第一章 概率论的基本概念重点和难点

合集下载

概率论的基本概念

概率论的基本概念
⑴.两件都是正品: ;
⑵.两件都是次品: ;
⑶.一件是正品、另一件是次品: ;
⑷.第二件是次品: 。
6、高射炮向敌机发射三枚炮弹,设每发炮弹击中敌机的概率为 (每发击中与否相互独立),而敌机中一弹时坠落的概率为 ,中两弹时坠落的概率为 ,中三弹时坠落的概率为 。
⑴.求敌机被击落的概率;
⑵.若敌机被击落,求它只中一弹的概率。
解:用 分别表示电话是打给 的, 分别表示 因公外出,则
⑴. ;
⑵. ;
⑶. ;
⑷. ;
⑸. 。
解:用 表示敌机中 弹, ,用 表示敌机被击落,则
, ,故


7、已知男子中有 是色盲患者,女子中有 是色盲患者,现从男女人数相等的人群中随机地选一人,问此人是色盲患者的概率为多少若已知此人是色盲患者,求此人是男性的概率。
解:用 表示所选人为男性, 表示所选人为色盲患者,则
, , ,故


8、甲、乙、丙三人独立地去破译密码,已知甲、乙、丙各自能译出密码的概率分别为 ,问三人中至少有一人能将此密码译出的概率为多少
概率论的基本概念
第一章概率论的基本概念
【内容提要】
一、随机事件及其运算关系
1.随机现象在一定条件下,可能出现不同结果(不可预先确知的)的现象。
2.随机试验在一定条件下,对随机现象进行观测或观察的过程。随机试验具有如下特点:
⑴.可以在相同条件下重复进行;
⑵.每次试验的结果不止一个,并且能事先明确试验的所有可能结果;
⑴.非负性: ,有 ;
⑵.规范性: ;
⑶.可列可加性:对任意可列无穷多个两两互斥的事件 ,有 。
则称 为事件 的概率。事件的概率有如下性质:

