场对上周某品牌运动服的销售情况进行了统计,如下表所示: 颜色黄色绿色白色紫色红色数量(件)12015023075430经理决定本周进货时多进一些红色的,可用来解释这一现象的统计知识的( ) A .平均数B .中位数C .众数D .平均数与众数15.(0分)[ID :10160]如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 的中点C '上.若6AB =,9BC =,则BF 的长为( )A .4B .32C .4.5D .5二、填空题16.(0分)[ID :10331]如图,在ABC 中,AC BC =,点D E ,分别是边AB AC ,的中点,延长DE 到点F ,使DE EF =,得四边形ADCF .若使四边形ADCF 是正方形,则应在ABC 中再添加一个条件为__________.17.(0分)[ID :10329]如图,在正方形ABCD 的外侧,作等边△ADE ,则∠AEB=_________°.18.(0分)[ID :10321]如图,在▱ABCD 中,∠D =120°,∠DAB 的平分线AE 交DC 于点E ,连接BE.若AE =AB ,则∠EBC 的度数为_______.19.(0分)[ID :10317]函数y =21xx -中,自变量x 的取值范围是_____. 20.(0分)[ID :45与最简二次根式21a -是同类二次根式,则a =_____. 21.(0分)[ID :10309]若ab <02a b _____.22.(0分)[ID :10305]3的整数部分是a ,小数部分是b 3a b -=______. 23.(0分)[ID :10278]观察下列各式:221111++1212⨯,221111++=1+2323⨯, 221111++=1+3434⨯, ……请利用你所发现的规律, 计算22111++12+22111++23+22111++34+…+22111++910,其结果为_______. 24.(0分)[ID :10255]如图,在□ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F .若4AE =,6AF =,且□ABCD 的周长为40,则□ABCD 的面积为_______.25.(0分)[ID :10235]将正比例函数y =﹣3x 的图象向上平移5个单位,得到函数_____的图象.三、解答题26.(0分)[ID :10403]2019年4月23日世界读书日这天,滨江初二年级的学生会,就2018年寒假读课外书数量(单位:本)做了调查,他们随机调查了甲、乙两个班的10名同学,调查过程如下 收集数据甲、乙两班被调查者读课外书数量(单位:本)统计如下: 甲:1,9,7,4,2,3,3,2,7,2 乙:2,6,6,3,1,6,5,2,5,4整理、描述数据绘制统计表如下,请补全下表: 班级 平均数 众数中位数 方差甲 43乙63.2分析数据、推断结论(1)该校初二乙班共有40名同学,你估计读6本书的同学大概有_____人; (2)你认为哪个班同学寒假读书情况更好,写出理由.27.(0分)[ID :10390]为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.经市场调查,甲种花卉的种植费用y (元)与种植面积()2x m 之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0300x ≤≤和300x >时,y 与x 的函数关系式;(2)广场上甲、乙两种花卉的种植面积共21200m ,若甲种花卉的种植面积不少于2200m ,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植费用最少?最少总费用为多少元?28.(0分)[ID :10383]已知正方形 ABCD 的对角线 AC ,BD 相交于点 O .(1)如图 1,E ,G 分别是 OB ,OC 上的点,CE 与 DG 的延长线相交于点 F . 若 DF ⊥CE ,求证:OE =OG ;(2)如图 2,H 是 BC 上的点,过点 H 作 EH ⊥BC ,交线段 OB 于点 E ,连结DH 交 CE 于点 F ,交 OC 于点 G .若 OE =OG , ①求证:∠ODG =∠OCE ; ②当 AB =1 时,求 HC 的长.29.(0分)[ID :10345]某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为9元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE 表示日销售量y (件)与销售时间x (天)之间的函数关系,已知线段DE 表示的函数关系中,时间每增加1天,日销售量减少4件,(1)请直接写出y 与x 之间的函数关系式;(2)日销售利润不低于960元的天数共有多少天?试销售期间,日销售最大利润是多少元? (3)工作人员在统计的过程中发现,有连续两天的销售利润之和为1980元,请你算出是哪两天.30.(0分)[ID:10333]某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲 78 86 74 81 75 76 87 70 75 9075 79 81 70 74 80 86 69 83 77乙 93 73 88 81 72 81 94 83 77 8380 81 70 81 73 78 82 80 70 40整理、描述数据按如下分数段整理、描述这两组样本数据:成绩x40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100人数部门甲0011171乙(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.377.575乙7880.581得出结论:a.估计乙部门生产技能优秀的员工人数为____________;b.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.D3.A4.C5.B6.C7.A8.B9.D10.A11.B12.D13.C14.C15.A二、填空题16.答案不唯一如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形再证明AC=DF即可再利用∠ACB=90°得出答案即可【详解】∠ACB=90°时四边形AD17.15°【解析】【分析】【详解】解:由题意可知:是等腰三角形故答案为18.45°【解析】【分析】由平行四边形的性质得出∠ABC=∠D=108°AB∥CD得出∠BAD =180°﹣∠D=60°由等腰三角形的性质和三角形内角和定理求出∠ABE=75°即可得出∠E BC的度数【详解19.x≠1【解析】【分析】根据分式有意义的条件即可解答【详解】函数y=中自变量x 的取值范围是x﹣1≠0即x≠1故答案为:x≠1【点睛】本题考查了函数自变量的取值范围当函数表达式是分式时要注意考虑分式的分20.3【解析】【分析】先将化成最简二次根式然后根据同类二次根式得到被开方数相同可得出关于的方程解出即可【详解】解:∵与最简二次根式是同类二次根式∴解得:故答案为:【点睛】本题考查了最简二次根式的化简以及21.【解析】【分析】二次根式有意义就隐含条件b>0由ab<0先判断出ab的符号再进行化简即可【详解】若ab<0且代数式有意义;故有b>0a<0;则代数式=|a|=-a故答案为:-a【点睛】本题主要考查二22.【解析】【详解】若的整数部分为a小数部分为b∴a=1b=∴a-b==1故答案为123.【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案详解:由题意可得:+++…+=+1++1++…+1+=9+(1﹣+﹣+﹣+…+﹣)=9+=9故答案为9点睛:此题主要考查了数字变化规律正确24.48【解析】∵▱ABCD的周长=2(BC+CD)=40∴BC+CD=20①∵AE⊥BC于EAF⊥CD于FAE=4AF=6∴S▱ABCD=4BC=6CD整理得BC=CD②联立①②解得CD=8∴▱ABC25.y=-3x+5【解析】【分析】平移时k的值不变只有b发生变化【详解】解:原直线的k=-3b=0;向上平移5个单位得到了新直线那么新直线的k=-3b=0+5=5∴新直线的解析式为y=-3x+5故答案为三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题 1.A 解析:A 【解析】分析:首先由,即可将原式化简,然后由1<a <2,去绝对值符号,继而求得答案. 详解:∵1<a <2,(a-2), |a-1|=a-1,(a-2)+(a-1)=2-1=1. 故选A .点睛:此题考查了二次根式的性质与化简以及绝对值的性质,解答本题的关键在于熟练掌握二次根式的性质.2.D解析:D 【解析】 【分析】 【详解】解:根据直角三角形的面积可以导出:斜边c=ab h. 再结合勾股定理:a 2+b 2=c 2.进行等量代换,得a 2+b 2=222a b h,两边同除以a 2b 2, 得222111a b h +=. 故选D .3.A解析:A【解析】【分析】观察函数图象结合点P 的坐标,即可得出不等式的解集.【详解】解:观察函数图象,可知:当3x ≤时,4kx b +≤.故选:A .【点睛】考查了一次函数与一元一次不等式以及一次函数的图象,观察函数图象,找出不等式4kx b +≤的解集是解题的关键.4.C解析:C【解析】【分析】根据勾股定理逆定理可判断出A 、B 是否是直角三角形;根据三角形内角和定理可得C 、D 是否是直角三角形.【详解】A 、∵b 2-c 2=a 2,∴b 2=c 2+a 2,故△ABC 为直角三角形;B 、∵32+42=52,∴△ABC 为直角三角形;C 、∵∠A :∠B :∠C=9:12:15,151807591215C ︒︒∠=⨯=++,故不能判定△ABC 是直角三角形;D 、∵∠C=∠A-∠B ,且∠A+∠B+∠C=180°,∴∠A=90°,故△ABC 为直角三角形; 故选C .【点睛】考查勾股定理的逆定理的应用,以及三角形内角和定理.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断. 5.B解析:B【解析】【分析】由四边形ABCD 为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB 为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO 为60°,据此即可求得AB 长.【详解】∵在矩形ABCD 中,BD=8,∴AO=12AC , BO=12BD=4,AC=BD ,∴AO=BO ,又∵∠AOB=60°,∴△AOB 是等边三角形,∴AB=OB=4,故选B.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解本题的关键.6.C解析:C【解析】【分析】根据图形,利用折叠的性质,折叠前后形成的图形全等,对应角相等,利用平角定义ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°,再通过等量代换可以求出CBD ∠. 【详解】解:∵长方形纸片按如图所示的方式折叠,,BC BD 为折痕∴A BC ABC '∠=∠,E BD EBD '∠=∠∵ABC ∠+A BC '∠+E BD '∠+EBD ∠=180°(平角定义)∴A BC '∠+A BC '∠+E BD '∠+E BD '∠=180°(等量代换)A BC '∠+E BD '∠=90°即CBD ∠=90°故选:C .【点睛】本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.7.A解析:A【解析】1(3.4 2.9 3.0 3.1 2.6)35x =++++=.所以4月份营业额约为3×30=90(万元). 8.B解析:B【解析】【分析】先根据正比例函数y kx =的函数值y 随x 的增大而增大判断出k 的符号,再根据一次函数的性质进行解答即可.【详解】 解:正比例函数y kx =的函数值y 随x 的增大而增大,00k k ∴->,<,∴一次函数y x k =-的图象经过一、三、四象限.故选B .【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出k 的取值范围.9.D解析:D【解析】【分析】【详解】12===. 故选:D. 10.A解析:A【解析】【分析】根据一次函数的系数k=-0.5<0,可得出y 随x 值的增大而减小,将x=1代入一次函数解析式中求出y 值即可.【详解】在一次函数y=-0.5x+2中k=-0.5<0,∴y 随x 值的增大而减小,∴当x=1时,y 取最大值,最大值为-0.5×1+2=1.5, 故选A .【点睛】本题考查了一次函数的性质,牢记“k <0,y 随x 的增大而减小”是解题的关键.11.B解析:B【解析】【分析】首选在AC 上截取4CG AB ==,连接OG ,利用SAS 可证△ABO ≌△GCO ,根据全等三角形的性质可以得到:OA OG ==AOB COG ∠=∠,则可证△AOG 是等腰直角三角形,利用勾股定理求出12AG =,从而可得AC 的长度.【详解】解:如下图所示,在AC 上截取4CG AB ==,连接OG ,∵四边形BCEF 是正方形,90BAC ∠=︒,∴OB OC =,90BAC BOC ∠=∠=︒,∴点B 、A 、O 、C 四点共圆,∴ABO ACO ∠=∠,在△ABO 和△GCO 中,{BA CGABO ACO OB OC=∠=∠=,∴△ABO ≌△GCO , ∴62OA OG ==,AOB COG ∠=∠,∵90BOC COG BOG ∠=∠+∠=︒,∴90AOG AOB BOG ∠=∠+∠=︒,∴△AOG 是等腰直角三角形,∴()()22626212AG =+=,∴12416AC =+=.故选:B .【点睛】本题考查正方形的性质;全等三角形的判定与性质;勾股定理;直角三角形的性质.12.D解析:D【解析】【分析】如图,根据三角形的中位线定理得到EH ∥FG ,EH=FG ,EF=12BD ,则可得四边形EFGH 是平行四边形,若平行四边形EFGH 是菱形,则可有EF=EH ,由此即可得到答案.【详解】如图,∵E,F,G,H分别是边AD,DC,CB,AB的中点,∴EH=12AC,EH∥AC,FG=12AC,FG∥AC,EF=12BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形,假设AC=BD,∵EH=12AC,EF=12BD,则EF=EH,∴平行四边形EFGH是菱形,即只有具备AC=BD即可推出四边形是菱形,故选D.【点睛】本题考查了中点四边形,涉及到菱形的判定,三角形的中位线定理,平行四边形的判定等知识,熟练掌握和灵活运用相关性质进行推理是解此题的关键.13.C解析:C【解析】【分析】根据m、n同正,同负,一正一负时利用一次函数的性质进行判断.【详解】解:①当mn>0时,m、n同号,y=mnx过一三象限;同正时,y=mx+n经过一、二、三象限,同负时,y=mx+n过二、三、四象限;②当mn<0时,m、n异号,y=mnx过二四象限,m>0,n<0时,y=mx+n经过一、三、四象限;m<0,n>0时,y=mx+n过一、二、四象限;故选:C.【点睛】本题考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.14.C解析:C【解析】试题解析:由于销售最多的颜色为红色,且远远多于其他颜色,所以选择多进红色运动装的主要根据众数.故选C.考点:统计量的选择.15.A解析:A【解析】【分析】【详解】∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC-BF=9-BF,在Rt△C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9-BF)2,解得,BF=4,故选A.二、填空题16.答案不唯一如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形再证明AC=DF即可再利用∠ACB=90°得出答案即可【详解】∠ACB=90°时四边形AD解析:答案不唯一,如∠ACB=90°或∠BAC=45°或∠B=45°【解析】【分析】先证明四边形ADCF是平行四边形,再证明AC=DF即可,再利用∠ACB=90°得出答案即可.【详解】∠ACB=90°时,四边形ADCF是正方形,理由:∵E是AC中点,∴AE=EC,∵DE=EF,∴四边形ADCF是平行四边形,∵AD=DB,AE=EC,∴DE=12 BC,∴DF=BC,∵CA=CB,∴AC=DF,∴四边形ADCF是矩形,点D. E分别是边AB、AC的中点,∴DE//BC,∵∠ACB=90°,∴∠AED=90°,∴矩形ADCF 是正方形.故答案为∠ACB=90°.【点睛】此题考查正方形的判定,解题关键在于掌握判定法则17.15°【解析】【分析】【详解】解:由题意可知:是等腰三角形故答案为 解析:15°【解析】【分析】【详解】解:由题意可知:90,60.BAD DAE ∠=∠= .AB AD AE ==150.BAE ∴∠=ABE △是等腰三角形15.AEB ∴∠=故答案为15.18.45°【解析】【分析】由平行四边形的性质得出∠ABC=∠D=108°AB∥CD 得出∠BAD=180°﹣∠D=60°由等腰三角形的性质和三角形内角和定理求出∠ABE=75°即可得出∠EBC 的度数【详解解析:45°【解析】【分析】由平行四边形的性质得出∠ABC =∠D =108°,AB ∥CD ,得出∠BAD =180°﹣∠D =60°,由等腰三角形的性质和三角形内角和定理求出∠ABE =75°,即可得出∠EBC 的度数.【详解】解:∵四边形ABCD 是平行四边形,∴∠ABC =∠D =120°,AB ∥CD ,∴∠BAD =180°﹣∠D =60°,∵AE 平分∠DAB ,∴∠BAE =60°÷2=30°,∵AE =AB ,∴∠ABE =(180°﹣30°)÷2=75°,∴∠EBC =∠ABC ﹣∠ABE =45°;故答案为:45°. 【点睛】本题考查了平行四边形的性质、等腰三角形的性质以及三角形内角和定理,正确理解和掌握性质定理是解决本题的关键.19.x≠1【解析】【分析】根据分式有意义的条件即可解答【详解】函数y =中自变量x 的取值范围是x ﹣1≠0即x≠1故答案为:x≠1【点睛】本题考查了函数自变量的取值范围当函数表达式是分式时要注意考虑分式的分解析:x ≠1【解析】【分析】根据分式有意义的条件即可解答.【详解】函数y =21x x -中,自变量x 的取值范围是x ﹣1≠0,即x ≠1, 故答案为:x ≠1.【点睛】 本题考查了函数自变量的取值范围,当函数表达式是分式时,要注意考虑分式的分母不能为0.20.3【解析】【分析】先将化成最简二次根式然后根据同类二次根式得到被开方数相同可得出关于的方程解出即可【详解】解:∵与最简二次根式是同类二次根式∴解得:故答案为:【点睛】本题考查了最简二次根式的化简以及 解析:3【解析】【分析】化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a 的方程,解出即可.【详解】=与最简二次根式∴215a -=,解得:3a =故答案为:3【点睛】本题考查了最简二次根式的化简以及同类二次根式等知识点,能够正确得到关于a 的方程是解题的关键.21.【解析】【分析】二次根式有意义就隐含条件b>0由ab <0先判断出ab 的符号再进行化简即可【详解】若ab <0且代数式有意义;故有b >0a <0;则代数式=|a|=-a 故答案为:-a 【点睛】本题主要考查二解析:-【解析】【分析】二次根式有意义,就隐含条件b>0,由ab <0,先判断出a 、b 的符号,再进行化简即可.【详解】若ab <0故有b>0,a<0;.故答案为:.【点睛】本题主要考查二次根式的化简方法与运用:当a>0;当a<0;当a=0.22.【解析】【详解】若的整数部分为a小数部分为b∴a=1b=∴a-b==1故答案为1解析:【解析】【详解】a,小数部分为b,∴a=1,b1,-b1)=1.故答案为1.23.【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案详解:由题意可得:+++…+=+1++1++…+1+=9+(1﹣+﹣+﹣+…+﹣)=9+=9故答案为9点睛:此题主要考查了数字变化规律正确解析:9 9 10【解析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:=11+12⨯+1+123⨯+1+134⨯+ (1)1910⨯=9+(1﹣12+12﹣13+13﹣14+…+19﹣110)=9+9 10=99 10.