矩阵论试题

合集下载

矩阵理论 (A-B卷)及答案

矩阵理论  (A-B卷)及答案

矩阵理论矩阵理论 2006-2007 学年第 一 学期末考试试题(A 卷)及答案一、 填空题(共20分,每空2分)1、 在欧氏空间4R 中,与三个向量(1,1,1,1),(1,1,1,1),(2,1,1,3)---都正交的单位向量为:)3,1,0,4(261-±2、 已知122212221A ⎛⎫⎪= ⎪ ⎪⎝⎭, 则12__________;__________;__________;F A A A A ∞====3、 已知三阶方阵A 的初等因子为()()21,1λλ--,则A 的约当标准形为:⎪⎪⎪⎭⎫⎝⎛1100100014、 已知cos sin ()sin cos t t A x t t ⎛⎫=⎪-⎝⎭,则1()______________;()______________;|()|______________;|()|______________.d dA t A t dt dtd dA t A t dt dt-====.1,0,s i n c o s c o s s i n ,s i n c o s c o s s i n ⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛---t t t t t t t t 二、解答下列各题((共48分,每小题8分)1. 用最小二乘法求解线性方程组121312312312021x x x x x x x x x x +=⎧⎪+=⎪⎨++=⎪⎪+-=-⎩解:⎪⎪⎪⎪⎪⎭⎫⎝⎛-=121111101011A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛-=1021,111021011111b A T,-------------(3’) 所以b A x x x Ax A TT =⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=312311164144321-----------------------(7’)求得最小二乘解为.64,613,617321-=-==x x x -------------------------------------(8’) 2. 设111111111A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,试计算43()322A A A A E φ=-++。

矩阵引论试题及答案

矩阵引论试题及答案

矩阵引论试题及答案一、选择题(每题5分,共20分)1. 矩阵的元素全部为0的矩阵称为:A. 零矩阵B. 单位矩阵C. 对角矩阵D. 标量矩阵答案:A2. 矩阵的秩是指:A. 矩阵的行数B. 矩阵的列数C. 矩阵中线性无关的行(列)的最大数目D. 矩阵的元素个数答案:C3. 矩阵的转置是指:A. 矩阵的行列互换B. 矩阵的行数变为列数C. 矩阵的列数变为行数D. 矩阵的元素不变答案:A4. 两个矩阵相乘的结果称为:A. 矩阵的和B. 矩阵的差C. 矩阵的积D. 矩阵的逆答案:C二、填空题(每题5分,共20分)1. 如果矩阵A的行列式为0,则称矩阵A为________。

答案:奇异矩阵2. 矩阵A的逆矩阵记作________。

答案:A^(-1)3. 矩阵A与矩阵B相乘,记作________。

答案:AB4. 对于任意矩阵A,矩阵A与单位矩阵相乘的结果仍然是________。

答案:A三、简答题(每题10分,共30分)1. 请简述矩阵的行列式是什么?答案:矩阵的行列式是一个标量值,它提供了关于矩阵的一些重要信息,如矩阵是否可逆(行列式非零则可逆)、线性方程组是否有解等。

2. 矩阵的逆矩阵有什么性质?答案:矩阵的逆矩阵具有以下性质:(A^(-1))^(-1) = A,(AB)^(-1) = B^(-1)A^(-1),以及单位矩阵I的逆矩阵仍然是I。

3. 矩阵的转置矩阵有什么特点?答案:矩阵的转置矩阵具有以下特点:(A^T)^T = A,(AB)^T =B^TA^T,以及矩阵A的转置矩阵的行列式等于矩阵A的行列式。

四、计算题(每题15分,共30分)1. 给定矩阵A = \[\begin{bmatrix} 1 & 2 \\ 3 & 4\end{bmatrix}\],计算A的行列式。

答案:\[ \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = (1)(4) - (2)(3) = 4 - 6 = -2 \]2. 给定矩阵B = \[\begin{bmatrix} 2 & 3 \\ 4 & 5\end{bmatrix}\],计算B的逆矩阵。

矩阵论复习题

矩阵论复习题

矩阵论复习题矩阵论是数学的一个重要分支,在许多领域都有着广泛的应用,如工程、物理、计算机科学等。

以下是一些矩阵论的复习题,希望能帮助大家巩固所学知识。

一、矩阵的基本运算1、已知矩阵 A = 1 2; 3 4,B = 5 6; 7 8,求 A + B,A B,A B。

2、计算矩阵 C = 2 -1; 3 0 的逆矩阵。

3、设矩阵 D = 1 0 0; 0 2 0; 0 0 3,求 D 的行列式。

二、矩阵的秩1、求矩阵 E = 1 2 3; 2 4 6; 3 6 9 的秩。

2、已知矩阵 F 的秩为 2,且 F = a b c; d e f; g h i,其中 a = 1,b= 2,c = 3,d = 2,e = 4,f = 6,求 g,h,i 满足的条件。