概率统计第一章答案

概率统计第一章答案

概率论与数理统计作业班级 姓名 学号 任课教师第一章 概率论的基本概念教学要求:一、了解样本空间的概念,理解随机事件的概念,掌握事件的关系及运算.二、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式及贝叶斯公式.三、理解事件的独立性的概念,掌握用事件独立性进行概率计算,理解独立重复试验的概念,掌握计算有关事件概率的方法.重点:事件的表示与事件的独立性;概率的性质与计算.难点:复杂事件的表示与分解;试验概型的选定与正确运用公式计算概率;条件概率的理解与应用;独立性的应用.练习一 随机试验、样本空间、随机事件1.写出下列随机事件的样本空间(1)同时掷两颗骰子,记录两颗骰子点数之和;(2)生产产品直到有5件正品为止,记录生产产品的总件数;(3)在单位圆内任意取一点,记录它的坐标.解:(1){=Ω2;3;4;5;6;7;8;9;10;11;12}; (2){=Ω5;6;7;…};(3)(){}1,22≤+=Ωy x y x 2.设C B A ,,三事件,用C B A ,,的运算关系表示下列事件:(1)A 发生,B 与C 不发生,记为 C B A ;(2)C B A ,,至少有一个发生,记为C B A ;(3) C B A ,,中只有一个发生,记为C B A C B A C B A ;(4)C B A ,,中不多于两个发生,记为ABC .3.一盒中有3个黑球,2个白球,现从中依次取球,每次取一个,设i A ={第i 次取到黑球},,2,1=i 叙述下列事件的内涵:(1)21A A ={}次都取得黑球次、第第21.(2)21A A ={}次取得黑球次或地第21.(3)21A A ={}次都取得白球次、第第21 .(4)21A A ={}次取得白球次或地第21. (5)21A A -={}次取得白球次取得黑球,且第第21.4.若要击落飞机,必须同时击毁2个发动机或击毁驾驶舱,记1A ={击毁第1个发动机};2A ={击毁第2个发动机};3A ={击毁驾驶舱};试用1A 、2A 、3A 事件表示=B {飞机被击落}的事件.解:321A A A B =练习二 频率与概率、等可能概型(古典概率)1.若41)()()(===C P B P A P ,0)()(==BC P AB P , 163)(=AC P , 求事件A 、B 、C 都不发生的概率.解:由于 ,AB ABC ⊂ 则 ()(),00=≤≤AB P ABC P 得(),0=ABC P 于是()()()()()()()()ABC P BC P AC P AB P C P B P A P C B A P +---++=169163414141=-++= 所以()().16716911=-=-=C B A P C B A P 2.设,)(,)(,)(r B A P q B P p A P === 求B A P ().解:因为 ()()(),AB A P B A P B A P -=-=且,A AB ⊂则()()().AB P A P B A P -= 又 ()()()(),r q p B A P B P A P AB P -+=-+=所以()()()().q r r q p p AB P A P B A P -=-+-=-=3.已知在8只晶体管中有2只次品,在其中任取三次,取后不放回,求下列事件的概率:(1)三只都是正品;(2)两只是正品,一只是次品.解:(1)设=A {任取三次三只都是正品},则基本事件总数5638==C n ,A 包含基本事件数2036==C m ,于是 ()1455620==A P . (2)设=B {任取三次两只是正品,一只是次品},则基本事件总数5638==C n ,B 包含基本事件数,301226==C C m 于是().28155630==B P 4.在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码,(1)求最小号码为6的概率;(2)求最大号码为6的概率.解:(1)设=A {最小号码为6},则基本事件总数,120310==C n A 包含基本事件数,624==C m 于是().2011206==A P (2)设=B {最大号码为6},则基本事件总数,120310==C n B 包含基本事件数,1025==C m 于是().12112010==B P 5.一盒中有2个黑球1个白球,现从中依次取球,每次取一个,设i A ={第i 次取到白球},3,2,1=i . 求)(i A P , 3,2,1=i .解: ()311=A P ; ()=2A P 312312=⨯⨯, ()311231123=⨯⨯⨯⨯=A P . 6.掷两颗均匀的骰子,问点数之和等于7与等于8的概率哪个大?解:样本空间基本事件总数,3666=⨯=n 设=1A {点数之和等于7},=2A {点数之和等于8},则=1A {()()()()()()3,4;4,3;2,5;5,2;1,6;6,1},1A 包含基本事件数等于6 ;=2A {()()()()()3,5;5,3;4,4;2,6;6,2},2A 包含基本事件数等于5 ;于是 ()613661==A P ; ()3652=A P .所以()()21A P A P > . 7.一批产品共100件,对其抽样检查,整批产品不合格的条件是:在被检查的4件产品中至少有1件是废品.如果在该批产品有5﹪是废品,问该批产品被拒收的概率.解:设=A {被检查的4件产品至少有1件废品},则()812.05100495==C C A P ;所以 ()()188.01=-=A P A P .8.将3个球随机放入4个杯子中,求杯子中球数的最大值为2的概率.解:基本事件总数34444=⨯⨯=n ,设=A {杯子中球数最大值为2},则A 包含的基本事件数36131423==C C C m (3个球任取两个,然后4个杯子任取1个放入,再对1个球在3个杯子中任取一个放入),于是()3436=A P . 练习三 条件概率1.甲、乙两班共有70名同学,其中女同学40名.设甲班有30名同学,而女生15名.求在碰到甲班同学时,正好碰到1名女同学的概率.解:设=A {碰到甲班同学},=B {碰到乙班同学},则();7030=A P (),7015=AB P 于是 ()()()5.0301570307015====A P AB P A B P . 2.箱子里有10个白球,5个黄球,10个黑球.从中随机地抽取1个.已知它不是黑球,求它是黄球的概率.解:设=A {任取一个不是黑球},=B {任取一个是黄球},则(),532515==A P ();51255==B P 又A B ⊂ ,则()()B P AB P = ,于是()()()315351===A P AB P A B P3.某人有5把钥匙,其中2把能打开房门.从中随机地取1把试开房门,求第3次才打开房门的概率.解:设=i A {第i 次能打开门} ,;3,2,1=i 则 =321A A A {第3次才打开门},于是由乘法公式有53454.假设某地区位于甲、乙二河流的汇合处,当任一河流泛滥时,该地区就遭受水灾.设某时期内甲河流泛滥的概率为0.1,乙河流泛滥的概率为0.2.当甲河流泛滥时,乙河流泛滥的概率为0.3.求(1)该时期内这个地区遭受水灾的概率;(2)当乙河泛滥时甲河流泛滥的概率.解:设=A {某时期甲河泛滥},=B =A {某时期乙河泛滥},则(),1.0=A P ()2.0=B P , ()3.0=A B P于是()()()()()()15.02.03.01.0=⨯===B P A B P A P B P AB P B A P ()()()03.015.02.0=⨯==B A P B P AB P()()()()27.003.02.01.0=-+=-+=AB P B P A P B A P5. 甲、乙两车间加工同一种产品,已知甲、乙两车间出现废品的概率分别为3﹪、2﹪,加工的产品放在一起,且已知甲车间加工的产品是乙车间加工的产品的两倍.求任取一个产品是合格品的概率.解:设=A {任取一个为甲生产的产品},=B {任取一个产品为废品},则()()()()%2%,3,31,32====A B P A B P A P A P 由全概率公式有 ()()()()()752100231100332=⨯+⨯=+=A B P A P A B P A P B P 6.设甲袋中有3个红球及1个白球.乙袋中有4个红球及2个白球.从甲袋中任取一个球(不看颜色)放到乙袋中后,再从乙袋中任取一个球,求最后取得红球的概率.解:设=A {从甲袋中任取一个球为红球},=B {最后从乙袋中任取一个球为红球},则 ()()()();74,75,41,43====A B P A B P A P A P 由全概率公式287474 7.玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只残次品的概率分别为0.8,0.1和0.1,一顾客欲购一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机的一次性抽取4只察看,若无残次品,则买下该箱玻璃杯,否则退回,试求:(1)顾客买下该箱的概率;(2)在顾客买下的一箱中,确实没有残次品的概率.解:设=i A {售货员任取一箱玻璃杯有i 个残品},2,1,0=i ,=B {顾客买下该箱玻璃杯},则()()();1.0,1.0,8.0210===A P A P A P()()();632.0,8.0,1420418242041910≈====C C A B P C C A B P A B P (1)由全概率公式得()()()()()()()943.0632.01.08.01.018.0221100=⨯+⨯+⨯≈++=A B P A P A B P A P A B P A P B P(2)由贝叶斯公式得 ()()()().848.0943.018.0000≈⨯==B P A B P A P B A P 8.已知一批产品中有95﹪是合格品,检查产品质量时,一个合格品被误判为次品的概率为0.02,一个次品被误判为合格品的概率是0.03,求:(1)任意抽查一个产品,它被判为合格品的概率;(2)一个经检查被判为合格的产品确实是合格品的概率.解:设=A {任取一个产品为合格品},=B {任取一个产品被判为合格品},则()()()();03.0,98.002.01,05.0,95.0==-===A B P A B P A P A P于是(1) 任意抽查一个产品,它被判为合格品的概率是 ()()()()()9325.003.005.098.095.0=⨯+⨯=+=A B P A P A B P A P B P(2)一个经检查被判为合格的产品确实是合格品的概率是 ()()()().9984.09325.098.095.0≈⨯==B P A B P A P B A P练习四 事件的独立性1.设甲、乙两人独立射击同一目标,他们击中目标的概率分别为0.9和0.8,求在一次射击中目标被击中的概率.解:设 =A {甲击中目标},=B {乙击中目标}, 则=B A {目标被击中},()()8.0,9.0==B P A P ,于是()()()()()()()().98.08.0098.09.0=⨯-+=-+=-+=B P A P B P A P AB P B P A P B A P2.三人独立地去破译一个密码,他们能译出的概率分别是41,31,51,问能将此密码译出的概率是多少?解:设=i A {第i 人破译密码} ,;3,2,1=i =B {破译密码}, 则 ()()(),41,31,51321===A P A P A P 321A A A B =, 于是()()()()()()().5343325411111321321321=⨯⨯-=-=-=-=-=A P A P A P A A A P A A A P B P B P3.电路由元件A 与两个并联的元件B 及C 串联而成,且它们工作是相互独立的.设元件A 、B 、C 损坏的概率分别是0.3,0.2,0.2,求电路发生间断的概率.解:设=D {电路正常},则()C A B A C B AD ==, 则 ()()()()()()()()()()().672.08.08.07.08.07.08.07.0=⨯⨯-⨯+⨯=-+=-+=C P B P A P C P A P B P A P C B A P C A P B A P D P 所以 ()()328.0672.011=-=-=D P D P4. 设每次射击时命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?解:设至少要进行n 次独立射击,则至少击中一次的概率不小于0.9可表为: ()(),9.0011≥=-=≥k P k P n n由于,2.0=p 则,8.0=q 于是()n n k P 8.0101-==-,所以有,1.08.0≥n 即32.103.0ln 2.0ln =≥n所以至少进行11次独立射击才能使至少击中一次的概率不小于0.9.综合练习题一、选择题1.设事件B A ,,有A B ⊂,则下列式子正确的是( A ).(A ));()(A P B A P = (B) );()(A P AB P =(C) );()|(B P A B P = (D) ).()()(A P B P A B P -=-2.设A 与B 为两个相互独立的事件,0)(>A P ,0)(>B P ,则一定有=)(B A P ( B).(A ))()(B P A P + (B ))()(1B P A P -(C ))()(1B P A P + (D ))(1AB P -.3.设B A ,为两事件,且B A ⊃,则下列结论成立的是( C ).(A )A 与B 互斥;(B ) A 与B 互斥;(C)A 与B 互斥;(D) A 与 B 互斥.4.设B A ,为任意两事件,且,0)(,>⊂B P B A 则下列选择必然成立的是( C ).(A))|()(B A P A P <; (B) )|()(B A P A P >;(C) )|()(B A P A P ≤; (D) )|()(B A P A P ≥.5.假设事件A 和B 满足1)(=A B P ,则下列正确的是( D ).(A )A 是必然事件; (B )();0=A B P ; (C )A B ⊂ ; (D )B A ⊂.6.对于任意二事件B A ,( B ).(A) 若AB ≠∅,则B A ,一定独立; (B) ,AB ≠∅则B A ,有可能独立;(C) AB =∅,则B A ,一定独立; (D) AB ≠∅,则B A ,一定不独立;7.若事件A 和B 满足)}(1)}{(1{)(B P A P B A P --= ,则正确的是( D ).(A )互不相容与B A ; (B ) 互不相容与B A ;(C ) B A ⊃; (D ) 互为独立与B A .8.设当事件A 与B 同时发生时,事件C 必发生,则( B ).(A )1)()()(-+≤B P A P C P ; (B )1)()()(-+≥B P A P C P ;(C ))()(AB P C P =; (D ))()(B A P C P =.9.设B A 、是两个事件,则=-)(B A P ( C ).(A ))()(B P A P -; (B ))()()(AB P B P A P +-;(C) )()(AB P A P -; (D) )()()(AB P B P A P ++.10.设C B A ,,是三个随机事件,41)()()(===C P B P A P ,81)(=AB P ,0)()(==AC P BC P ,则C B A ,,三个随机事件中至少有一个发生的概率是( B ).(A )43; (B ) 85; (C ) 83; (D ) 81. 11.某学生做电路实验,成功的概率是0(p ﹤p ﹤1),则在3次重复实验中至少失败1次的概率是( B ).(A )3p ; (B )31p -; (C )3)1(p -; (D )3)1(p -)1()1(22p P p p -+-+.12.设A P B P A P (,7.0)(,8.0)(==|8.0)=B ,则下面结论正确的是( A ).(A )事件A 与B 互相独立; (B )事件A 与B 互不相容;(C );B A ⊂ (D )).()()(B P A P B A P +=13.下列事件中与A 互不相容的事件是( D )(A )ABC ; (B) C B C B A ; (C) )(C B A ; (D) ))()((B A B A B A .14.若事件A 、B 相互独立且互不相容,则{}=)(),(min B P A P ( C ).(A) )(A P ; (B ) )(B P ; (C ) 0; (D ) )()(B P A P -.15.,1)|()|(,1)(0,1)(0=+<<<<B A P B A P B P A P 设则( A ).(A) )()|(A P B A P = ; (B) A B =; (C) Φ≠AB ; (D) )()()(B P A P AB P ≠.二、填空题1.已知B A ⊂,3.0)(,2.0)(==B P A P ,则)(B A P - 0 .2.设7.0)(=A P ,5.0)(=B P .则的最小值为)(AB P 0.2 .3.三次独立的试验中,成功的概率相同,已知至少成功一次的概率为2719,则每次试验成功的概率为 1/3 .4.已知()0.5,()0.8P A P B ==,且(|)0.8 P B A =,则=)(B A P 0.9 .5. 设5.0)(=A P ,4.0)(=B P ,6.0)|(=B A P ,则)|(B A A P = 20/29 .6.假设事件A 和B 满足1)(=A B P ,则A 和B 的关系是B A ⊂.7.已知7.0)(=A P ,3.0)(=-B A P ,则=)(AB P 0.4 . 8.已知41)(=A P ,31)(=AB P ,21)(=B A P ,则=)(B A P 1/3 . 9.设两个相互独立的事件A 和B 都不发生的概率为91,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则=)(A P 2/3 .10.设C B A ,,构成一个完备事件组,且()0.5,()0.7P A P B ==,则=)(C P 0.2 .11.设A 与B 为互不相容的事件,0)(>B P ,则=)(B A P 0 .12.设事件C B A ,,两两互斥,且,4.0)(,3.0)(,2.0)(===C P B P A P则=-])[(C B A P 0.5 .13.设事件A 与B 相互独立,已知1)()(-==a B P A P ,97)(=B A P ,则=a 5/3或4/3 .14.甲、乙两人独立的对同一目标射击一次,其命中率分别为6.0和5.0,现已知目标被命中,则它是甲射中的概率为 3/4 .15.假设随机事件A 与B 满足),()(B A P AB P =且p A P =)(,则=)(B P p -1.三、应用题1.甲、乙、丙3人同向一飞机射击,设击中飞机的概率分别为0.4,0.5,0.7.如果只有一人击中飞机,则飞机被击落的概率是0.2;如果有2人击中飞机,则飞机被击落的概率是0.6;如果3人都击中飞机,则飞机一定被击落.求飞机被击落的概率.解:设=i A {第i 人击中飞机},=i 甲,乙,丙;=i B {i 人击中飞机};3,2,1,0=i ,=C {飞机被击落};则()()();7.0;5.0;4.0321===A P A P A P()()()()36.03213213211=++=A A A P A A A P A A A P B P ,()()()()41.03213213212=++=A A A P A A A P A A A P B P ,()()14.03213==A A A P B P ;(),2.01=B C P (),6.02=B C P ();13=B C P所以()()()()()()()458.0332211=++=B C P B P B C P B P B C P B P C P2.甲、乙2人投篮命中率分别为0.7,0.8,每人投篮三次,求(1)两人进球数相等的概率;(2)甲比乙进球数多的概率. 解:设=i A {甲人三次投篮进i 个球},=i B {乙人三次投篮进i 个球},则()(),027.07.0130=-=A P ()(),189.07.017.02131=-⨯⨯=C A P()()(),411.07.017.02232=-⨯⨯=C A P ()();343.07.03333=⨯=C A P()(),008.08.0130=-=B P ()(),096.08.018.02131=-⨯⨯=C B P()()(),384.08.018.02232=-⨯⨯=C B P ()();512.08.033==B P(1)=C {两人进球相等}33221100B A B A B A B A =,()()()()()()()()()()()()();36332.03322110033221100=+++=+++=B P A P B P A P B P A P B P A P B A P B A P B A P B A P C P (2)=D { 甲比乙进球数多}331303120201B A B A B A B A B A B A =()()()()()()()()()()()()().21476.0231303120201=+++++=B P A P B P A P B P A P B P A P B P A P B P A P D P3.一射手命中10环的概率为0.7,命中9环的概率为0.3.该射手3发子弹得到不小于29环的概率.解:设=1A {命中10环},=2A {命中9环},则;,2121Ω=Φ=A A A A 于是=B {3发子弹得到不小于29环}={3发子弹均为10环} {有2发击中10环},所以()()()()()()784.03.07.03.07.023223033333=⨯⨯+⨯⨯=+=C C P P B P4.有2500人参加人寿保险,每年初每人向保险公司交付保险费12元.若在这一年内投保人死亡,则其家属可以向保险公司领取2000元.假设每人在这一年内死亡的概率都是0.002,求保险公司获利不少于10000元的概率.解:设参加保险的人中有x 人死亡,当,100002000122500≥-⨯x 即10≤x 时,保险公司获利不少于10000元。

概率论与数理统计知识点总结(免费超详细版)