故答案为99 10.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.24.48【解析】∵▱ABCD的周长=2(BC+CD)=40∴BC+CD=20①∵AE⊥BC于EAF⊥CD于FAE=4AF=6∴S▱ABCD=4BC=6CD整理得BC=CD②联立①②解得CD=8∴▱ABC解析:48【解析】∵▱ABCD的周长=2(BC+CD)=40,∴BC+CD=20①,∵AE⊥BC于E,AF⊥CD于F,AE=4,AF=6,∴S▱ABCD=4BC=6CD,整理得,BC=32CD②,联立①②解得,CD=8,∴▱ABCD的面积=AF⋅CD=6CD=6×8=48.故答案为48.25.y=-3x+5【解析】【分析】平移时k的值不变只有b发生变化【详解】解:原直线的k =-3b=0;向上平移5个单位得到了新直线那么新直线的k=-3b=0+5=5∴新直线的解析式为y=-3x+5故答案为解析:y=-3x+5【解析】【分析】平移时k的值不变,只有b发生变化.【详解】解:原直线的k=-3,b=0;向上平移5个单位得到了新直线,那么新直线的k=-3,b=0+5=5.∴新直线的解析式为y=-3x+5.故答案为y=-3x+5.【点睛】求直线平移后的解析式时要注意平移时k和b的值的变化,掌握这点很重要.三、解答题26.统计图补全见解析(1)12 (2)乙班,理由见解析【解析】【分析】根据平均数、众数、中位数、方差的概念填表(1)根据样本求出读6本书的学生的占比,再用初二乙班总人数乘以占比即可求解;(2)根据方差的性质进行判断即可.【详解】甲组的众数是2,乙组中位数是454.52+= 乙组的平均数:()2663165254104+++++++++÷= 甲组的方差:()()()()()()()()()()222222222214947444243434247424 6.610-+-+-+-+-+-+-+-+-+-=补全统计表如下:403012⨯=%(人)故估计读6本书的同学大概有12人;(2)乙班,乙班的方差较小,说明乙班学生普遍有阅读意识,而甲班方差较大,说明甲班虽然存在一部分读书意识较强的同学,但也存在一部分读书意识淡薄的同学. 【点睛】本题考查了统计图的问题,掌握平均数、众数、中位数、方差的概念以及性质是解题的关键.27.(1)()()130,03008015000.300x x y x x ⎧≤≤⎪=⎨+>⎪⎩;(2)应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元. 【解析】分析:(1)由图可知y 与x 的函数关系式是分段函数,待定系数法求解析式即可. (2)设甲种花卉种植为 a m 2,则乙种花卉种植(12000-a )m 2,根据实际意义可以确定a 的范围,结合种植费用y (元)与种植面积x (m 2)之间的函数关系可以分类讨论最少费用为多少.详解:(1)()()130,03008015000.300x x y x x ⎧≤≤⎪=⎨+>⎪⎩(2)设甲种花卉种植面积为2am ,则乙种花卉种植面积为()21200a m -.()200,21200a a a ≥⎧∴⎨≤-⎩200800a ∴≤≤. 当200300a ≤<时,()1130100120030120000W a a a =+-=+. 当200a =时,min 126000W =元.当300800a ≤≤时,()2801500010020013500020W a a a =++-=-. 当800a =时,min 119000W =元.119000126000<,∴当800a =时,总费用最低,最低为119000元.此时乙种花卉种植面积为21200800400()m -=.答:应分配甲种花卉种植面积为2800m ,乙种花卉种植面积为2400m ,才能使种植总费用最少,最少总费用为119000元.点睛:本题是看图写函数解析式并利用解析式解决问题的题目,考查分段函数的表达和分类讨论的数学思想.28.(1)证明见解析;(2 【解析】 【分析】(1)欲证明OE =OG ,只要证明△DOG ≌△COE (ASA )即可; (2)①欲证明∠ODG =∠OCE ,只要证明△ODG ≌△OCE 即可; ②设CH =x ,由△CHE ∽△DCH ,可得EH HCHC CD=,即HC 2=EH •CD ,由此构建方程即可解决问题. 【详解】解:(1)如图1中,∵四边形ABCD 是正方形,∴AC ⊥BD ,OD =OC , ∴∠DOG =∠COE =90°, ∴∠OEC +∠OCE =90°,∵DF ⊥CE ,∴∠OEC +∠ODG =90°, ∴∠ODG =∠OCE ,∴△DOG ≌△COE (ASA ),∴OE =OG .(2)①证明:如图2中,∵OG =OE ,∠DOG =∠COE =90°OD =OC , ∴△ODG ≌△OCE ,∴∠ODG =∠OCE .②解:设CH =x ,∵四边形ABCD 是正方形,AB =1, ∴BH =1﹣x ,∠DBC =∠BDC =∠ACB =45°,∵EH ⊥BC ,∴∠BEH =∠EBH =45°,∴EH =BH =1﹣x , ∵∠ODG =∠OCE ,∴∠BDC ﹣∠ODG =∠ACB ﹣∠OCE , ∴∠HDC =∠ECH ,∵EH ⊥BC ,∴∠EHC =∠HCD =90°, ∴△CHE ∽△DCH , ∴EH HCHC CD=,∴HC 2=EH •CD , ∴x 2=(1﹣x )•1,解得x=512-或512--(舍弃),∴HC=512-.29.(1)20(018)4432(1830)x xyx x<≤≤⎧=⎨-+≤⎩;(2)试销售期间,日销售最大利润是1080元;(3)连续两天的销售利润之和为1980元的是第16,17两天和第25,26两天.【解析】【分析】(1)根据点D的坐标利用待定系数法即可求出线段OD的函数关系式,根据第23天销售了340件,结合时间每增加1天日销售量减少4件,即可求出线段DE的函数关系式,联立两函数关系式求出交点D的坐标,此题得解;(2)分0≤x≤18和18<x≤30,找出关于x的一元一次不等式,解之即可得出x的取值范围,有起始和结束时间即可求出日销售利润不低于960元的天数,再根据点D的坐标结合日销售利润=单件利润×日销售数,即可求出日销售最大利润;(3) 设第x天和第(x+1)天的销售利润之和为1980元,据此列出方程,根据取值范围解答即可.【详解】(1)20(018),4432(1830).x xyx x≤≤⎧=⎨-+≤⎩<(2)当0≤x≤18时,根据题意得,(9﹣6)×20x≥960,解得:x≥16;当18<x≤30时,根据题意得,(9﹣6)×(-4x+432)≥960,解得:x≤28.∴16≤x≤28. 28-16+1=13(天),∴日销售利润不低于960元的天数共有13天.由20x=-4x+432解得,x=18,当x=18时,y=20x=360,∴点D的坐标为(18,360),∴日最大销售量为360件,360×(9-6)=1080(元),∴试销售期间,日销售最大利润是1080元.(3)设第x天和第(x+1)天的销售利润之和为1980元.∵1980÷(9﹣6)=660<340×2,∴x<17,或x+1>23,当x<17时,根据题意可得20x+20(x+1)=660,解得x=16,符合,当x+1>23时,-4x+432-4(x+1)+432=660,解得x=25,符合,∴连续两天的销售利润之和为1980元的是第16,17两天和第25,26两天.【点睛】本题考查了一次函数的应用、待定系数法一次函数解析式,解题的关键是利用待定系数法求出OD的函数关系式以及依照数量关系找出DE的函数关系式.30.a.240,b.乙;理由见解析.【解析】试题分析:(1)由表可知乙部门样本的优秀率为:12100%60%40⨯=,则整个乙部门的优秀率也是60%,因此即可求解;(2)观察图表可得出结论.试题解析:如图:整理、描述数据按如下分数段整理按如下分数段整理数据:成绩x人数部门4049x≤≤5059x≤≤6069x≤≤7079x≤≤8089x≤≤90100x≤≤甲0011171乙1007102a.估计乙部门生产技能优秀的员工人数为400×1240=240(人);b.答案不唯一,言之有理即可.可以推断出甲部门员工的生产技能水平较高,理由如下:①甲部门生产技能测试中,测试成绩的平均数较高,表示甲部门生产技能水平较高;②甲部门生产技能测试中,没有生产技能不合格的员工.可以推断出乙部门员工的生产技能水平较高,理由如下:①乙部门生产技能测试中,测试成绩的中位数较高,表示乙部门生产技能水平优秀的员工较多;②乙部门生产技能测试中,测试成绩的众数较高,表示乙部门生产技能水平较高.。
2019-2020学年八年级下册第二学期期末考试数学试卷及参考答案(WORD版)
![2019-2020学年八年级下册第二学期期末考试数学试卷及参考答案(WORD版)](https://img.taocdn.com/s3/m/a2e2f55e1711cc7930b7161e.png)
2019-2020学年八年级下册第二学期期末考试数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.若分式11xx+-有意义,则x的取值范围是()A.x≠1B.x≠﹣1 C.x=1 D.x=﹣1 2.在下列各式由左到右的变形中,不是因式分解的是()A.a2﹣ab=a(a﹣b)B.(a﹣2)(a+1)=a2﹣a﹣2C.x2﹣2x+1=(x﹣1)2D.x2﹣y2=(x+y)(x﹣y)3.在△ABC中,AB=AC,∠A=60°,BC=6,则AB的值是()A.12 B.8 C.6 D.34.以下由两个全等的30°直角三角板拼成的图形中,属于中心对称图形的是()5.已知等腰三角形有两条边的长分别是3,7,则这个等腰三角形的周长为()A.17 B.13 C.17或13 D.106.一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集是()A.x<﹣2 B.x<0 C.x>0 D.x>4 7.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°8.2008北京奥运会的吉祥物是“福娃”,某玩具厂要生产a只“福娃”,原计划每天生产b只,实际每天生产了(b+c)只,则该厂提前完成任务的天数是()A.acB.ab c+-abC.ab c+D.ab-ab c+9.在▱ABCD中,对角线AC,BD相交于点O,以点O为坐标原点建立平面直角坐标系,其中A(a,b),B(a﹣1,b+2),C(3,1),则点D的坐标是()A.(4,﹣1)B.(﹣3,﹣1)C.(2,3)D.(﹣4,1)10.如图,在5×5的方格纸中,A,B两点在格点上,线段AB绕某点逆时针旋转角α后得到线段A 'B ',点A '与A 对应,则角α的大小为( )A .30°B .60°C .90°D .120°二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题纸的相应位置) 11.计算2515x y y x = . 12.“若实数a ,b ,c 满足a <b <c ,则a +b <c ”,能够说明该命题是假命题的一组a ,b ,c 的值依次为 .13.将点A (4,3)先向左平移6个单位,再向下平移4个单位得到点A 1,则A 1的坐标是 .14.过n 边形的一个顶点共有2条对角线,则该n 边形的内角和是 度.15.如图,点E 在∠BOA 的平分线上,EC ⊥OB ,垂足为C ,点F 在OA 上,若∠AFE =30°,EC =3,则EF = .16.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE ⊥AC 交AB 于点E ,若BC =4,△AOE 的面积为6,则BE = .三、解答题(本大题共9小题,共86分,请在答题纸的相应位置解答)17.(8分)已知ab =3,a +b =5,利用因式分解求a 3b +2a 2b 2+ab 3的值.18.(8分)解不等式组37113222x x x x -≤+⎧⎪⎨+>⎪⎩ () ().19.(8分)先化简,再求值:(2﹣1a a +)÷241a a -+,其中a=2+2.20.(8分)已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.21.(8分)求证:三角形的一条中位线与第三边上的中线互相平分.要求:(1)根据给出的△ABC和它的一条中位线DE,在给出的图形上,请用尺规作出BC边上的中线AF,交DE于点O.不写作法,保留痕迹;(2)据此写出已知,求证和证明过程.22.(10分)荔枝上市后,某水果店的老板用500元购进第一批荔枝,销售完后,又用800元购进第二批荔枝,所购件数是第一批购进件数的2倍,但每件进价比第一批进价少5元.(1)求第一批荔枝每件的进价;(2)若第二批荔枝以30元/件的价格销售,在售出所购件数的50%后,为了尽快售完,决定降价销售,要使第二批荔枝的销售利润不少于300元,剩余的荔枝每件售价至少多少元?23.(10分)如图,在△ABC中,∠C=90°,∠CAB=20°,BC=7;线段AD是由线段AC绕点A 按逆时针方向旋转110°得到,△EFG是由△ABC沿CB方向平移得到,且直线EF过点D(1)求∠DAE的大小.(2)求DE的长.24.(12分)在平面直角坐标系xOy中,一次函数y1=k1x+4m(m≠0)的图象l1经过点B(p,2m).(1)当m=1,k1=﹣1时,且正比例函数y2=k2x的图象l2经过点B.①若y1<y2,求x的取值范围;②若一次函数y3=k3x+1的图象为l3,且l1,l2,l3不能围成三角形,求k3的值;(2)若直线l1与x轴交于点C(n,0),且n+2p=4m,求m,n的数量关系.25.(14分)如图,在▱ABCD中,点O是对角线AC的中点,点E在BC上,且AB=AE,连接EO 并延长交AD于点F.过点B作AE的垂线,垂足为H,交AC于点G.(1)求证:DF=BE;(2)若∠ACB=45°.①求证:∠BAG=∠BGA;②探索DF与CG的数量关系,并说明理由.参考答案与解析一、选择题(本大题共10小题,每小题4分,共40分)1.若分式11xx+-有意义,则x的取值范围是()A.x≠1 B.x≠﹣1 C.x=1 D.x=﹣1答案:A2.在下列各式由左到右的变形中,不是因式分解的是()A.a2﹣ab=a(a﹣b)B.(a﹣2)(a+1)=a2﹣a﹣2C.x2﹣2x+1=(x﹣1)2D.x2﹣y2=(x+y)(x﹣y)答案:B3.在△ABC中,AB=AC,∠A=60°,BC=6,则AB的值是()A.12 B.8 C.6 D.3答案:C4.以下由两个全等的30°直角三角板拼成的图形中,属于中心对称图形的是()答案:D5.已知等腰三角形有两条边的长分别是3,7,则这个等腰三角形的周长为()A.17 B.13 C.17或13 D.10答案:A6.一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集是()A.x<﹣2 B.x<0 C.x>0 D.x>4答案:A7.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A .20°B .35°C .40°D .70°答案:B 8.2008北京奥运会的吉祥物是“福娃”,某玩具厂要生产a 只“福娃”,原计划每天生产b 只,实际每天生产了(b +c )只,则该厂提前完成任务的天数是( )A .a cB .a b c +-a bC .a b c +D .a b -a b c+ 答案:D9.在▱ABCD 中,对角线AC ,BD 相交于点O ,以点O 为坐标原点建立平面直角坐标系,其中A (a ,b ),B (a ﹣1,b +2),C (3,1),则点D 的坐标是( )A .(4,﹣1)B .(﹣3,﹣1)C .(2,3)D .(﹣4,1)答案:A10.如图,在5×5的方格纸中,A ,B 两点在格点上,线段AB 绕某点逆时针旋转角α后得到线段A 'B ',点A '与A 对应,则角α的大小为( )A .30°B .60°C .90°D .120°答案:C 二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题纸的相应位置) 11.计算2515x y y x = . 答案:13x12.“若实数a ,b ,c 满足a <b <c ,则a +b <c ”,能够说明该命题是假命题的一组a ,b ,c 的值依次为 .答案:1,2,313.将点A (4,3)先向左平移6个单位,再向下平移4个单位得到点A 1,则A 1的坐标是 .答案:(﹣2,﹣1)14.过n 边形的一个顶点共有2条对角线,则该n 边形的内角和是 度.答案:54015.如图,点E 在∠BOA 的平分线上,EC ⊥OB ,垂足为C ,点F 在OA 上,若∠AFE =30°,EC =3,则EF = .答案:616.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,过点O 作OE ⊥AC 交AB 于点E ,若BC =4,△AOE 的面积为6,则BE = .答案:25三、解答题(本大题共9小题,共86分,请在答题纸的相应位置解答)17.(8分)已知ab =3,a +b =5,利用因式分解求a 3b +2a 2b 2+ab 3的值.解:原式=222(2)()ab a ab b ab a b ++=+=3×52=7518.(8分)解不等式组37113222x x x x -≤+⎧⎪⎨+>⎪⎩ () (). 解:由(1)得:x ≤4由(2)得:x >1,所以,原不等式组的解为:1<x ≤419.(8分)先化简,再求值:(2﹣1a a +)÷241a a -+,其中a =2+2. 解:原式=21a a ++÷241a a -+ =21a a ++×1(2)(2)a a a ++- =12a - 当a =2+2时,原式=22 20.(8分)已知:在△ABC 中,AB =AC ,D 为AC 的中点,DE ⊥AB ,DF ⊥BC ,垂足分别为点E ,F ,且DE =DF .求证:△ABC 是等边三角形.解:因为DE ⊥AB ,DF ⊥BC ,且DE =DF ,又D 是AC 的中点,所以,AD =DC ,在Rt △AED 和Rt △CFD 中DE DF AD DC =⎧⎨=⎩, 所以,Rt △AED ≌Rt △CFD ,所以,∠A =∠C ,所以,BC =BA又AB =AC所以,AB =AC =BC所以,△ABC 是等边三角形.21.(8分)求证:三角形的一条中位线与第三边上的中线互相平分.要求:(1)根据给出的△ABC 和它的一条中位线DE ,在给出的图形上,请用尺规作出BC 边上的中线AF ,交DE 于点O .不写作法,保留痕迹;(2)据此写出已知,求证和证明过程.解:(1)作线段BC 的中段线,BC 的中点为F ,连结AF ,即可。
达州市名校2019-2020学年八年级第二学期期末教学质量检测数学试题含解析
![达州市名校2019-2020学年八年级第二学期期末教学质量检测数学试题含解析](https://img.taocdn.com/s3/m/dfd38a3eb9d528ea80c77957.png)
三、解答题
18.如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米.
(1)求路灯A的高度;
(2)当王华再向前走2米,到达F处时,他的影长是多少?
19.(6分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.
9.某种材料的厚度是 ,0.0000034这个数用科学记数法表示为()
A. B. C. D.
10.以下列数组为边长中,能构成直角三角形的是( )
A.6,7,8B. , ,
C.1,1, D. , ,
二、填空题
11.已知关于 函数 ,若它是一次函数,则 ______.
12.若关于x的一元二次方程 有两个不相等的实数根,则m的取值范围________
13.某班有48名同学,在一次英语单词竞赛成绩统计中,成绩在81~90这一分数段的人数所占的频率是0.25,那么成绩在这个分数段的同学有_________名.
14. 有意义,则实数a的取值范围是__________.
15.若最简二次根式 与 的被开方数相同,则a的值为______.
16.如图,在□ABCD中,对角线AC、BD相交于点O,AB=OB,E为AC上一点,BE平分∠ABO,EF⊥BC于点F,∠CAD=45°,EF交BD于点P,BP= ,则BC的长为_______.
(1)求m的值及一次函数y=kx+b的表达式;
(2)观察函数图象,直接写出关于x的不等式 x≤kx+b的解集;
(3)若P是y轴上一点,且△PBC的面积是8,直接写出点P的坐标.