三、线性方程组1、求解线性方程组:x + 2y z = 1,2x y + 3z = 2,3x + y 2z= 3。

2、讨论线性方程组:x + y + z = 1,2x + 2y + 2z = 2,3x +3y + 3z = 3 的解的情况。

四、向量空间1、证明向量组 a1 = 1 2 3,a2 = 2 4 6,a3 = 3 6 9 线性相关。

2、已知向量空间 V ={(x, y, z) | x + y + z = 0},求 V 的一组基和维数。

五、特征值与特征向量1、求矩阵 G = 2 1; 1 2 的特征值和特征向量。

2、已知矩阵 H 的特征值为 1,2,3,对应的特征向量分别为 p1 =1 0,p2 = 0 1,p3 = 1 1,求矩阵 H。

六、相似矩阵1、判定矩阵 I = 1 2; 0 3 和矩阵 J = 3 0; 0 1 是否相似。

2、若矩阵 K 和矩阵 L 相似,且矩阵 K 的特征值为 2,3,矩阵 L 的特征值为 4,5,求矩阵 K 和矩阵 L 之间的相似变换矩阵。

七、矩阵的分解1、对矩阵 M = 4 2; 2 1 进行 LU 分解。

2、把矩阵 N = 1 2 3; 2 4 6; 3 6 9 分解为 QR 分解。

矩阵论自测题答案完整版

矩阵论自测题答案完整版

自测题一一、解: 因为齐次方程0211211=++x x x 的基础解系为T T T )1,0,0,0(,)0,1,0,1(,)0,0,1,1(321=-=-=ααα,所以V 的一组基为⎥⎦⎤⎢⎣⎡-=00111A ,⎥⎦⎤⎢⎣⎡-=01012A ,⎥⎦⎤⎢⎣⎡=10003A ,显然A 1,A 2,A 3线性无关.V a a a a A ∈⎥⎦⎤⎢⎣⎡=∀22211211,有211211a a a --=,于是有 322221112A a A a A a A ++=,即A 可由A 1,A 2,A 3线性表示,故A 1,A 2,A 3为V 的一组基;且dimV=3.二、解: (1)R V X X ∈∈∀λ,.21,有21212122112211(2211)(X X X X X X ⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+⎥⎦⎤⎢⎣⎡=+)=+)(1X )(2X,λλλλ=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=11122112211)(X XX )(1X .又因任意两个二阶方阵的乘积、和仍为二阶方阵,故V V '=,即为从V 到V (自身)的线性算子,所以为线性变换.(2)先求的自然基22211211,,,E E E E 下的矩阵A :2221121111020020100012211)(E E E E E +++=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=2221121112200)(E E E E E +++=2221121121020)(E E E E E +++=2221121122200)(E E E E E +++=故 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2020020210100101A . 显然, 从自然基到所给基4321,,,E E E E 的过渡过阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000110011101111C ;⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=-10001100011000111C , 所以在4321,,,E E E E 下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==-40200202231201011AC C B .三、解: (1)不是内积. 因为)(,A A tr A A +=)(2)(22211a a A tr +==并不一定大于零.(2)因为 1),(10==⎰dt te g f t ,⎰===1021231)(),(dt t f f f ,⎰-===1212212)21()(),(e dt e g g g t,g f g f ⋅≤),( ,即 212)21(311-⋅≤e .四、解: (1)2)2)(1(--=-λλλA I ,2,1321===λλλ.行列式因子:1,1,)2)(1(1223==--=D D D λλ ; 不变因子:2321)2)(1()(,1)()(--===λλλλλd d d ; 初等因子:2)2(),1(--λλ .(2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=2121~21J JJ A ; (3)对T X A I )1,1,0(0)(,1111==-=ξλ得;T X A I )1,0,1(0)2(,2222==-=ξλ得.再求22=λ的一个广义特征向量: 由23)2(X X A I -=- 得 T )1,1,1(3=ξ .取 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-111110111,1111011101P P ,:,)(则令SinA A f =[][]⎥⎦⎤⎢⎣⎡===2sin 02cos 2sin )(,1sin )()(22111λλλJ f f J f , 故 12211)])([)],([(s i n -⋅=P J f J f P d i a g A λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1111101112s i n 2c o s 2s i n 1s i n 111101110⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+----+=2c o s 1s i n 1s i n 2c o s 1s i n 2c o s 2s i n 2s i n 1s i n 1s i n 2s i n 1s i n 2s i n 2c o s 2c o s 2s i n 2c o s .五、解: (1)130143014,83,3014max max 31<=⎭⎬⎫⎩⎨⎧==∑=∞j ij ia A , 故 0lim =∞→k k A ;(2)∑∞=0k k x 的收敛半径为1,而1<∞A 若在其收敛域内,故∑∞=0k kA绝对收敛,且∑∞=--=01)(k k A I A .六、解:(1) 6,5,15,511====∞∞m m A A A A ;又因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-322232223511A ,571=∞-A . 所以 7557)(1=⨯==∞∞-∞A A A c o n d ;1,5,)1)(5(3212-===+-=-λλλλλλA I .故 5l i m )(==i iA λρ. (2)因为031221,0121≠-==∆≠=∆,故可分解. (3) -+-r B B B ,,均可取1-B .七、证: 设T n T n y y y Y x x x X ),,,(,),,,(2121 ==分别为在两组基下的坐标,则CY X =,当Y X =时有:θ=-X C I )(,则0=-C I ,故C 有特征值1.反之,由于1是过渡过阵C 的一个特征值,设其对应的特征向量为X ,即X CX ⋅=1,由坐标变换公式知,在基1β,2β,n β, 下的坐标CX Y =,故有X Y =.八、证: A 对称正定,∴存在正交矩阵C ,使D diag AC C n T ==),,,(21λλλ其中特征值)n i i ,,2,1(0 =>λ.对θ≠∀X ,有CX Y =,使DY Y y y y AX X T n n T =+++=2222211λλλ ,其中θ≠y .令n nn z y z y z y λλλ1,,1,1222111===.于是θλλλ≠=⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=Z BZ Z Y n ,11121故Z Z Z DB B Z DY Y T T T T ==)(. 而)(P B C PZ BZ C Y C X T T T ====令,所以Z Z Z AP P Z AX X DY Y T T T T T ===)(.因Z 的任意性,知I AP P T =,即A 与I 相合.自测题二一、解: I a A a I A I A k k k k k k λλλ===,,,I a a a A a A a A a I a n n k n )(102210λλ+++=++++∀ , 其中R a a a n n ∈+++λλ 10,故取V 的基为I ,1dim =V .二、解:(1)从基2,,1x x 到基22,,1x x x x ++的过渡矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110011001C ,所以在新基下的坐标为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--0111011C .(2)不是线性变换.因为≠++++++=+),,2()(33221121111b a b a b a b b a a βα+)(α)(β.(3)不是内积. 如0341212121<-=-==),),(,(),,(α,不具有非负性.三、解:(1)利用Schmidt 正交化方法,得T e )1,1,1(1=,T e )1,0,1(2-=,T e )61,31,61(3-=.(2)从321,,ααα到321,,e e e 的过渡阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=610021103421C , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-6003102211C ,故所求⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--==-00000034211AC C B .四、解:(1)由于A 实对称,所以存在正交阵Q ,使⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=∧=n AQ Q T21. 故2)1+=∧==n n AQ Q A F F T F (;n A =)('ρ;n A =2;n A cond =2)(;1)(21=-mA .(2)取⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000000111 A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=111 α ,得n a A n A ===212,1,α,即有212ααA A >.五、解: (1)3)1(201335212+=+-+---=-λλλλλA I ;1321-===λλλ. 33)1()(+=λλD ,所以,不变因子为3321)1()(,1)()(+===λλλλd d d ;初等因子为3)1(+λ. 故A 的Jordan标准形⎪⎪⎪⎭⎫ ⎝⎛=100110011J .(2)cos A 的Jordan标准形为:J =⎪⎪⎪⎪⎪⎭⎫⎝⎛------)1cos(00)1sin()1cos(0)1cos(21)1sin()1cos(.六、证:(1)因173.01<=A ;故;0lim =∞→kk A(2)因A 有范数小于1,故∑∞=0k k A 绝对收敛;且其和的形式为1)(--A I .七、解:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--=00032103101~230121121A ;取⎪⎪⎪⎭⎫⎝⎛--=302121B ,⎪⎪⎪⎪⎭⎫⎝⎛=32103101C ; 则有BC A =(最大秩分解);1)()(12==λλD DT T B B B B 1)(-+=, 1)(-+=T T CC C C ,则 +++=B C A ,所以, 方程b AX =的极小范数最小二乘解为b A X +=.八、证:(1)因为 A C A AC C A n T 2)1(,=-=-所以,则有,0)1(2>-=n C n必为偶数.(2)设T n x x x X X AX ],,,[,21 ==λ的分量中绝对值最大者为kx ,则X AX λ=的第k 个方程∑==nj jkj k x a x 1λ;∑∑==≤=nj jkjnj j kj k x a x a x 11λ;∑∑==<≤≤nj nj kj kj kja x x a 111λ,故有1<λ.自测题三一、 解:(1)不是. 设B B A A T T -==,,则)(T T B A B A -=+=T T B A B A )()(+≠-(一般情况下), 又)()(B A B A B A T +-≠-=+(一般情况下),即V B A ∈+.(2)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++=+++∀001)(111010 n n n n d a d a a D a D a I a⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++100)(10 n n n n d a d a a , 故得一组基为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100,,001 ,且n V =dim .二、解: (1)123)(22++=x x x,12)(+=x x, 43)1(+=x,在基1,,2x x 下的矩阵为:⎪⎪⎪⎭⎫⎝⎛=411322003A .(2))5)(1)(3(41132203---=-------=-λλλλλλλA I ,可见矩阵A 有三个不同的单根1,3,5,故 A 可以对角化,即可以对角化.(3)设度量矩阵33)(⨯=ij C C ,则⎰⎰====1010213124114151C dx x C dx x C , ⎰⎰=====1102223121331,31dx x C C dx x C ,⎰⎰=====10331032231,21dx C xdx C C . 故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=12131213141314151C .三、解:设3322113)(ααααx x x ++=,使得)(1α,)(2α,)(3α是标准正交的.∵)(1α,)(2α已标准正交化,∴()(1α,)(2α)=()(2α,)(3α)=0,)(3α=1,即得⎪⎩⎪⎨⎧=++=+-=-+1022022232221321321x x x x x x x x x ;解得:32,32,31321==-=x x x ; 即()().22313213αααα++-=.因为)(1α,)(2α,)(3α为标准正交基,且把标准正交基变为标准正交基,故为正交变换, 它在基321,,ααα下的矩阵表示为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=32321323132313232A .四、解: 由自测题一中第四题(2)知A 的Jordan 标准形为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2121J ,相似变换矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111101110T . 由T )321321,,(),,(αααβββ=,求得3V 的一组基为3213312321,,αααβααβααβ++=+=+=,则在该基下的矩阵为J .五、证: 当0=X 时,000===F F X α;当θ≠X 时,0≠T X α ; 从而0>=FTX X α. ,C k ∈∀ FT FTX k kx kX αα()(===X k X k FT=α,FTFTFTT FTY X Y X Y X Y X ααααα+≤+=+=+)(=Y X +,因此 , X 是向量范数. 又因为FTT FTA X AX AX )()(αα==X AA X FFTFT=≤α,因此 , F A 与X 相容.六、解:)6(2-=-λλλA I ,特征根为0,6321===λλλ;则6)(=A ρ.由于A A 62=,故A 可以对角化, 即存在可逆矩阵C ,使1006-⎪⎪⎪⎭⎫ ⎝⎛=C C A ;1001)(-⎪⎪⎪⎭⎫ ⎝⎛=C C A Aρ. 故得.61001001lim )(lim 11A C C C C A A kk kk =⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛--∞→∞→ρ七、证: ⇒设1)(<A ρ,取0)](1[21>-=A ρε,对于矩阵A ,存在矩阵范数⋅,使121)()(<+=+≤A e A A ερ . 1)(<≤⇐A A ρ 便得证.八、证:(1) 1-====AB B A B A B A T T , 同理,有1-==T T T B A AB .(2) B A B A B A B A B A T T +=+=+--)(11=AB ()AB B A T -=+, 得2即有,0=+B A 0=+B A .自测题四一、 解:(1)21111011201010011)(E E E E E T +=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=,21222011200110101)(E E E E E T+=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=,33332200010001000)(E E E E T=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=+=, 所以在E 1,E 2,E 3下的矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A . (2) 设有一组基321,,e e e ,从E 1 ,E 2 ,E 3到e 1 ,e 2 ,e 3的过渡矩阵设为C ,即C E E E e e e ),,(),,(321321=再设A 在e 1 ,e 2 ,e 3下的矩阵为B , 则 AC C B 1-=.要使B 为对角阵,即找一个可逆矩阵C ,使AC C 1-为对角阵. 因为2)2(211011-=-----=-λλλλλλA I ,对0=λ,求得特征向量()T 0,1,1-,对λ=2,求得两个线性无关的特征向量()T 0,1,1,T )1,0,0(.令⎪⎪⎪⎭⎫ ⎝⎛-=100011011C ,得 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-10002121021211C ,则AC C B 1-=为对角阵. 由()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100011011,,,,321321E E E e e e ,可得⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+-=011001010011211E E e⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡-=+=011201010011212E E e ⎥⎦⎤⎢⎣⎡==100033E e .二、证: 易得()()()122111,,,1,αααααα==0=,()()()()()(),1,,0,,,1,,0,,332332221331======αααααααααααα即11)(α=e ,22)(α=e ,33)(α=e 也是标准正交基,故是正交变换.