概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。

概率初步全章教案

概率初步全章教案

概率初步全章教案第一章:概率的基本概念1.1 概率的定义引入概率的概念,让学生理解概率是衡量事件发生可能性大小的数学量。

解释概率的取值范围,即0到1之间。

1.2 必然事件和不可能事件讲解必然事件的概率为1,不可能事件的概率为0。

通过实例让学生区分必然事件和不可能事件。

1.3 随机事件介绍随机事件的定义,让学生理解随机事件是既不是必然事件也不是不可能事件的事件。

解释随机事件的概率大于0且小于1。

第二章:概率的计算方法2.1 古典概型讲解古典概型的定义,即试验结果有限且等可能发生。

介绍古典概型的概率计算公式:P(A) = n(A) / n(S),其中n(A)为事件A的发生次数,n(S)为样本空间的大小。

2.2 列举法讲解列举法的概念,即通过列举所有可能的结果来计算概率。

示范使用列举法计算概率的步骤。

第三章:条件概率和独立事件3.1 条件概率引入条件概率的概念,解释条件概率是在已知事件B发生的条件下事件A发生的概率。

讲解条件概率的计算公式:P(A|B) = P(A∩B) / P(B),其中P(A∩B)为事件A和B 发生的概率,P(B)为事件B发生的概率。

3.2 独立事件解释独立事件的定义,即两个事件的发生互不影响。

讲解独立事件的概率计算公式:P(A∩B) = P(A)P(B),其中P(A)为事件A发生的概率,P(B)为事件B发生的概率。

第四章:全概率公式和贝叶斯公式4.1 全概率公式讲解全概率公式的概念,即在多个互斥事件的情况下,事件A发生的概率可以通过各事件发生的概率乘以对应事件的条件概率之和来计算。

解释全概率公式的计算步骤。

4.2 贝叶斯公式引入贝叶斯公式的概念,解释贝叶斯公式是通过已知条件来推算事件发生的概率。

讲解贝叶斯公式的计算步骤。

第五章:随机变量及其分布5.1 随机变量的定义讲解随机变量的概念,即随机试验结果的量化描述。

解释随机变量的取值可以是具体的数值,也可以是其他类型的值。

5.2 离散型随机变量讲解离散型随机变量的定义,即随机变量取值有限或可数。

概率论及数理统计课程教学进度及教案表

概率论及数理统计课程教学进度及教案表

概率论及数理统计课程教学进度及教案表教案编写日期:2024年9月教案编辑专员:教学目标:1. 理解概率论的基本概念和原理;2. 掌握随机事件的概率计算方法;3. 学会运用概率论解决实际问题;4. 了解数理统计的基本概念和方法;5. 掌握描述统计和推断统计的基本技术;6. 学会运用数理统计方法分析数据和做出决策。

教学内容:第一章:概率论基本概念1.1 随机现象和样本空间1.2 事件及其概率1.3 条件概率和独立事件1.4 概率计算公式第二章:随机变量及其分布2.1 随机变量的定义和分类2.2 离散型随机变量的概率分布2.3 连续型随机变量的概率密度2.4 随机变量的期望和方差第三章:多维随机变量及其分布3.1 二维随机变量的联合分布3.2 边缘分布和条件分布3.3 随机变量的独立性3.4 多维随机变量的数字特征第四章:大数定律和中心极限定理4.1 大数定律的定义和意义4.2 中心极限定理的定义和意义4.3 大数定律和中心极限定理的应用第五章:数理统计的基本概念5.1 统计量和抽样分布5.2 估计理论和估计方法5.3 假设检验的基本原理5.4 参数估计和假设检验的应用教学方法:1. 讲授法:通过讲解和示例,让学生掌握概率论和数理统计的基本概念、原理和方法;2. 案例分析法:通过实际案例,让学生学会运用概率论和数理统计解决实际问题;3. 练习法:通过课堂练习和课后作业,巩固学生对知识的理解和运用能力;4. 小组讨论法:通过小组讨论和合作,培养学生的团队合作能力和思维能力。

教学评价:1. 平时成绩:包括课堂表现、作业完成情况和课堂练习;2. 期中考试:考查学生对概率论和数理统计基本概念和方法的掌握程度;3. 期末考试:全面测试学生对课程内容的掌握和运用能力。

教学进度安排:1. 第一章:2周2. 第二章:3周3. 第三章:3周4. 第四章:2周5. 第五章:2周教学资源:1. 教材:概率论与数理统计教程;2. 课件:PowerPoint演示文稿;3. 案例资料:实际问题和相关数据;4. 练习题:课后习题和自测题。

《概率论与数理统计》教案

《概率论与数理统计》教案

《概率论与数理统计》教案第一章:概率论的基本概念1.1 随机现象与样本空间1.2 事件及其运算1.3 概率的定义与性质1.4 条件概率与独立性第二章:随机变量及其分布2.1 随机变量的概念2.2 离散型随机变量的概率分布2.3 连续型随机变量的概率密度2.4 随机变量函数的分布第三章:多维随机变量及其分布3.1 二维随机变量的联合分布3.2 边缘分布与条件分布3.3 随机变量的独立性3.4 多维随机变量函数的分布第四章:大数定律与中心极限定理4.1 大数定律4.2 中心极限定理4.3 样本均值的分布4.4 样本方差的估计第五章:数理统计的基本概念5.1 统计量与抽样分布5.2 参数估计与点估计5.3 置信区间与置信水平5.4 假设检验与p值第六章:参数估计6.1 总体参数与样本参数6.2 估计量的性质6.3 最大似然估计6.4 点估计与区间估计第七章:假设检验7.1 假设检验的基本概念7.2 检验的错误与功效7.3 常用检验方法7.4 似然比检验与正态分布检验第八章:回归分析8.1 线性回归模型8.2 回归参数的估计8.3 回归模型的检验与诊断8.4 多元线性回归分析第九章:方差分析9.1 方差分析的基本概念9.2 单因素方差分析9.3 多因素方差分析9.4 协方差分析与重复测量方差分析第十章:时间序列分析10.1 时间序列的基本概念10.2 平稳性检验与时间序列模型10.3 自回归模型与移动平均模型10.4 指数平滑模型与状态空间模型第十一章:非参数统计11.1 非参数统计的基本概念11.2 非参数检验方法11.3 非参数回归分析11.4 非参数时间序列分析第十二章:生存分析12.1 生存分析的基本概念12.2 生存函数与生存曲线12.3 生存分析的统计方法12.4 生存分析的应用实例第十三章:贝叶斯统计13.1 贝叶斯统计的基本原理13.2 贝叶斯参数估计13.3 贝叶斯假设检验13.4 贝叶斯回归分析第十四章:多变量分析14.1 多变量数据分析的基本概念14.2 多元散点图与主成分分析14.3 因子分析与聚类分析14.4 判别分析与典型相关分析第十五章:统计软件与应用15.1 统计软件的基本使用方法15.2 R语言与Python在统计分析中的应用15.3 统计软件的实际操作案例15.4 统计分析在实际领域的应用重点和难点解析本《概率论与数理统计》教案涵盖了概率论的基本概念、随机变量及其分布、多维随机变量、大数定律与中心极限定理、数理统计的基本概念、参数估计、假设检验、回归分析、方差分析、时间序列分析、非参数统计、生存分析、贝叶斯统计、多变量分析以及统计软件与应用等多个方面。

(完整版)概率论与数理统计知识点总结(免费超详细版)

(完整版)概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

概率论第一章总结

概率论第一章总结

第一章随机事件及其概率一、内容提要 (一).随机事件的概率1.随机试验:(i )在相同的条件下可以重复进行;(ii )试验有多种可能结果(iii )所有可能结果可以明确,但试验前不能事先预知哪个结果出现。

记为E2.随机事件:与随机试验结果有关的命题, 简称事件.记为A,B,C……不可能事件和必然事件也视为为随机事件分别记为 φ和Ω.3.基本事件:按照试验的目的和要求所确定的随机试验E 的一个直接可能结果ω称为基本事件或样本点.4.样本空间(基本事件集):试验E 的所有样本点ω构成的集合称为E 的样本空间或基本事件集,记为Ω.即 Ω.={ω}(二).随机事件的关系和运算1.事件的包含: 若事件A 发生必然导致B 发生.则称A 包含于B 记作 A ⊂B.2.事件的相等:对两个事件A,B.若A ⊂B.且B ⊂A.则称A 与B 相等.记作A=B3.事件的并:“事件A 与B 中至少有一个发生”的事件称为A 与B 的并(或和),记作A B 。

“n 个事件中至少有一个发生”的事件称为这个事件的并(或和).记作12....n A A A 简记为1n i i A =4.事件的差: “事件A 发生而B 不发生”的事件称为A 与B 的差记作A-B5.事件的交(积): “事件A 与B 都发生” 的事件称为A 与B 的交(积).记作A Bn 个事件12,...n AA A 都发生”的事件称为这个事件的交(或积).记作12...n A A A .6. 事件的互斥(互不相容):事件A 与事件B 不能同时发生,则称互斥.即AB φ=7. 事件的互逆(对立): 事件A 与事件B 必有一个发生,但不能同时发生,则称A 与B 互逆,记作A B =或B A = 即满足A B =Ω AB φ=8.完备事件组:若事件12,,,n A A A 必有一个发生,且12,,,n A A A 两两互不相容,即 12,n A A A =Ω ,且(, 1.2...,,)i j A A i j n i j φ==≠(三).概率的概念1.概率的古典定义:设E 为古典概型,其样本空间Ω包含n 样本点,事件A 含k 样本点,则称k/n 为 事件A 的概率,记作()/P A k n =2.概率的统计定义设在相同条件下重复进行同一试验,n 次试验中事件A 发生的次数为μ,如果随着试验次数的增大,事件A 发生的频率/n μ 仅在某个常数(01)p p << 附近有 微小变化,则称数p 是事件A 的概率, 即()P A p =.3.概率的公理化定义设A 为随机事件, ()P A 为定义在所有随机事件组成的集合上的实函数且满足下列三条公理:公理1 对任一事件A,有0()1P A ≤≤公理2 ()1P Ω= ()0P φ=公理3.对于两两互斥的可数个随机事件12,,,n A A A ..., 有1212(......)()()...()...n n P A A A P A P A P A =++++ 则()P A 称为事件A 的概率.(四).概率的性质1. ()1P Ω= ()0P φ=2. 对任意两个事件A ,B.有()()()()P A B P A P B P AB =+-若AB φ=,则()()()P A B P A P B =+3.对任意事件A,有()1(P A P A =-)4.对任意个事件12,,...,n A A A .有12(...)n P A A A 11()()n i i j i i j n P A P A A =≤<≤=-∑∑+1()i j k i j k n P A A A ≤<<≤∑-...+12(1)(...)n n P A A A -(-1)若i j A A φ= (,1,2...,)i j n i j =≠ 则121(...)()n n i i P A A A P A ==∑5.若B A ⊂,则()()()P A B P A P B -=-,且()()P A P B ≥(五).条件概率、 乘法公式1.条件概率 设A ,B 为随机试验E 的两个事件。