达州市名校2019-2020学年初二下期末教学质量检测数学试题含解析
![达州市名校2019-2020学年初二下期末教学质量检测数学试题含解析](https://img.taocdn.com/s3/m/85c444985901020207409cc4.png)
达州市名校2019-2020学年初二下期末教学质量检测数学试题一、选择题(每题只有一个答案正确)1.若反比例函数k y x =的图象经过点()1,2--,则该反比例函数的图象位于( ) A .第一、二象限 B .第二、三象限C .第二、四象限D .第一、三象限 2.已知实数x 满足()()2224120x x x x ----=,则代数式21x x -+的值是( )A .7B .-1C .7或-1D .-5或33.用四张全等的直角三角形纸片拼成了如图所示的图形,该图形( )A .既是轴对称图形也是中心对称图形B .是轴对称图形但并不是中心对称图形C .是中心对称图形但并不是轴对称图形D .既不是轴对称图形也不是中心对称图形4.若分式方程1133a x x x -+=--有增根,则a 的值是( ) A .4 B .3 C .2 D .15.若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是( )A .10B .9C .8D .66.化简2x x x 11x+--的结果是 A .x +1B .x 1-C .x -D .x 7.若分式2x x -有意义,则x 应满足的条件是( ) A .2x ≠ B .2x = C .>2x D .0x ≠8.已知a >b ,c≠0,则下列关系一定成立的是( ).A .ac >bcB .a b c c >C .c-a >c-bD .c+a >c+b9.如图①,在正方形ABCD 中,点E 是AB 的中点,点P 是对角线AC 上一动点。
设PC 的长度为x ,PE 与PB 的长度和为y ,图②是y 关于x 的函数图象,则图象上最低点H 的坐标为( )A .(1,2)B .(3,2)C .42,53⎛⎫ ⎪ ⎪⎝D .()5,6 10.如图,AD 是△ABC 的角平分线,DF ⊥AB,垂足为F,DE=DG,△ADG 和△AED 的面积分别为50和38,则△EDF 的面积为( )A .6B .12C .4D .8二、填空题 11.某班有48名同学,在一次英语单词竞赛成绩统计中,成绩在81~ 90这一分数段的人数所占的频率是0.25,那么成绩在这个分数段的同学有_________名.12.二次三项式()2459x k x --+是完全平方式,则k 的值是__________. 13.如图,在ABC 中,90ACB ∠=︒,点D ,E ,F 分别是AB ,BC ,CA 的中点,若2CD =,则线段EF 的长是__________.14.把直线y =﹣2x ﹣1沿x 轴向右平移3个单位长度,所得直线的函数解析式为_____.15.如图,已知点A 的坐标为(5,0),直线y=x+b (b≥0)与y 轴交于点B ,连接AB ,∠α=75°,则b 的值为_____.16.如图,在Rt △ABC 中,∠ACB =90°,D 是AB 的中点,若BC =BD ,则∠A =_____度.17.在一个长6m、宽3m、高2m的房间里放进一根竹竿,竹竿最长可以是________.三、解答题18.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式(x2﹣4x+1)(x2﹣4x+7)+9进行因式分解的过程.解:设x2﹣4x=y原式=(y+1)(y+7)+9(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的;A.提取公因式法B.平方差公式法C.完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果:;(3)请你用换元法对多项式(x2+2x)(x2+2x+2)+1进行因式分解.19.(6分)如图1,在正方形ABCD 中,P 是对角线AC 上的一点,点E 在BC 的延长线上,且PE = PB .(1)求证:△BCP≌△DCP ;(1)求证:∠DPE =∠ABC ;(3)把正方形ABCD 改为菱形ABCD ,且∠ABC = 60︒,其他条件不变,如图1.连接DE ,试探究线段BP 与线段DE 的数量关系,并说明理由.20.(6分)对于平面直角坐标系xOy 中的点P 和正方形给出如下定义:若正方形的对角线交于点O ,四条边分别和坐标轴平行,我们称该正方形为原点正方形,当原点正方形上存在点Q ,满足PQ≤1时,称点P 为原点正方形的友好点.(1)当原点正方形边长为4时,①在点P 1(0,0),P 2(-1,1),P 3(3,2)中,原点正方形的友好点是__________;②点P 在直线y=x 的图象上,若点P 为原点正方形的友好点,求点P 横坐标的取值范围;(2)乙次函数y=-x+2的图象分别与x 轴,y 轴交于点A ,B ,若线段AB 上存在原点正方形的友好点,直接写出原点正方形边长a 的取值范围.21.(6分)计算:①|3-2|+|3-2|-|2-1|②38+2(2) -14+(-1)1. 22.(8分)如图,矩形ABCD 的边BC 在x 轴上,点A (a ,4)和D 分别在反比函数y =-和y =(m >0)的图象上.(1)当AB =BC 时,求m 的值。
2020年达州市名校八年级第二学期期末学业质量监测数学试题含解析
![2020年达州市名校八年级第二学期期末学业质量监测数学试题含解析](https://img.taocdn.com/s3/m/dfa5fadcf242336c1fb95e38.png)
2020年达州市名校八年级第二学期期末学业质量监测数学试题一、选择题(每题只有一个答案正确)1.如图,Rt ABC 沿直线边BC 所在的直线向右平移得到DEF ,下列结论中不一定正确的是( )A .DEF 90∠=B .BE CF =C .CE CF =D .ABEH DHCF S S =四边形四边形2.如图①,在平面直角坐标系中,平行四边形ABCD 在第一象限,且AB ∥x 轴.直线y=-x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图②,那么平行四边形ABCD 的面积为()A .4B .42C .82D .83.如图,已知点A(0,9),点B 是x 轴正半轴上的一动点,以AB 为边作等腰直角三角形ABC 使点C 在第一象限,∠BAC =90°.设点B 的横坐标为x ,点C 的纵坐标为y 则表示y 与x 的函数关系的图象大致是( )A .B .C .D .4.如图,点E 在正方形ABCD 内,满足∠AEB =90°,AE =3,BE =4,则阴影部分的面积是( )A .12B .16C .19D .255.如图,矩形ABCD 中,AB=8,AD=6,将矩形ABCD 绕点B 按顺时针方向旋转后得到矩形A′BC′D′.若边A′B 交线段CD 于H ,且BH=DH ,则DH 的值是( )A .74B .8-23C .254D .626.四边形ABCD 对角线AC 、BD 交于O ,若AO OD =、BO OC =,则四边形ABCD 是( ) A .平行四边形B .等腰梯形C .矩形D .以上都不对 7.反比例函数1k y x -=的图象的一支在第二象限,则k 的取值范围是() A .1k < B .1k > C .k 0< D .0k >8.如图,一次函数图象经过点A ,且与正比例函数y=-x 的图象交于点B ,则该一次函数的表达式为( )A .y=-x+2B .y=x+2C .y=x-2D .y=-x-29.将正方形ABCD 与等腰直角三角形EFG 如图摆放,若点M 、N 刚好是AD 的三等分点,下列结论正确的是( )①△AMH ≌△NME ;②12AM BF =;③GH ⊥EF ;④S △EMN :S △EFG =1:16A .①②③④B .①②③C .①③④D .①②④10.如图,菱形ABCD 的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD 的周长是( )A .24B .16C .413D .23二、填空题 11.函数 y l =" x" ( x ≥0 ) ,( x > 0 )的图象如图所示,则结论:①两函数图象的交点A 的坐标为(3 ,3 ) ②当 x > 3时,③当 x =1时, BC = 8 ④当 x 逐渐增大时, y l 随着 x 的增大而增大,y 2随着 x 的增大而减小.其中正确结论的序号是_ .12.如图,在△ABC 中,∠A=α.∠ABC 与∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 与∠A 1CD 的平分线相交于点A 2,得∠A 2; …;∠A 2011BC 与∠A 2011CD 的平分线相交于点A 2012,得∠A 2012,则∠A 2012=_____.13.如图,E 是直线CD 上的一点,已知ABCD 的面积为252cm ,则ABE ∆的面积为________2cm .14.计算)5353的结果等于______________. 15.如图,在ABC ∆中,9AB =,6AC =,点E 在AB 上,且3AE =,点F 在AC 上,连结EF ,若AEF ∆与ABC ∆相似,则AF =_____________.16.如图,在Rt ABC ∆中,角903, 4, A AB AC P ︒===,是BC 边上的一点,作PE 垂直AB , PF 垂直AC ,垂足分别为E F 、,则EF 的最小值是______.17.如图,四边形ABCD 是菱形,对角线AC =8cm ,DB =6cm ,DH ⊥AB 于点H ,则DH 的长为_____.三、解答题18.解下列不等式组,并把它的解集表示在数轴上:315(1)468633x x x x +>-⎧⎪-⎨-≥⎪⎩ 19.(6分)移动营业厅推出两种移动电话计费方式:方案一,月租费用15元/元,本地通话费用0.2元/分钟,方案二,月租费用0元/元,本地通话费用0.3元/分钟.(1)以x 表示每个月的通话时间(单位:分钟),y 表示每个月的电话费用(单位:元),分别表示出两种电话计费方式的函数表达式;(2)问当每个月的通话时间为300分钟时,采用那种电话计费方式比较合算?20.(6分)如图,平行四边形ABOC 的顶点,A C 分别在y 轴和x 轴上,顶点B 在反比例函数3y x=的图象上,求平行四边形ABOC 的面积.21.(6分) (1)解不等式组12322x x x ->⎧⎪⎨+<-⎪⎩;(2)已知12x x -=,求221x x +的值. 22.(8分)先化简2443111x x x x x -+⎛⎫÷-+ ⎪++⎝⎭,然后从1-,0,1,2中选择一个合适的数作为x 的值代入求值23.(8分)阅读下列解题过程:221(32)(32)3232(32)(32)(3)(2)⨯--===-++--; 221(43)(43)432343(43)(43)(4)(3)⨯--===-=-++--. 请回答下列问题:(1)计算65-; (2)计算20192018201920172018201631+++--+++. 24.(10分)解不等式组,并将不等式组的解集在下面的数轴上表示出来:27521142x x x x -<-⎧⎪⎨--≤⎪⎩.25.(10分)已知y ﹣2与x+1成正比例函数关系,且x =﹣2时,y =1.(1)写出y 与x 之间的函数关系式;(2)求当x =﹣3时,y 的值;参考答案一、选择题(每题只有一个答案正确)1.C【解析】【分析】由平移的性质,结合图形,对选项进行一一分析,选择正确答案.【详解】Rt ABC 沿直线边BC 所在的直线向右平移得到DEF ,DEF ABC 90∠∠∴==,BC EF =,ABC DEF S S =, BC EC EF EC ∴-=-,ABC HEC DEF HEC S S S S -=-,BE CF ∴=,ABEH DHCF S S =四边形四边形,但不能得出CE CF =,故选C .【点睛】本题考查了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.2.D【解析】【分析】根据图象可以得到当移动的距离是4时,直线经过点A ,当移动距离是7时,直线经过D ,在移动距离是8时经过B ,则AB=8-4=4,当直线经过D 点,设交AB 与N ,则22DN =,作DM ⊥AB 于点M .利用三角函数即可求得DM 即平行四边形的高,然后利用平行四边形的面积公式即可求解.【详解】根据图象可以得到当移动的距离是4时,直线经过点A ,当移动距离是7时,直线经过D ,在移动距离是8时经过B ,则844=-=AB ,如图所示,当直线经过D 点,设交AB 与N ,则22DN =DM AB ⊥于点M .y x =-与x 轴形成的角是45︒,//AB x 轴,45︒∴∠=DNM ,则△DMN 为等腰直角三角形,设()DM MN 0==>x x由勾股定理得(2222+=x x , 解得=2x ,即DM=2则平行四边形的面积是:428⋅=⨯=AB DM .故选:D .本题考查一次函数与几何综合,解题的关键利用l与m的函数图像判断平行四边形的边长与高.3.A【解析】【分析】过点C作CD⊥y轴于点D,证明△CDA≌△AOB(AAS),则AD=OB=x,y=OA+AD=9+x,即可求解.【详解】解:过点C作CD⊥y轴于点D,∵∠OAB+∠OBA=90°,∠OAB+∠CAD=90°,∴∠CAD=∠ABO,∵∠CDA=∠AOB=90°,AB=AC,∴△CDA≌△AOB(AAS),∴AD=OB=x,y=OA+AD=9+x,故选:A.【点睛】本题主要考查全等三角形的性质及一次函数的图象,掌握一次函数的图象及全等三角形的性质是解题的关键4.C【解析】【分析】根据勾股定理求出AB,分别求出△AEB和正方形ABCD的面积,即可求出答案.【详解】解:∵在Rt△AEB中,∠AEB=90°,AE=3,BE=4,由勾股定理得:22AE BE=5,∴正方形的面积=5×5=25,∵△AEB的面积=12AE×BE=12×3×4=6,∴阴影部分的面积=25-6=19,【点睛】本题考查了勾股定理,正方形的面积以及三角形的面积的求法,熟练掌握勾股定理是解题的关键. 5.C【解析】【分析】本题设DH=x ,利用勾股定理列出方程即可.【详解】设DH=x,,,8,6,8,6,8,BH DH BH x AB AD CD BC CH x =∴===∴==∴=-在Rt BCH 中,()222222,86,25.4BH CH BC x x x =+=-+=故选C .6.D【解析】【分析】由四边形ABCD 对角线AC 、BD 交于O ,若AO=OD 、BO=OC ,易得AC=BD ,AD ∥BC ,然后分别从AD=BC 与AD≠BC 去分析求解,即可求得答案.【详解】∵AO=OD 、BO=OC ,∴AC=BD,∠OAD=∠ODA=1802AOD ︒-∠,∠OBC=∠OCB=1802BOC ︒-∠, ∵∠AOD=∠BOC ,∴∠OAD=∠OCB ,∴AD ∥BC ,①若AD=BC,则四边形ABCD是平行四边形,∵AC=BD,∴平行四边形ABCD是矩形;②若AD≠BC,则四边形ABCD是梯形,∵AC=BD,∴四边形ABCD是等腰梯形.故答案选D.【点睛】本题考查了平行四边形的性质和矩形与等腰梯形的判定,解题的关键是熟练的掌握平行四边形的性质和矩形与等腰梯形的判定.7.A【解析】分析:当比例系数小于零时,反比例函数的图像经过二、四象限,由此得到k-1<0,解这个方程求出k的取值范围.详解:由题意得,k-1<0,解之得k<1.故选A.点睛:本题考查了反比例函数的图像,对于反比例函数kyx=,当k>0,反比例函数图象的两个分支在第一、三象限;当k<0,反比例函数图象的两个分支在第二、四象限,在每一象限内. 8.B【解析】【分析】【详解】解:设一次函数的解析式y=kx+b(k≠0),∵一次函数图象经过点A,且与正比例函数y=-x的图象交于点B,∴在直线y=-x中,令x=-1,解得:y=1,则B的坐标是(-1,1).把A(0,1),B(-1,1)的坐标代入一次函数的解析式y=kx+b得:2{1bk b=-+=,解得2{1bk==,该一次函数的表达式为y=x+1.故选B.9.A【解析】【分析】利用三角形全等和根据题目设未知数,列等式解答即可. 【详解】解:设AM=x,∵点M、N刚好是AD的三等分点,∴AM=MN=ND=x,则AD=AB=BC=3x,∵△EFG是等腰直角三角形,∴∠E=∠F=45°,∠EGF=90°,∵四边形ABCD是正方形,∴∠A=∠ABC=∠BGN=∠ABF=90°,∴四边形ABGN是矩形,∴∠AHM=∠BHF=∠AMH=∠NME=45°,∴△AMH≌△NMH(ASA),故①正确;∵∠AHM=∠AMH=45°,∴AH=AM=x,则BH=AB﹣AH=2x,又Rt△BHF中∠F=45°,∴BF=BH=2x,AMBF=12,故②正确;∵四边形ABGN是矩形,∴BG=AN=AM+MN=2x,∴BF=BG=2x,∵AB⊥FG,∴△HFG是等腰三角形,∴∠FHB=∠GHB=45°,∴∠FHG=90°,即GH⊥EF,故③正确;∵∠EGF=90°、∠F=45°,∴EG=FG=BF+BG=4x,则S△EFG=12•EG•FG=12•4x•4x=8x2,又S△EMN=12•EN•MN=12•x•x=12x2,∴S△EMN:S△EFG=1:16,故④正确;故选A.【点睛】本题主要考察三角形全等证明的综合运用,掌握相关性质是解题关键.10.C【解析】【分析】由菱形ABCD的两条对角线相交于O,AC=6,BD=4,即可得AC⊥BD,求得OA与OB的长,然后利用勾股定理,求得AB的长,继而求得答案.【详解】∵四边形ABCD是菱形,AC=6,BD=4,∴AC⊥BD,OA=12AC=3,OB=12BD=2,AB=BC=CD=AD,∴在Rt△AOB中,AB=222+3=13,∴菱形的周长为413.故选C.二、填空题11.①③④【解析】逐项分析求解后利用排除法求解.①可列方程组求出交点A的坐标加以论证.②由图象分析论证.③根据已知先确定B、C点的坐标再求出BC.④由已知和函数图象分析.解:①根据题意列解方程组,解得,;∴这两个函数在第一象限内的交点A的坐标为(3,3),正确;②当x >3时,y 1在y 2的上方,故y 1>y 2,错误;③当x=1时,y 1=1,y 2==9,即点C 的坐标为(1,1),点B 的坐标为(1,9),所以BC=9-1=8,正确; ④由于y 1=x (x≥0)的图象自左向右呈上升趋势,故y 1随x 的增大而增大,y 2=(x >0)的图象自左向右呈下降趋势,故y 2随x 的增大而减小,正确.因此①③④正确,②错误.故答案为①③④.本题考查了一次函数和反比例函数图象的性质.解决此类问题的关键是由已知和函数图象求出正确答案加以论证.12.20122α【解析】【分析】利用角平分线的数量关系和外角的性质先得到∠A1与∠A的关系,同样的方法再得到∠A2和∠A1的关系,从而观察出其中的规律,得出结论.【详解】1CA 平分ACD ∠ ,()11122ACD ACD A ABC ∴∠=∠=∠+∠ . 1BA 平分ABC ∠ ,112A BC ABC ∴∠=∠ . 111A ACD A BC ∠=∠-∠ ()11112222A A ABC ABC A α∴∠=∠+∠-∠=∠=. 同理可得:21211242A A A α∠=∠=∠=; ......201220122A α∴∠=【点睛】 本题考察了三角形内角和外角平分线的综合应用及列代数式表示规律.13.26【解析】【分析】根据平行四边形面积的表示形式及三角形的面积表达式可得出△ABE 的面积为平行四边形的面积的一半.【详解】根据图形可得:△ABE的面积为平行四边形的面积的一半,又∵▱ABCD的面积为52cm2,∴△ABE的面积为26cm2.故答案为:26.【点睛】本题考查平行四边形的性质,解题关键在于熟练掌握三角形的面积公式. 14.4-【解析】【分析】先用平方差公式,再根据二次根式的性质计算可得.【详解】解:原式=)33=2 -23=5-9=-4故答案为:-4【点睛】本题考查了二次根式的混合运算的应用,熟练掌握平方差公式与二次根式的性质是关键.15.2或4.5【解析】【分析】根据题意,要使△AEF与△ABC相似,由于本题没有说明对应关系,故采用分类讨论法.有两种可能:当△AEF∽△ABC时;当△AEF∽△ACB时.最后利用相似三角形的对应边成比例即可求得线段AF的长即可.【详解】当△AEF∽△ABC时,则39,6AE ABAF AC AF==,AF=2;当△AEF∽△ACB时,则36,9AE ACAF AB AF==,AF=4.5.故答案为:2或4.5.【点睛】本题考查了相似三角形的性质应用.利用相似三角形性质时,要注意相似比的对应关系.分类讨论时,要注意对应关系的变化,防止遗漏.16.125【解析】【分析】根据已知条件得出四边形AEPF 为矩形,得出EF=AP,要使EF 最小,只要AP 最小即可,根据垂线段最短得出即可. 【详解】连接AP,90,,,BAC PE AB PF AC ∠=︒⊥⊥90,BAC AEP AFP ∴∠=∠=∠=︒∴四边形AFPE 是矩形,,EF AP ∴=要使EF 最小,只要AP 最小即可,过点A 作⊥AP BC 于P ,此时AP 最小,在直角三角形BAC 中,90,4,BAC AC ∠=︒=3,AB =由勾股定理得:BC=5,由三角形面积公式得:11435,22AP ⨯⨯=⨯⨯ 125AP ∴=, 即125EF =, 故答案为:125. 【点睛】本题是矩形的判定与性质和直角三角形结合考查的题型,找出与EF 相等的线段,结合垂线段最短的性质是解题的关键.17.4.8cm .【解析】【分析】根据菱形的性质可得AB =5cm ,根据菱形的面积公式可得S 菱形ABCD =12AC •BD =AB •DH ,即DH =2AC BD AB=4.8cm .【详解】解:∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC =12AC =4cm ,OB =OD =3cm , ∴AB =5cm , ∴S 菱形ABCD =12AC •BD =AB •DH , ∴DH =2AC BD AB =4.8cm . 【点睛】本题考查了菱形的边长问题,掌握菱形的性质、菱形的面积公式是解题的关键.三、解答题18.原不等式组的解集为2≤x <1,表示见解析.【解析】【分析】先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【详解】解:解不等式1x +1>5(x ﹣1),得:x <1,解不等式43x ﹣6≥683x ,得:x ≥2,在同一条数轴上表示不等式的解集为:所以原不等式组的解集为2≤x <1.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.(1)方案一中通话费用关于时间的函数关系式为y=15+0.2x ,(x≥0);方案二中通话费用关于时间的函数关系式为y=0.3x ,(x≥0);(2)采用方案一电话计费方式比较合算.【解析】试题分析:(1)根据“方案一费用=月租+通话时间×每分钟通话费用,方案二的费用=通话时间×每分钟通话费用”可列出函数解析式;(2)根据(1)中函数解析式,分别计算出x=300时的函数值,即可得出答案.