三、解:(1)令T Y )0,,0,,(21 ηξ=,由Y HX = ,知X HX Y ==; 取 Y X YX Y X X Y X X --=--=0η ; Y YY 10=,构造初等反射矩阵 T I H ηη2-= ,则有Y Y X HX ==0.(2))3)(5(16)1(12812--=--=--=-λλλλλλA I . 因此 3,521==λλ ,所以5m ax )(==i iA λρ;因为65)(<=A ρ,故矩阵幂级数收敛.四、解: 由正交矩阵行(列)向量组标准正交,得12122=+⎪⎭⎫⎝⎛a12122=+⎪⎭⎫ ⎝⎛b 02=+bc a四组解是:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===212121c b a , ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-==212121c b a , ⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=212121c b a , ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=-=212121c b a .五、解: (1){}∑====31162,4,6m ax m axi ijja A ;{}∑=∞===3153,4,5m ax m ax j ij ia A;{}9max =⋅=∞ij m a n A.因为 ()()221--=-λλλA I,2,1321===λλλ , 故2m ax )(==i iA λρ.(2) 031≠=∆,0521132≠==∆ ,故可以进行LU 分解 .(3)易得2)(,3)(==B R A R ,所以6)(=⊗B A R ,B 的特征根为2,121==μμ ,故B A ⊗的特征根为4,2,4,2,2,1231322122111======μλμλμλμλμλμλ.2)(B A ⊗的特征根为:1,4,4,16,4,16.(4)∵02≠=B ∴B 可逆,且⎥⎦⎤⎢⎣⎡-=-1032211B ,所以-+-r B B B ,,均可取为:⎥⎦⎤⎢⎣⎡-=-1032211B . (5)A 的Jordan标准形为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2121J . (6)对应于11=λ的特征向量T )11,0(, ,对应于22=λ的线性无关的特征向量只有一个T )1,0,1(,再求一个广义特征向量T )1,1,1(. 令TT ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111101110,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-1111101111T .令 AA f 1)(= , 则1))((11=λJ f ;⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=214121)((22λJ f . 12211))(),(()(-⋅⋅=T J J diay T A f λλ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111110111210041210001111101110⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=53322211141.六、解:(1)由X AX λ=,即0)(=-X I A λ,若λ不是A 的特征根,则0≠-I A λ,所以0)(=-X I A λ只有零解,故0dim =λV .若λ是A 的特征根,则0=-IA λ,所以0)(=-X I A λ有非零解.设r I A R =-)(λ,则r n V -=λdim .(2) 设T I A ωω2-= 其中ω为单位向量1=ωωT .则)2)(2(2T T I I A ωωωω--=T T T T w I ωωωωωωωω422+--=I I T T =+-=ωωωω44.七、 证:(1)设()由于二,0≠∈m R X 次型()()0≥==AX AX AX A X BX X T T T T , 所以B 为半正定矩阵.(2)当A 的列向量组线性无关时,若X ≠0,则AX ≠0, 故())(AX AX BX X T T =>0 ,即A 为正定矩阵.八、证:(1)λ为非奇异,λ为A 的特征值,故λ≠0 , 而λ1为1-A 的特征值,据特征值上界原理, 有11-≤A λ,即11-≥Aλ. (2) 对0≠∀X ,由已知有BXA X XB A A 11)(--+=+BXA X 1--≥XB A X 1--≥XB A )1(1--=由已知11-<AB , 即 11<-A B ,故知0≠∀X , 0)1()(11>-≥+--X B A X B A A ;即对0≠∀X , 有0)(1≠+-X B A A ,即0)(1=+-X B A A 无非零解.故0)(11≠+=+--B A A B A A , 从而0≠+B A ,即A +B 可逆.自测题五一、 解:(1) 在V 1中,⎪⎪⎭⎫⎝⎛+-=⎪⎪⎭⎫ ⎝⎛=4324324321x x x x x x x xx x A ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=100101010011432x x x . 令⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛=1001,0101,0011321E E E , 因321,,E E E 线性无关,由定义知,它们是1V 的基,且3dim 1=V .(2)[]212,BB L V = 因为21,B B 线性无关; 2dim 2=V .),,,,(2132121B B E E E L V V =+在22⨯R 的标准基下,将21321,,,,B B E E E 对应的坐标向量21321,,,,ββααα排成矩阵, 并做初等变换⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛--=10000031000111001111~13100020102000101111),,,,(21321ββααα, 可见 4)dim(21=+V V .由维数定理145)dim (dim dim )dim (212121=-=+-+=V V V V V V .二、解:(1) 因为,过渡阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111111C ,且⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-111111C ,所以α在α1,α2,α3下的坐标为=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-3211a a a C ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--23121a a a a a .(2)设,21λλV V X ∈则有()X X A 1λ=与()X X A 2λ=,两式相减得()021=-X λλ,由于21λλ≠,所在地只有X=0,故[]0dim 21=λλV V .三、解:取[]3X P 中的简单基,,,,132x x x 由于)1(=,12x -,)(3x x x -=221)(x x +=, 33)(x x x +-= ,则在1,x ,32,x x 下的矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1010010110100101A . A 的特征值为:2,04321====λλλλ , 相应的特征向量为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1010,0101,1010,0101. 令 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=2200,1010010110100101C , 则Λ=-AC C 1. 再由()()C x x x f f f f 324321,,,1,,,= , 求得[]3x P 中另一组基:()34233221)(,1)()(,1x x x f x x f x x x f x x f -=-=+=+=,.四、解: (1) ⎰⎰⎪⎪⎭⎫⎝⎛=-1101dt dt de Adt e AtAt)(1I e A A -=-.(2)当j i ≠时0)(=j i εε;故度量矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=n A 21.五、解: (1),9,1,3,3121====∞m T XX XX X3,4,3===∞∞XX XX XX T m T FT .(2))1()(23+=λλλD ,易得1)()(12==λλD D . ∴ 不变因子)1()(,1)()(2321+===λλλλλd d d ;初等因子)1(,2+λλ.A 的Jordan标准形为:⎪⎪⎪⎭⎫ ⎝⎛-=100000010J .六、解: (1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000001101101112101101011行变换A ,令⎥⎦⎤⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=01101101,211011C B , 则 A=BC . 其中B 为列最大秩矩阵, C 为行最大秩矩阵 .(2) ⎥⎦⎤⎢⎣⎡--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==--+121033312111016332)(11TT B B B B ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎪⎪⎭⎫⎝⎛-==--+1221311251211301111001)(11T T CC C C , 所以 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-==+++14527533014515112103312213112151B C A .(3) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==+10111501515151413145275330145151b A X .七、证明提示:类似习题4.1第16题(1)的证明.八、证明:AC A B A ++=⇒因为两边左乘矩阵A ,有C A AA B A AA )()(++=,故 AB=AC .AC AB =⇐因为,设+A 为A 的加号定则,两边左乘+A ,有AC A AB A ++=.自测题六一、解:(1) 当V x x x x X ∈⎪⎭⎫⎝⎛=22211211时,由02112=+x x 得⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=011010000001212211X X X X .取 ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=0110,1000,0001321E E E , 因线性无关,则它们是V的一个基.(2)⎪⎪⎭⎫⎝⎛-=-=0110)(111B E E B E T T ;⎪⎪⎭⎫ ⎝⎛=-=0000)(222B E E B E TT ;⎪⎪⎭⎫ ⎝⎛-=-=0220)(333B E E B E TT ;故在基321,,E E E 下的矩阵为:⎪⎪⎪⎭⎫⎝⎛-=201000000A .(3)将A 对角化,取⎪⎪⎪⎭⎫⎝⎛=110001020C 使 ⎪⎪⎪⎭⎫ ⎝⎛=-2001AC C ;设所求基为321,,Y Y Y ,有:()()C E E E Y Y Y 321321,,,,=.得⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛=0110,0112,1000321Y Y Y,则在基321,,Y Y Y 下的矩阵为对角形.二、解: (1) )1(4963752542-=---+---=-λλλλλλA I,A 的特征根 1,0321===λλλ;行列式因子 )1()(23-=λλλD ,易得 1)()(12==λλD D ;不变因子 )1()(1)()(2321-===λλλλλd d d ;初等因子1,2-λλ.(2) A 的Jordan 标准形为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100000010J ;(3) ∵ 01621511,0121≠-=--=∆≠-=∆;∴ A 能进行LU 分解.三、解:(1).13214,1010,00022322122⎥⎦⎤⎢⎣⎡+=⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=-t t t dt dA t dt dA dt A d .(2)⎥⎦⎤⎢⎣⎡=00032121312x x dX df .四、解:(1) 由)(21I B A +=,得I A A I A B I A B +-=-=-=44)2(,2222,显然, 当且仅当I B =2时,有A A =2.(2) 因B A B BA AB A B BA AB A B A +=+++=+++=+222)(,得,0=+BA AB 即 ,BA AB -=两端右乘B 得 BAB AB -=2, 从而 AB B AB )(-=,由于幂等阵B 的任意性,故0=AB .五、解: (1)∵ m x x x 21两两正交的单位向量.∴)(21m x x x A =为列满秩矩阵,故T T T A A A A A ==-+1)(.(2)∵⎪⎭⎫ ⎝⎛=101k A k ,且∑∞=-12)1(k k k与∑∞=-1)1(k kk 都收敛;∴ ∑∞=-12)1(k kk A k 收敛.(3)∵ 762+-=-λλλA I,而)2()52)(76(37291912222234++++-=+-+-λλλλλλλλ;由于0762=+-I A A ;∴原式⎪⎭⎫⎝⎛-=+=-3217231)2(1I A . (4)∵ A 的特征根为n)2,1(,,i i =;B 的特征根为m )21(,,,j j =λ;∴B A ⊗的特征根为j i λ n;2,1(,,i =m)21,,,j =.六、证: (1) 当0=A 时,设A 的最大秩分解为A=BC.则 C B C B B C B C B A A D ~=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛= . 而[]()H HHH B BB B B B B 1~-+⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛=()[][]++-==B B B BB B H HH21211.[]++++++⋅==B B C B C D 21~[]++=A A 21.当A =0时上式也成立.(2) 经计算A a a a A )(2321213++-= . 于是A A a a a AXA =++-=-31232221)(,A a a a X 1232221)(-++-=是A 的一个减号逆.(3)()I e e e e e e A A A A AT A TA A T ===-=-,..,所以因为.故 A e 为正交矩阵.七、证:(1) 设 R V n ∈∀∈μλβα,,,,,则00),()(ααμβλαμβλαμβλα+++=+k)),(()),((0000ααββμααααλk k +++==λ)(α+μ)(β.所以是线性变换.(2)是正交变换),(),(αααα=⇔T T ,即 ),(),(),(),(2),(0020220αααααααααα=++k k , 得[]0),(2),(0020=+ααααk k .由n V ∈α的任意性,上式等价于0),(20=+ααk ,所以 22200212),(2n k +++=-= αα .八、证: 由舒尔定理知,存在西矩阵U 及上三角矩阵()ij r R =,使得R AU U H =,因此有H H H R U A U =,从而得H H H RR U AA U =.又因为()()()H H H H RR tr U AA U tr AA tr ==, ①由于R 主对角线上的元素都是A 的特征值,故由①式得2112121ij nj ni ij ni i ni r r ∑∑∑∑====≤=λ, ②而②式端是R 的Frobenius 范数的平方,又因在酉相似(即R AU U H =)下矩阵的F 范数不变,所以211211ij ni ni ijni n i a r ∑∑∑∑===== ③综合②、③两式便得到所需证的不等式.又不等式②取等号当用仅当i≠j 时都有0=ij r ,即A 酉相似于能角形矩阵,也就是A 为正规矩阵.自测题七一、 解:(1)由02421=-+a a a ,得基础解系)0,0,1,2(1-=α,)0,1,0,0(2=α,)1,0,0,1(3=α;所以V 1的一组基为321,,ααα,且3dim 1=V .因为),(),,(2132121ββαααL L V V +=+),,,,(21321ββαααL =,易知1321,,,βααα是21321,,,,ββααα的一个极大无关组,故4)dim (21=+V V ,21V V +的一组基为1321,,,βααα.(2)251433221121,ββξαααξξk k k k k V V +=++=⇔∈∀ .所以 025********=--++ββαααk k k k k . 解此方程组得),,133,2,2(),,,,(54321---=k k k k k . 所以21V V 的一组基为)3,2,21---=,(ξ,且1)dim (21=V V .二、解:(1)211111)(cE aE E +=221212)(cE aE E +=211121)(dE bE E +=221222)(dE bE E +=即⎪⎪⎪⎪⎪⎭⎫⎝⎛=d cd c b a b a E E E E E E E E 00000000),,,(),,,(2221121122211211, 故A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡d cd c b a b a00000000 ; (2) 由,B A AB +=得到 I I B A AB B A AB =+--=--,0 ,即I I B I A =--))((, 显然I A -与I B - 均为阶可逆方阵,于是有II A I B =--))((,即 I I B A BA =+--,亦即0=--B A BA , 故B A BA +=,从而 AB BA =.三、解: (1))2()1(232011012λλλλλλ--=---=-E A,)2()1()(23λλλ--=D ,1)(2=λD , 1)(1=λD .)2()1()()()(,1)()()(,1)(22331221λλλλλλλλλ--=====D D d D D d d ,所以初等因子为:λλ--2,)1(2.A 的Jordan 标准形为⎪⎪⎪⎭⎫ ⎝⎛200010011. (2)()n I A tr dAd=. (3)两边求导数,利用,At AtAe e dtd = 且,0Ie = 得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=133131113A .四、解:(1)∑==iij ja A 5m ax 1;∑==∞jij ia A 5m ax .