概率论与数理统计考试知识点汇总及疑难解析

概率论与数理统计考试知识点汇总及疑难解析

疑难解析系统(概率论与数理统计中的疑难问题)目录第一章事件与概率………………………………………………3-4第二章条件概率与独立性………………………………………5-6第三章随机变量及其分布………………………………………7-8第四章多维随机变量及其分布…………………………………9-10第五章数字特征…………………………………………………11-14第六章数理统计的基本概念……………………………………15-17第七章参数估计…………………………………………………18-21第八章假设检验…………………………………………………22-23第一章 概率论基本概念1.什么是统计规律性?什么是随机现象?答 在一定条件下发生,其结果是多样的,因而在现象发生前不能预知确切结果的不确定现象,其结果在大量重复试验中呈现出一种规律性. 由于这种规律是根据统计数据分析出来的,因而称为统计规律性。

在一次试验或观察中结果不能预先确定,而在大量重复试验中结果具有统计规律性的现象称为随机现象. 随机现象是概率论与数理统计的主要研究对象.2.如何理解互逆事件与互斥事件?答 如果两个事件A 与B 必有一个发生,且至多有一个发生,则、A B 为互逆事件. B A =.如果两个事件A 与B 不能同时发生,则、A B 为互斥事件.如考试及格与不及格是互逆也是互斥的,但考试70分和80分互斥却不互逆. 区别互逆与互斥的关键是,当样本空间只有两个事件时,两事件才可能互逆. 而互斥适用于多个事件的情形. 互斥事件的特征是,在一次试验中两者可以都不发生,而互逆事件必发生一个且至多发生一个.3.如何用已知事件来表达与其有关的其它事件?答 首先要了解所讨论试验中事件的构成,所需表达事件与已知事件的关系,然后运用这些关系与运算法则将事件表达出来.例如,设S 为事件05x ≤≤,A 为事件12x ≤≤,B 为事件02x ≤≤,则 02x ≤≤为事件B 或A B U ,12x ≤≤为事件A 或BA ,25x <≤为事件S B -或B ,01x ≤<为B A -.4.样本空间与必然事件之间有什么关系?答 样本空间是随机试验E 的所有可能结果的集合,而必然事件是指随机试验中一定会出现的结果. 虽然在一次试验中只有样本空间的一个元素发生,但在把样本空间视作一个整体时,我们说它在每次试验中都发生了. 因此,可以说样本空间是必然事件.5.在什么情况下,随机事件A 的频率可以作为它的概率的近似值? 答 随机事件A 的频率()n f A 反映事件A 在多次重复试验中发生的频繁程度. 当n 增大时,频率在概率()P A 附近摆动. 因此,每一个从独立重复试验中测得的频率,都可以作为概率()P A 的近似值. 而且,一般n 越大,近似程度越好.事实上,当n 增大时,频率大量集中于包含()P A 的一个小区间. 任选区间中一值作为概率的近似值,称为统计概率. 在解题时,当n 较大时,可取统计概率为()/A P A n n ≈.6.概率是否可以看做频率的极限?答 这样理解是不恰当的. 因为如上题所述,当n →∞时,()n f A 在()P A 附近摆动,与高等数学中极限的N ε-概念是不同的. 由于概率是随机现象的可能性的赋值,对于任给的0ε>,存在偶然的因素,可能找不到()N ε,从而得不到|()()|n f A P A ε-<.7.怎样理解古典概型的等可能假设?答 等可能性是古典概型的两大假设之一,有了这两个假设,给直接计算概率带来了很大的方便. 但在事实上,所讨论问题是否符合等可能假设,一般不是通过实际验证,而往往是根据人们长期形成的“对称性经验”作出的. 例如,骰子是正六面形,当质量均匀分布时,投掷一次,每面朝上的可能性都相等;装在袋中的小球,颜色可以不同,只要大小和形状相同,摸出其中任一个的可能性都相等. 因此,等可能假设不是人为的,而是人们根据对事物的认识——对称性特征而确认的.8.概率为0的事件是否为不可能事件?概率为1的事件是否为必然事件?答 有关概念:不可能事件φ的概率为0,即()0P φ=,但其逆不真;同样,必然事件Ω的概率()1P Ω=,但其逆也不真。

概率论与数理统计知识点总结(超详细版)

概率论与数理统计知识点总结(超详细版)

《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)())(()( C A B A C B A ⋂⋂=⋃⋂徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk knk kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P (v ))(1)(A P A P -=(逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。

《概率论与数理统计》教案

《概率论与数理统计》教案

《概率论与数理统计》教案第一章:概率的基本概念1.1 概率的定义与性质介绍概率的定义,理解概率是衡量随机事件发生可能性大小的数。

掌握概率的基本性质,如additivity(可加性)和symmetry(对称性)。

1.2 条件概率与独立性引入条件概率的概念,理解在给定一些信息的情况下,事件发生的概率。

学习独立事件的定义,掌握独立性原理,了解如何通过乘法规则计算联合概率。

第二章:随机变量及其分布2.1 随机变量的概念介绍随机变量的定义,理解随机变量是随机现象的数值化描述。

学习离散随机变量和连续随机变量的区别,以及如何列出随机变量的可能取值。

2.2 概率分布学习概率分布的概念,掌握如何计算随机变量取某个值的概率。

掌握期望值和方差的计算方法,了解它们在描述随机变量集中趋势和离散程度方面的作用。

第三章:多维随机变量及其分布3.1 联合随机变量引入多维随机变量的概念,理解多个随机变量共同作用的概率分布。

学习如何列出联合随机变量的可能取值,以及如何计算联合概率。

3.2 独立随机变量掌握独立多维随机变量的概念,了解独立性在概率论中的重要性。

学习如何计算两个独立随机变量的联合分布,以及如何推导条件概率。

第四章:大数定律与中心极限定理4.1 大数定律介绍大数定律的概念,理解在足够多次试验中,随机变量的样本平均将趋近于其期望值。

学习弱大数定律和强大数定律的表述,以及它们在实际应用中的意义。

4.2 中心极限定理掌握中心极限定理的内容,了解当样本量足够大时,样本均值的分布将趋近于正态分布。

学习如何应用中心极限定理进行近似计算,以及其在统计学中的重要性。

第五章:数理统计的基本概念5.1 统计量与样本介绍统计量的概念,理解统计量是用来描述样本特征的函数。

学习如何计算样本均值、样本方差等基本统计量。

5.2 抽样分布与估计掌握抽样分布的概念,了解不同统计量的抽样分布特性。

学习点估计和区间估计的定义,了解如何根据样本数据估计总体参数。

教案概率初步(全章)

教案概率初步(全章)

教案概率初步(全章)第一章:概率的基本概念1.1 概率的定义介绍概率的定义和基本概念解释随机事件和必然事件的概率1.2 样本空间和事件定义样本空间和事件的概念举例说明样本空间和事件的表示方法1.3 概率的基本性质介绍概率的基本性质,如互斥事件和独立事件的概率计算第二章:概率的计算方法2.1 计数原理介绍排列和组合的计数原理解释阶乘的概念和计算方法2.2 古典概型介绍古典概型的定义和计算方法举例说明古典概型的概率计算2.3 条件概率和贝叶斯定理解释条件概率和贝叶斯定理的概念举例说明条件概率和贝叶斯定理的计算方法第三章:离散型随机变量3.1 随机变量的定义和性质介绍随机变量的定义和性质解释离散型随机变量的概率分布函数3.2 离散型随机变量的期望和方差介绍离散型随机变量的期望和方差的概念举例说明离散型随机变量的期望和方差的计算方法3.3 离散型随机变量的分布列解释离散型随机变量的分布列的概念举例说明离散型随机变量的分布列的计算方法第四章:连续型随机变量4.1 连续型随机变量的定义和性质介绍连续型随机变量的定义和性质解释连续型随机变量的概率密度函数4.2 连续型随机变量的期望和方差介绍连续型随机变量的期望和方差的概念举例说明连续型随机变量的期望和方差的计算方法4.3 连续型随机变量的分布函数解释连续型随机变量的分布函数的概念举例说明连续型随机变量的分布函数的计算方法第五章:大数定律和中心极限定理5.1 大数定律介绍大数定律的概念和意义解释大数定律的数学表达和证明方法5.2 中心极限定理介绍中心极限定理的概念和意义解释中心极限定理的数学表达和证明方法第六章:随机变量的数字特征6.1 随机变量的期望介绍随机变量期望的定义和性质举例说明离散型和连续型随机变量期望的计算方法6.2 随机变量的方差介绍随机变量方差的概念和性质举例说明离散型和连续型随机变量方差的计算方法6.3 随机变量的协方差和相关系数解释协方差和相关系数的含义和作用举例说明协方差和相关系数的计算方法第七章:随机抽样方法7.1 简单随机抽样介绍简单随机抽样的定义和特点解释随机抽样的几种方法,如抽签法、随机数表法等7.2 分层抽样解释分层抽样的原理和步骤举例说明分层抽样的应用和计算方法7.3 系统抽样和整群抽样介绍系统抽样和整群抽样的定义和特点解释系统抽样和整群抽样的应用和计算方法第八章:随机过程的基本概念8.1 随机过程的定义和分类介绍随机过程的定义和分类解释离散时间和连续时间随机过程的区别8.2 随机过程的随机变量的性质介绍随机过程的随机变量的性质,如独立性和马尔可夫性8.3 随机过程的数字特征解释随机过程的数字特征,如均值、方差等第九章:马尔可夫链9.1 马尔可夫链的定义和性质介绍马尔可夫链的定义和性质解释马尔可夫链的转移概率和初始分布9.2 马尔可夫链的分类介绍齐次马尔可夫链和非齐次马尔可夫链的概念解释周期性和稳态分布的概念9.3 马尔可夫链的应用举例说明马尔可夫链在实际问题中的应用,如股票价格预测等第十章:随机行走和排队理论10.1 随机行走介绍随机行走的概念和类型解释随机行走的数学模型和统计特性10.2 排队理论的基本模型介绍排队理论的基本模型,如M/M/1、M/M/c/N等解释排队理论中的基本参数和排队长度公式10.3 排队理论的应用举例说明排队理论在实际问题中的应用,如通信系统、交通管理等第十一章:布朗运动和随机微积分11.1 布朗运动的基本概念介绍布朗运动的概念和特性解释布朗运动的数学模型和实际意义11.2 随机微积分的基本概念介绍随机微积分的基本概念,如随机过程的微分和积分解释随机微积分的应用和计算方法第十二章:随机分析在金融中的应用12.1 金融市场的基本模型介绍金融市场的基本模型,如几何布朗运动和风险中性定价解释金融市场中的随机过程和数学公式12.2 期权定价理论介绍期权定价理论的基本概念和方法解释欧式期权和美式期权的定价公式和应用12.3 利率模型和利率衍生品定价介绍利率模型和利率衍生品的基本概念解释利率模型中的随机过程和利率衍生品定价方法第十三章:随机网络和图论13.1 随机网络的基本概念介绍随机网络的概念和特性解释随机网络的数学模型和统计特性13.2 图论的基本概念介绍图论的基本概念,如图的表示和遍历解释图论在随机网络中的应用和计算方法13.3 网络流和匹配理论介绍网络流和匹配理论的基本概念解释网络流和匹配理论在随机网络中的应用和计算方法第十四章:随机优化和决策理论14.1 随机优化基本概念介绍随机优化的概念和特性解释随机优化问题的数学模型和求解方法14.2 决策理论的基本概念介绍决策理论的概念和特性解释决策理论中的随机过程和决策规则14.3 随机决策分析的应用举例说明随机决策分析在实际问题中的应用,如生产计划、风险管理等第十五章:总结与展望15.1 概率论与随机过程的应用领域总结概率论与随机过程在各个领域的应用强调概率论与随机过程在现代科技发展中的重要性15.2 概率论与随机过程的发展趋势介绍概率论与随机过程的发展趋势,如随机计算、随机图论等展望概率论与随机过程在未来研究中的潜在方向重点和难点解析重点:理解概率的基本概念,掌握概率的计算方法,了解随机变量的数字特征,熟悉随机抽样方法,掌握随机过程的基本概念和应用。