试题解析:(1)根据题意知,方案一中通话费用关于时间的函数关系式为y=15+0.2x ,(x≥0);方案二中通话费用关于时间的函数关系式为y=0.3x ,(x≥0).(2)当x=300时,方案一的费用y=15+0.2×300=75(元),方案二的费用y=0.3×300=90(元),∴采用方案一电话计费方式比较合算.点睛:本题主要考查一次函数的应用,根据方案中所描述的计费方式得出总费用的相等关系是解题的关键. 20.3【解析】【分析】根据题意可知B 点的横坐标和纵坐标分别是平行四边形的底和高,根据平行四边形的面积公式及反比例函数系数的几何意义,即可得出.【详解】∵平行四边形ABOC 定点A 、C 分别在y 轴和x 轴上,顶点B 在反比例函数y=3x的图象上,设B 点横坐标为a ,则纵坐标为3a, ∴S 平行四边形AB0C =AB∙OA=a∙3a =3, 故本题答案为:3.【点睛】本题考查了反比例函数系数k 的几何意义以及平行四边形的面积公式,根据反比例函数系数k 的几何意义找出S 平行四边形 ABOC =|k|.21. (1)x<-10;(2)6.【解析】【分析】(1)先分别解两个不等式得到x <-1和x <-10,然后根据小小取较小确定不等式组的解集;(2)将12x x-=两边同时平方,然后利用完全平方公式可求得答案. 【详解】 (1)12322x x x ->⎧⎪⎨+<-⎪⎩①② 解不等式①得,x <-1,解不等式②得,x <-10,所以,不等式组的解集为:x <-10;(2)∵12x x-= ∴21()4x x -= ∴221124x x x x -⋅+= ∴2216x x+=【点睛】本题考查利用完全平方公式化简求值、解一元一次不等式组,解答本题的关键是明确利用完全平方公式化简求值的方法和解不等式组的方法.22.13【解析】【分析】根据分式的运算进行化简,再根据分母不为零代入一个数求解.【详解】解:原式()()()22113111x x x x x x --+⎡⎤=÷-⎢⎥+++⎣⎦ ()222411x x x x --=÷++ ()()()221122x x x x x ⎡⎤-+=⨯-⎢⎥++-⎣⎦ 22x x -=-+ 当0x =,原式02102-=-=+;或当1x =时,原式121123-=-=+ 【点睛】此题主要考查分式的化简求值,解题的关键是熟知分式运算法则.23.(1(2)1-【解析】【分析】(1)通过分母有理化进行计算;(2)先分母有理化,然后合并即可.【详解】解:(1===(2)原式31=+-1=1=.【点睛】考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.24.23x-≤<,将不等式组的解集在数轴上表示见解析.【解析】【分析】分别解两个不等式得两个不等式的解集,然后根据确定不等式组解集的方法确定解集,最后利用数轴表示其解集.【详解】2752(1)11(2)42x xx x-<-⎧⎪⎨--≤⎪⎩由(1)可得3x<由(2)可得2x≥-∴原不等式组解集为23x-≤<【点睛】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.25.(1)y=-4x-2;(2)2【解析】【分析】(1)利用正比例函数的定义设y-2=k(x+1),然后把已知的对应值代入求出k得到y与x之间的函数关系式;(2)利用(1)中的函数解析式,计算自变量为-3时对应的函数值即可.【详解】解:(1)设y-2=k(x+1),∵x=-2 y=1,∴1-2=k•(-2+1),解得k=-4∴y=-4x-2;(2)由(1)知 y=-4x-2,∴当x=-3时,y=432-⨯--()()=2.【点睛】本题考查了用待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式.。
四川省达州市2019-2020学年初二下期末质量跟踪监视数学试题含解析
![四川省达州市2019-2020学年初二下期末质量跟踪监视数学试题含解析](https://img.taocdn.com/s3/m/caf8dc9e910ef12d2af9e7de.png)
四川省达州市2019-2020学年初二下期末质量跟踪监视数学试题一、选择题(每题只有一个答案正确)1.已知实数a 、b ,若a >b ,则下列结论正确的是A .a 5<b 5--B .2a<2b ++C .a b <33D .3a>3b2.如图,一次函数1y x b =+与一次函数2y 4kx =+的图象交于点P(1,3),则关于x 的不等式4x b kx ++<的解集是( )A .x >2B .x >0C .x >1D .x <13.若两个相似多边形的面积之比为1∶3,则对应边的比为( )A .1∶3B .3∶1C .1:3D .3:14.若关于x 的一元二次方程260x x k -+=通过配方法可以化成2()(0)x m n n +=的形式,则k 的值不可能是( )A .3B .6C .9D .105.下列图象中不可能是一次函数(3)y mx m =--的图象的是( )A .B .C .D .6.如图,正方形ABCD 中,点E 、F 分别在CD 、BC 边上,△AEF 是等边三角形,则∠AED =( )A .60°B .65°C .70°D .75°7.下列命题的逆命题正确的是( )A .如果两个角都是45°,那么它们相等B .全等三角形的周长相等C .同位角相等,两直线平行D .若a=b ,则22a b =8.下列各组线段中,不能够组成直角三角形的是( )A .6,8,10B .3,4,5C .4,5,6D .5,12,139.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是14,12,10,8,9,16,12,7,这组数据的中位数和众数分别是( )A .10,12B .11,12C .12,11D .12,1210.如图,E 、F 、G 、H 分别是BD 、BC 、AC 、AD 的中点,且AB =CD .结论:①EG ⊥FH ;②四边形EFGH 是矩形;③HF 平分∠EHG ;④EG 12=BC ;⑤四边形EFGH 的周长等于2AB .其中正确的个数是( )A .1B .2C .3D .4 二、填空题11.如图,矩形中,,对角线交于点,则______,______.12.若直线21y x =-和直线y m x =-的交点在第三象限,则m 的取值范围是________.13.如图,在中,,.对角线AC 与BD 相交于点O ,,则BD 的长为____________.14.如图,AOB ∆以O 位似中心,扩大到COD ∆,各点坐标分别为A (1,2),B (3,0),D (4,0)则点C 坐标为_____________.15.函数3=-y x 的自变量x 的最大值是______.161x -x 的取值范围是_____.17.如图,在口ABCD 中,E 为边BC 上一点,以AE 为边作矩形AEFG .若∠BAE =40°,∠CEF =15°,则∠D 的大小为_____度.三、解答题 18.某产品生产车间有工人10名,已知每名工人每天可生产甲种产品10个或乙种产品12个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润150元.在这10名工人中,车间每天安排x 名工人生产甲种产品,其余工人生产乙种产品.(1)求出此车间每天获取利润y (元)与x (人)之间的函数关系式;(2)若要使此车间每天获取利润为14800元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适? 19.(6分)化简与计算:(1)211()x x x-÷+; (2)21x x -﹣x ﹣1; (3)12(27243)1233--⋅. 20.(6分)如图,在Rt△ABC 中,∠BCA=90°,CD 是AB 边上的中线,分别过点C ,D 作BA 和BC 的平行线,两线交于点E ,且DE 交AC 于点O ,连接AE .求证:四边形ADCE 是菱形.21.(6分)如图,王华在晚上由路灯A 走向路灯B ,当他走到点P 时,发现身后 他影子的顶部刚好接触到路灯A 的底部,当他向前再步行12m 到达点O 时 ,发现身前他影子的顶部刚好接触到路灯B 的底部,已知王华的身高是1.6m ,如果两个路灯之间的距离为18m ,且两路灯的高度相同,求路灯的高度.22.(8分)因式分解(1)322a a a -+(2)22425a b -(3)()()229---a x y b x y(4)()222416x x +-23.(8分)计算:|﹣3|﹣(+1)0+﹣ 24.(10分)如图,已知某学校A 与笔直的公路BD 相距3 000米,且与该公路上的一个车站D 距5 000米,现要在公路边建一个超市C ,使之与学校A 及车站D 的距离相等,那么该超市与车站D 的距离是多少米?25.(10分)如图,在△ABC 中,CD ⊥AB 于D ,AC=20,BC=15,DB=1.(1)求CD ,AD 的值;(2)判断△ABC 的形状,并说明理由.参考答案一、选择题(每题只有一个答案正确)1.D【解析】【分析】【详解】不等式的两边同时加上或减去一个数,不等号的方向不变,不等式的两边同时除以或乘以一个正数,不等号的方向也不变,所以A 、B 、C 错误, D 正确.故选D.2.D【解析】【分析】观察函数图象得到当x<1时,函数y=x+b 的图象都在y=kx+4的图象下方,所以关于x 的不等式x+b<kx+4的解集为x<1.【解答】当x<1时,x+b<kx+4,即不等式x+b<kx+4的解集为x<1,故选D .【点评】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x轴上(或下)方部分所有的点的横坐标所构成的集合.3.C【解析】【分析】直接根据相似多边形的性质进行解答即可.【详解】∵两个相似多边形的面积之比为1:3,故选C .【点睛】本题考查的是相似多边形的性质,即相似多边形面积的比等于相似比的平方.4.D【解析】【分析】方程配方得到结果,即可作出判断.【详解】解:方程260x x k -+=,变形得:26x x k -=-,配方得:2699x x k -+=-,即2(3)9x k -=-, 90k ∴-,即9k ,则k 的值不可能是10,故选:D .【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.5.C【解析】分析:分别根据四个答案中函数的图象求出m的取值范围即可.详解:A.由函数图象可知:30mm>()>⎧⎨--⎩,解得:1<m<3;B.由函数图象可知30mm>:()⎧⎨--=⎩,解得:m=3;C.由函数图象可知:30mm⎧⎨--⎩<()<,解得:m<1,m>3,无解;D.由函数图象可知:30mm⎧⎨--⎩<()>,解得:m<1.故选C.点睛:本题比较复杂,解答此题的关键是根据各选项列出方程组,求出无解的一组.6.D【解析】【分析】由题意可证△ABF≌△ADE,可得∠BAF=∠DAE=15°,可求∠AED=75°.【详解】∵四边形ABCD是正方形,∴AB=AD,∠B=∠C=∠D=∠DAB=90°,∵△AEF是等边三角形,∴AE=AF,∠EAF=60°,∵AD=AB,AF=AE,∴△ABF≌△ADE(HL),∴∠BAF=∠DAE==15°,∴∠AED=75°,故选D.【点睛】本题考查了正方形的性质,全等三角形的性质和判定,等边三角形的性质,熟练运用这些性质和判定解决问题是本题的关键.7.C【解析】【分析】交换原命题的题设与结论得到四个命题的逆命题,然后分别根据三角形的概念、全等三角形的判定、平行线的性质和平方根的定义判定四个逆命题的真假.【详解】A. 逆命题为:如果两个角相等,那么它们都是45°,此逆命题为假命题;B. 逆命题为:周长相等的两三角形全等,此逆命题为假命题;C. 逆命题为:两直线平行,同位角相等,此逆命题为真命题;D. 逆命题为:若a2=b2,则a=b,此逆命题为假命题.故选C.【点睛】本题考查命题与定理,解题的关键是掌握三角形的概念、全等三角形的判定、平行线的性质和平方根的定义.8.C【解析】【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.【详解】A. 6+8=10,能构成直角三角形,故不符合题意;B. 3+4=5,能构成直角三角形,故不符合题意;C. 4+5≠6,不能构成直角三角形,故符合题意;D. 5+12=13,能构成直角三角形,故不符合题意.故选C.【点睛】此题考查勾股定理的逆定理,解题关键在于掌握运算公式.9.B【解析】【分析】先把原数据按由小到大排列,然后根据中位数和众数的定义求解.【详解】解:原数据按由小到大排列为:7,8,9,10,1,1,14,16,所以这组数据的中位数=10122=11,众数为1.故选:B.【点睛】本题主要考查的是学生对中位数和众数的定义等知识的掌握情况及灵活运用能力,解题的关键在于能够熟知中位数和众数的定义,由此即可解答.众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.10.C【解析】【分析】根据三角形的中位线平行于第三边并且等于第三边的一半与AB=CD可得四边形EFGH是菱形,然后根据菱形的对角线互相垂直平分,并且平分每一组对角的性质对各小题进行判断即可得答案.【详解】∵E、F、G、H分别是BD、BC、AC、AD的中点,∴EF=12CD,FG=12AB,GH=12CD,HE=12AB,∵AB=CD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,故②错误,∴EG⊥FH,HF平分∠EHG;故①③正确,∴四边形EFGH的周长= EF=FG=GH=HE =2AB,故⑤正确,没有条件可证明EG=12BC,故④错误,∴正确的结论有:①③⑤,共3个,故选C.【点睛】本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形并熟练掌握菱形的性质是解答本题的关键.二、填空题11..【解析】【分析】根据矩形的性质求出∠BAD=90°,根据勾股定理求出AD,根据含30°角的直角三角形的性质求出AE=AD,即可求出AE.解:∵四边形ABCDD是矩形,∴∠BAD=90°,在Rt △BAD中,由勾股定理得:∵在Rt△BAD中,AB=2,BD=4,∴AB=BD,∴∠ADB=30°,∵AE⊥BD,∴∠AED=90°,∴AE=AD==,故答案为:.【点睛】本题考查了勾股定理,矩形的性质和含30°角的直角三角形的性质,能灵活运用性质进行推理是解此题的关键.12.m<−1.【解析】【分析】首先把y=2x-1和y=m-x,组成方程组,求解,x和y的值都用m来表示,根据题意交点坐标在第三象限表明x、y都小于0,即可求得m的取值范围.【详解】∵21y xy m x=-=-⎧⎨⎩,∴解方程组得:13213mxmy+=-=⎧⎪⎪⎨⎪⎪⎩,∵直线y=2x−1和直线y=m−x的交点在第三象限,∴x<0,y<0,∴m<−1,m<0.5,∴m<−1.故答案为:m<−1.此题考查两条直线相交或平行问题,解题关键在于用m来表示x,y的值.13.【解析】【分析】利用平行四边形的性质和勾股定理易求AC的长,进而可求出BD的长.【详解】解:∵AC⊥BC,AB=CD=10,AD=6,∴AC===8,∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO=AC=4,∴OD===2.∴BD=4.故答案为:4.【点睛】本题考查平行四边形的性质以及勾股定理的运用,熟练掌握平行四边形的性质,由勾股定理求出OD是解题关键.14.48 33⎛⎫ ⎪⎝⎭,【解析】【分析】由图中数据可得两个三角形的位似比,进而由点A的坐标,结合位似比即可得出点C的坐标.【详解】解:∵△AOB与△COD是位似图形,OB=3,OD=1,所以其位似比为3:1.∵点A的坐标为A(1,2),∴点C的坐标为4833⎛⎫ ⎪⎝⎭,.故答案为:4833⎛⎫ ⎪⎝⎭,.【点睛】本题主要考查了位似变换以及坐标与图形结合的问题,解题的关键是根据题意求得其位似比.15.1【解析】【分析】根据二次根式的性质,被开方数大于等于0可知:1-x≥0,解得x的范围即可得出x的最大值.【详解】根据题意得:1-x≥0,解得:x≤1,∴自变量x的最大值是1,故答案为1.【点睛】本题考查的是函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(1)当函数表达式是二次根式时,被开方数为非负数.16.x≤1.【解析】【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∵在实数范围内有意义,∴1﹣x≥0,解得x≤1.故答案为x≤1.【点睛】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的关键.17.1【解析】【分析】想办法求出∠B,利用平行四边形的性质∠D=∠B即可解决问题.【详解】解:∵四边形AEFG是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=1°,∵四边形ABCD 是平行四边形,∴∠D=∠B=1°故答案为:1.【点睛】本题考查正方形的性质、平行四边形的性质、三角形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.三、解答题18.(1)y=-800x+18000;(2)安排4人生产甲产品;(3)至少要派7名工人生产乙产品.【解析】【分析】(1)根据利润计算方法分别表示出甲产品、乙产品的利润,最后求和即得y ,(2)把y=14800代入y 与x 的函数关系式,求出x 的值,(3)列不等式求出x 的取值范围,进而求出生产乙产品的人数的取值范围,确定至少安排乙产品的人数.【详解】解:(1)设每天安排x 名工人生产甲种产品,则有(10-x )人生产乙产品,y=10x ×100+12(10-x )×150=-800x+18000,答:每天获取利润y (元)与x (人)之间的函数关系式为y=-800x+18000;(2)当y=14800时,即:-800x+18000=14800,解得:x=4,答:安排4人生产甲产品;(3)由题意得:-800x+18000≥15600,解得:x ≤3,当x ≤3时,10-x ≥7,因此至少要派7名工人生产乙产品.【点睛】本题考查一次函数的应用以及一元一次不等式的应用等知识,根据已知得出y 与x 之间的函数关系是解题关键.19.(1)﹣x ﹣1;(2)11x ;(3)6﹣. 【解析】【分析】(1)先把除法运算化为乘法运算,然后把x2+x分解后约分即可;(2)先进行通分,然后进行同分母的分式的减法运算;(3)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的乘法运算.【详解】(1)原式=﹣1x•x(x+1)=﹣x﹣1;(2)原式=()() 21111x xxx x-+---=2211x xx-+-=11 x-;(3)原式=﹣=)•2=6﹣.【点睛】本题考查了分式的混合运算,二次根式的混合运算,熟练掌握相关运算的运算法则是解题的关键. 20.证明见解析【解析】试题分析:欲证明四边形ADCE是菱形,需先证明四边形ADCE为平行四边形,然后再证明其对角线相互垂直即可.证明:∵DE∥BC,EC∥AB,∴四边形DBCE是平行四边形.∴EC∥DB,且EC=DB.在Rt△ABC中,CD为AB边上的中线,∴AD=DB=CD.∴EC=AD.∴四边形ADCE是平行四边形.∴ED∥BC.∴∠AOD=∠ACB.∵∠ACB=90°,∴∠AOD=∠ACB=90°.∴平行四边形ADCE是菱形.21.路灯的高度是9.6m【解析】【分析】根据题意结合图形可知,AP=OB ,在P 点时有AMP ADB ~,列出比例式进行即可即可【详解】解:由题意知:()()12, 1.6,181223PO m MP NO m AP OB m =====-÷=90APM ABD ︒∠=∠=MAP DAB ∠=∠AMP ADB ∴~AP MP AB DB∴= 即3 1.618DB= 解得()9.6BD m =答:路灯的高度是9.6m【点睛】本题主要考查相似三角形的应用,熟练掌握相似三角形对应边成比例是解题关键22.(1)2(1)a a -;(2)(25)(25)a b a b +-;(3)()(+3)(3)x y a b a b --;(4)()()2222x x +-【解析】【分析】(1)先提取公因式,然后用完全平方公式进行因式分解;(2)直接用平方差公式进行因式分解;(3)先提取公因式,然后用平方差公式进行因式分解;(4)先用平方差公式进行因式分解,然后再用完全平方公式进行因式分解【详解】解:(1)322a a a -+=2(21)a a a -+=2(1)a a -(2)22425a b -=(25)(25)a b a b +-(3)()()229---a x y b x y=()22(9)x y a b --=()(+3)(3)x y a b a b -- (4)()222416x x +- =()()224+444x xx x ++- =()()2222x x +- 【点睛】本题考查了因式分解方法、乘法公式应用,考查推理能力与计算能力,属于基础题. 23.3.【解析】【分析】直接利用绝对值的性质以及零指数幂的性质、二次根式的性质、负指数幂的性质分别化简得出答案.【详解】原式=3--1+4-2=3 【点睛】此题主要考查了实数运算,正确化简各数是解题关键.24.3 125米【解析】试题分析:由勾股定理先求出BD 的长度,然后设超市C 与车站D 的距离是x 米,分别表示出AC 、BC 、的长度,对Rt △ABC 由勾股定理列方程求解.试题解析:在Rt △ABD 中,BD 22AD AB -4000米,设超市C 与车站D 的距离是x 米,则AC =CD =x 米,BC =(4000-x)米,在Rt △ABC 中,AC 2=AB 2+BC 2,即x 2=30002+(4000-x)2,解得x =3125,因此该超市与车站D 的距离是3125米.点睛:本题关键在于设未知数,列方程求解.25.(1)12,16;(2)△ABC 为直角三角形,理由见解析【解析】【分析】(1)在直角三角形中,应用勾股定理求值即可;(2)先计算出AC 2+BC 2=AB 2,即可判断出△ABC 为直角三角形.【详解】解:(1)∵CD⊥AB,∴△BCD和△ACD都是直角三角形,∴=12,;(2)△ABC为直角三角形,理由:∵AD=16,BD=1,∴AB=AD+BD=16+1=25,∵AC2+BC2=202+152=625=252=AB2,∴△ABC为直角三角形.【点睛】考查了勾股定理的应用,解题关键是熟记勾股定理以及勾股定理的逆定理.。
2019-2020学年四川省达州市八年级第二学期期末质量跟踪监视数学试题含解析
![2019-2020学年四川省达州市八年级第二学期期末质量跟踪监视数学试题含解析](https://img.taocdn.com/s3/m/29c9692231b765ce04081436.png)