(2)122212221---------=-λλλλA I )5()1(2-+=λλ ,5,1321=-==λλλ;故 5m ax )(==i iA λρ;⎪⎪⎭⎫ ⎝⎛--=-3122411B ,故∞-∞∞⋅=1)(B BB cond 54145=⨯⨯=. (3) 2,3==rankB rankA ;623)(=⨯=⊗B A rank .)4)(1(26521232--=-+-=----=-λλλλλλλB I ,所以4,121==λλ,故 B A ⊗的特征值为:20,4,4,5,1,1'6'5'4'3'2'1=-=-==-=-=λλλλλλ(4) ∵0≠A ,1-A 存在,∴ ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡===--+-3222322235112221222111A A A .五、解:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=000032102101~321043211111A , BC A =⎥⎦⎤⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=32102101102111. (2)∵ 2=rankA ;2):(=b A rank ;∴ b AX =相容.(3)∵⎪⎪⎪⎭⎫ ⎝⎛=142062*********T AA ;⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---==--211030010502152011070)(T T m AA A A , ∴ 极小范数解⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==-1234101b A X m.六、解:(1)0max≠=x P A 2121022maxmax--≠≠===PAP yy PAP PXPAX XAX x x PP .(2)A 的4个盖尔圆为它们构成的两个连通部分为11G S =, G G G S 322=4.易见,1S 与S 2都关于实轴对称.由于实矩阵的复特征值必成共轭出现,所以S 1中含A 的一个实特征值,而S 2中至少含A 的一个实特征值.因此A 至少有两个实特征值.七.证:(1)设为正交变换,λ为的特征值 , 则有()0()≠=αλαα,),(αα=()(α,)(α)),(),(2ααλλαλα==.∵),(>αα, ∴12=λ,故 1±=λ ;(2)设λ为的任一特征根,α为的属于λ的一个特征向量,即0,)(≠=αλαα,则1,11)(2,1222-=⇒=⇒==λλααλα.记11=λ的特征子空间为,1V 12-=λ的特征子空间为1-V .对V ∈∀α有=α(+α)(α) 2 + (-α)(α) 2 ,而 (+α)(α) 2∈,1V (-α)(α) 2 ∈1-V ,所以 11-+=V V V. 又⇒∈∀-11V V α,)(αα=且,)(αα-=;{}{}{}{},28,36,24,14321≤-=≤-=≤-=≤=g g G g g G g g G g g G得 αα-= ,即0=α,故11-⊕=V V V .自测题八一、解:(1)在已知基)(),(),(321t f t f t f 下的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛------=111323221A ;(2) (⎪⎪⎪⎭⎫ ⎝⎛=321),,1())(2t t t f ;基2,,1t t 且到基)(),(),(321t f t f t f 的过渡矩阵为:⎪⎪⎪⎭⎫ ⎝⎛=101110102C ;则21321234321))(),(,)(())((t t C t f t f t f t f -+-=⎪⎪⎪⎭⎫ ⎝⎛=-.(3) 设度量矩阵33)(⨯=ij d D , 则⎰⎰=====11021121121,11tdt d d dt d ; ⎰⎰=====1012222311331,31dt t d dt t d d ; ⎰⎰=====1014333322351,41dt t d dt t d d ; 故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=51413141312131211D .二、解:(1) 令 矩阵,3)(I A A f -= 若A 的特征值为λ,则)(A f 的特征值是3)(-=λλf ,故)(A f n 的个特征值为32)2(,,3)6(,1)4(,1)2(-===-=n n f f f f .从而 ))32(531(3)(-⋅⋅-=-=n I A A f .(2) 2)1)(2(224023638--=+-+---=-λλλλλλA I ;特征根为1,2321===λλλ.行列式因子:23)1)(2()(--=λλλD ,1)()(12==λλD D ; 不变因子:2321)1)(2()(;1)()(--===λλλλλd d d ;初等因子: 2)1(),2(--λλ; 故A 的Jordan 标准形为⎪⎪⎪⎭⎫ ⎝⎛=100110002J .三、解:(1)由于A 实对称,所以易求得非奇异矩阵P ,使Λ=-AP P 1, 其中⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=2200,1001011001101001P ,于是12211-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=P e e P e t t At=12111000011--⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡P P e P P t =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+-+--+-+t t ttttt te ee e e e e e 2222222210101100110100121. (2) X ()()Tt t At e e X e t ⎪⎪⎭⎫ ⎝⎛-==22,0,0,0.四、解:(1)6=∞A ;2)4)(2(224)4(31213232-+=--=--=-λλλλλλλλλA I ; 特征根为4,2321==-=λλλ;则 4)(=A ρ.(2)2)3(,3)(==R A R∴ 6)(=⊗B A R ;B 的特征根3,421==μμ,∴ B A ⊗的全部特征根为:-8,-6,16,16,12,12. (3)∵⎪⎪⎪⎪⎭⎫ ⎝⎛-=-310125411B ,∴+-B B l ,可取1-B .五、解:α1()T 4,0,3=,构造⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=3040504035113R ,113140430735A A R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=. 同理,构造R A R R =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=5135165735,3404300055112323.令 ()==TR R Q 2313⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---012202015012161551, 则 A=QR.六、证:(1)∵ A 为对称正定矩阵, ∴≠∀α有:>Aα,当且仅当0≠α时,有0=Aα;对R R ∈∀有:A T AkAk k αααα==;βββαααβαβαβαA A A T T T A++=++=+),(2)()(AAAAβαβα+=+≤2)(, (2)∵ IAA AA AA A A T T T T ==--11))(())((;∴1)(-T T AA A 是A 的右逆.(3)因为1-=A ,且A 为正交矩阵,所以有T T T A I A A I A A AA A I )()(+=+=+=+,则 AI A I A A I T +-=+=+)(,即 0=+A I .故A 一定有特征根-1.七、证: ()(),1111A a a A I f n n n n -++++=-=--λλλλλ 因为 由()0=A f 得()01111=-++++--I A A a A a A nn n n ,即A ()()I A I a A a A n n n n 112111+----=+++ ,故 ()()I a A a AAA n n n 12111111--++-+++-= .自测题九一、解: 不是. 如取α=(1,2),β=(3,4),()().,4,3,2,1αββααββα⊕≠⊕=⊕=⊕则有.二、解:(1)令⎥⎦⎤⎢⎣⎡--=1111A ,则V X AX X ∈=,)(.VY X ∈∀,,P k ∈∀,则=+=+)()(Y X A YX )(X +)(Y ,kkX =)()(X ,所以是线性变换. (2)⎥⎦⎤⎢⎣⎡-==0101)(1111AE E ,⎥⎦⎤⎢⎣⎡-==1010)(1212AE E ,⎥⎦⎤⎢⎣⎡-==0101)(2121AE E,⎥⎦⎤⎢⎣⎡-==1010)(2222AE E ,设在基22211211,,,E E E E 下的矩阵为B ,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=1010010110100101B .(3)令),,,(4321ββββ=B 其中i β为B 的列向量,由于 2)(=B rank ,且21,ββ是4321,,,ββββ的一个极大线性无关组, 所以dim2)(=V ,且),()(21B B L V =,其中⎥⎦⎤⎢⎣⎡-==0101),,,(1222112111βE E E E B , ⎥⎦⎤⎢⎣⎡-==1010),,,(2222112112βE E E E B , 且21,B B 为)(V 的一组基,得dimKer =4-dim (V)=2.令⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00004321x x x x B ,得基础解系⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1010,010121ξξ. 记 ⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡==1010),,,(,0101),,,(22221121141222112113ξξE E E E B E E E E B , 则ker),(43B B L =,且43,B B 为Ker的一组基.三、解: 非负性. A=0时,A 0,0,0,0;0,0,0〉=〉≠===A A A A A A bHa bHa 从而时从而.相容性. 设A ,B ∈C n n ⨯,则有()()().B A BBAA AB BAAB AB AB bHabHa bHbHaa bHa ⋅=++≤+≤+=同样可验证齐次性与三角不等式.在此A 是矩阵范数.四、解:(1)FG A ,A =⎥⎦⎤⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-−→−11101101412101000011101101行.(2)⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--==--+303241012120663)(11TTTF F F F F . ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡==--+11111001313003)(11T T T G GG G G . ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--==+++54131473032410361F G A . (3)b b AA b A T =-=++,)1,1,0,1(,故b AX =有解,极小范数解为T b A X )1,1,0,1(0-==+.五、解: (1)因2,3==rankB rankA ,得623)()()(=⨯=⋅=⊗B rank A rank B A rank .令0)2)(7(=+-=-λλλB I ,特征值2,721-==μμ.所以B A ⊗的所有特征值为:4,14,14,2,7,7161514321=-=-=-='='='λλλλλλ;10976)14()2(3232-=-⋅-==⊗B A B A .(2)∵ B 的特征值2,721-==λλ,∴I B B B f 3)(2+-=的特征值453772'1=+-=λ;113)2()2(2'2=+---=λ.六、解: ,11120013221111⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-e ββ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=122212221312,111311111T I H ωωω 令,1102003131⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= A H ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⋅-⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡=-⎥⎦⎤⎢⎣⎡=1101110210,11201221e A ββ ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=-=⎥⎦⎤⎢⎣⎡-=2011,01102,1121122222A H I H Tωωω 所以取QR A R H H Q =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=得211313,21212222131121.七、证:(1)令 ),,(11-=n L W αα ,其中11,,-n αα 线性无关.通过标准正交化,将11,,-n αα 变为W 的一个标准正交基11,,-n ηη .由已知可得1,,2,10,-=>=<n i i ηα;因而11,,-n ηη ,α线性无关.把α单位化,令ααη||1=n ,于是{}n n ηηη--,,,11 与{}n n ηηη,,,11- 均为V 的标准正交基.同时,由题设,1,,2,1,)(-==n i i i ηη,而n n ηη-=)(,则把标准正交基{}n n ηηη,,,11- 变为标准正交基,故为正交变换. (2)因为为正交变换,(n ααα,,,21 )=(n ααα,,,21 )A ,所以A 为正交矩阵.又 A 的所有特征值n λλλ,,,21 都为实数,故有,T T AA I A A ==即A 为实的正规矩阵,从而存在正交矩阵Q ,使得Λ=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321λλλAQ Q T , 则A =()A Q Q Q Q A Q Q Y TTT T =Λ=Λ=Λ,,即A 为实对称矩阵,故A 是对称变换.八、证:(1)设A 的特征根是n λλ,,1 ,令λλ-=1)(f ,则AI A f -=)(的特征根是,1,,11n λλ-- 由题设i λ-1〈1,n i ,,1 =, 故,111 --i λ即20 i λ,因此,,,,1,20n i i =λ进而n n 2||||01<<λλ ,然而n d A λλ 1||==,故n n d 2|,|||01<=<λλ .(2)设A 的三个特征根为321,,λλλ,则32132312123213)()(||)(λλλλλλλλλλλλλλλλλ-+++++-=-=A I f ,由于A 是奇数阶正交方阵,且1||=A ,易证奇数维欧氏空间中的旋转变换一定有特征值1,因此不妨设11=λ,则1||32321===A λλλλλ,于是323231213211λλλλλλλλλλλ++=++=++,从而1||)(23-+-=-=λλλλλt t A I f .其中321λλ++=t 为实数(因32,λλ或均为实数或为一对共轭复数).又由于正交方阵的特征根的模为1.故有22,)(32323232≤+≤-+≤+≤+-λλλλλλλλ,所以31132≤++≤-λλ,即31≤≤-t .由哈密顿-凯莱定理知:023=-+-I tA tA A .自测题十一、解:(1)因为,2=rankA 求得θ=AX 的基础解系()(),9,0,21,2,0,9,24,121T T -=-=ξξ即为V 的一组基,且dimV =2.(2) 设A 为P 上任一n 阶方阵,则)(21T A A +为对称阵,)(21T A A -为反对称阵,且A=)(21T A A ++)(21T A A -,得21V V P n n +=⨯. 又若21V V B ∈∀ , 则有T B B =, 且T B B -=, 从而 θ=B , 则{}θ=21V V , 故21V V P n n ⊕=⨯.二、解:(1)∈∀ξ⇒-)(1θθξ=)(.设ξ在基4321,,,εεεε下的坐标为),,,(4321x x x x,则(ξ)在基4321,,,εεεε下的坐标为⎪⎪⎪⎪⎭⎫⎝⎛4321x x x x A .且(ξ)θ=及 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0004321 x x x x A , 其中⎪⎪⎪⎪⎭⎫ ⎝⎛--→⎪⎪⎪⎪⎭⎫ ⎝⎛--------=00000000101001011111111111111111A . 得基础解系⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛1010,0101;取)(1θ-中两个线性无关的解向量⎩⎨⎧+=+=422311εεξεεξ, 所以),()(211ξξθL =-,dim2)(1=-θ.(2)由于)(1θ-中有一组基1ξ,2ξ,所以取432121,,,,,εεεεξξ,易知4321,,,εεξξ线性无关,则4321,,,εεξξ构成V 的一组基.设由基4321,,,εεεε到基4321,,,εεξξ的过渡矩阵为C ,则⎪⎪⎪⎪⎪⎭⎫⎝⎛--⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-101001010010001,10100101001000011=C C ,所以在4321,,,εεξξ下的矩阵为 ⎪⎪⎪⎪⎪⎭⎫⎝⎛----=-22002200110011001AC C .三、解:(1)先由rankA=n ,即A 的列向量组线性无关,证A T A 是正定矩阵(见自测题四中第七题),再由习题2-1第7题知,R n 构成一个欧氏空间.(2)令C=A T A =(c ij ),()ij j i j i c C ==εεεε,所以自然基在该内积定义下的度量矩阵为C=A T A.四、(1)证:∵A 是幂收敛的,∴()()B A A A B n n n ===22lim lim lim .(2)解:令⎪⎪⎭⎫ ⎝⎛-==014112B A ,1212<⇒-=-λλλB I , ∴ B 是幂收敛.∴ 原级数和为()⎪⎪⎭⎫ ⎝⎛-=--04141B I . (3)解:设A的最大秩分解式为:⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛===10010110012AI FG A ,则⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==1002011001010101A A F F H H .显然()⎪⎪⎭⎫⎝⎛==⎪⎪⎭⎫⎝⎛=--1001)(,10021211I GG F F H H,.0102102101010110021)()(1111⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==----+F F F F GG G A H H H。