考研数学《概率论与数理统计》知识点总结

考研数学《概率论与数理统计》知识点总结

第一章 概率论的基本概念定义: 随机试验E 的每个结果样本点组成样本空间S ,S 的子集为E 的随机事件,单个样本点为基本事件.事件关系: 1.A ⊂B ,A 发生必导致B 发生. 2.A B 和事件,A ,B 至少一个发生,A B 发生. 3.A B 记AB 积事件,A ,B 同时发生,AB 发生. 4.A -B 差事件,A 发生,B 不发生,A -B 发生.5.A B=Ø,A 与B 互不相容(互斥),A 与B 不能同时发生,基本事件两两互不相容.6.A B=S 且A B=Ø,A 与B 互为逆事件或对立事件,A 与B 中必有且仅有一个发生,记B=A S A -=.事件运算: 交换律、结合律、分配率略.德摩根律:B A B A =,B A B A =.概率: 概率就是n 趋向无穷时的频率,记P(A).概率性质:1.P (Ø)=0.2.(有限可加性)P (A 1 A 2 … A n )=P (A 1)+P (A 2)+…+P (A n ),A i 互不相容. 3.若A ⊂B ,则P (B -A)=P (B)-P (A).4.对任意事件A ,有)A (1)A (P P -=.5.P (A B)=P (A)+P (B)-P (AB).古典概型: 即等可能概型,满足:1.S 包含有限个元素.2.每个基本事件发生的可能性相同. 等概公式: 中样本点总数中样本点数S A )A (==n k P . 超几何分布:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛=n N k n D N k D p ,其中ra C r a =⎪⎪⎭⎫ ⎝⎛. 条件概率: )A ()AB ()A B (P P P =. 乘法定理:)A ()A B ()AB C ()ABC ()A ()AB ()AB (P P P P P P P ==.全概率公式: )B ()B A ()B ()B A ()B ()B A ()A (2211n n P P P P P P P +++= ,其中i B 为S 的划分. 贝叶斯公式: )A ()B ()B A ()A B (P P P P i i i =,∑==nj j j B P B A P A P 1)()()(或)()()()()()()(B P B A P B P B A P B P B A P A B P +=.独立性: 满足P (AB)=P (A)P (B),则A ,B 相互独立,简称A ,B 独立.定理一: A ,B 独立,则.P (B |A)=P (B). 定理二: A ,B 独立,则A 与B ,A 与B ,A 与B 也相互独立.第二章 随机变量及其分布(0—1)分布: k k p p k X P --==1)1(}{,k =0,1 (0<p <1).伯努利实验:实验只有两个可能的结果:A 及A .二项式分布: 记X~b (n ,p ),k n kk n p p C k X P --==)1(}{. n 重伯努利实验:独立且每次试验概率保持不变.其中A 发生k 次,即二项式分布.泊松分布: 记X~π(λ),!}{k e k X P k λλ-==, ,2,1,0=k .泊松定理: !)1(lim k e p p C k kn k knn λλ--∞→=-,其中λ=np .当20≥n ,05.0≤p 应用泊松定理近似效果颇佳.随机变量分布函数: }{)(x X P x F ≤=,+∞<<∞-x .)()(}{1221x F x F x X x P -=≤<.连续型随机变量: ⎰∞-=xt t f x F d )()(,X 为连续型随机变量,)(x f 为X 的概率密度函数,简称概率密度.概率密度性质:1.0)(≥x f ;2.1d )(=⎰+∞∞-x x f ;3.⎰=-=≤<21d )()()(}{1221x x x x f x F x F x X x P ;4.)()(x f x F =',f (x )在x 点连续;5.P {X=a }=0.均匀分布: 记X~U(a ,b );⎪⎩⎪⎨⎧<<-=其它,,01)(bx a a b x f ;⎪⎩⎪⎨⎧≥<≤--<=b x b x a a b a x a x x F ,,,10)(. 性质:对a ≤c <c +l ≤b ,有 a b ll c X c P -=+≤<}{指数分布:⎪⎩⎪⎨⎧>=-其它,,001)(x e x f x θθ;⎩⎨⎧>-=-其它,,001)(x e x F x θ. 无记忆性: }{}{t X P s X t s X P >=>+>. 正态分布: 记),(~2σμN X ;]2)(exp[21)(22σμσπ--=x x f ;t t x F xd ]2)(exp[21)(22⎰∞---=σμσπ.性质: 1.f (x )关于x =μ对称,且P {μ-h <X ≤μ}=P {μ<X ≤μ+h };2.有最大值f (μ)=(σπ2)-1. 标准正态分布:]2exp[21)(2x x -=πϕ;⎰∞--=Φxt t x d ]2exp[21)(2π.即μ=0,ζ=1时的正态分布X ~N(0,1)性质:)(1)(x x Φ-=-Φ.正态分布的线性转化: 对),(~2σμN X 有)1,0(~N X Z σμ-=;且有)(}{}{)(σμσμσμ-Φ=-≤-=≤=x x X P x X P x F . 正态分布概率转化: )()(}{1221σμσμ-Φ--Φ=≤<x x x X x P ;1)(2)()(}{-Φ=-Φ-Φ=+<<-t t t t X t P σμσμ.3ζ法则: P =Φ(1)-Φ(-1)=68.26%;P =Φ(2)-Φ(-2)=95.44%;P =Φ(3)-Φ(-3)=99.74%,P 多落在(μ-3ζ,μ+3ζ)内. 上ɑ分位点: 对X~N(0,1),若z α满足条件P {X>z α}=α,0<α<1,则称点z α为标准正态分布的上α分位点. 常用 上ɑ分位点: 0.001 0.005 0.01 0.025 0.05 0.10 3.0902.5762.3261.9601.6451.282Y 服从自由度为1的χ2分布:设X 密度函数f X (x ),+∞<<∞-x ,若Y=X 2,则⎪⎩⎪⎨⎧≤>-+=000)]()([21)(y y y f y f y y f X XY ,,若设X ~N(0,1),则有⎪⎩⎪⎨⎧≤>=--00021)(221y y e y y f y Y ,,π定理:设X 密度函数f X (x ),设g (x )处处可导且恒有g ′(x )>0(或g ′(x )<0),则Y=g (X)是连续型随机变量,且有⎩⎨⎧<<'=其他,,0)()]([)(βαy y h y h f y f X Y h (y )是g (x )的反函数;①若+∞<<∞-x ,则α=min{g (−∞),g (+∞)},β=max{g (−∞),g (+∞)};②若f X (x )在[a ,b ]外等于零,g (x )在[a ,b ]上单调,则α=min{g (a ),g (b )},β=max{g (a ),g (b )}.应用: Y=aX +b ~N(a μ+b ,(|a |ζ)2).第三章 多维随机变量及其分布二维随机变量的分布函数: 分布函数(联合分布函数):)}(){(),(y Y x X P y x F ≤≤= ,记作:},{y Y x X P ≤≤.),(),(),(),(},{112112222121y x F y x F y x F y x F y Y y x X x P +--=≤<≤<.F (x ,y )性质: 1.F (x ,y )是x 和y 的不减函数,即x 2>x 1时,F (x 2,y )≥F (x 1,y );y 2>y 1时,F (x ,y 2)≥F (x ,y 1).2.0≤F (x ,y )≤1且F (−∞,y )=0,F (x ,−∞)=0,F (−∞,−∞)=0,F (+∞,+∞)=1.3.F (x +0,y )=F (x ,y ),F (x ,y +0)=F (x ,y ),即F (x ,y )关于x 右连续,关于y 也右连续.4.对于任意的(x 1,y 1),(x 2,y 2),x 2>x 1,y 2>y 1,有P {x 1<X ≤x 2,y 1<Y ≤y 2}≥0.离散型(X ,Y ):0≥ij p ,111=∑∑∞=∞=ij j i p ,ij yy x x p y x F i i ∑∑=≤≤),(.连续型(X ,Y ):v u v u f y x F y xd d ),(),(⎰⎰∞-∞-=.f (x ,y )性质: 1.f (x ,y )≥0.2.1),(d d ),(=∞∞=⎰⎰∞∞-∞∞-F y x y x f .3.y x y x f G Y X P G⎰⎰=∈d d ),(}),{(. 4.若f (x ,y )在点(x ,y )连续,则有),(),(2y x f yx y x F =∂∂∂. n 维: n 维随机变量及其分布函数是在二维基础上的拓展,性质与二维类似. 边缘分布:F x (x ),F y (y )依次称为二维随机变量(X ,Y )关于X 和Y 的边缘分布函数,F X (x )=F (x ,∞),F Y (y )=F (∞,y ).离散型: *i p 和j p *分别为(X ,Y )关于X 和Y 的边缘分布律,记}{1i ij j i x X P p p ==∑=∞=*,}{1j ij i j y Y P p p ==∑=∞=*.连续型:)(x f X ,)(y f Y 为(X ,Y )关于X 和Y 的边缘密度函数,记⎰∞∞-=y y x f x f X d ),()(,⎰∞∞-=x y x f y f Y d ),()(.二维正态分布:]})())((2)([)1(21exp{121),(2222212121212221σμσσμμρσμρρσπσ-+-------=y y x x y x f . 记(X ,Y )~N (μ1,μ2,ζ12,ζ22,ρ)]2)(exp[21)(21211σμσπ--=x x f X ,∞<<∞-x .]2)(exp[21)(22222σμσπ--=y y f Y ,∞<<∞-y . 离散型条件分布律: jij j j i j i p p y Y P y Y x X P y Y x X P *=======}{},{}{. *=======i ij i j i i j p p x X P y Y x X P x X y Y P }{},{}{.连续型条件分布:条件概率密度:)(),()(y f y x f y x f Y Y X =||条件分布函数:x y f y x f y Y x X P y x F xY Y X d )(),(}{)(⎰∞-==≤=||| )(),()(x f y x f x y f X X Y =||y x f y x f x X y Y P x y F yX X Y d )(),(}{)(⎰∞-==≤=||| 含义:当0→ε时,)|(d )|(}|{||y x F x y x f y Y y x X P Y X xY X =≈+≤<≤⎰∞-ε.均匀分布: 若⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x Ay x f ,则称(X ,Y)在G 上服从均匀分布. 独立定义:若P {X ≤x ,Y ≤y }=P {X ≤x }P {Y ≤y },即F (x ,y )=F x (x )F y (y ),则称随机变量X 和Y 是相互独立的. 独立条件或可等价为:连续型:f (x ,y )=f x (x )f y (y );离散型:P {X =x i ,Y =y j }=P {X =x i }P {Y =y j }.