2019-2020学年四川省达州市八年级第二学期期末质量跟踪监视数学试题一、选择题(每题只有一个答案正确)1.若样本数据3,4,2,6,x 的平均数为5,则这个样本的方差是( )A .3B .5C .8D .22.在数学拓展课《折叠矩形纸片》上,小林发现折叠矩形纸片ABCD 可以进行如下操作:①把△ABF 翻折,点B 落在C 边上的点E 处,折痕为AF ,点F 在BC 边上;②把△ADH 翻折,点D 落在AE 边上的点G 处,折痕为AH ,点H 在CD 边上,若AD =6,CD =10,则EH EF =( )A .32B .53C .43D .543.菱形在平面直角坐标系中的位置如图所示,点的坐标是,点的纵坐标是,则点的坐标是( )A .B .C .D .4.如图, DE AC ⊥,BF AC ⊥,垂足分别是E ,F ,且DE BF =,若利用“HL ”证明DEC BFA ∆≅∆,则需添加的条件是( )A .EC FA =B .DC BA = C .D B ∠=∠ D .DCE BAF ∠=∠5.若化简21816x x x --+25x -,则x 的取值范围是( )A .一切实数B .14x ≤≤C .1x ≤D .4x ≥6.下列各组数中不能作为直角三角形的三边长的是( )A .3,4,5B .13,14,15C .5,12,13D .15,8,177.下列各式中,不是最简二次根式的是( )A .7B .2C .70D .128.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设( )A .三角形的三个外角都是锐角B .三角形的三个外角中至少有两个锐角C .三角形的三个外角中没有锐角D .三角形的三个外角中至少有一个锐角9.已知下列图形中的三角形顶点都在正方形网格的格点上,图中的三角形是直角三角形的是( ) A . B .C .D .10.点()3,2P -关于原点的对称点Q 的坐标为( )A .()3,2-B .()3,2--C .()3,2D .()2,3-二、填空题11.如图,AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,作PE ⊥AB 于点E .若PE =2,则两平行线AD 与BC 间的距离为_____.12.若分式方程211x m x x+=--无解,则m =__________. 13.在菱形ABCD 中,M 是AD 的中点,AB =4,N 是对角线AC 上一动点,△DMN 的周长最小是2+3则BD 的长为___________.14.已知(m ,n )是函数y =-3x 与y =3x +9的一个交点,则13m -1n 的值为______. 15.如图,在平行四边形ABCD 中,AB =4,BC =6,分别以A ,C 为圆心,以大于12AC 的长为半径作弧,两弧相交于MN 两点,作直线MN 交AD 于点E ,则△CDE 的周长是_____.16.若正比例函数y=kx 的图象经过点(1,2),则k=_______.17.为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1分钟仰卧起坐次数,并给制成如图所示的频数分布直方图,请根据图中信息,计算仰卧起坐次数在2530~次的频率是______三、解答题18.已知,一次函数443y x =+的图象与x 轴、y 轴分别交于点A 和B . ()1求A ,B 两点的坐标,并在如图的坐标系中画出函数443y x =+的图象; ()2若点C 在第一象限,点D 在x 轴的正半轴上,且四边形ABCD 是菱形,直接写出C ,D 两点的坐标.19.(6分)用适当的方法解方程(1)()24180x +-=(2)2215x x -=20.(6分)已知一次函数21y x =+.(1)在平面直角坐标系中画出该函数的图象;(2)点(12,5)在该函数图象的上方还是下方?请做出判断并说明理由. 21.(6分)已知:如图,在△ABC 中,∠A=120°,AB=4,AC=2.求BC 边的长.22.(8分)如图1,在6×6的正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫做格点.△ABC 的顶点在格点上.点D 是BC 的中点,连接AD .(1)在图2、图3两个网格图中各画出一个与△ABC 相似的三角形,要求所画三角形的顶点在格点上,相似比各不相同,且与△ABC 的相似比不为1;(2)tan ∠CAD= .23.(8分)如图,在平面直角坐标系中,Rt △ABC 的三个顶点分别是A (-4, 1),B (-1,3),C (-1,1)(1)将△ABC以原点O为旋转中心旋转180°,画出旋转后对应的△;平移△ABC,若A对应的点坐标为(-4,-5),画出△;(2)若△绕某一点旋转可以得到△,直接写出旋转中心坐标是__________;(3)在x轴上有一点P是的PA+PB的值最小,直接写出点P的坐标___________;24.(10分)请把下列证明过程补充完整:已知:如图,DE∥BC,BE平分∠ABC.求证:∠1=∠1.证明:因为BE平分∠ABC(已知),所以∠1=______ ().又因为DE∥BC(已知),所以∠2=_____().所以∠1=∠1().25.(10分)如图1,在正方形ABCD中,点E是AB上一点,点F是AD延长线上一点,且DF=BE,连接CE、CF.(1)求证:CE=CF.(2)在图1中,若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗;为什么;(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题,如图2,在四边形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,且∠DCE=45°.①若AE=6,DE=10,求AB的长;②若AB=BC=9,BE=3,求DE的长.参考答案一、选择题(每题只有一个答案正确)1.C【解析】【分析】先由平均数是5计算出x的值,再计算方差.【详解】解:∵数据3,4,2,6,x的平均数为5,∴342655x++++=,解得:x=10,则方差为15×[(3﹣5)2+(4﹣5)2+(2﹣5)2+(6﹣5)2+(10﹣5)2]=8,故选:C.【点睛】本题考查的是平均数和方差的求法.计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.2.A【解析】【分析】利用翻折不变性可得AE=AB=10,推出DE=8,EC=2,设BF=EF=x,在Rt△EFC中,x2=22+(6-x)2,可得x=103,设DH=GH=y,在Rt△EGH中,y2+42=(8-y)2,可得y=3,由此即可解决问题.【详解】∵四边形ABCD是矩形,∴∠C=∠D=90°,AB=CD=10,AD=BC=6,由翻折不变性可知:AB=AE=10,AD=AG=6,BF=EF,DH=HG,∴EG=4,在Rt△ADER中,DE=8,∴EC=10﹣8=2,设BF=EF=x,在Rt△EFC中有:x2=22+(6﹣x)2,∴x=103,设DH=GH=y,在Rt△EGH中,y2+42=(8﹣y)2,∴y=3,∴EH=5,∴531032 EHEF==,故选A.【点睛】本题考查矩形的性质,翻折变换,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.3.B【解析】【分析】连接AB交OC于点D,由菱形OACB中,根据菱形的性质可得OD=CD=4,BD=AD=2,由此即可求得点B的坐标.【详解】∵连接AB交OC于点D,∵四边形ABCD是菱形,∴AB⊥OC,OD=CD,AD=BD,∵点C的坐标是(8,0),点A的纵坐标是2,∴OC=8,BD=AD=2,∴OD=4,∴点B的坐标为:(4,-2).故选B.【点睛】本题考查了菱形的性质与点与坐标的关系.熟练运用菱形的性质是解决问题的关键,解题时注意数形结合思想的应用.4.B【解析】【分析】本题要判定DEC BFA ∆≅∆,已知DE=BF ,∠BFA=∠DEC=90°,具备了一直角边对应相等,故添加DC=BA 后可根据HL 判定DEC BFA ∆≅∆.【详解】在△ABF 与△CDE 中,DE=BF ,由DE ⊥AC ,BF ⊥AC ,可得∠BFA=∠DEC=90°.∴添加DC=AB 后,满足HL .故选B .【点睛】本题考查了直角三角形全等的判定定理的应用,注意:判定两直角三角形全等的判定定理有SAS ,ASA ,AAS ,SSS ,HL .5.B【解析】【分析】根据完全平方公式先把多项式化简为|1−x|−|x−4|,然后根据x 的取值范围分别讨论,求出符合题意的x 的值即可.【详解】原式可化简为|1||4|x x ---,当10x -≥,40x -≥时,可得x 无解,不符合题意;当10x -≥,40x -≤时,可得4x ≤时,原式143x x =--+=-;当10x -≤,40x -≥时,可得4x ≥时,原式143x x =--+=;当10x -≤,40x -≤时,可得14x ≤≤时,原式1425x x x =--+=-.据以上分析可得当14x ≤≤时,多项式等于25x -.故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论6.B【解析】【分析】分别把选项中的三边平方后,根据勾股定理逆定理即可判断能够构成直角三角形.【详解】解:A 选项中,222345+=,∴能构成直角三角形;B选项中,222≠,∴不能构成直角三角形;13+1415C选项中,2225+12=13,∴能构成直角三角形;D选项中,222+=,∴能构成直角三角形;81517故选B.【点睛】本题主要考查构成直角三角形的条件,掌握勾股定理的逆定理是解题的关键.7.D【解析】【分析】根据最简二次根式的条件:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式进行分析即可.【详解】解:AB、是最简二次根式,不符合题意;CD不是最简二次根式,符合题意;故选:D.【点睛】此题主要考查了最简二次根式,关键是掌握最简二次根式的条件.8.B【解析】【分析】反证法的步骤中,第一步是假设结论不成立,反面成立.【详解】解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,故选B.【点睛】.在假设结论不成立时要注意考虑结论的反面所有考查了反证法,解此题关键要懂得反证法的意义及步骤可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.9.D【解析】【分析】根据勾股定理求出三角形的三边,然后根据勾股定理的逆定理即可判断.【详解】由勾股定理可得:A、三角形三边分别为32、10,2;B、三角形三边分别为10、10,2;C、三角形三边分别为5、22,3;D、三角形三边分别为22、10,2;∵D图中(22)2+(2)2=(10)2,其他三角形不符合勾股定理逆定理,∴图中的三角形是直角三角形的是D,故选:D.【点睛】此题考查了勾股定理和勾股定理逆定理的运用,本题中根据勾股定理计算三角形的三边长是解题的关键.10.A【解析】【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:根据中心对称的性质,可知:点P(-3,2)关于原点O中心对称的点的坐标为(3,-2).故选:A .【点睛】本题考查关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律.二、填空题11.1【解析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.解答:解:过点P作MN⊥AD,∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E,∴AP⊥BP,PN⊥BC,∴PM=PE=2,PE=PN=2,∴MN=2+2=1.故答案为1.12.1【解析】【分析】先把m 看作已知,解分式方程得出x 与m 的关系,再根据分式方程无解可确定方程的增根,进一步即可求出m 的值.【详解】 解:在方程211x m x x+=--的两边同时乘以x -1,得2(1)x m x -=- , 解得2x m =-.因为原方程无解,所以原分式方程有增根x=1,即21m -=,解得m=1.故答案为1.【点睛】本题考查了分式方程的解法和分式方程的增根,正确理解分式方程无解与其增根的关系是解题的关键. 13.4【解析】【分析】根据题意,当B 、N 、M 三点在同一条直线时,△DMN 的周长最小为:BM+DM=2+23,由DM=122AD =,则BM=23,利用勾股定理的逆定理,得到∠AMB=90°,则得到△ABD 为等边三角形,即可得到BD 的长度.【详解】解:如图:连接BD ,BM ,则AC 垂直平分BD ,则BN=DN ,当B 、N 、M 三点在同一条直线时,△DMN 的周长最小为:BM+DM=2+3∵AD=AB=4,M 是AD 的中点,∴AM=DM=122AD =,∴BM=∵22222216AM BM AB +=+==,∴△ABM 是直角三角形,即∠AMB=90°;∵BM 是△ABD 的中线,∴△ABD 是等边三角形,∴BD=AB=AD=4.故答案为:4.【点睛】本题考查了菱形的性质,等边三角形的判定和性质,勾股定理的逆定理,以及三线合一定理.解题的关键是熟练掌握所学的知识,正确得到△ABD 是等边三角形.14.【解析】【分析】根据函数解析式得出,n-3m=9,代入变形后代数式求出即可.【详解】解:∵(m ,n )是函数y=-x与y=3x+9的一个交点, ∴n-3m=9,∴13m -1n =33n m mn -故答案为:【点睛】本题考查了反比例函数和一次函数的交点问题,以及分式的运算,主要考查学生的理解能力和计算能力. 15.1【解析】【分析】利用垂直平分线的作法得MN 垂直平分AC ,则EA =EC ,利用等线段代换得到△CDE 的周长=AD +CD ,然后根据平行四边形的性质可确定周长的值.【详解】解:利用作图得MN 垂直平分AC ,∴EA =EC ,∴△CDE的周长=CE+CD+ED=AE+ED+CD=AD+CD,∵四边形ABCD为平行四边形,∴AD=BC=6,CD=AB=4,∴△CDE的周长=6+4=1.故答案为1.【点睛】本题考查了作图−基本作图,也考查了平行四边形的性质.解题的关键是熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).16.2【解析】【分析】由点(2,2)在正比例函数图象上,根据函数图象上点的坐标特征即可得出关于k的一元一次方程,解方程即可得出k值.【详解】∵正比例函数y=kx的图象经过点(2,2),∴2=k×2,即k=2.故答案为2.【点睛】本题考查了一次函数图象上点的坐标特征,解题的关键是得出2=k×2.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标利用一次函数图象上点的坐标特征求出一次函数的系数是关键.17.0.4【解析】【分析】根据=频数频率数据总和计算仰卧起坐次数在2530次的频率.【详解】由图可知:仰卧起坐次数在2530~次的频率120.430==. 故答案为:0.4.【点睛】此题考查了频率、频数的关系:=频数频率数据总和. 三、解答题 18. (1) A ()3,0-,B ()0,4,画图见解析;(2)()5,4C ,()2,0D .【解析】【分析】(1)先求出A,B 两点的坐标,再画函数图象;(2)根据图形,结合勾股定理和菱形性质推出边长,得到C.D 的坐标.【详解】解:()1将0x =代入443y x =+,可得4y =; 将0y =,代入443y x =+,可得3x =-; ∴点A 的坐标为()3,0-,点B 的坐标为()0,4,如图所示,直线AB 即为所求;()2由点A 的坐标为()3,0-,点B 的坐标为()0,4,可得3AO =,4BO =,Rt AOB ∴中,5AB =,四边形ABCD 是菱形,5BC AB AD ∴===,2OD ∴=,()5,4C ∴,()2,0D .【点睛】本题考核知识点:一次函数与菱形. 解题关键点:熟记菱形的判定与性质.19.见详解.【解析】【分析】(1)把x+1看成一个整体,利用直接开平方法求解即可.(2)先把它化成一般式,再利用公式法求解即可.【详解】解:(1)()24180x +-= ()2418x += ()212x =+X+1=X=-1(2) 2215x x -=22510x x --=∵a=2,b=-5,c=-1. ∴=b 2-4ac=(-5)2-4⨯2⨯(-1)=25+8=33>0.=. 【点睛】本题考查了一元二次方程 的解法,灵活运用一元二次方程的解法是解题的关键.20.(1)见解析;(2)点1,52⎛⎫⎪⎝⎭在该函数图象的上方,理由见解析. 【解析】【分析】(1)根据题意代入x=0和12,进行描点,并连接两点即可画出该函数的图象;; (2)根据题意先求出x=12时的y 的值,判断其与5的大小即可解决问题. 【详解】解:(1)如图,列表描点如下 x 0 12y1 2函数图象如图2所示.(2)对于21y x =+,当12x =时, 2.y = 因为52>,所以点1,52⎛⎫ ⎪⎝⎭在该函数图象的上方. 【点睛】本题考查一次函数图象上的点的坐标特征,解题的关键是熟练掌握列表描点法和待定系数法解决问题. 21.27.【解析】【分析】过点C 作CD⊥BA,垂足为D .根据平角的定义可得∠DAC=60°,在Rt △ACD 中,根据三角函数可求AD ,BD 的长;在Rt △BCD 中,根据勾股定理可求BC 的长.【详解】解:过点C 作CD BA ⊥,垂足为D∵120A ∠=︒∴60DAC ∠=︒在Rt ACD ∆中cos 2cos601AD AC DAC =⋅∠=⨯︒=sin 2sin603CD AC DAC =⋅∠=⨯︒= ∴415BD AB AD =+=+=在Rt BCD ∆中22225(3)2827BC BD CD =+=+==【点睛】本题考查解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.同时考查了勾股定理. 22.(1)见解析;(2)12. 【解析】【分析】(1)利用相似三角形的性质结合网格特点画三角形即可;(2)利用勾股定理结合锐角三角函数关系求出即可.【详解】解:(1)如图所示:△EMF 和△A′B′C′即为所求;(2)由图1可知∠ACB=90°,DC =5,AC =25,∴tan ∠CAD =51225DCAC . 故答案为:12. 【点睛】 本题主要考查了相似三角形的性质及锐角三角函数的定义,利用相似三角形的判定方法画出图形是解题关键.23.(1)见解析(2)(-1,-2)(3)P (-,0).【解析】【分析】(1)根据旋转变换与平移变换的定义作出变换后的对应点,再顺次连接即可;(2)结合对应点的位置,根据旋转变换的性质可得旋转中心;(3)作出点A关于x轴的对称点A’,再连接A’B,与x轴的交点即为P点.【详解】(1)如图所示,△,△即为所求;(2)如图所示,点Q即为所求,坐标为(-1,-2)(3)如图所示,P即为所求,设A’B的解析式为y=kx+b,将A’(-4,-1),B(-1,3)代入得解得∴A’B的解析式为y=x+,当y=0,时,x+=0,解得x=-∴P(-,0).【点睛】此题主要考查作图-旋转变换与平移变换,解题的关键是熟知旋转变换与平移变换的定义与性质,据此找到变换后的对应点.24.∠2;角平分线的定义;∠1;两直线平行,同位角相等;等量代换.【解析】利用角平分线的定义和平行线的性质填空25.(1)证明见解析;(2)成立;(3)①12;②7.1【解析】【分析】(1)先判断出∠B=∠CDF,进而判断出△CBE≌△CDE,即可得出结论;(2)先判断出∠BCE=∠DCF,进而判断出∠ECF=∠BCD=90°,即可得出∠GCF=∠GCE=41°,得出△ECG≌△FCG 即可得出结论;(3)先判断出矩形ABCH为正方形,进而得出AH=BC=AB,①根据勾股定理得,AD=8,由(1)(2)知,ED=BE+DH,设BE=x,进而表示出DH=10-x,用AH=AB建立方程即可得出结论;②由(1)(2)知,ED=BE+DH,设DE=a,进而表示出DH=a-3,AD=12-a,AE=6,根据勾股定理建立方程求解即可得出结论.【详解】解:(1)在正方形ABCD中,∵BC=CD,∠B=∠ADC,∴∠B=∠CDF,∵BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)成立,由(1)知,△CBF≌△CDE,∴∠BCE=∠DCF,∴∠BCE+∠ECD=∠DCF+∠ECD,∴∠ECF=∠BCD=90°,∵∠GCE=41°,∴∠GCF=∠GCE=41°,∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG,∴GE=GF,∴GE=DF+GD=BE+GD;(3)如图2,过点C作CH⊥AD交AD的延长线于H,∵AD∥BC,∠B=90°,∴∠A=90°,∵∠CHA=90°,∴四边形ABCH为矩形,∵AB=BC,∴矩形ABCH为正方形,∴AH=BC=AB,①∵AE=6,DE=10,根据勾股定理得,AD=8,∵∠DCE=41°,由(1)(2)知,ED=BE+DH,设BE=x,∴10+x=DH,∴DH=10-x,∵AH=AB,∴8+10-x=x+6,∴x=6,∴AB=12;②∵∠DCE=41°,由(1)(2)知,ED=BE+DH,设DE=a,∴a=3+DH,∴DH=a-3,∵AB=AH=9,∴AD=9-(a-3)=12-a,AE=AB-BE=6,根据勾股定理得,DE2=AD2+AE2,即:(12-a)2+62=a2,∴a=7.1,∴DE=7.1.【点睛】本题是四边形综合题,考查了矩形的判定,正方形的判定和性质,勾股定理,全等三角形的判定和性质,判断出△ECG≌△FCG是解本题的关键.。
2020年四川省达州市初二下期末教学质量检测数学试题含解析
![2020年四川省达州市初二下期末教学质量检测数学试题含解析](https://img.taocdn.com/s3/m/0c03a798a32d7375a41780d4.png)
所以x1=1,x2=6,
所以等腰△ABC的腰长为6,底边长为1.
故选:B.
【点睛】
本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了三角形三边的关系.
4.A
【解析】
【分析】
根据一元二次方程的求根公式,即可做出判断.
【详解】
解:一元二次方程 的求根公式是 ,故选A.
25.(10分)问题情境:
平面直角坐标系中,矩形纸片OBCD按如图的方式放置 已知 , ,将这张纸片沿过点B的直
线折叠,使点O落在边CD上,记作点A,折痕与边OD交于点E.
数学探究:
点C的坐标为______;
求点E的坐标及直线BE的函数关系式;
若点P是x轴上的一点,直线BE上是否存在点Q,能使以A,B,P,Q为顶点的四边形是平行四边形?
二、填空题
11.如图,点A、B都在反比例函数y= (x>0)的图像上,过点B作BC∥x轴交y轴于点C,连接AC并延长交x轴于点D,连接BD,DA=3DC,S△ABD=1.则k的值为_______.
12.“a的3倍与b的差不超过5”用不等式表示为__________.
13.某干果店本周售出若干千克三种核桃,销售单价、销售量如图所示,则可估算出该店本周销售核桃的平均单价是_______元.