矩阵论试题及答案

矩阵论试题及答案

一.(10分)已知n n C ⨯中的两种范数a ⋅和b ⋅,对于n n C A ⨯∈,证明b a A A A +=是n n C ⨯中的范数. 解:⑴非负性:由于b a ⋅⋅,是两种范数,故当A=0时,0,0==b a A A ,所以000=+=+=b a A A A ; 当A ≠0时,0,0>>b a A A ,所以0>+=b a A A A⑵齐性:()A A A A A A A A b a b a b a ααααααα=+=+=+= ⑶三角不等式:B A B A B A B A B A B A b b a a b a +=+++≤+++=+二.(每小题10分,共20分)已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=101121103A ,()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=002t e t b , 1. 求At e2. 用矩阵函数方法求微分方程()()()()()⎪⎩⎪⎨⎧-=+=T x t b t Ax t x dt d1,0,10的解.解:1. ()1112113det ----=-λλλλA I ()()3211132-=----=λλλλ显然, )det(A I -λ的一阶子式的公因子为1, 容易知道)det(A I -λ 的二阶子式的公因子为2-λ,所以A的最小多项式为()()()23222-=--=λλλλm ,即()()022=-=I A A m ,设()()()b a g m e f t ++==λλλλλ,则()a te f t =='λλ 对于特征值2=λ有()()⎩⎨⎧=='+==a te f b a e f t t 22222,()⎩⎨⎧+-==ttet b te a 2212 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----+=+=t t t t t t e bI aA e t At1010122. ()()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎰⎰--ds e s s s ss s e e ds s b e x e t x s t s At t As At 001010110102020 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=t t e t e t At 1001012三.(15分)用Givens 变换求⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2100421132403100A 的QR 分解. 解:()T01001=β,构造()s c T ,13=,1101sin ,0100cos 22232132223211=+=+===+=+==xx x s x x x c θθ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=210031002340421121421132403100100000010010010013A T⎥⎦⎤⎢⎣⎡--=21312A , 构造),(12s c T , ()21sin ,21111cos 222122222211=+==-=+--=+==x x x s x x x c θθ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡---=1052212131111121212A T⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=2/1002/12/1002/10010010013122T T I T ,⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==2/12/100000100102/12/100TT Q ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2/12/522344211R四.(10分)用Gerschgorin 定理证明⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=8110260110410100A 至少有两个实特征值. 解:A 的4个盖尔圆为:{}1|1≤=z z G ,{}2114|2=+≤-=z z G , {}3216|3=+≤-=z z G , {}2118|4=+≤-=z z G ,它们构成的两个连通部分为11G S =,4322G G G S =.易见,1S ,2S 都关于实轴对称且各含有1个和3个特征值,因为实矩阵的复特征值必成对出现, 故1S ,2S 必各含有一个实特征值,从而A 至少含有2个实特征值.五.(20分)已知⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=221221*********A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=44111b 1. 求A 的满秩分解.2. 求+A3. 用广义逆矩阵的方法判别方程组b Ax =是否相容.4. 求方程组b Ax =的极小范数解或极小范数最小二乘解并指出所求解的类型.解 1。

11级-矩阵论试题与答案

11级-矩阵论试题与答案

参考答案一(20分) V 表示实数域上次数不超过2的多项式构成的线性空间。

对2()f x ax bx c V ∀=++∈,在V 上定义变换:2[()]3(223)(4)T f x ax a b c x a b c =++++++(1)验证T 是V 上的线性变换;(2)求V 的基2,,1x x 到基2(1),1,1x x --的过渡矩阵P ; (3)求T 在基2,,1x x 下的表示矩阵A ; (4)在V 中定义内积1(,)()()f g f t g t dt =⎰,求基2,,1x x 的度量矩阵G 。

解:(1)设22111222(),()f x a x b x c g x a x b x c =++=++2121212()()()f g a a x b b x c c +=+++++[]212121212()3()2()2()3()T f g a a x a a b b c c x +=+++++++[]121212()()4()a a b b c c ++++++()()2111111132234a x a b c x a b c =++++++()()2222222232234a x a b c x a b c +++++++()()T f T g =+类似可验证: ()()T kf kT f =或把T 写成:2300[()][,,1]223114a T f x x x b c ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1)再来验证就更方便了。

(2)由22100(1),1,1,,1210111x x x x ⎡⎤⎢⎥⎡⎤⎡⎤--=-⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦得基2,,1x x 到基2(1),1,1x x --的过渡矩阵为100210111P ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦(3) 由22()321T x x x =++,()21T x x =+,(1)34T x =+得T 在基1,,2x x 下的表示矩阵为:300223114A ⎛⎫ ⎪= ⎪ ⎪⎝⎭(4) 11431112210011,54g x dx g g x dx =====⎰⎰ 11221331220011,33g x dx g g x dx =====⎰⎰11233233001,12g g xdx g dx =====⎰⎰ 故度量矩阵11154311143211132G ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭二(20分) 设311121210A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭(1)求A 的行列式因子、不变因子、初等因子; (2)求A 的Jordan 标准形J ; (3)求可逆矩阵P 使1P AP J -=;(4)计算Ate 并求解微分方程组。