正态独立: 对于二维正态随机变量(X ,Y ),X 和Y 相互对立的充要条件是:参数ρ=0.n 维延伸: 上述概念可推广至n 维随机变量,要注意的是边缘函数或边缘密度也是多元(1~n -1元)的.定理:设(X 1,X 2,…,X m )和(Y 1,Y 2,…,Y n )相互独立,则X i 和Y j 相互独立.又若h ,g 是连续函数,则h (X 1,X 2,…,X m )和g (Y 1,Y 2,…,Y n )相互独立.Z=X+Y 分布: 若连续型(X ,Y )概率密度为f (x ,y ),则Z=X+Y 为连续型且其概率密度为⎰∞∞-+-=y y y z f z f Y X d ),()(或⎰∞∞-+-=x x z x f z f Y X d ),()(.f X 和f Y 的卷积公式:记⎰∞∞-+-==y y f y z f z f f f Y X Y X Y X d )()()(*⎰∞∞--=x x z f x f Y X d )()(,其中除继上述条件,且X 和Y相互独立,边缘密度分别为f X (x )和f Y (y ). 正态卷积:若X 和Y 相互独立且X ~N (μ1,ζ12),记Y ~N (μ2,ζ22),则对Z=X+Y 有Z ~N (μ1+μ2,ζ12+ζ22).1.上述结论可推广至n 个独立正态随机变量.2.有限个独立正态随机变量的线性组合仍服从正态分布. 伽马分布:记),(~θαΓX ,0>α,0>θ.⎪⎩⎪⎨⎧>Γ=--其他,,00)(1)(1x e x x f x θαααθ,其中⎰+∞--=Γ01d )(t e t tαα.若X 和Y 独立且X ~Γ(α,θ),记Y ~Γ(β,θ),则有X+Y~Γ(α+β,θ).可推广到n 个独立Γ分布变量之和.XYZ =:⎰∞∞-=x xz x f x z f X Y d ),()(,若X 和Y 相互独立,则有⎰∞∞-=x xz f x f x z f Y X X Y d )()()(.XYZ =分布: ⎰∞∞-=x x zx f x z f XY d ),(1)(,若X 和Y 相互独立,则有⎰∞∞-=xxz f x f x z f Y X XY d )()(1)(. 大小分布:若X 和Y 相互独立,且有M =max{X ,Y }及N =min{X ,Y },则M 的分布函数:F max (z )=F X (z )F Y (z ),N 的分布函数:F min (z )=1-[1-F X (z )][1-F Y (z )],以上结果可推广到n 个独立随机变量的情况.第四章 随机变量的数字特征数学期望: 简称期望或均值,记为E (X );离散型:k k k p x X E ∑=∞=1)(.连续型:⎰∞∞-=x x xf X E d )()(.定理: 设Y 是随机变量X 的函数:Y =g (X )(g 是连续函数).1.若X 是离散型,且分布律为P {X =x k }=p k ,则: k k k p x g Y E )()(1∑=∞=.2.若X 是连续型,概率密度为f (x ),则:⎰∞∞-=x x f x g Y E d )()()(.定理推广: 设Z 是随机变量X ,Y 的函数:Z =g (X ,Y )(g 是连续函数).1.离散型:分布律为P {X =x i ,Y =y j }=p ij ,则: ij j i i j p y x g Z E ),()(11∑∑=∞=∞=. 2.连续型:⎰⎰∞∞-∞∞-=y x y x f y x g Z E d d ),(),()(期望性质:设C 是常数,X 和Y 是随机变量,则:1.E (C )=C .2.E (CX )=CE (X ).3.E (X +Y )=E (X )+E (Y ). 4.又若X 和Y 相互独立的,则E (XY )=E (X )E (Y ).方差:记D (X )或Var(X ),D (X )=V ar(X )=E {[X -E (X )]2}.标准差(均方差): 记为ζ(X ),ζ(X )= . 通式:22)]([)()(X E X E X D -=. k k k p X E x X D 21)]([)(-∑=∞=,⎰∞∞--=x x f x E x X D d )()]([)(2.标准化变量: 记σμ-=x X *,其中μ=)(X E ,2)(σ=X D ,*X 称为X 的标准化变量. 0)(*=X E ,1)(*=X D .方差性质: 设C 是常数,X 和Y 是随机变量,则: 1.D (C )=0. 2.D (CX )=C 2D (X ),D (X +C )=D (X ).3.D (X +Y )=D (X )+D (Y )+2E {(X -E (X ))(Y -E (Y ))},若X ,Y 相互独立D (X +Y )=D (X )+D (Y ).4.D (X )=0的充要条件是P {X =E (X )}=1. 正态线性变换: 若),(~2i i i N X σμ,i C 是不全为0的常数,则),(~22112211i i n i i i n i n n C C N X C X C X C σμ∑∑+++== .切比雪夫不等式: 22}{εσεμ≤≥-X P 或221}{εσεμ-≥<-X P ,其中)(X E =μ,)(2X D =σ,ε为任意正数.协方差:记)]}()][({[),Cov(Y E Y X E X E Y X --=.X 与Y的相关系数:)()(),Cov(Y D X D Y X XY =ρ.D (X +Y )=D (X )+D (Y )+2Cov(X ,Y ),Cov(X ,Y )=E (XY )-E (X )E (Y ).性质: 1.Cov(aX ,bY )=ab Cov(X ,Y ),a ,b 是常数.2.Cov(X 1+X 2,Y )=Cov(X 1,Y )+Cov(X 2,Y ). 系数性质:令e =E [(Y -(a +bX ))2],则e 取最小值时有)()1(]))([(2200min Y D X b a Y E e XY ρ-=+-=,其中)()(00X E b Y E a -=,)(),Cov(0X D Y X b =.1.|ρXY |≤1.2.|ρXY |=1的充要条件是:存在常数a ,b 使P {Y =a +bX }=1.|ρXY |越大e 越小X 和Y 线性关系越明显,当|ρXY |=1时,Y =a +bX ;反之亦然,当ρXY =0时,X 和Y 不相关. X 和Y 相互对立,则X 和Y 不相关;但X 和Y 不相关,X 和Y 不一定相互独立. 定义: k 阶矩(k 阶原点矩):E (X k ). n 维随机变量X i 的协方差矩阵:⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n c c c c c cc c c212222111211C ,),Cov(j i ij X X c ==E {[X i -E (X i )][X j -E (X j )]}. k +l 阶混合矩:E (X k Y l).k 阶中心矩:E {[X -E (X )] k }.k +l 阶混合中心矩:E {[X -E (X )]k [Y -E (Y )]l }.n 维正态分布:)}()(21exp{det )2(1),,,(1T 221μX C μX C ---=-n n x x x f π ,T21T 21),,,(),,,(n nx x x μμμ ==μX . 性质:1.n 维正态随机变量(X 1,X 2,…,X n )的每一个分量X i (i =1,2,…,n )都是正态随机变量,反之,亦成立. 2.n 维随机变量(X 1,X 2,…,X n )服从n 维正态分布的充要条件是X 1,X 2,…,X n 的任意线性组合l 1X 1+l 2X 2+…+l n X n 服从一维正态分布(其中l 1,l 2,…,l n 不全为零).3.若(X 1,X 2,…,X n )服从n 维正态分布,且Y 1,Y 2,…,Y k 是X j (j =1,2,…,n )的线性函数,则(Y 1,Y 2,…,Y k )也服从多维正态分布.4.若(X 1,X 2,…,X n )服从n 维正态分布,则“X i 相互独立”与“X i 两两不相关”等价.)(x D第五章大数定律及中心极限定理弱大数定理:若X1,X2,…是相互独立并服从同一分布的随机变量序列,且E(X k)=μ,则对任意ε>0有11lim1=⎭⎬⎫⎩⎨⎧<-∑=∞→εμknknXnP或→μPX,knkXnX11=∑=.定义:Y1,Y2,…,Y n ,…是一个随机变量序列,a是一个常数.若对任意ε>0,有1}|{|lim=<-∞→εaYPnn则称序列Y1,Y2,…,Yn,…依概率收敛于a.记aY Pn−→−伯努利大数定理:对任意ε>0有1lim=⎭⎬⎫⎩⎨⎧<-∞→εpnfP An或0lim=⎭⎬⎫⎩⎨⎧≥-∞→εpnfP An.其中f A是n次独立重复实验中事件A发生的次数,p是事件A在每次试验中发生的概率.中心极限定理定理一:设X1,X2,…,X n ,…相互独立并服从同一分布,且E(X k)=μ,D(X k)=ζ2 >0,则n→∞时有σμnnXknk)(1-∑=N(0,1)或nXσμ-~N(0,1)或X~N(μ,n2σ).定理二:设X1,X2,…,X n ,…相互独立且E(X k)=μk,D(X k)=ζk2 >0,若存在δ>0使n→∞时,}|{|1212→-∑+=+δδμkknknXEB,则nknkknkBX)(11μ==∑-∑~N(0,1),记212knknBσ=∑=.定理三:设),(~pnbnη,则n→∞时,Npnpnpn~)1()(--η(0,1),knknX1=∑=η.第六章样本及抽样分布定义:总体:全部值;个体:一个值;容量:个体数;有限总体:容量有限;无限总体:容量无限.定义:样本:X1,X2,…,X n 相互独立并服从同一分布F的随机变量,称从F得到的容量为n的简单随机样本.频率直方图:图形:以横坐标小区间为宽,纵坐标为高的跨越横轴的几个小矩形.横坐标:数据区间(大区间下限比最小数据值稍小,上限比最大数据值稍大;小区间:均分大区间,组距Δ=大区间/小区间个数;小区间界限:精度比数据高一位).图形特点:外轮廓接近于总体的概率密度曲线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).定义:样本p分位数:记x p,有1.样本x i中有np个值≤x p.2.样本中有n(1-p)个值≥x p.箱线图:x p选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2或M,称为样本中位数.分位数x0.25,记为Q1,称为第一四分位数.分位数x0.75,记为Q3,称为第三四分位数.图形:图形特点:M为数据中心,区间[min,Q1],[Q1,M],[M,Q3],[Q3,max]数据个数各占1/4,区间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-1.5IQR或X>Q3+1.5IQR,就认为X是疑似异常值.抽样分布:样本平均值:iniXnX11=∑=样本方差:)(11)(11221212XnXnXXnSiniini-∑-=-∑-===样本标准差:2SS=样本k阶(原点)矩:kinikXnA11=∑=,k≥1 样本k阶中心矩:kinikXXnB)(11-∑==,k≥2经验分布函数:)(1)(xSnxFn=,∞<<∞-x.)(xS表示F的一个样本X1,X2,…,X n 中不大于x的随机变量的个数.自由度为n的χ2分布:记χ2~χ2(n),222212nXXX+++=χ,其中X1,X2,…,X n是来自总体N(0,1)的样本.E(χ2 )=n,D(χ2 )=2n.χ12+χ22~χ2(n1+n2).⎪⎩⎪⎨⎧>Γ=--其他,,)2(21)(2122yexnyfynn.