天数
3
1
1
1
1
PM2.5
18
20
21
29
30
A.21微克 立方米B.20微克 立方米
C.19微克 立方米D.18微克 立方米
3.关于x的方程x2-mx+2m=0的一个实数根是3,并且它的两个实数根恰好是等腰△ABC的两边长,则△ABC的腰长为( )
2019-2020学年四川省达州市初二下期末质量跟踪监视数学试题含解析
![2019-2020学年四川省达州市初二下期末质量跟踪监视数学试题含解析](https://img.taocdn.com/s3/m/6a80e3a37cd184254a353541.png)
2019-2020学年四川省达州市初二下期末质量跟踪监视数学试题一、选择题(每题只有一个答案正确)1.二次函数y=ax2+bx+c (a ≠0)的部分图象如图,图象过点(-1,0),对称轴为直线x=2,下列结论:①4a+b=0;②9a+c >3b ;③8a+7b+2c >0;④当x >-1时,y 的值随x 值的增大而增大.其中正确的结论有( )A .1个B .2个C .3个D .4个2.若二次根式32x -有意义,则x 能取的最小整数值是( ) A .x =0B .x =1C .x =2D .x =33.某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y 与时间x 的关系的大致图象是A .B .C .D .4.已知2x=3y(y≠0),则下面结论成立的是( )A .32x y =B .23x y = C .23x y = D .23x y = 5.式子2x +在实数范围内有意义,则x 的取值范围是( )A .x >﹣2B .x≥﹣2C .x <﹣2D .x≤﹣26.在Rt ABC ∆中,斜边3AB =,则222AB AC BC ++的值为( ) A .6B .9C .18D .367.如图, 四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,E 是BC 的中点,以下说法错误的是( )A .12OE DC =B .OA OC = C .BOE ODC ∠=∠D .BOE OBC ∠=∠8.如图,A 、B 两地被池塘隔开,小康通过下列方法测出了A 、B 间的距离:先在AB 外选一他点C ,然后测出AC ,BC 的中点M 、N ,并测量出MN 的长为18m ,由此他就知道了A 、B 间的距离.下列有关他这次探究活动的结论中,错误的是( )A .AB =36m B .MN ∥ABC .MN =12CB D .CM =12AC 9.如图,△ABC 中,∠A=30°,∠ACB=90°,BC=2,D 是AB 上的动点,将线段CD 绕点C 逆时针旋转90°,得到线段CE ,连接BE ,则BE 的最小值是( )A .3-1B .3 C .3D .210.解分式方程13211x x-=--,去分母得( ) A .12(1)3--=-x B .12(1)3--=x C .1223--=-xD .1223-+=x二、填空题11.如图,正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且AE=EF=FA .下列结论:①△ABE ≌△ADF ;②CE=CF ;③∠AEB=75°;④BE+DF=EF ;⑤S △ABE +S △ADF =S △CEF , 其中正确的是______(只填写序号).12.一次函数y ax b =+的图象如图所示,不等式2ax b +>的解集为__________.13.关于x 的一元二次方程x 2﹣2x+m =0有两个实数根,则m 的取值范围是_____. 14.化简分式:3()y xx y --=_____.15.弹簧原长(不挂重物)15cm ,弹簧总长L(cm)与重物质量x(kg)的关系如下表所示: 弹簧总长L(cm) 16 17 18 19 20 重物质量x(kg)0.51.01.52.02.5当重物质量为4kg (在弹性限度内)时,弹簧的总长L(cm)是_________. 16.当m=_____时,21(3)45m y m x x +=-+-是一次函数.17.当a=______时,最简二次根式2a -与102a 是同类二次根式. 三、解答题18.如图,直线l 经过点A (1,6)和点B (﹣3,﹣2).(1)求直线l 的解析式,直线与坐标轴的交点坐标; (2)求△AOB 的面积.19.(6分)安岳是有名的“柠檬之乡”,某超市用3000元进了一批柠檬销售良好;又用7700元购来一批柠檬,但这次的进价比第一批高了10%,购进数量是第一批的2倍多500斤. (1)第一批柠檬的进价是每斤多少元?(2)为获得更高利润,超市决定将第二批柠檬分成大果子和小果子分别包装出售,大果子的售价是第一批柠檬进价的2倍,小果子的售价是第一批柠檬进价的1.2倍.问大果子至少要多少斤才能使第二批柠檬的利润不低于3080元?20.(6分)某校八年级学生开展踢毽子比赛活动,每班选派5名学生参加,在规定时间内每人踢100个以上(含100个)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个),请根据表中数据解答下列问题: 1号 2号 3号 4号 5号 总分 甲班901009611698500乙班100 95 108 92 105 500(1)计算甲、乙两班的优秀率;(2)求出甲、乙两班比赛数据的中位数和方差;(3)根据(1)(2)的计算结果,请你判定甲班与乙班的比赛名次.21.(6分)如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D 均在小正方形的顶点上.()1在方格纸中画出以AB为对角线的正方形AEBF,点E、F在小正方形的顶点上;()2在方格纸中画出以CD为一边的菱形CDMN,点M、N在小正方形的顶点上,且菱形面积为6;请直接写出EFN的面积.22.(8分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画图.(1)在图①中,画一个三角形,使它的三边长都是有理数;图①(2)在图②中,画一个直角三角形,使它们的三边长都是无理数.图②23.(8分)某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?24.(10分)计算:+. 25.(10分)在“2019慈善一日捐”活动中,某校八年级(1)班40名同学的捐款情况如下表:根据表中提供的信息回答下列问题:(1)x 的值为________ ,捐款金额的众数为________元,中位数为________元. (2)已知全班平均每人捐款57元,求a 的值.参考答案一、选择题(每题只有一个答案正确) 1.B 【解析】 【分析】根据抛物线的对称轴即可判定①;观察图象可得,当x=-3时,y <0,由此即可判定②;观察图象可得,当x=1时,y >0,由此即可判定③;观察图象可得,当x >2时,y 的值随x 值的增大而增大,即可判定④. 【详解】由抛物线的对称轴为x=2可得2ba-=2,即4a+b=0,①正确; 观察图象可得,当x=-3时,y <0,即9a-3b+c <0,所以3a c b +<,②错误; 观察图象可得,当x=1时,y >0,即a+b+c >0,③正确;观察图象可得,当x >2时,y 的值随x 值的增大而增大,④错误. 综上,正确的结论有2个. 故选B. 【点睛】本题考查了二次函数图象与系数的关系:二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac <0时,抛物线与x轴没有交点.2.B【解析】【分析】直接利用二次根式的定义分析得出答案.【详解】∴3x﹣2≥0,解得:x≥23,则x能取的最小整数值是:1.故选:B.【点睛】此题主要考查了二次根式的定义,正确得出m的取值范围是解题关键.3.B【解析】【分析】【详解】图象应分三个阶段,第一阶段:匀速跑步到公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:在公园停留了一段时间,这一阶段离家的距离不随时间的变化而改变.故D错误;第三阶段:沿原路匀速步行回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度小于于第一阶段的速度,则C错误.故选B考点:函数的图象【点睛】本题考查了函数的图象,理解每阶段中,离家的距离与时间的关系,根据图象的斜率判断运动的速度是解决本题的关键.4.A【解析】试题解析:A 、两边都除以2y ,得32x y =,故A 符合题意; B 、两边除以不同的整式,故B 不符合题意;C 、两边都除以2y ,得32x y =,故C 不符合题意;D 、两边除以不同的整式,故D 不符合题意; 故选A . 5.B 【解析】 【分析】根据二次根式有意义的条件可得20x +≥ ,再解不等式即可. 【详解】解:由题意得:20x +≥, 解得:2x ≥-, 故选:B . 【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数. 6.C 【解析】 【分析】根据勾股定理即可求解. 【详解】在Rt △ABC 中,AB 为斜边,∴22AC BC +=2 AB =9 ∴222AB AC BC ++=22 AB =18 故选C. 【点睛】此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的性质. 7.D 【解析】 【分析】由平行四边形的性质和三角形中位线定理得出选项A 、B 、C 正确;由OE≠BE ,得出∠BOE≠∠OBC ,选项D 错误;即可得出结论. 【详解】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AB∥DC,AB=CD,又∵点E是BC的中点,∴OE是△BCD的中位线,∴OE=12DC,OE∥DC,,∴∠BOE=∠ODC,∴选项A、B、C正确;∵OE≠BE,∴∠BOE≠∠OBC,∴选项D错误;故选:D.【点睛】此题考查了平行四边形的性质:平行四边形的对角线互相平分.还考查了三角形中位线定理:三角形的中位线平行且等于三角形第三边的一半.8.C【解析】【分析】通过构造相似三角形即可解答.【详解】解:根据题意可得在△ABC中△ABC∽△MNC,又因为M.N是AC,BC的中点,所以相似比为2:1,MN//AB,B正确, CM=12AC,D正确.即AB=2MN=36,A正确;MN=12AB,C错误.故本题选C.【点睛】本题考查相似三角形的判定与运用,熟悉掌握是解题关键.9.A【解析】【分析】过点C作CK⊥AB于点K,将线段CK绕点C逆时针旋转90°得到CH,连接HE,延长HE交AB的延长线于点J;通过证明△CKD≌△CHE (ASA),进而证明所构建的四边形CKJH是正方形,所以当点E与点J重合时,BE 的值最小,再通过在Rt △CBK 中已知的边角条件,即可求出答案. 【详解】如图,过点C 作CK ⊥AB 于点K ,将线段CK 绕点C 逆时针旋转90° 得到CH ,连接HE,延长HE 交AB 的延长线于点J ;∵将线段CD 绕点C 逆时针旋转90° ,得到线段CE ∴∠DCE=∠KCH = 90°∵∠ECH=∠KCH - ∠KCE ,∠DCK =∠DCE-∠KCE ∴∠ECH =∠DCK 又∵CD= CE ,CK = CH ∴在△CKD 和△CHE 中90ECH DCK CK CHDKC EHC ∠=∠=⎧∠=∠=︒⎪⎨⎪⎩∴△CKD ≌△CHE (ASA) ∴∠CKD=∠H=90°,CH=CK ∴∠CKJ =∠KCH =∠H=90° ∴四边形CKJH 是正方形 ∴CH=HJ=KJ=C'K∴点E 在直线HJ 上运动,当点E 与点J 重合时,BE 的值最小 ∵∠A= 30° ∴∠ABC=60° 在Rt △CBK 中, BC= 2,∴CK = BCsin60°3BK=BCcos60° = 1 ∴3所以31; BE 31.故选A. 【点睛】本题主要考查了以线段旋转为载体的求线段最短问题,正方形的构建是快速解答本题的关键. 10.A 【解析】 【分析】分式方程两边乘以(x-1)去分母即可得到结果. 【详解】解:方程两边乘以(x-1) 去分母得:12(1)3--=-x . 故选:A . 【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根. 二、填空题 11.①②③⑤ 【解析】 【分析】AD=AB,AE=AF,∠B=∠D,△ABE ≌△ADF , ①正确, BE=DF, CE=CF , ②正确,∴∠EFC=∠CEF=45°, ∴AE=EF=FA,∠AFE=60°,75,AFD ∠∴=︒∠AEB=75°. ③正确.设,勾股定理知,DF=12-,AD=12+,S △ABE +S △ADF =2=12. S △CEF =111122⨯⨯=. ⑤正确.无法判断圈四的正确性, ①②③⑤正确. 故答案为①②③⑤. 【详解】 请在此输入详解! 12.2x >【分析】首先根据直线与坐标轴的交点求解直线的解析式,在求解不等式即可.【详解】解:根据图象可得:02a b b +=⎧⎨=-⎩ 解得:22a b =⎧⎨=-⎩所以可得一次函数的直线方程为:22y x =-所以可得222x -> ,解得:2x >故答案为2x >【点睛】本题主要考查一次函数求解解析式,关键在于根据待定系数求解函数的解析式.13.m ≤1【解析】【分析】根据方程有实数根,得出△≥0,建立关于m 的不等式,求出m 的取值范围即可.【详解】解:由题意知,△=4﹣4m ≥0,∴m ≤1,故答案为m ≤1.【点睛】此题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根是本题的关键.14.-21()x y - 【解析】【分析】将分子变形为﹣(x ﹣y ),再约去分子、分母的公因式x ﹣y 即可得到结论.【详解】3y x x y --()=2x y x y ---()()=﹣21x y -(). 1本题主要考查分式的约分,由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.15.1【解析】【分析】根据表格数据,建立数学模型,进而利用待定系数法可得函数关系式,当x=4时,代入函数解析式求值即可.【详解】解:设弹簧总长L(cm)与重物质量x(kg)的关系式为L=kx+b,将(0.5,16)、(1.0,17)代入,得:0.51617k bk b+=⎧⎨+=⎩,解得:215kb=⎧⎨=⎩,∴L与x之间的函数关系式为:L=2x+15;当x=4时,L=2×4+15=1(cm)故重物为4kg时弹簧总长L是1cm,故答案为1.【点睛】吧本题考查根据实际问题列一次函数关系式,解题的关键是得到弹簧长度的关系式.16.3或0【解析】【分析】根据一次函数的定义即可求解.【详解】依题意得m-3≠0,2m+1=1或m-3=0,解得m=0或m=3,故填:3或0.【点睛】此题主要考查一次函数的定义,解题的关键是熟知一次函数的特点.17.1.【解析】同类二次根式是指化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.【详解】解:∵最简二次根式2a 与102a是同类二次根式,∴a﹣2=10﹣2a,解得:a=1故答案为:1.【点睛】本题考查同类二次根式.三、解答题18. (1) y=2x+4, 直线与x轴交点为F(-2,0),与y轴交点为E(0,4);(3) S△AOB =8【解析】【分析】试题分析:(1)设直线a的解析式为y=kx+b,用待定系数法求一次函数的解析式即可;(2)设直线a 与有轴交于点C,根据S△AOB=S△AOC+S△COB得出答案即可.【详解】试题解析:设直线解析式为y=kx+b,把点A(1,6)和点B(-3,-2)代入上式得6=k+b-2=-3k+b解得:k=2,b=4所以,y=2x+4x=0时,y=4y=0时,x=-2所以,直线与x轴交点为F(-2,0),与y轴交点为E(0,4)(2)设直线a与有轴交于点CS△AOB=S△BOF+S△AOF=2×2×12+2×6×1219.(1)2元;(2)至少要1487.5斤.【解析】【分析】(1)设第一批柠檬的进价是每斤x元,根据第二次购进数量是第一批的2倍多500斤即可得出分式方程求出答案;(2)首先求出第二批柠檬的数量,第二批柠檬的进价,大果子每斤利润和小果子每斤利润,进而根据利润不低于3080元得出不等式解答即可.【详解】解:(1)设第一批柠檬的进价是每斤x元,据题意得:30007700 2500(110%)x x,解得:x=2经检验,x=2是原方程的解且符合题意答:第一批柠檬的进价是2元每斤;(2)第二批柠檬的数量为:7700÷2(1+10%)=3500(斤),第二批柠檬的进价为:2(1+10%)=2.2元,大果子每斤利润为2×2-2.2=1.8元,小果子每斤利润为2×1.2-2.2=0.2元,设大果子的数量为y斤才能使第二批柠檬的利润不低于3080元,根据题意得:1.8y+(3500−y)×0.2≥3080,解得:y≥1487.5,答:大果子至少要1487.5斤才能使第二批柠檬的利润不低于3080元.【点睛】本题主要考查的是分式方程的应用和一元一次不等式的应用,根据题意找出正确等量关系是解题的关键.20.(1)(1)甲班40%;乙班60%;(2)甲班的中位数是98,方差是75.2,乙班的中位数是100,方差是35.6(3)乙班名列第1名,甲班名列第2名【解析】【分析】(1)根据优秀率=优秀人数除以总人数计算,即可求出甲、乙两班优秀率;(2)根据中位数的定义和方差的计算公式求解;(3)优秀率高,中位数高的班级成绩较好,方差较低的班级成绩较稳定,所以选择优秀率,中位数高方差较低的班级.【详解】乙班优秀率是3100=60% 5⨯(2)甲班成绩按从小到大排序为:90,96,98,100,116,中间的数据为98,所以甲班的中位数是98,甲班的平均数为(90+96+98+100+116)÷5=100所以其方差为:222222(90100)(96100)(98100)(100100)(116100)75.25s-+-+-+-+-==甲;乙班成绩按从小到大排序为:92,95,100,105,108 中间的数据为100,所以甲班的中位数是100,甲班的平均数为(92+95+100+105+108)÷5=100所以其方差为:222222(92100)(95100)(100100)(105100)(108100)35.65s-+-+-+-+-==乙;所以甲班的中位数是98,方差是75.2,乙班的中位数是100,方差是35.6(3)∵甲班的优秀率低于乙班,甲班的中位数小于乙班,∴乙班比赛成绩好于甲班,又∵甲班方差大于乙班,∴乙班成绩比甲班稳定,∴乙班名列第1名,甲班名列第2名.【点睛】本题考查统计表, 中位数, 方差.通过对统计表进行分析,能熟练掌握中位数的定义和方差的计算公式及其所表示的意义是解决本题的关键.21.(1)见解析;(2)见解析【解析】【分析】(1)根据正方形的性质画出以AB为对角线的正方形即可;(2)根据菱形的性质及勾股定理画出菱形CDMN即可,由图可得EFN的面积.【详解】(1)如图,正方形AEBF即为所求;(2)如图,菱形CDMN即为所求.6EFNS=.【点睛】本题考查的是作图-应用与设计作图,熟知菱形与正方形的性质及勾股定理是解答此题的关键. 22.(1)见解析;(2)见解析【解析】【分析】(1)画一个边长为3、4、5的直角三角形即可;(2)画一个边长为2、22、10的直角三角形即可.【详解】解:(1)三边分别是3、4、5,如下图:(2)三边分别是2、22、10,如下图:故答案:(1)图形见解析;(2)图形见解析.【点睛】本题考查了有理数、无理数、勾股定理.23.(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.【详解】(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意有,解得:x=30,经检验,x=30是原方程的解,x+10=30+10=40,答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)设他们可购买y棵乙种树苗,依题意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11,∵y为整数,∴y最大为11,答:他们最多可购买11棵乙种树苗.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.24.2-【解析】分析:根据二次根式的运算法则即可求出答案.详解:原式=22 262622--=2-点睛:本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.(1)总人数为40人,所以x为总人数减去已知人数;根据众数的定义,一组数据中出现次数最多的数叫众数,捐款金额50元人数最多则为众数;中位数的定义是将一组数据从大到小的顺序排列,处于最中间位置的数是中位数,如果这组数据的个数是偶数,则是中间两个数据的平均数.(2)根据平均数的定义求解,本题应是总捐款金额=平均数×总人数.【详解】解:(1)x=40-2-8-16-4-7=3;在几种捐款金额中,捐款金额50元有16人,人数最多,∴捐款金额的众数为50;将捐款金额按从小到大顺序排列,处于最中间位置的为50和50,所以中位数=(50+50)÷2=50.(2)由题意得, 20×2+30×8+50×16+3a+80×4+100×7=57×40,解得a=1.【点睛】本题考查了平均数、中位数和众数,熟练掌握三者的定义及求解方法是解题的关键.。
达州市初中数学八年级下期末测试(含答案)
![达州市初中数学八年级下期末测试(含答案)](https://img.taocdn.com/s3/m/aee139ec52d380eb63946d8c.png)
一、选择题1.(0分)[ID :10231]某商场试销一种新款衬衫,一周内售出型号记录情况如表所示: 型号(厘米) 38 39 40 41 42 43 数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是( ) A .平均数B .中位数C .众数D .方差 2.(0分)[ID :10227]若63n 是整数,则正整数n 的最小值是( ) A .4B .5C .6D .73.(0分)[ID :10225]如图,矩形ABCD 的对角线AC 与数轴重合(点C 在正半轴上),5AB =,12BC =,若点A 在数轴上表示的数是-1,则对角线AC BD 、的交点在数轴上表示的数为( )A .5.5B .5C .6D .6.54.(0分)[ID :10211]一次函数111y k x b =+的图象1l 如图所示,将直线1l 向下平移若干个单位后得直线2l ,2l 的函数表达式为222y k x b =+.下列说法中错误的是( )A .12k k =B .12b b <C .12b b >D .当5x =时,12y y >5.(0分)[ID :10208]下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形 ③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有( )个.A .4B .3C .2D .16.(0分)[ID :10206]下列命题中,真命题是( ) A .两条对角线垂直的四边形是菱形 B .对角线垂直且相等的四边形是正方形 C .两条对角线相等的四边形是矩形 D .两条对角线相等的平行四边形是矩形 7.(0分)[ID :10205]以下命题,正确的是( ). A .对角线相等的菱形是正方形 B .对角线相等的平行四边形是正方形 C .对角线互相垂直的平行四边形是正方形 D .对角线互相垂直平分的四边形是正方形8.(0分)[ID :10204]如图,在平行四边形ABCD 中,ABC ∠和BCD ∠的平分线交于AD 边上一点E ,且4BE =,3CE =,则AB 的长是( )A .3B .4C .5D .2.59.(0分)[ID :10147]正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图象大致是( )A .B .C .D .10.(0分)[ID :10141]12751348)的结果是( )A .6B .43C .23+6D .1211.(0分)[ID :10140]下列计算正确的是( ) A .2(4)-=2B .52=3-C .52=10⨯D .62=3÷12.(0分)[ID :10134]对于函数y =2x +1下列结论不正确是( ) A .它的图象必过点(1,3) B .它的图象经过一、二、三象限 C .当x >12时,y >0 D .y 值随x 值的增大而增大13.(0分)[ID :10177]明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:m 2)与工作时间t (单位:h )之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )A .300m 2B .150m 2C .330m 2D .450m 214.(0分)[ID :10171]二次根式()23-的值是( )A .﹣3B .3或﹣3C .9D .315.(0分)[ID :10154]在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( ) A .(2,0)B .(-2,0)C .(6,0)D .(-6,0)二、填空题16.(0分)[ID :10328]如图,矩形ABCD 中,AC 、BD 相交于点O ,AE 平分∠BAD ,交BC 于E ,若∠EAO=15°,则∠BOE 的度数为 度.17.(0分)[ID :10313]函数x____.18.(0分)[ID :10309]若ab <02a b _____.19.