矩阵论试题

矩阵论试题

矩阵论试题一、选择题1.设A是n阶方阵,若|A|=0,则A()。

A. 一定是可逆矩阵B. 一定是不可逆矩阵C. 可能是可逆矩阵,也可能是不可逆矩阵D. 以上说法均不正确答案:B2.若矩阵A与B相似,则A与B具有()。

A. 相同的特征值B. 相同的特征向量C. 相同的秩D. 相同的行列式答案:A、D(相似矩阵具有相同的特征值和行列式,但特征向量不一定相同,秩也一定相同,但此题只问具有什么,故A、D为正确答案)3.下列矩阵中,属于正交矩阵的是()。

A. 单位矩阵B. 对角矩阵C. 上三角矩阵D. 任意方阵答案:A(单位矩阵是正交矩阵的一种特殊情况)二、填空题1.设矩阵A=(1324),则A的行列式|A|=______。

答案:-2(根据行列式的定义和计算方法,有|A|=1×4-2×3=-2)2.若矩阵A与B满足AB=BA,则称A与B为______。

答案:可交换矩阵(或称为可交换的)3.设n阶方阵A的伴随矩阵为A,则|A|=______。

答案:|A|(n-1))三、计算题1.设矩阵A=(2113),求A的逆矩阵A^(-1)。

解答:首先求|A|,有|A|=2×3-1×1=5≠0,所以A可逆。

然后利用逆矩阵的公式A^(-1)=(1/|A|)×A*,其中A*是A的伴随矩阵。

A的伴随矩阵A=(3−1−12)(伴随矩阵的元素是A的每个元素的代数余子式构成的矩阵的转置)。

所以A^(-1)=(1/5)×A=(3/5−1/5−1/52/5)。

2.设矩阵A=147258369,求A的秩R(A)。

解答:对矩阵A进行初等行变换,将其化为行最简形。

通过初等行变换,可以得到A的行最简形为1002−303−60。

所以R(A)=2(非零行的个数)。

四、证明题1.证明:若矩阵A为n阶方阵,且|A|=0,则A不可逆。

证明:根据可逆矩阵的定义,若矩阵A可逆,则存在n阶方阵B,使得AB=BA=E(E为单位矩阵)。

矩阵论练习题

矩阵论练习题

练习一一﹑选择题1、对于()212,x x R ∀∈,下列变换是2R 上的线性变换的是 ( D ).(A) ()()21212,,T x x x x =; (B) ()()21212,,T x x x x =;(C) ()()1212,,0T x x x x =; (D) ()()1212,,T x x x x =-. 2、设()(),A B λλ为两个n 阶λ-矩阵,则 ( D ).(A) 若()A λ满秩,则()A λ必可逆; (B) ()A λ可逆当且仅当()0A λ≠;(C) 若()A λ与()B λ秩相等,则()A λ与()B λ等价;(D) 若()A λ与()B λ等价,则()A λ与()B λ具有相同的不变因子. 3、设()n n ij A a C ⨯=∈,则下列不能构成矩阵范数的是( A ).(A) ,max ij i ja ; (B) ,max ij i jn a ⋅; (C) 1max nij ij a =∑; (D) 1max nij j i a =∑.4、设n n A C ⨯∈,H A 为A 的共轭转置矩阵,()A ρ为A 的谱半径,A 为A 的范数,则下列说法不正确的是( C ).(A)()[]()kk A A ρρ=; (B) ()()H H A A AA ρρ=;(C) 若()1A ρ<,必有E A -可逆; (D) 若A 为收敛矩阵,必有()1A ρ<. 5、设V 为酉空间,C λ∈,,V αβ∈且(),αβ为α与β的內积,则下列说法不正确的是( B ).(A) ()(),,λαβλαβ=; (B) ()(),,αλβλαβ=; (C) ()()(),,,αβγαβαγ+=+; (D) ()()(),,,βγαβαγα+=+.二﹑填空题1、已知100231120012233002A -⎛⎫⎛⎫ ⎪⎪=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,则A 的LDU 分解为 .2、设sin ()2cost t t te A t t ⎛⎫= ⎪⎝⎭,则0()x A t dt ⎰=21cos 1sin x x x xe e xx ⎛⎫--+ ⎪⎝⎭.3、设矩阵2242t tt At tt t e te te e te e te ⎡⎤-=⎢⎥-+⎣⎦ ,则矩阵A =1143-⎛⎫⎪-⎝⎭.4、矩阵100110111A ⎛⎫⎪= ⎪ ⎪⎝⎭ 相对于矩阵范数∞ 的条件数为 6 .5、设11122122⎛⎫=⎪⎝⎭x x X x x ,(),A a b =,则()d AX dX =0000a a b b ⎛⎫⎪⎝⎭. 6、已知101112003A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则543258884A A A A A E -+-+- =001102002⎛⎫⎪⎪ ⎪⎝⎭.7、已知⎪⎪⎪⎭⎫⎝⎛=987654321A ,则A 的正奇异值的个数为 2 .三、计算题已知 1(1,3,2,1)T α=-,2(1,0,0,2)T α=,1(0,1,1,3)T β=,2(3,2,1,6)T β=--, 且112{,}V span αα=,212{,}V span ββ=,求12V V +与12V V 的基和维数. 解:因为1212{,}V V span αα+=+12{,}span ββ=1212{,,,}span ααββ而12121103100130120102(,,,)2011001112360000ααββ--⎛⎫⎛⎫⎪ ⎪-⎪ ⎪= ⎪ ⎪- ⎪ ⎪-⎝⎭⎝⎭初等行变换 由于121,,ααβ是向量组1212,,,ααββ的一个极大线性无关组,所以和空间的维数是3,基为121,,ααβ且21212βααβ=--. 由行最简形知12dim()2,dim()2,V V ==又121212dim()dim dim dim()V V V V V V +=+- 故12dim()1V V =311100222110201236001212A ⎛⎫⎛⎫- ⎪ ⎪⎛⎫ ⎪ ⎪ ⎪=--⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭由21212βααβ=--得()12121223,3,2,3TV V ξααββ=-=+=--∈所以()3,3,2,3T--为12V V 的一组基。

矩阵论判断题

矩阵论判断题

(一)一、判断题(40分)(对者打∨,错者打⨯)1、设,n n A B C ⨯∈的奇异值分别为120n σσσ≥≥≥> ,'''120n σσσ≥≥≥> ,如果'(1,2,,)i i i n σσ>= ,则22||||||||A B ++>. ( ⨯ ) 2、设n n A C ⨯∈为正规矩阵,则矩阵的谱半径2()||||r A A =. ( ∨ ) 3、设n n C A ⨯∈可逆,n n C B ⨯∈,若对算子范数有1||||||||1A B -⋅<,则B A +可逆.( ∨ )4、设32312100a a A a a aa -⎛⎫⎪=- ⎪ ⎪-⎝⎭为一非零实矩阵,则2221123()a a a A --++为A 的一个广义逆矩阵 ( ∨ )5、设A 为m n ⨯矩阵,P 为m 阶酉矩阵, 则PA 与A 有相同的奇异值. ( ∨ )6、设n n A C ⨯∈,且A 的所有列和都相等,则()r A A∞=. ( ⨯ )7、如果12(,,,) T nn x x x x C =∈,则1||||m in i i nx x ≤≤=是向量范数. ( ⨯ )8、0010140110620118A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦至少有2个实特征值. ( ∨ ) 9、设,n nA C ⨯∈则矩阵范数m A ∞与向量的1-范数相容. ( ∨ )10、设n n A C ⨯∈是不可逆矩阵,则对任一自相容矩阵范数 有1I A -≥, 其中I 为单位矩阵. ( ∨ )(二)1、设m nA R⨯∈的奇异值为12n σσσ≥≥≥ ,则2221||||ni i A σ==∑. ( ⨯ )2、设n n A C ⨯∈,且有某种算子范数||||⋅,使得||||1A <,则11||()||1||||E A A -->-,其中E 为n 阶单位矩阵. ( ⨯ )111()()()()E E A E A E A A E A ---=--=---⇒11()()E A E A E A ---=+-⇒11||()||||()||E A E A E A ---=+-1||||||||||()||E A E A -≤+-⇒1||||1||()||1||||1||||E E A A A --≤=--3、设2H A E uu =-(其中,E 为n 阶单位矩阵,2||||1n u C u ∈=且),则2||||m A =( ∨ )(2)H H H A E u u =- (2)H H E uu =-2HE uu =-A =(2)(2)H H H A A E u u E u u =--224H H H H E u u u u u u u u E=--+=2||||mA n∴4、设12342468111A ⎛⎫⎪= ⎪ ⎪⎝⎭,则A 的M -P 广义逆A +的秩()1rank A +=. ( ⨯ ) 5、设矩阵n n A C ⨯∈,0A ≠且,2||()||1H HA A A A +=则.( ∨ )()H HB A A A A+=⇒HBB =⇒2||||()B B ρ=则;2B B =⇒01B ⇒的特征值为或者0A ≠⇒1B ⇒是的特征值()1H r B B =6、若A 为列满秩矩阵,则H H A A A 1)(-既是A 的左逆又是A 的M -P 广义逆A +.( ∨ )7、设n εεε,,,21 线性空间n V 的一组基,n n n V x x x x ∈++=εεε 2211,则. )0(||||||||||2222211≥++=i n n k x k x k x k x 是n V 上向量x 的范数. ( ⨯ )8、设⎪⎪⎪⎭⎫⎝⎛=01821022330A ,则A 有三个实特征值. ( ∨ ) 9、设G 为矩阵()m n r A C r n ⨯∈<的广义逆A -,A BD =为A 的最大秩分解,则r DGB =2||||. ( ⨯ )10、设)1()(>∈=⨯n C a A n n ij 为严格对角占优矩阵,),,,(22nn ii a a a diag D =,A DE B 1--=(E 为n 阶单位矩阵),则B 的谱半径1)(≥B r . ( ⨯ )(三)一、判断题(40分)(对者打∨,错者打⨯)1、设n x C ,U ∈为n阶酉矩阵,则22||||||||Ux x =. ( )()2222H H H ||Ux ||UxUx x U Ux x x ||x ||====2、设,n nA C⨯∈则2221||||||nm ii A λ=≥∑. ( )n nA C⨯∈→HA URU =→22222222||||||||||||||||Hm m m m A URUR R ==≥21||nii λ==∑3、如果12(,,,) T n n x x x x C =∈,则21||||||x x =为向量范数. ( )例如(0,1,0,,0)0 x =≠,但||||0x =4、1||||||||||||x x n x ∞∞≤≤. ( )11||||m a x ||||||||m a x ||||||ni ii iii x x xx n x n x ∞∞==≤=≤=∑5、设A 为n 阶酉矩阵,则.AA A A E ++== ( )因为H A A +=,故结论成立6、若m r r A C ⨯∈,则11()H HL A AA A --=. ( )11()H HL A A A A --=,故结论不成立7、若||||⋅为算子范数,则11||||||||A A --≥. ( )111||||||||||||AA A A --=≤,故结论不成立8、111i i i ii⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦和都是复对称矩阵()T A A =,故均为正规矩阵. ( )111i ii i i ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦为正规矩阵而非正规,因为1111ii ii ii i i i iii----⎡⎤⎡⎤⎡⎤⎡⎤≠⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦9、设()A ρ为矩阵A 的谱半径,则()||||m A A ρ∞≤. ( )01,||||1,() 1.61811m A A A ρ∞⎡⎤===⎢⎥⎣⎦则而10、设||||||||||||||||H m m m x xa ⋅=⋅为自相容矩阵范数,则是与相容的向量范数 ( )(四)一、判断题(40分)(对者打∨,错者打⨯)1、设矩阵n n A C ⨯∈,0A ≠且,2||()||1H H A A A A+=则.( )()H HB A A A A+=⇒HBB =⇒2||||()B B ρ=则;2B B =⇒01B ⇒的特征值为或者0A ≠⇒()1B ρ=2、设m nA R⨯∈的奇异值为12n σσσ≥≥≥ ,则2221||||ni i A σ==∑. ( )3、设n n A C ⨯∈,且有某种算子范数||||⋅,使得||||1A <,则11||()||1||||E A A -->-,其中E 为n 阶单位矩阵. ( )111()()()()E E A E A E A A E A ---=--=---⇒11()()E A E A E A ---=+-⇒11||()||||()||E A E A E A ---=+-1||||||||||()||E A E A -≤+-⇒1||||1||()||1||||1||||E E A A A --≤=--4、设2H A E uu =-(其中,E 为n 阶单位矩阵,2||||1n u C u ∈=且),则2||||m A =( )(2)H H H A E u u =- (2)H H E uu =-2HE uu =-A =(2)(2)H H H A A E u u Eu u =--224H H H HE u u u u u u u u E=--+=2||||mA n∴5、设12342468111A ⎛⎫⎪= ⎪ ⎪⎝⎭,则A 的M -P 广义逆A +的秩()1rank A +=. ( ) 6、若A 为列满秩矩阵,则H H A A A 1)(-既是A 的左逆又是A 的M -P 广义逆A +. ( )7、设n εεε,,,21 线性空间n V 的一组基,n n n V x x x x ∈++=εεε 2211,则.)0(||||||||||2222211≥++=i n n k x k x k x k x 是n V 上向量x 的范数. ( )8、设⎪⎪⎪⎭⎫⎝⎛=01821022330A ,则A 有三个实特征值. ( ) 9、设G 为矩阵()m n r A C r n ⨯∈<的广义逆A -,A BD =为A 的最大秩分解,则r DGB =2||||. ( )10、设)1()(>∈=⨯n C a A n n ij 为严格对角占优矩阵,),,,(22nn ii a a a diag D =,A DE B 1--=(E 为n 阶单位矩阵),则B 的谱半径1)(≥B r . ( ) (五)1、A n 为阶实对称矩阵,nR x 对中的列向量,||x |Ax =定义, ||x ||x 则为向量 的范数. ( )因为非负性不成立,故结论错误。