χ2分布的分位点:对于0<α<1,满足αχχαχα==>⎰∞yyfnPn)(222d)()}({,则称)(2nαχ为)(2nχ的上α分位点.~ 近似的min Q1 M Q3 max当n 充分大时(n >40),22)12(21)(-+≈n z n ααχ,其中αz 是标准正态分布的上α分位点. 自由度为n 的t 分布:记t ~t (n ),nY Xt /=, 其中X~N (0,1),Y~χ2(n ),X ,Y 相互独立.2)1(2)1(]2[]2)1([)(+-+Γ+Γ=n n t n n n t h π h (t )图形关于t =0对称;当n 充分大时,t 分布近似于N (0,1)分布.t 分布的分位点:对于0<α<1,满足ααα==>⎰∞t t h n t t P n t )(d )()}({,则称)(n t α为)(n t 的上α分位点. 由h (t )对称性可知t 1-α(n )=-t α(n ).当n >45时,t α(n )≈z α,z α是标准正态分布的上α分位点.自由度为(n 1,n 2)的F分布:记F ~F (n 1,n 2),21n V n U F =,其中U~χ2(n 1),V~χ2(n 2),X ,Y 相互独立.1/F ~F (n 2,n 1)⎪⎩⎪⎨⎧>+ΓΓ+Γ=+-其他,,00]1)[2()2()](2)([)(2)(21211)2(221212111x n y n n n y n n n n y n n n n ψF 分布的分位点:对于0<α<1,满足αψαα==>⎰∞y y n n F F P n n F ),(2121d )()},({,则称),(21n n F α为),(21n n F 的上α分位点.重要性质:F 1-α(n 1,n 2)=1/F α(n 1,n 2).定理一: 设X 1,X 2,…,X n 是来自N (μ,ζ2)的样本,则有),(~2n N X σμ,其中X 是样本均值. 定理二:设X 1,X 2,…,X n 是来自N (μ,ζ2)的样本,样本均值和样本方差分别记为 X ,2S ,则有1.)1(~)1(222--n S n χσ;2.X 与2S 相互独立.定理三:设X 1,X 2,…,X n 是来自N (μ,ζ2)的样本,样本均值和样本方差分别记为X ,2S ,则有)1(~--n t nS X μ.定理四:设X 1,X 2,…,X n 1 与Y 1,Y 2,…,Y n 2分别是来自N (μ1,ζ12)和N (μ2,ζ22)的样本,且相互独立.设这两个样本的样本均值和样本方差分别记为 X ,Y ,21S ,22S ,则有1.)1,1(~2122212221--n n F S S σσ.2.当ζ12=ζ22=ζ2时,)2(~)()(21121121-++-----n n t n n S Y X w μμ,其中2)1()1(212222112-+-+-=n n S n S n S w,2w w S S =. 第七章 参数估计定义: 估计量:),,,(ˆ21n X X X θ,估计值:),,,(ˆ21nx x x θ,统称为估计. 矩估计法:令)(ll X E =μ=li n i l X n A 11=∑=(k l ,,2,1 =)(k 为未知数个数)联立方程组,求出估计θˆ.设总体X 均值μ及方差ζ2都存在,则有 X A ==1ˆμ,212212122)(11ˆX X n X X n A A i n i i n i -∑=-∑=-===σ. 最大似然估计法: 似然函数:离散:);()(1θθi n i x p L =∏=或连续:);()(1θθi ni x f L =∏=,)(θL 化简可去掉与θ无关的因式项.θˆ即为)(θL 最大值,可由方程0)(d d =θθL 或0)(ln d d =θθL 求得. 当多个未知参数θ1,θ1,…,θk 时:可由方程组 0d d =L i θ或0ln d d =L i θ(k i ,,2,1 =)求得. 最大似然估计的不变性:若u =u (θ)有单值反函数θ=θ(u ),则有)ˆ(ˆθu u=,其中θˆ为最大似然估计. 截尾样本取样: 定时截尾样本:抽样n 件产品,固定时间段t 0内记录产品个体失效时间(0≤t 1≤t 2≤…≤t m ≤t 0)和失效产品数量. 定数截尾样本:抽样n 件产品,固定失效产品数量数量m 记录产品个体失效时间(0≤t 1≤t 2≤…≤t m ). 结尾样本最大似然估计:定数截尾样本:设产品寿命服从指数分布X~e (θ),θ即产品平均寿命.产品t i 时失效概率P {t =t i }≈f (t i )d t i ,寿命超过t m 的概率θm t m e t t F -=>}{,则)(}){()(1i m i m n m m n t P t t F C L =-∏>=θ,化简得)(1)(m t s m e L ---=θθθ,由0)(ln d d =θθL 得:mt s m )(ˆ=θ,其中s (t m )=t 1+t 2+…+t m +(n -m )t m ,称为实验总时间. 定时截尾样本:与定数结尾样本讨论类似有s (t 0)=t 1+t 2+…+t m +(n -m )t 0,)(01)(t s m e L ---=θθθ,mt s )(ˆ0=θ,. 无偏性: 估计量),,,(ˆ21nX X X θ的)ˆ(θE 存在且θθ=)ˆ(E ,则称θˆ是θ的无偏估计量. 有效性:),,,(ˆ211n X X X θ与),,,(ˆ212n X X X θ都是θ的无偏估计量,若)ˆ()ˆ(21θθD D ≤,则1ˆθ较2ˆθ有效. 相合性: 设),,,(ˆ21n X X X θθ的估计量,若对于任意0>ε有1}|ˆ{|lim =<-∞→εθθP n ,则称θˆ是θ的相合估计量. 置信区间:αθθθ-≥<<1)},,,(),,,({2121n n X X X X X X P ,θ和θ分别为置信下限和置信上限,则),(θθ是θ的一个置信水平为α-1置信区间,α-1称为置信水平,10<<α.正态样本置信区间: 设X 1,X 2,…,X n 是来自总体X ~N (μ,ζ2)的样本,则有μ的置信区间:枢轴量W W 分布 a ,b 不等式 置信水平 置信区间)1,0(~N n X σμ-⇒ασμα-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<-12z n X P ⇒)(2ασz n X ± 其中z α/2为上α分位点θ置信区间的求解: 1.先求枢轴量:即函数W =W (X 1,X 2,…,X n ;θ),且函数W 的分布不依赖未知参数. 如上讨论标注2.对于给定置信水平α-1,定出两常数a ,b 使P {a <W <b }=α-1,从而得到置信区间. (0-1)分布p 的区间估计:样本容量n >50时,⇒--∞→)1,0(~)1()(lim N p np np X n n {}⇒-≈<--αα1)1()(2z p np np X n P0)2()(222222<++-+X n p z X n p z n αα⇒若令22αz n a +=,)2(22αz X n b +-=,2X n c =,则有置信区间(a ac b b 2)4(2---,a ac b b 2)4(2-+-).单侧置信区间:若αθθ-≥>1}{P 或αθθ-≥<1}{P ,称(θ,∞)或(∞-,θ)是θ的置信水平为α-1的单侧置信区间.正态总体均值、方差的置信区间与单侧置信限(置信水平为α-1)待估 其他 枢轴量W 的分布置信区间单侧置信限一个正态总体μζ2已知 )1,0(~N nX Z σμ-=)(2ασz nX ±ασμz nX +=,ασμz nX -=μζ2未知 )1(~--=n t nS X t μ⎪⎭⎫ ⎝⎛±2αt n S X αμt n S X +=,αμt nSX -= ζ2μ未知)1(~)1(2222--=n S n χσχ⎪⎪⎭⎫⎝⎛---2212222)1(,)1(ααχχS n S n 2122)1(αχσ--=S n ,222)1(αχσS n -=两个正态总体μ1-μ2ζ12,ζ22已知 )1,0(~)(22212121N n n Y X Z σσμμ+---=⎪⎪⎭⎫ ⎝⎛+±-2221212n n z Y X σσα2221212122212121n n z Y X n n z Y X σσμμσσμμαα+--=-++-=-μ1-μ2ζ12=ζ22=ζ2 未知)2(~)()(21121121-++---=--n n t n n S Y X t w μμ()12112--+±-n n S tY X w α2w w S S =121121121121----+--=-++-=-n n S t Y X n n S t Y X w w ααμμμμ2)1()1(2122 22112-+-+-=nnS nSnSwζ12/ζ22μ1,μ2未知)1,1(~2122212221--=nnFSSFσσ⎪⎪⎭⎫⎝⎛-212221222211,1ααFSSFSSασσ-=1222122211FSS,ασσFSS122212221=单个总体X~N(μ,ζ2),两个总体X~N(μ1,ζ12),Y~N(μ2,ζ22).第八章假设实验定义:H0:原假设或零假设,为理想结果假设;H1:备择假设,原假设被拒绝后可供选择的假设.第Ⅰ类错误:H0实际为真时,却拒绝H0.第Ⅱ类错误:H0实际为假时,却接受H0.显著性检验:只对犯第第Ⅰ类错误的概率加以控制,而不考虑第Ⅱ类错误的概率的检验.P{当H0为真拒绝H0}≤α,α称为显著水平.拒绝域:取值拒绝H0.临界点:拒绝域边界.双边假设检验:H0:θ=θ0,H1:θ≠θ0.右边检验:H0:θ≤θ0,H1:θ>θ0.左边检验:H0:θ≥θ0,H1:θ<θ0.正态总体均值、方差的检验法(显著性水平为α)原假设H0备择假设H1检验统计量拒绝域1 ζ2已知μ≤μ0μ>μ0nXZσμ-=z≥zαμ≥μ0μ<μ0z≤-zαμ=μ0μ≠μ0|z|≥zα/22 ζ2未知μ≤μ0μ>μ0nSXt0μ-=t≥tα(n-1) μ≥μ0μ<μ0t≤-tα(n-1) μ=μ0μ≠μ0|t|≥tα/2(n-1)3 ζ1,ζ2已知μ1-μ2≤δμ1-μ2>δ222121nnYXZσσδ+--=z≥zαμ1-μ2≥δμ1-μ2<δz≤-zαμ1-μ2=δμ1-μ2≠δ|z|≥zα/24 ζ12=ζ22=ζ2未知μ1-μ2≤δμ1-μ2>δ1211--+--=nnSYXtwδ2)1()1(212222112-+-+-=nnSnSnSwt≥tα(n1+n2-2) μ1-μ2≥δμ1-μ2<δt≤-tα(n1+n2-2)μ1-μ2=δμ1-μ2≠δ|t|≥tα/2(n1+n2-2)5 μ未知ζ2≤ζ02ζ2>ζ02222)1(σχSn-=χ2≥χα2(n-1)ζ2≥ζ02ζ2<ζ02χ2≤χ21-α(n-1)ζ2=ζ02ζ2≠ζ02χ2≥χ2α/2(n-1)或χ2≤χ21-α/2(n-1)6 μ1,μ2未知ζ12≤ζ22ζ12>ζ222221SSF=F≥Fα(n1-1,n2-1) ζ12≥ζ22ζ12<ζ22F≤F1-α(n1-1,n2-1)ζ12=ζ22ζ12≠ζ22F≥Fα/2(n1-1,n2-1)或F≤F1-α/2(n1-1,n2-1)7 成对数据μD≤0 μD>0nSDtD-=t≥tα(n-1) μD≥0 μD<0 t≤-tα(n-1)μD=0 μD≠0 |t|≥tα-2(n-1)检验方法选择:主要是逐对比较法(成对数据)跟两个正态总体均值差的检验的区别,如上表即7跟3、4的区别,成对数据指两样本X和Y之间存在一一对应关系,而3和4一般指X和Y相互对立,但针对同一实体.关系:置信区间与假设检验之间的关系:未知参数的置信水平为1-α的置信区间与显著水平为α的接受域相同.定义:施行特征函数(OC函数):β(θ)=Pθ(接受H0).功效函数:1-β(θ).功效:当θ*∈H1时,1-β(θ*)的值.。