(0分)[ID :10291]如图,将边长为8的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长为____.20.(0分)[ID :10273]在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB=60°,AC=10,则AB= .21.(0分)[ID :10271]如图,已知ABC ∆中,10AB =,8AC =,6BC =,DE 是AC 的垂直平分线,DE 交AB 于点D ,连接CD ,则=CD ___22.(0分)[ID :10263]直角三角形两直角边长分别为23+1,23-1,则它的斜边长为____.23.(0分)[ID :10262]如果将直线y=3x-1平移,使其经过点(0,2),那么平移后所得直线的表达式是______.24.(0分)[ID :10253]某汽车生产厂对其生产的A 型汽车进行油耗试验,试验中汽车为匀速行驶汽在行驶过程中,油箱的余油量y (升)与行驶时间t (小时)之间的关系如下表: t (小时) 0 1 2 3 y (升)100928476由表格中y 与t 的关系可知,当汽车行驶________小时,油箱的余油量为0.25.(0分)[ID :10245]我们把[a ,b]称为一次函数y =ax+b 的“特征数”.如果“特征数”是[2,n+1]的一次函数为正比例函数,则n 的值为_____.三、解答题26.(0分)[ID :10376]如图,在平行四边形ABCD 中,点E ,F 分别是边AD ,BC 上的点,且AE=CF ,求证:AF=CE .27.(0分)[ID :10369]如图,已知一次函数y=kx+b 的图象经过A (﹣2,﹣1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D . (1)求该一次函数的解析式;(2)求△AOB 的面积.28.(0分)[ID :10357]如图,在四边形ABCD 中,//AD BC ,12AD cm =,15BC cm =,点P 自点A 向D 以/lcm s 的速度运动,到D 点即停止.点Q 自点C 向B 以2/cm s 的速度运动,到B 点即停止,点P ,Q 同时出发,设运动时间为()t s .()1用含t 的代数式表示:AP =______;DP =______;BQ =______.(2)当t 为何值时,四边形APQB 是平行四边形?29.(0分)[ID :10333]某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整. 收集数据从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:甲 78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40 整理、描述数据按如下分数段整理、描述这两组样本数据: 成绩x 人数 部门 40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100甲 011171乙(说明:成绩80分及以上为生产技能优秀,70--79分为生产技能良好,60--69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下表所示:部门平均数中位数众数甲78.377.575乙7880.581得出结论:a.估计乙部门生产技能优秀的员工人数为____________;b.可以推断出_____________部门员工的生产技能水平较高,理由为_____________.(至少从两个不同的角度说明推断的合理性)30.(0分)[ID:10432]如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC 于点E,若AB=5,AE=8,则BF的长为______.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.D3.A4.B5.C6.D7.A8.D9.B10.D11.C12.C13.B14.D15.B二、填空题16.75°【解析】试题分析:根据矩形的性质可得△BOA为等边三角形得出BA=BO又因为△BAE为等腰直角三角形BA=BE由此关系可求出∠BOE的度数解:在矩形ABCD中∵AE平分∠BAD∴∠BAE=∠E17.【解析】【分析】由根式的被开方数大于等于0分式的分母不等于0联立不等式组求解x的取值即可【详解】根据题意得解得故答案为:【点睛】本题考查了函数的定义域及其求法函数的定义域就是使函数解析式有意义的自变18.【解析】【分析】二次根式有意义就隐含条件b>0由ab<0先判断出ab的符号再进行化简即可【详解】若ab<0且代数式有意义;故有b>0a<0;则代数式=|a|=-a故答案为:-a【点睛】本题主要考查二19.3【解析】【分析】根据折叠的性质只要求出DN就可以求出NE在直角△CEN中若设CN=x则DN=NE=8-xCE=4根据勾股定理就可以列出方程从而解出CN的长【详解】设CN=x 则DN=8-x由折叠的性20.5【解析】试题分析:∵四边形ABCD是矩形∴OA=OB又∵∠AOB=60°∴△AOB是等边三角形∴AB=OA=12AC=5故答案是:5考点:含30度角的直角三角形;矩形的性质21.5【解析】【分析】由是的垂直平分线可得AD=CD可得∠CAD=∠ACD利用勾股定理逆定理可得∠ACB=90°由等角的余角相等可得:∠DCB=∠B可得CD=BD可知CD=BD=AD=【详解】解:∵是的22.【解析】【分析】已知直角三角形的两条直角边由勾股定理直角三角形两条直角边的平方和等于斜边的平方即可求得斜边的长度【详解】由勾股定理得(2 +1)2+(2 −1)2=斜边2斜边=故答案为:【点睛】勾股23.【解析】【分析】根据平移不改变k的值可设平移后直线的解析式为y=3x+b然后将点(02)代入即可得出直线的函数解析式【详解】解:设平移后直线的解析式为y=3x+b把(02)代入直线解析式得2=b解得24.5【解析】【分析】由表格可知开始油箱中的油为100L每行驶1小时油量减少8L据此可得y与t的关系式【详解】解:由题意可得:y=100-8t当y=0时0=100-8t解得:t=125故答案为:125【25.﹣1【解析】【分析】根据正比例函数是截距为0的一次函数可得n+1=0进而求出n 值即可【详解】∵特征数是2n+1的一次函数为正比例函数∴n+1=0解得:n=﹣1故答案为:﹣1【点睛】本题考查正比例函数三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】分析:商场经理要了解哪些型号最畅销,所关心的即为众数.详解:根据题意知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数. 故选C .点睛:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2.D解析:D 【解析】 【分析】因为63n 是整数,且63n =273n ⨯=37n ,则7n 是完全平方数,满足条件的最小正整数n 为7. 【详解】∵63n =273n ⨯=37n ,且7n 是整数; ∴37n 是整数,即7n 是完全平方数; ∴n 的最小正整数值为7. 故选:D . 【点睛】主要考查了乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数.二次根式的运算法则:乘法法则a b ab ⋅=,除法法则b ba a=.解题关键是分解成一个完全平方数和一个代数式的积的形式.3.A解析:A 【解析】 【分析】连接BD 交AC 于E ,由矩形的性质得出∠B=90°,AE=12AC ,由勾股定理求出AC ,得出OE ,即可得出结果. 【详解】连接BD 交AC 于E ,如图所示:∵四边形ABCD 是矩形, ∴∠B=90°,AE=12AC ,∴13==,∴AE=6.5,∵点A 表示的数是-1, ∴OA=1, ∴OE=AE-OA=5.5, ∴点E 表示的数是5.5,即对角线AC 、BD 的交点表示的数是5.5; 故选A . 【点睛】本题考查了矩形的性质、勾股定理、实数与数轴;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.4.B解析:B 【解析】 【分析】根据两函数图象平行k 相同,以及平移规律“左加右减,上加下减”即可判断 【详解】∵将直线1l 向下平移若干个单位后得直线2l , ∴直线1l ∥直线2l , ∴12k k =,∵直线1l 向下平移若干个单位后得直线2l , ∴12b b >,∴当x 5=时,12y y > 故选B . 【点睛】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.5.C解析:C 【解析】 【分析】 【详解】∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误; ∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个,故选C.考点:中点四边形;平行四边形的性质;菱形的判定;矩形的判定与性质;正方形的判定.6.D解析:D【解析】A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.7.A解析:A【解析】【分析】利用正方形的判定方法分别判断后即可确定正确的选项.【详解】A、对角线相等的菱形是正方形,正确,是真命题;B、对角线相等的平行四边形是矩形,故错误,是假命题;C、对角线互相垂直的平行四边形是菱形,故错误,是假命题;D、对角线互相垂直平分的四边形是菱形,故错误,是假命题,故选:A.【点睛】考查了命题与定理的知识,解题的关键是了解正方形的判定方法.8.D解析:D【解析】【分析】由▱ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,易证得△ABE,△CDE是等腰三角形,△BEC是直角三角形,则可求得BC的长,继而求得答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠CBE,∠DEC=∠BCE,∠ABC+∠DCB=90°,∵BE,CE分别是∠ABC和∠BCD的平分线,∴∠ABE=∠CBE=12∠ABC,∠DCE=∠BCE=12∠DCB,∴∠ABE=∠AEB,∠DCE=∠DEC,∠EBC+∠ECB=90°,∴AB=AE,CD=DE,∴AD=BC=2AB,∵BE=4,CE=3,∴5==,∴AB=12BC=2.5.故选D.【点睛】此题考查了平行四边形的性质、等腰三角形的判定与性质以及直角三角形的性质.注意证得△ABE,△CDE是等腰三角形,△BEC是直角三角形是关键.9.B解析:B【解析】【分析】先根据正比例函数y kx=的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质进行解答即可.【详解】解:正比例函数y kx=的函数值y随x的增大而增大,00k k∴->,<,∴一次函数y x k=-的图象经过一、三、四象限.故选B.【点睛】本题考查的知识点是一次函数的图象与正比例函数的性质,解题关键是先根据正比例函数的性质判断出k的取值范围.10.D解析:D【解析】【分析】【详解】12===.故选:D.11.C解析:C【解析】【分析】根据二次根式的性质与二次根式的乘除运算法则逐项进行计算即可得.【详解】,故A选项错误;不是同类二次根式,不能合并,故B选项错误;C选项正确;D选项错误,故选C.【点睛】本题考查了二次根式的化简、二次根式的加减运算、乘除运算,解题的关键是掌握二次根式的性质与运算法则.12.C解析:C【解析】【分析】利用k、b的值依据函数的性质解答即可.【详解】解:当x=1时,y=3,故A选项正确,∵函数y=2x+1图象经过第一、二、三象限,y随x的增大而增大,∴B、D正确,∵y>0,∴2x+1>0,∴x>﹣12,∴C选项错误,故选:C.【点睛】此题考查一次函数的性质,熟记性质并运用解题是关键. 13.B解析:B【解析】【分析】【详解】解:如图,设直线AB的解析式为y=kx+b,则4+=1200 {5k+b=1650k b,解得450 {600 kb==-故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300, 300÷2=150(m 2)故选B .【点睛】本题考查一次函数的应用.14.D解析:D【解析】【分析】本题考查二次根式的化简,2(0)(0)a a a a a ⎧=⎨-<⎩. 【详解】 2(3)|3|3-=-=.故选D .【点睛】本题考查了根据二次根式的意义化简. 2a a ≥02a a ;当a ≤02a a .15.B解析:B【解析】【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案.【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+, 此时与x 轴相交,则0y =,∴360x +=,即2x =-,∴点坐标为(-2,0),故选B.【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.二、填空题16.75°【解析】试题分析:根据矩形的性质可得△BOA为等边三角形得出BA=BO又因为△B AE为等腰直角三角形BA=BE由此关系可求出∠BOE的度数解:在矩形ABCD中∵AE平分∠BAD ∴∠BAE=∠E解析:75°.【解析】试题分析:根据矩形的性质可得△BOA为等边三角形,得出BA=BO,又因为△BAE为等腰直角三角形,BA=BE,由此关系可求出∠BOE的度数.解:在矩形ABCD中,∵AE平分∠BAD,∴∠BAE=∠EAD=45°,又知∠EAO=15°,∴∠OAB=60°,∵OA=OB,∴△BOA为等边三角形,∴BA=BO,∵∠BAE=45°,∠ABC=90°,∴△BAE为等腰直角三角形,∴BA=BE.∴BE=BO,∠EBO=30°,∠BOE=∠BEO,此时∠BOE=75°.故答案为75°.考点:矩形的性质;等边三角形的判定与性质.17.【解析】【分析】由根式的被开方数大于等于0分式的分母不等于0联立不等式组求解x的取值即可【详解】根据题意得解得故答案为:【点睛】本题考查了函数的定义域及其求法函数的定义域就是使函数解析式有意义的自变解析:0x>.【解析】【分析】由根式的被开方数大于等于0,分式的分母不等于0联立不等式组求解x的取值即可.【详解】根据题意得,0 xx≥⎧⎨≠⎩x>解得,0x>.故答案为:0【点睛】本题考查了函数的定义域及其求法,函数的定义域,就是使函数解析式有意义的自变量的取值范围,是基础题.18.【解析】【分析】二次根式有意义就隐含条件b>0由ab<0先判断出ab的符号再进行化简即可【详解】若ab<0且代数式有意义;故有b>0a<0;则代数式=|a|=-a故答案为:-a【点睛】本题主要考查二解析:-【解析】【分析】二次根式有意义,就隐含条件b>0,由ab<0,先判断出a、b的符号,再进行化简即可.【详解】若ab<0故有b>0,a<0;.故答案为:.【点睛】本题主要考查二次根式的化简方法与运用:当a>0;当a<0;当a=0.19.3【解析】【分析】根据折叠的性质只要求出DN就可以求出NE在直角△CEN中若设CN=x则DN=NE=8-xCE=4根据勾股定理就可以列出方程从而解出CN 的长【详解】设CN=x则DN=8-x由折叠的性解析:3【解析】【分析】根据折叠的性质,只要求出DN就可以求出NE,在直角△CEN中,若设CN=x,则DN=NE=8-x,CE=4,根据勾股定理就可以列出方程,从而解出CN的长.【详解】设CN=x,则DN=8-x,由折叠的性质知EN=DN=8-x,BC=4,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8-x)2=16+x2而EC=12整理得16x=48,所以x=3.故答案为:3.【点睛】本题考查翻折变换、正方形的性质、勾股定理等知识,解题的关键是设未知数利用勾股定理列出方程解决问题,属于中考常考题型.20.5【解析】试题分析:∵四边形ABCD 是矩形∴OA=OB 又∵∠AOB=60°∴△AOB 是等边三角形∴AB=OA=12AC=5故答案是:5考点:含30度角的直角三角形;矩形的性质解析:5。
四川省达州市2020年八年级第二学期期末统考数学试题含解析
![四川省达州市2020年八年级第二学期期末统考数学试题含解析](https://img.taocdn.com/s3/m/d07a37b0bb68a98270fefa44.png)
四川省达州市2020年八年级第二学期期末统考数学试题一、选择题(每题只有一个答案正确)1.某学校为了了解九年级体能情况,随机选取30名学生测试一分钟仰卧起坐次数,并绘制了如图的直方图,学生仰卧起坐次数在25~30之间的频率为( )A .0.1B .0.17C .0.33D .0.42.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,AB =6cm ,BC =8cm ,则△AEF 的周长是( )A .14cmB .8cmC .9cmD .10cm3.函数()()1240y x x y x x==>≥0,的图象如图所示,则结论:①两函数图象的交点A 的坐标为(2,2);②当x >2时,21y y >;③当x =1时,BC =3;④当x 逐渐增大时,1y 随着x 的增大而增大,2y 随着x 的增大而减小.则其中正确结论的序号是( )A .①②B .①③C .②④D .①③④4.以下列各组数为三角形的边长,能构成直角三角形的是( ) A .1,2,3B .1,12C .2,4,5D .6,7,85.如图,从一张腰长为60cm ,顶角为120°的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为( )A .10cmB .15cmC .103cmD .202cm6.如图,将边长为3cm 的正方形ABCD 绕点A 逆时针方向旋转30后得到正方形'''AB C D ,则图中阴影部分的面积为( )A .234cm B .232cm C .23cm D .()233cm -7.如图,已知正方形ABCD 的边长为53,E 为BC 边上的一点,∠EBC=30°,则BE 的长为 ( )A .5cmB .25cmC .5 cmD .10 cm8.小明同学将某班级毕业升学体育测试成绩(满分30分)统计整理,得到下表,则下列说法错误的是( ) 分数 20 21 22 23 24 25 26 27 28 人数2438109631A .该组数据的众数是24分B .该组数据的平均数是25分C .该组数据的中位数是24分D .该组数据的极差是8分9.如图,已知直线y 1=x+a 与y 2=kx+b 相交于点P (﹣1,2),则关于x 的不等式x+a >kx+b 的解集正确的是( )A .x >﹣1B .x >1C .x <1D .x <﹣110.将不等式31x -<2的解集表示在数轴上,正确的是( ) A . B . C .D .二、填空题11.直线y =k 1x+b 与直线y =k 2x+c 在同一平面直角坐标系中的图象如图所示,则关于X 的不等式 k 1x+b >k 2x+c 的解集为_____.12.如图,等腰三角形中,AB AC =,AD 是底边上的高5cm 6cm AB BC ==,,则AD=________________.13.如图,等腰△ABC 中,AB=AC ,AB 的垂直平分线MN 交边AC 于点D ,且∠DBC=15°,则∠A 的度数是_______.14.若分式11x x +-的值为0,则x 的值是_____. 15.已知函数y 1=k 1x+b 1与函数y 2=k 2x+b 2的图象如图所示,则不等式k 1x+b 1<k 2x+b 2的解集是 .16.计算)5353的结果等于______________.17.已知菱形两条对角线的长分别为12和16,则这个菱形的周长为______. 三、解答题18y=1x+2x A y B(1)求A ,B 两点的坐标;(2)已知点C 是线段AB 上的一点,当S △AOC =12S △AOB 时,求直线OC 的解析式。
达州市名校2020年八年级第二学期期末检测数学试题含解析
![达州市名校2020年八年级第二学期期末检测数学试题含解析](https://img.taocdn.com/s3/m/4a51896c844769eae009ede6.png)
达州市名校2020年八年级第二学期期末检测数学试题 一、选择题(每题只有一个答案正确)1.如图,将等腰直角三角形ABC 绕点A 逆时针旋转15度得到ΔAEF ,若AC =3,则阴影部分的面积为( )A .1B .12C .32D .32.下列关系不是函数关系的是( )A .汽车在匀速行驶过程中,油箱的余油量y (升)是行驶时间t (小时)的函数B .改变正实数x ,它的平方根y 随之改变,y 是x 的函数C .电压一定时,通过某电阻的电流强度I (单位:安)是电阻R (单位:欧姆)的函数D .垂直向上抛一个小球,小球离地的高度h (单位:米)是时间t (单位:秒)的函数3. “龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是( )A .B .C .D .4.如图,平行四边形ABCD 中,AC AB ⊥,点E 为BC 边中点,6AD cm =,则AE 的长为 ( )A .2cmB .3cmC .4cmD .6cm5.下面各问题中给出的两个变量x ,y ,其中y 是x 的函数的是① x 是正方形的边长,y 是这个正方形的面积;② x 是矩形的一边长,y 是这个矩形的周长;③ x 是一个正数,y 是这个正数的平方根;④ x是一个正数,y是这个正数的算术平方根.A.①②③B.①②④C.②④D.①④6.如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()A.1 B.3C.2 D.237.在多边形内角和公式的探究过程中,主要运用的数学思想是()A.化归思想B.分类讨论C.方程思想D.数形结合思想8.为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第()秒A.80 B.105 C.120 D.1509.2018年体育中考中,我班一学习小组6名学生的体育成绩如下表,则这组学生的体育成绩的众数,中位数依次为()成绩(分)47 48 50人数 2 3 1A.48,48B.48,47.5C.3,2.5D.3,210.如图,将△ABC绕点A顺时针旋转,使点C落在边AB上的点E处,点B落在点D处,连结BD,如果∠DAC=∠DBA,那么∠BAC度数是()A.32°B.35°C.36°D.40°二、填空题11.有一种细菌的直径约为0.000000054米,将0.000000054这个数用科学记数法表示为____.12.函数2(y kx k k =-+为任意实数)的图象必经过定点,则该点坐标为____.13.如图,在中,,.对角线AC 与BD 相交于点O ,,则BD 的长为____________.14.若关于x 的方程122a x x x -=---3有增根,则a =_____. 15.若一组数据6,x ,3,5,4的众数是3,则这组数据的中位数是__________. 16.如图所示,折叠矩形的一边 AD ,使点 D 落在边 BC 的点 F 处,已知 AB=8cm ,BC=10cm ,则 EC 的长为_____cm .17.已知一组数据1,2,0,﹣1,x ,1的平均数是1,那么这组数据的方差是__.三、解答题18.如图,一次函数y kx b =+与反比例函数m y x=的图象交于A (1,4),B (4,n )两点.(1)求反比例函数的解析式;(2)求一次函数的解析式;(3)点P 是x 轴上的一动点,试确定点P 并求出它的坐标,使PA+PB 最小.19.(6分)俄罗斯足球世界杯点燃了同学们对足球运动的热情,某学校划购买甲、乙两种品牌的足球供学生使用.已知用1000 元购买甲种足球的数量和用1600元购买乙种足球的数量相同,甲种足球的单价比乙种足球的单价少30元.(1)求甲、乙两种品牌的足球的单价各是多少元?(2)学枝准备一次性购买甲、乙两种品牌的足球共25个,但总费用不超过1610元,那么这所学校最多购买多少个乙种品牌的足球?20.(6分)在正方形ABCD 中,点,E F 是对角线BD 上的两点,且满足BE DF =,连接,,,AE AF CE CF .试判断四边形AECF 的形状,并说明理由.21.(6分)如图,在ABC 中,O 为边AC 的中点,过点A 作AD BC ∥,与BO 的延长线相交于点D ,E 为AD 延长上的任一点,联结CE 、CD .(1)求证:四边形ABCD 是平行四边形;(2)当D 为边AE 的中点,且2CE CO =时,求证:四边形ABCD 为矩形.22.(8分)在正方形ABCD 中,过点A 引射线AH ,交边CD 于点H (点H 与点D 不重合),通过翻折,使点B 落在射线AH 上的点G 处,折痕AE 交BC 于点E ,延长EG 交CD 于点F.如图①,当点H 与点C 重合时,易证得FG=FD (不要求证明);如图②,当点H 为边CD 上任意一点时,求证:FG=FD .(应用)在图②中,已知AB=5,BE=3,则FD= ,△EFC 的面积为 .(直接写结果)23.(8分)已知关于x 的分式方程x k k x 1x-1+-+=1的解为负数,求k 的取值范围. 24.(10分)(1)问题发现. 如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌.②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________.