矩阵试题及答案

矩阵试题及答案

矩阵试题及答案一、选择题(每题4分,共20分)1. 矩阵的秩是指:A. 矩阵中非零元素的个数B. 矩阵中最大的线性无关行(列)向量组的个数C. 矩阵的行数D. 矩阵的列数答案:B2. 若矩阵A与矩阵B相等,则下列说法正确的是:A. A和B的行列式相等B. A和B的迹相等C. A和B的行列式和迹都相等D. A和B的行列式和迹都不相等答案:C3. 矩阵的转置是指:A. 将矩阵的行变成列B. 将矩阵的列变成行C. 将矩阵的行和列互换D. 将矩阵的元素取相反数答案:C4. 对于任意矩阵A,下列说法正确的是:A. A的行列式等于A的转置的行列式B. A的行列式等于A的逆矩阵的行列式C. A的行列式等于A的逆矩阵的转置的行列式D. 以上说法都不正确答案:A5. 若矩阵A是可逆矩阵,则下列说法正确的是:A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式可以是任意非零值答案:A二、填空题(每题5分,共20分)1. 若矩阵A的行列式为-2,则矩阵A的逆矩阵的行列式为____。

答案:1/22. 设矩阵A为2x2矩阵,且A的行列式为3,则矩阵A的转置的行列式为____。

答案:33. 若矩阵A的秩为2,则矩阵A的行向量组的____。

答案:线性无关4. 设矩阵A为3x3矩阵,且A的行列式为0,则矩阵A是____。

答案:奇异矩阵三、解答题(每题10分,共30分)1. 已知矩阵A=\[\begin{bmatrix}1 & 2\\3 & 4\end{bmatrix}\],求矩阵A的行列式。

答案:\(\begin{vmatrix}1 & 2\\3 & 4\end{vmatrix} = (1)(4) - (2)(3) = 4 - 6 = -2\)2. 设矩阵B=\[\begin{bmatrix}2 & 0\\0 & 2\end{bmatrix}\],求矩阵B的逆矩阵。

矩阵论复习题综合

矩阵论复习题综合

1. 设+=R V 是正实数集,对于任意的V y x ∈,,定义x 与y 的和为 y x y x ⋅=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为k x x k =⊗问:对于上述定义加法和数乘运算的集合V ,是否构成线性空间,并说明理由. 2.对任意的2,R y x ∈,),(21x x x =,),(21y y y =定义x 与y 的和为),(112211y x y x y x y x +++=⊕对于任意的数R k ∈,定义k 与x 的数乘为)2)1(,(2121x k k kx kx x k -+=⊗ 问:对于上述定义加法和数乘运算的集合2R ,是否构成线性空间,并说明理由. 3.设},022|),,{(321321R x x x x x x x S i ∈=++=,试证明S 是3R 的子空间,并求S 的一组基和S dim .4.设)(R P n 表示次数不超过n 的全体多项式构成的线性空间,)}()(,0)0(|)({R P x f f x f S n ∈='=证明S 是)(R P n 的子空间,并写出S 的一组基和计算S dim . 5. 设T 是2R 上的线性变换,对于基向量i 和j 有j i i T +=)( j i j T -=2)(1)确定T 在基},{j i 下的矩阵;2)若j i e -=1 j i e +=32,确定T 在基},{21e e 下的矩阵. 6. 设T 是3R 上的线性变换,对于基},,{k j i 有k j k j i T -=++)( i k j T =+)( k j i k T 532)(++=1)确定T 在基},,{k j i 下的矩阵; 2)求T 的零空间和像空间的维数.7.设线性空间3R 的两个基为(I):321,,x x x , (II):321,,y y y , 由基(I)到基(II)的过度矩阵为⎪⎪⎪⎭⎫ ⎝⎛--=101010101C , 3R 上的线性变换T 满足21321)32(y y x x x T +=++ 12323(24)T x x x y y ++=+31321)43(y y x x x T +=++ 1)求T 在基(II)下的矩阵; 2)求)(1y T 在基(I)下的坐标. 8.在线性空间)(3R P 中321)(x x x a x f +++= 3221)(x x ax x f +++= 32321)(x x x x f +++=讨论)(),(),(321x f x f x f 的线性相关性.9.在22R ⨯中求由基(I) 12101A ⎛⎫= ⎪⎝⎭ 20122A ⎛⎫= ⎪⎝⎭ 32112A -⎛⎫= ⎪⎝⎭ 41312A ⎛⎫= ⎪⎝⎭到基(II) 11210B ⎛⎫= ⎪-⎝⎭ 21111B -⎛⎫= ⎪⎝⎭ 32211B -⎛⎫= ⎪⎝⎭ 41101B --⎛⎫= ⎪⎝⎭的过渡矩阵.10.已知 1(1,2,1,0)α= 2(2,1,0,1)α=- 1(1,1,1,1)β=- 2(1,1,3,7)β=- 设1212(,)(,)V L L ααββ=⋂, 求线性空间V 的维数和基. 11.在)(2R P 中, 对任意的)()(),(2R P x g x f ∈定义内积为⎰=1)()())(),((dx x g x f x g x f若取)(2R P 的一组基},,1{2x x ,试用Schmidt Gram -正交化方法,求)(2R P 的一组正交基.12.(1) 设x 和y 是Eucild 空间V 的非零元,它们的夹角是θ,试证明θcos ||||||||2||||||||||||222y x y x y x ⋅-+=-12.(2) 求矩阵10002i A i +⎛⎫= ⎪⎝⎭的奇异值分解.13.设A 为n 阶实矩阵,证明A 可表示为一对称矩阵和一反对称矩阵之和. (提示:若A A T =,称A 为对称矩阵。

07-08(1)-07级-矩阵论试题与答案

07-08(1)-07级-矩阵论试题与答案

一(20分) 设矩阵10112043A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦, (1)求A 的初等因子组; (2)求A 的Jordan 标准形J ; (3)求可逆矩阵P 使得J AP P =-1; (4)求k A 。

答案:(1)21111120(2)(2)(1)4343I A λλλλλλλλλ+-⎡⎤+-⎢⎥-=--=-=--⎢⎥-⎢⎥-⎣⎦观察得,21231,1,(2)(1)D D D λλ===--因此,初等因子组为2(1),(2)λλ-- 5分 (2)1112J ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦10分 (3)设123[,,]P ααα=,由1P AP J -=,得1121233(1)(2)2(3)A A A ααααααα=⎧⎪=+⎨⎪=⎩由(1),1()0I Aα-=,解得1112α⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦其中20110.05110010.54200I A --⎡⎤⎡⎤⎢⎥⎢⎥-=--→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦由(2),21()I A αα-=-,解得2011α⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦其中12011100.50.5[,]1101010.50.542200I A α----⎡⎤⎡⎤⎢⎥⎢⎥--=--→-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦由(3)3(2)0I A α-=,解得3010α⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦其中30110021000014100I A -⎡⎤⎡⎤⎢⎥⎢⎥-=-→⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦1100100111,201210111P P -⎡⎤⎡⎤⎢⎥⎢⎥=--=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦15分 (4)1001002kkk J⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,12102122124021k k k kk k kA PJ P k k k k --+⎡⎤⎢⎥==+---+⎢⎥⎢⎥-+⎣⎦20分二(20分) 设微分方程组0d d (0)xA x tx x ⎧=⎪⎪⎨⎪⎪=⎩,其中311202113A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦,0111x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(1)求A 的最小多项式)(λA m ; (2)求A te; (3)求该方程组的解。