茆诗松概率论教案

茆诗松概率论教案

茆诗松概率论教案第一章概率论的基本概念1.1 随机现象与样本空间介绍随机现象的概念,举例说明。

解释样本空间的概念,讨论样本空间的性质。

1.2 事件与概率定义事件的概念,讨论事件的性质。

介绍概率的定义,讨论概率的性质。

1.3 条件概率与独立性定义条件概率的概念,讨论条件概率的性质。

解释独立性的概念,讨论独立性的性质。

第二章随机变量及其分布2.1 随机变量的概念介绍随机变量的概念,讨论随机变量的性质。

2.2 离散型随机变量的分布律定义离散型随机变量的分布律,讨论分布律的性质。

2.3 连续型随机变量的概率密度定义连续型随机变量的概率密度,讨论概率密度的性质。

第三章随机变量的数字特征3.1 随机变量的期望值定义随机变量的期望值,讨论期望值的性质。

3.2 随机变量的方差与标准差定义随机变量的方差与标准差,讨论方差与标准差的性质。

3.3 随机变量的协方差与相关系数定义随机变量的协方差与相关系数,讨论协方差与相关系数的性质。

第四章随机变量的函数4.1 随机变量的函数的概念介绍随机变量的函数的概念,讨论随机变量的函数的性质。

4.2 随机变量的函数的分布讨论随机变量的函数的分布的概念,解释随机变量的函数的分布的性质。

4.3 随机变量的函数的期望值与方差讨论随机变量的函数的期望值与方差的性质,解释随机变量的函数的期望值与方差的计算方法。

第五章大数定律与中心极限定理5.1 大数定律介绍大数定律的概念,讨论大数定律的性质。

5.2 中心极限定理介绍中心极限定理的概念,讨论中心极限定理的性质。

第六章随机抽样与估计6.1 随机抽样的概念与方法介绍简单随机抽样的概念与实现方法。

讨论系统抽样、分层抽样等其它抽样方法。

6.2 点估计与置信区间定义点估计的概念,讨论点估计的性质。

介绍置信区间的概念,解释置信区间的构造方法。

6.3 评价估计量的标准讨论无偏性、有效性和一致性等评价估计量的标准。

第七章假设检验与决策7.1 假设检验的基本概念介绍假设检验的目的是什么,解释假设检验的步骤。

概率论知识点总结归纳

概率论知识点总结归纳

欢迎共阅概率论知识点总结第一章随机事件及其概率第一节基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用E 表示。

随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。

不可能事件:在试验中不可能出现的事情,记为Ф。

必然事件样本点样本空间包含关系相等关系事件的和记为A ∪事件的积事件的差互斥事件对立事件=⋂B A (1(2(3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C)A(B ∪C)=(A∩B)∪(A∩C)=AB ∪AC(4)对偶律(摩根律):B A B A ⋂=⋃B A B A ⋃=⋂第二节事件的概率概率的公理化体系:(1)非负性:P(A)≥0;(2)规范性:P(Ω)=1(3)可数可加性: ⋃⋃⋃⋃n A A A 21两两不相容时概率的性质:(1)P(Φ)=0(2)有限可加性:n A A A ⋃⋃⋃ 21两两不相容时当AB=Φ时P(A ∪B)=P(A)+P(B)(3))(1)(A P A P -=(4)P(A -B)=P(A)-P(AB)(5)P (A ∪B )=P(A)+P(B)-P(AB)第三节古典概率模型1、设试验E 是古典概型,其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A的概率为2落在区域把μ. ,,则称A 、总结:1.3.第二章一维随机变量及其分布第二节分布函数分布函数:设X 是一个随机变量,x 为一个任意实数,称函数}{)(x X P x F ≤=为X 的分布函数。

如果将X 看作数轴上随机点的坐标,那么分布函数F(x)的值就表示X 落在区间],(x -∞内的概率 分布函数的性质:(1)单调不减;(2)右连续;(3)1)(,0)(=+∞=-∞F F第三节离散型随机变量离散型随机变量的分布律:设k x (k=1,2,…)是离散型随机变量X 所取的一切可能值,称k k p x X P ==}{为离散型随机变量X 的分布律,也称概率分布.当离散性随机变量取值有限且概率的规律不明显时,常用表格形式表示分布律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章概率论的基本概念
一、重点、难点概要复述
随机事件的定义及事件间的关系;概率的定义及性质;常见的三大概率模型:古典概型,几何概型,贝努利概型;条件概率与三大公式:乘法公式,全概公式,贝叶斯公式;事件的独立性。

1.设事件表示“甲产品畅销,乙产品滞销”,则表示_________________.
2.设为事件,则都发生可表示为___________________;发生但与不发生可表示为_______________;中不多于一个发生可表示为
________________.
3.设为随机事件,则。

A.B.
C.D.
4. 设为随机事件,则。

A. B. C. D.
5.设事件满足,则 _______.
6.将20本书随机放入书架,则指定的某3本书挨在一起的概率是
____________.
7.向半径为的圆内随机抛一质点,则质点落入圆内接正方形区域的概率为__________.
8.将一枚骰子连续抛掷100次,则事件“出现1点或6点”至少发生2次的概率为_______.
9. 一批灯泡共100只,其中10只为次品。

做不放回抽取,每次取1只,则第3 次才取到正品的概率为___________.
10. 三个箱子,第一个箱子有4个黑球、1个白球,第二个箱子有3个黑球、3个白球,第三个箱子有3个黑球、5个白球。

现随机地取一个箱子,再从这个箱子中任取一个球,则这个球为白球的概率为
___________。

若已知取得的球为白球,则此球属于第二个箱子的概率
为__________.
二、常见问题及解法
(一) 随机事件的表示:
1.随机事件的表示:设为随机事件,则
i)同时发生可表示为;
ii)至少有一个发生可表示为;
iii)发生但不发生可表示为
(二)随机事件概率的求法
1.利用加法公式:
2. 应用乘法公式:,其中.
,其中。

注:若,则由乘法公式可得
从而,也即与可以相互转换。

又因

故,可相互转换。

3. 在古典概型中求事件的概率:
4. 在几何概型中求事件概率:
5. 在贝努利概型中求事件的概率:在重貝努利试验中,事件每次发生的
概率为,则事件 恰发生次的概率为:,。

6. 利用全概公式与逆概公式求概率:设是完备事件组,,是任一个事
件,则
(i)全概公式:
(ii)逆概公式:,其中。

(三)事件独立性的判断
1. 根据实际问题直观判断
2. 根据定义来判断或证明:事件相互独立当且仅当。

三、拓展练习
1.设事件满足求
2.设事件满足,已知,求。

3.设事件满足,,,
求至少有一个发生的概率为。

4. 设事件满足 则有
(A) (B)
(C) (D)
5. 设事件满足则
(A) (B)
(C) (D)不相互独立
6. 袋中装有5只白球、6只黑球。

从中任取2球。


(1)取出的2球恰有1白1黑的概率;
(2)取出的2球至少有1黑球的概率。

7. 某人向目标连续射击6次,每次击中目标的概率为。


(1)第1次、第2次、第5次击中目标的概率;
(2)恰有3次击中目标的概率;
(3)至少有1次击中目标的概率。

8.向区间[0,1]内连续两次抛掷同一颗钢珠,求两次落地点之间的距离的概率。

9.已知袋中装有同型号小球8个,其中4个黑球、4个白球。

现每次从袋中任取1球,观其颜色后放回,并再放入2个同型号、同颜色的小球。

则三次都取到黑球的概率是多少?
10.甲乙两套系统共同工作,系统甲和系统乙有效的概率均为0.9,已知甲失灵的条件下,乙失灵的概率为0.2.求
(1)乙失灵的条件下,甲有效的概率;
(2)两个系统至少有一个有效的概率。

11.甲袋中有5只红球、4只白球;已袋中有4只红球、5只白球。

先从甲袋中任取2球放入已袋中,然后再从乙袋中任取1球。

(1)求从乙袋中取出的是白球的概率;
(2)若已知从乙袋中取出的是白球,则从甲袋中取出的是1只白球、1只红球的概率。

12.据以往资料,某厂生产的仪器每台可直接出厂的概率为0.7,需进一步调试的概率为0.3,经调试后产品,出厂的概率为0.8.现该厂共生产了台()仪器(假定各台生产过程相互独立),求
(1)每台机器可出厂的概率;
(2)恰有两件不能出厂的概率;
(3)至少有两件不能出厂的概率。

13. 设为事件,。

若,则为相互独立。

相关文档
最新文档