(2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)25.(10分)某学校组织了“热爱宪法,捍卫宪法”的知识竞赛,赛后发现所有学生的成绩(总分100分)均不低于50分,为了解本次竞赛的成绩分布情况,随机抽取若干名学生的成绩作为样本进行整理,并绘制了不完整的统计图表,请你根据统计图表解答下列问题.(1)此次抽样调查的样本容量是_________;(2)写出表中的a=_____,b=______,c=________;(3)补全学生成绩分布直方图;(4)比赛按照分数由高到低共设置一、二、三等奖,若有25%的参赛学生能获得一等奖,则一等奖的分数线是多少?参考答案一、选择题(每题只有一个答案正确)1.C【解析】【分析】利用旋转得出∠DAF=30°,就可以利用直角三角形性质,求出阴影部分面积.【详解】解:如图.设旋转后,EF交AB与点D,因为等腰直角三角形ABC中,∠BAC=90°,又因为旋转角为15°,所以∠DAF=30°,因为AF=AC=3,所以DF=1,所以阴影部分的面积为3.故选:C.2.B【解析】【分析】利用函数的定义:设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量,进而得出答案.【详解】解:A、汽车在匀速行驶过程中,油箱的余油量y(升)是行驶时间t(小时)的函数,故此选项不合题意;B、y表示一个正数x的平方根,y与x之间的关系,两个变量之间的关系不能看成函数关系,故此选项符合题意;C、电压一定时,通过某电阻的电流强度I(单位:安)是电阻R(单位:欧姆)的函数,故本选项不合题意;D、垂直向上抛一个小球,小球离地的高度h(单位:米)是时间t(单位:秒)的函数,故本选项不合题意.故选:B.【点睛】此题主要考查了函数的定义,正确把握函数定义是解题关键.对于自变量的每一个确定的值,函数值有且只有一个值与之对应,即一一对应.3.B【解析】【分析】根据领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟先到达终点,即可判断.【详解】领先的兔子看着缓慢爬行的乌龟,兔子骄傲起来,睡了一觉,在图形上来看在一段时间内兔子所行路程不变,当它醒来时,发现乌龟快到了终点了,于是急忙追赶,但为时已晚,乌龟先到达了终点,说明乌龟到达终点时兔子还没到达,所以排除A、C、D,所以符合题意的是B,故选B.【点睛】本题考查了函数的图象,解答本题的关键是读懂题意及图象,弄清函数图象中横、纵轴所表示的意义及实际问题中自变量与因变量之间的关系.4.B【解析】【分析】由平行四边形的性质得出BC=AD=6cm,由直角三角形斜边上的中线性质即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴BC=AD=6cm,∵E为BC的中点,AC⊥AB,∴AE=12BC=3cm,故选:B.【点睛】本题考查了平行四边形的性质、直角三角形斜边上的中线性质;熟练掌握平行四边形的性质,由直角三角形斜边上的中线性质求出AE是解决问题的关键.5.D【解析】【分析】根据题意对各选项分析列出表达式,然后根据函数的定义分别判断即可得解.【详解】解:①、y= x2,y是x的函数,故①正确;②、x是矩形的一边长,y是这个矩形的周长,无法列出表达式,y不是x的函数,故②错误;③、x的值对应两个y值,y不是x的函数,故③错误;④、,每一个x的值对应一个y值,y是x的函数,故④正确.故选D.【点睛】本题考查函数的概念,准确表示出各选项中的y、x的关系是解题的关键.6.C【解析】试题分析:∵菱形ABCD的边长为1,∴AD=AB=1,又∵∠DAB=60°,∴△DAB是等边三角形,∴AD=BD=AB=1,则对角线BD的长是1.故选C.考点:菱形的性质.7.A【解析】【分析】根据多边形内角和定理:(n-2)·180(n≥3)且n为整数)的推导过程即可解答.【详解】解:多边形内角和定理:(n-2)·180(n≥3)且n为整数),该公式推导的基本方法是从n边形的一个顶点出发引出(n-3)条对角线,将n边形分割为(n-2)个三角形,这(n-2)个三角形的所有内角之和正好是n边形的内角和,体现了化归思想.故答案为A.【点睛】本题主要考查了在数学的学习过程应用的数学思想,弄清推导过程是解答此题的关键.8.C【解析】【分析】如图,分别求出OA、BC的解析式,然后联立方程,解方程就可以求出第一次相遇时间.【详解】设直线OA的解析式为y=kx,代入A(200,800)得800=200k,解得k=4,故直线OA的解析式为y=4x,设BC的解析式为y1=k1x+b,由题意,得1136060540150k bk b=+⎧⎨=+⎩,解得:12240kb=⎧⎨=⎩,∴BC的解析式为y1=2x+240,当y=y1时,4x=2x+240,解得:x=120,则她们第一次相遇的时间是起跑后的第120秒,故选C.【点睛】本题考查了一次函数的运用,一次函数的图象的意义的运用,待定系数法求一次函数的解析式的运用,解答时认真分析求出一次函数图象的数据意义是关键.9.A【解析】分析:根据中位数和众数的概念,分别求出众数(出现次数最多)和中位数(先排列再取中间一个或两个的平均数)即可求解.详解:由于48分的出现次数最多,故众数是48分,共有6名学生,所以第三个和第四个均为48分,所以中位数为48分.故选:A.点睛:此题主要考查了中位数和众数的求法,关键是掌握中位数和众数的概念和求法,灵活求解. 10.C【解析】【分析】设∠BAC=x,依据旋转的性质,可得∠DAE=∠BAC=x,∠ADB=∠ABD=2x,再根据三角形内角和定理即可得出x.【详解】设∠BAC=x,由旋转的性质,可得∠DAE=∠BAC=x,∴∠DAC=∠DBA=2x,又∵AB=AD,∴∠ADB=∠ABD=2x,又∵△ABD中,∠BAD+∠ABD+∠ADB=180°,∴x+2x+2x=180°,∴x=36°,即∠BAC=36°,故选C.【点睛】本题主要考查了旋转的性质以及三角形内角和定理,解题时注意:旋转前、后的图形全等.二、填空题11.【解析】【分析】绝对值<1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000054这个数用科学记数法表示为.故答案为:【点睛】考查科学记数法,掌握绝对值小于1的数的表示方法是解题的关键.12.(1,2)【解析】【分析】先把函数解析式化为y=k(x-1)+2的形式,再令x=1求出y的值即可.【详解】解:函数y kx k 2=-+可化为()y k x 12=-+,当x 10-=,即x 1=时,y 2=,∴该定点坐标为()1,2.故答案为:()1,2.【点睛】 本题考查的是一次函数图象上点的坐标特点,把原函数的解析式化为y=k (x-1)+2的形式是解答此题的关键.13.【解析】 【分析】利用平行四边形的性质和勾股定理易求AC 的长,进而可求出BD 的长.【详解】解:∵AC ⊥BC ,AB=CD=10,AD=6,∴AC ===8, ∵▱ABCD 的对角线AC 与BD 相交于点O ,∴BO=DO ,AO=CO=AC=4,∴OD ===2 . ∴BD =4.故答案为:4. 【点睛】本题考查平行四边形的性质以及勾股定理的运用,熟练掌握平行四边形的性质,由勾股定理求出OD 是解题关键.14.1【解析】【分析】去分母后把x=2代入,即可求出a 的值.【详解】两边都乘以x-2,得a=x-1,∵方程有增根,∴x-2=0,∴x=2,∴a=2-1=1.故答案为:1.【点睛】本题考查的是分式方程的增根,在分式方程变形的过程中,产生的不适合原方程的根叫做分式方程的增根.增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.15.4【解析】【分析】因为其余各数均出现一次且众数为3,所以,x=3;然后从小到大,排序即可确定中位数.【详解】解:其余各数均出现一次且众数为3,所以,x=3,原数据从小到大排序为:3,3,4,5,6,所以,中位数为4【点睛】解答本题的关键是确定x的值,即灵活应用中位数概念.16.2【解析】试题解析:∵D,F关于AE对称,所以△AED和△AEF全等,∴AF=AD=BC=10,DE=EF,设EC=x,则DE=8-x.∴EF=8-x,在Rt△ABF中,BF=,∴FC=BC-BF=1.在Rt△CEF中,由勾股定理得:CE2+FC2=EF2,即:x2+12=(8-x)2,解得x=2.∴EC的长为2cm.考点:1.勾股定理;2.翻折变换(折叠问题).17.5 3【解析】【分析】先由平均数的公式计算出x的值,再根据方差的公式计算.一般地设n个数据,x1,x2,…x n的平均数为Z ,则方差S 2=1n[(x 1﹣z )2+(x 2﹣z )2+…+(x n ﹣z )2]. 【详解】 x =1×6﹣1﹣2﹣0﹣(﹣1)﹣1=3s 2=16[(1﹣1)2+(2﹣1)2+(0﹣1)2+(﹣1﹣1)2+(3﹣1)2+(1﹣1)2]=53. 故答案为53. 【点睛】本题考查了方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为z ,则方差S 2=1n[(x 1﹣z )2+(x 2﹣z )2+…+(x n ﹣z )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.三、解答题18.(1)4y x =;(2)5y x =-+;(3)P (175,0). 【解析】【分析】(1)把A 的坐标代入m y x=即可求出结果; (2)先把B 的坐标代入4y x=得到B (4,1),把A 和B 的坐标,代入y kx b =+即可求得一次函数的解析式; (3)作点B 关于x 轴的对称点B′,连接AB′交x 轴于P ,则AB′的长度就是PA+PB 的最小值,求出直线AB′与x 轴的交点即为P 点的坐标.【详解】(1)把A (1,4)代入m y x=得:m=4, ∴反比例函数的解析式为:4y x=; (2)把B (4,n )代入4y x=得:n=1,∴B (4,1),把A (1,4),B (4,1)代入y kx b =+,得:414k b k b =+=+⎧⎨⎩, ∴1{5k b =-=,∴一次函数的解析式为:5y x =-+;(3)作点B 关于x 轴的对称点B′,连接AB′交x 轴于P ,则AB′的长度就是PA+PB 的最小值,由作图知,B′(4,﹣1),∴直线AB′的解析式为:51733y x =-+,当y=0时,x=175,∴P (175,0).19.(1)甲种品牌的足球的单价为50元/个,乙种品牌的足球的单价为1元/个;(2)这所学校最多购买2个乙种品牌的足球.【解析】【分析】(1)设甲种品牌的足球的单价为x 元/个,则乙种品牌的足球的单价为(x+30)元/个,根据数量=总价÷单价结合用1000元购买甲种足球的数量和用1600元购买乙种足球的数量相同,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设这所学校购买m 个乙种品牌的足球,则购买(25-m )个甲种品牌的足球,根据总价=单价×数量结合总费用不超过1610元,即可得出关于m 的一元一次不等式,解之取其中的最大值即可得出结论.【详解】 (1)设甲种品牌的足球的单价为x 元/个,则乙种品牌的足球的单价为(x+30)元/个,根据题意得:1000160030x x =+, 解得:x=50,经检验,x=50是所列分式方程的解,且符合题意,∴x+30=1.答:甲种品牌的足球的单价为50元/个,乙种品牌的足球的单价为1元/个.(2)设这所学校购买m 个乙种品牌的足球,则购买(25–m )个甲种品牌的足球,根据题意得:1m+50(25–m )≤1610,解得:m ≤2.答:这所学校最多购买2个乙种品牌的足球.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.20.四边形AECF 是菱形,理由详见解析.【解析】【分析】根据正方形的性质,得到,AC BD OA OB OC OD ⊥===,由BE DF =,得到OE OF =,即可得到四边形ABCD 为菱形.【详解】证明:四边形AECF是菱形;理由如下:连接AC交BD于点O,四边形ABCD为正方形,,AC BD OA OB OC OD∴⊥===,又BE DF=,OB BE OD DF∴===,即OE OF=,AC∴与EF相互垂直平分,∴四边形ABCD为菱形.【点睛】本题考查了正方形的性质,以及菱形的判定,解题的关键是熟练掌握正方形的性质和菱形的判定进行解题. 21.(1)见解析;(2)见解析.【解析】【分析】(1)首先利用平行线的性质和中点证明AOD COB≅,则有AD BC=,然后利用一组对边平行且相等即可证明四边形ABCD是平行四边形;(2)首先利用平行四边形的性质得出12AO CO AC==,进而可得出CE CA=,然后利用等腰三角形三线合一得出90ADC∠=︒,则可证明平行四边形ABCD是矩形.【详解】(1)//AD BC ,DAO BCO∴∠=∠,ADO CBO∠=∠.O是AC的中点,AO CO∴=.在AOD△与COB△中ADO CBODAO BCOAO CO∠=∠⎧⎪∠=∠⎨⎪=⎩,()AOD COB AAS ∴≅,AD BC ∴=.又//AD BC∴四边形ABCD 是平行四边形.(2)四边形ABCD 是平行四边形12AO CO AC ∴==. 2CE CO =,CE CA ∴=又D 是AE 中点,CD AE ∴⊥.即90ADC ∠=︒. 又四边形ABCD 是平行四边形.∴四边形ABCD 是矩形.【点睛】本题主要考查平行四边形的判定与性质,矩形的判定,掌握全等三角形的判定及性质,平行线的性质,等腰三角形的性质是解题的关键.22.(1)证明见解析;(2)应用:54;154 【解析】试题分析:由折叠的性质可得AB=AG=AD ,∠AGF=∠AGE=∠B=∠D=90°,再结合AF 为△AGF 和△ADF 的公共边,从而证明△AGF ≌△ADF ,从而得出结论.[应用]设FG=x ,则FC=5-x ,FE=3+x ,在Rt △ECF 中利用勾股定理可求出x 的值,进而可得出答案. 试题解析:(1)由翻折得AB=AG,∠AGE=∠ABE=90°∴∠AGF=90°由正方形ABCD 得 AB=AD∴AG=AD在Rt △AGF 和Rt △ADF 中, AG AD AF AF=⎧⎨=⎩ ∴Rt △AGF ≌ Rt △ADF∴FG=FD(2)[应用]设FG=x ,则FC=5-x ,FE=3+x ,在Rt △ECF 中,EF 2=FC 2+EC 2,即(3+x )2=(5-x )2+22,解得x=54. 即FG 的长为54. 由(1)得:FD=FG=54,FC=5-54=154,BC=AB=5,BE=3 ∴EC=5-3=2∴ΔEFC 的面积=115152=244⨯⨯ 23.k>12且k≠1 【解析】【分析】首先根据解分式方程的步骤,求出关于x 的分式方程x k k x 1x-1+-+=1的解,然后根据分式方程的解为负数,求出k 的取值范围即可.【详解】解:去分母,得(x+k)(x-1)-k(x+1)=x 2-1,去括号,得x 2-x+kx-k-kx-k=x 2-1,移项、合并同类项,得x=1-2k,根据题意,得1-2k<0且1-2k≠1, 1-2k≠-1解得k>12且k≠1, ∴k 的取值范围是k>12且k≠1. 【点睛】此题主要考查了分式方程的解,要熟练掌握,解答此题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.24.(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴E ACD BC ∆∆≌,∴ADC BEC ∠∠=.∵点A 、D 、E 在同一直线上,∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.②∵CDA CEB ∆∆≌,∴BE AD =.∵CD CE =,CM DE ⊥,∴DM ME =.又∵90DCE ∠=︒,∴2DE CM =,∴2AE AD DE BE CM =+=+.故填:①90°;②2AE BE CM =+.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.25.(1)200;(2)62,0.06,38;(3)见解析;(4)1【解析】【分析】(1)根据统计图中的数据可以求得此次抽样调查的样本容量;(2)根据统计图中的数据可以求得a 、b 、c 的值;(3)根据(2)中a 、c 的值可以将统计图补充完整;(4)根据表格中的数据可以求得一等奖的分数线.【详解】解:(1)16÷0.08=200,故答案为:200;(2)a=200×0.31=62,b=12÷200=0.06,c=200-16-62-72-12=38,故答案为:62,0.06,38;(3)由(2)知a=62,c=38,补全的条形统计图如右图所示;(4)d=38÷200=0.19,∵b=0.06,0.06+0.19=0.25=25%,∴一等奖的分数线是1.【点睛】根据频数分布直方图、样本容量、频数分布表,解答本题的关键是明确题意,利用数形结合的思想解答.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
达州市通川区2019-2020年八年级下期末考试数学试题及答案-学年八年级下学期期末试题数 学(时间 : 100 分钟。
满分100分)一. 选择题(共10小题,每小题3分,满分30分.以下每小题给出的A 、B 、C 、D 四个选项,其中只有一个选项是正确的,请把正确答案的番号填写到下面的表格中。
1、不等式21>+x 的解集是A.1>xB.1<xC.1≥xD.1≤x 2、若a b >,且c 为有理数,则下列各式正确的是 A .ac bc >B .ac bc <C .22ac bc <D .22ac bc ≥3、已知等腰三角形的两条边长分别为2和3,则它的周长为 A .7 B . 7或8 C .5 D8.4、若m >-1,则多项式123+--m m m 的值为A 、正数B 、负数C 、非负数D 、非正数5、如图5,点O 是口ABCD 的对角线交点,AC =38mm ,BD =24mm ,AD =14mm ,那么△OBC 的周长等于 D C A 、40mm B 、44mm C 、45mm D 、50mm 0 A B 图56、多项式29x kx -+能运用公式法分解因式,则k 的值为 A 、3 B 、 6 C 、3± D 、6±7、 观察下列银行标志,从图案看既是轴对称图形又是中心对称图形的有A .1个B .2个C .3个D .4个8、化简12)111(2+-÷-+a a aa 的结果是 A 、a – 1 B 、11-a C 、aa 1- D 、a + 19若x 为任意有理数,下列分式中一定有意义的是A .21x x +B .211x x ++C .211x x -- D .11x x +-10、如图,已知函数y = 3x + b 和y = ax - 3的图象交于点P( -2,-5) ,则根据图象可得不等式3x + b >ax - 3的解集是 A 、x>2 B 、x>-2 C 、x>3 D 、x>-3二、填空题(本大题共5小题,每小题3分,共15分.请你把答案填在横线的上方). 11.分解因式:228x -=12、若等腰直角三角形的腰长为2cm ,则底边的高是 cm13、一个多边形每个外角都等于45,内角和为 O 14、当511=-y x ,则=---+yxy x y xy x 2252 15、如图,在平面直角坐标系中,梯形ABCD 的顶点坐标分别为A ()2,2-,B ()3,2-,()5,0C ,D ()1,0,将梯形ABCD 绕点D 逆时针旋转90°得到梯形111A B C D .则1A 的坐标为 ,1B 的坐标为 ,1C 的坐标为 ;得分 评卷人10题图三、解答题:解答时应写出必要的文字说明、证明过程或演算步 骤(共55分)16、(4分)利用乘法公式计算.:2010200820092⨯-17、(5分)解不等式组 215360x x +<⎧⎨+>⎩ 并把解集在数轴上表示出来。
18、(6分)化简:)252(32--+--x x x x ,再从不等式41≤<x 中选取一个合适的整数代入求值。
得分评卷人①②19、(7分)、如图,已知四边形ABCD是平行四边形,BE⊥AC于点E,DF⊥AC于点F。
(1)求证:△ABE≌△CDF;(2)连结BF、DE,试判断四边形BFDE是什么样的四边形?写出你的结论并予以证明。
20、(7分)、为了支援四川人民抗震救灾,某休闲用品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划10天完成.(1)按此计划,该公司平均每天应生产帐篷__________顶;(2)生产2天后,公司又从其它部门抽调了50名工人参加帐篷生产,同时,通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产帐篷?21、(8分)如图,M 是△ABC 的边BC 的中点,AN 平分∠BAC ,BN ⊥AN 于点N ,延长BN 交AC 于点D ,已知AB =10,BC =15,MN =3 (1)求证:BN =DN (2)求△ABC 的周长22、(8分)如图,在由小正方形组成的网格中,点、和四边形的顶点都在格点上.(1)画出与四边形关于直线对称的图形(2)平移四边形,使其顶点与点重合,画出平移后的图形绕点逆时针(3)把四边形旋转180°,画出旋转后的图形.23、(10分)如图,梯形ABCD 中,CD AB //,BC DC AD ==,060=∠DAB ,E是对角线AC 延长线上一点,F 是AD 延长线上的一点,且,. (1) 当1=CE 时,求BCE ∆的面积(2) 求证:CE EF BD +=E DA B-学年八年级下学期期末试题数学答案一、选择题: 1. A 2.D . 3.B 4. C 5.C 6 .D 7.B 8. A 9.B 10. B 二、填空题: 11. 2(2)(2)x x -+ 12. 1 cm 13.1080. 14.7515、()13,1A ,()13,2B ,()11,4C16、解:原式= 2一(—1)(+1)………………2分= 2一( 2—1)……………3分= 2—2+1=1 ……………4分17、不等式①的解集是x<2…………………………1分不等式②的解集是x>-2……………………… 2分 在数轴上表示为………4分原不等式组的解集为-2<x<2…………………………5分 18. 解:原式=⎥⎦⎤⎢⎣⎡----+--252)2)(2(32x x x x x x 29322--⋅--=x x x x ………… 2分 2)3)(3(32--+⋅--=x x x x x ………3分 3+=x……4分只能选x=4时,原式=4+3=7……6分19、证明:(1) ∵四边形ABCD 是平行四边形,∴AB=CD,AB ∥CD, ∠BAE=∠DCF, ………………1分 ∵BE ⊥AC 于点E ,DF ⊥AC 于点F , ∴∠AEB=∠CFD=90º,………………2分 在△ABE 和△CDF 中,.∵∠BAE=∠DCF ,∠AEB=∠CFD ,AB=CD , ∴△ABE ≌△CDF (AAS ),………………4分(2)如图,连结BF 、DE ,则四边形BFDE 是平行四边形,.………………1分证明:∵BE ⊥AC 于点E ,DF ⊥AC 于点F ,∴∠BEF=∠DFE=90º,∴BE ∥DF ,.…2分 又由(1),有BE=DF ,∴四边形BFDE 是平行四边形.………………3分20、解:(1)2000 ………………1分(2)设该公司原计划安排x 名工人生产帐篷, 则由题意得:()()()5022102000220000%2512000+--⨯-=+x x………………4分∴()503165+=x x ∴解这个方程,得x =750.………………5分经检验,x =750是所列方程的根,且符合题意.………………6分 答:该公司原计划安排750名工人生产帐篷.………………7分 21、(1)证明:∵ AN 平分∠BAC ,∴ .……………1分 ∵ BN ⊥AN ,∴ ∠ANB =∠AND =90°.…………… 2分 在△ABN 和△ADN 中,∵ ∠1=∠2 ,AN =AN ,∠ANB =∠AND ,……………3分 ∴ △ABN ≌△ADN ,∴ BN = DN .……………4分(2)解:由(1) △ABN ≌△ADN ,∴ AD =AB =10,DN =BN . ……………1分 又∵点M 是BC 的中点,∴ MN 是△BDC 的中位线, ∴ CD =2MN =6,……………2分故△ABC 的周长=AB +BC +CD +AD =10+15+6+10=41………4分 22、解(1)所画图形如图所示, 四边形即为所求. ……………2分(2)所画图形如图所示, 四边形即为所求. …… …3分(3) 所画图形如图所示, 四边形即为所求.………3分23.(10分)(1)解:CD AD = FDCA DAC ∠=∠∴AB DC // CAB DCA ∠=∠∴ E 060=∠DAB D C03021=∠=∠=∠∴DAB CAB DAC ………1分 M BC AD AB DC =,// A B60=∠=∠∴CBA DAB 0090)(180=∠+∠-=∠∴CBA CAB ACB 090180=∠-=∠∴ACB BCEAB BE ⊥ 090=∠∴ABE30=∠-∠=∠∴ABC ABE CBE ………3分在BCE Rt ∆中,22==CE BE ,322=-=CE BE BC23312121=⨯⨯=⋅=∴∆CE BC S BCE …………5分 (2)证明:过E 点作DB EM ⊥于点M∴四边形FDME 是矩形DM FE =∴………1分在△BCE 和△EMB 中090=∠=∠BCE BME∠BEC=90°-∠EAB=60°∠EBM==90°-∠DBA=60°BE =BEECB BME ∆≅∆∴ ………3分CE BM =∴ CE EF BM DM BD +=+=∴…………5分。