矩阵论试题及答案可编辑全文

矩阵论试题及答案可编辑全文

2006矩阵论试题答案一.填空(每题4分,共40分)1. 设−−=41311221222832A ,则A 的值域4(){,R }R A y y Ax x ==∈的维数=)(dim A R 2 .2. 设A 的若当标准型−−−=10000011000001100000020000012000002J ,则A 的最小多项式=)(λψm 32(1)(2)λλ+−.3. 设110430102A −=−,则()5432333h A A A A A A =−++−=110430102−− −−. 4. 设埃尔米特阵为 −−+=2005111i i i i A , 则矩阵A 为 正定的 埃尔米特阵.5. 在3R 中有下列两组向量:()13,1,2Tα=−−,()21,1,1Tα=−,()32,3,1Tα=−; ()11,1,1Tβ=,()21,2,3Tβ=,()32,0,1Tβ=,则由321,,ααα到321,,βββ的过渡矩阵=P 619113421270−−−−−− −− .6.设33CA ×∈,21332211{}ij m j i A a ===∑∑,H AA 的非零特征值分别为15 ,5 ,3,则=2mA.7. 设12102101, 11111137A B −== −−,12,V V 分别为齐次线性方程组 0Ax =,0Bx =的解空间,则=)dim(21V V ∩ 1 .8. 设1(1)1(1)121()321nn n n n n n A n n n n +−−=++ −,则lim n n A →∞=1311e .9. 设213121202A −=,则A 的 LDU 分解为 A =100121012/51 2001123205200115004/5001−  −   − 10.设 −=5221A ,=0242B ,则2448204048102040100A B−−−⊗=. 二.(10分)设T 为n 维欧氏空间V 中的线性变换,且满足:),(),(Ty x y Tx −=,试证明:T 在标准正交基下的矩阵A 为反对称阵(T A A −=)证明:设n ααα,,,21 为V 的标准正交基,n n ij a A ×=}{,下证:ji ij a a −=: 由=),,,(21n T ααα A n ),,,(21ααα 知n ni i i i a a a T αααα+++= 2211,n nj j j j a a a T αααα+++= 2211, ),(),(j i j i T T αααα−=;=),(j i T ααji j n ni i i a a a a =+++),(2211αααα , =),(j i T ααij n nj j j i a a a a =+++),(2211αααα , 所以:ji ij a a −=.三.(10分)在复数域上求矩阵−−−=7137341024A 的若当标准形J ,并求出可逆矩阵P 使得J AP P =−1.解: A 的若当标准形210021002J=. 令123(,,)P p p p =,则有112123232,2,2Ap p Ap p p Ap p p ==+=+;1213262100621062104170,417,4173150315315p p p p p −−−−=−=−= −−−解得:123(2,1,1),(0,1,0),(1,2,1)T T Tp p p ===− , 201112101P=−.四. (10分)已知 =654321x x x x x xX ,162534()sin()x x f X e x x x x =++,求dXdf . 解答:16161234652543225516cos()cos()x x x x ff f x x x df dX ff f x x x x e x x x x x x x x x e ∂∂∂∂∂∂== ∂∂∂ ∂∂∂. 五.(10分)已知311202113A −=−−−,求4sin()A π,Ae .解:3||(2)E A λλ−=−,A 的最小多项式2)2()(−=λλϕ .待定系数一:令24sin ()(2)q a b πλλλλ=−++,则21,0a b b +==,4sin()A E π=;令2()(2)e q a b λλλλ=−++,则222,a b e b e +==.222211212112A e e e E e A −−=−+=− −−.待定系数二:令324sin ()(2)q a b c πλλλλλ=−+++,则22222414018,8,32216a b c b c a b c c ππππ ++=+=⇒=−==− =− ; 224sin()(44)32A E E A A E ππ=−−+=.令32()(2)e q a b c λλλλλ=−+++,则2222222414,,22a b c e b c e a e b e c e c e++= +=⇒==−== ; 2221()2211212112A e e E A A e −−− =− +−−= .六.(10分)设−=01200110A ,求A 的奇异值分解. 解答一:=5002A A H ,A 的奇异值为5,2; 00Σ= , 25H HV A AV = ,1001V =; 1100100100200100U AV −−− =Σ==; 00000000U− =; 0000010001 0 000 0 000A=.解答二:=5002A A H ,那么A 的奇异值为5,2,A A H对应于特征值5,2的标准特征向量为 = =01,1021x x ,=0110V ; 再计算H AA 的标准正交特征向量,解得分别与5,2,0,0对应的四个标准正交特征向量=0520511υ, −=2102102υ,−=0510523υ,=2102104υ,−−=210210051052210210052051U ; 所以=∆=HV UA 0000000000000110.七.(10分)设n n i A ×∈≠C 0,2rank rank i i A A =),,2,1(n i =,且当i j ≠时),,2,1,(0n j i A A j i ==.试用归纳法证明存在同一个可逆阵n n P ×∈C 使 得对所有的i ),,2,1(n i =有1−=P PE a A ii i i ,其中C ∈i a . 证明:1n =时,命题显然.假设n k ≤时,命题成立. 当1n k =+时,设1rank A r =.由若当分解11111000D A P P − =,其中1C r rD ×∈可逆; 当2,,j n = 时,由110j j A A A A ==可得1(1)(1)1100, C 0n n j jj A P P B B −−×− =∈(直接推出的j B 为()()n r n r −×−的) 再由0i j A A =得0i j B B =(,,2,,)i j i j n ≠= ;0j B ≠,2rank rank j j B B =也是明显的.由假设知存在可逆阵(1)(1)C n n Q −×−∈使得1j j jj B a QE Q −=,其中C j a ∈,2,,j n = .此时,再由110j j A A A A ==得到11111111110101010000000a A P P a P P Q Q −−− == ; 记1100P P Q =,则 11111111100000000 (2,,).0 j j j jj j j jj jj A P P P P B a QE Q a P P a P E P j n E −−−−− =====由归纳原理知命题为真.。

矩阵论B卷及答案上海交通大学

矩阵论B卷及答案上海交通大学

上海交通大学《矩阵论》 B 卷姓名: 班级: 学号: 一、 单项选择题(每题3分,共15分)(答案AAAAB )1. 设1()kk A f A k ∞==∑收敛,则A 可以取为A. 0091⎡⎤⎢⎥--⎣⎦ B. 0091⎡⎤⎢⎥-⎣⎦C. 1011⎡⎤⎢⎥-⎣⎦ D. 100.11⎡⎤⎢⎥⎣⎦注:A 的特征值为0,-1,而1kk x k∞=∑的收敛区间为[1,1)-2. 设M 是n 阶实数矩阵,若M 的n 个盖尔圆彼此分离,则M A. 可以对角化 B. 不能对角化 C. 幂收敛 D. 幂发散 注:由定理M 有n 个不同特征值,故可以对角化3. 设211112121M --⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦的,则M 不存在 A. QR 分解 B. 满秩分解 C. 奇异值分解 D. 谱分解 注:M 的秩为2故无QR 分解 4. 设,则A = A.214020031-⎛⎫ ⎪ ⎪ ⎪⎝⎭B.114010061-⎛⎫ ⎪ ⎪ ⎪⎝⎭C.224020031-⎛⎫ ⎪ ⎪ ⎪⎝⎭D.204020061-⎛⎫⎪ ⎪ ⎪⎝⎭注:'()At Ate Ae =,故()'A At t A Ae Aee ====5. 设3阶矩阵A 满足多项式222(4)(3)A E A E O --=, 且其最小多项式m (x )满足条件(1)(3)1m m ==,则A 可以相似于A. 200130002M ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B. 20002002M ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦C. 20012002M ⎡⎤-⎢⎥=-⎢⎥⎢⎥-⎣⎦ D. 200030013M -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦注:B 中矩阵的最小多项式为()22x - 二、填空题(每题3分,共15分) 1. 设220A A -=,则cos 2A = [ E+()2cos11A - ]。

2.已知n nA C ⨯∈,并且()1A ρ<,则矩阵幂级数kk kA ∞=∑=[()2AE A - ]。

矩阵理论历年试题汇总及答案

矩阵理论历年试题汇总及答案

矩阵理论历年试题汇总及答案矩阵理论是线性代数中的一个重要分支,它涉及到矩阵的运算、性质以及矩阵在不同领域中的应用。

历年来的矩阵理论试题通常包括矩阵的基本运算、矩阵的特征值和特征向量、矩阵的分解等重要概念。

以下是对矩阵理论历年试题的汇总及答案解析。

矩阵的基本运算试题1:给定两个矩阵 \( A \) 和 \( B \),其中 \( A =\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \),\( B =\begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \),求 \( A + B \) 和 \( AB \)。

答案:首先计算矩阵的加法 \( A + B \),根据矩阵加法的定义,对应元素相加,得到 \( A + B = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix} \)。

接着计算矩阵乘法 \( AB \),根据矩阵乘法的定义,得到 \( AB = \begin{bmatrix} 1\cdot5 + 2\cdot7 & 1\cdot6 + 2\cdot8 \\ 3\cdot5 + 4\cdot7 & 3\cdot6 + 4\cdot8\end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50\end{bmatrix} \)。

特征值和特征向量试题2:已知矩阵 \( C = \begin{bmatrix} 4 & -2 \\ 1 & -1\end{bmatrix} \),求 \( C \) 的特征值和对应的特征向量。

答案:首先求特征值,我们需要解方程 \( \det(C - \lambda I) = 0 \),其中 \( I \) 是单位矩阵。

计算得到 \( \det(\begin{bmatrix}4-\lambda & -2 \\ 1 & -1-\lambda \end{bmatrix}) = (4-\lambda)(-1-\lambda) - (-2)(1) = \lambda^2 - 3\lambda - 2 \)。

矩阵论试题(整理)(完整版)实用资料

矩阵论试题(整理)(完整版)实用资料

矩阵论试题(整理)(完整版)实用资料(可以直接使用,可编辑完整版实用资料,欢迎下载)矩阵论试题(06,12)一.(18分填空:设1.A-B的Jordan标准形为J=2.是否可将A看作线性空间V2中某两个基之间的过渡矩阵()。

3.是否可将B看作欧式空间V2中某个基的度量矩阵。

()4.(),其中。

5.若常数k使得kA为收敛矩阵,则k应满足的条件是()。

6.AB的全体特征值是()。

7.()。

8.B的两个不同秩的{1}-逆为。

二.(10分设,对于矩阵的2-范数和F-范数,定义实数,(任意)验证是中的矩阵范数,且与向量的2-范数相容。

三.(15分已知。

1.求;2.用矩阵函数方法求微分方程满足初始条件x(0的解。

四.(10分用Householder变换求矩阵的QR分解。

五.(10分)用Gerschgorin定理隔离矩阵的特征值。

(要求画图表示)六.(15分已知。

1.求A的满秩分解;2.求A+;3.用广义逆矩阵方法判断线性方程组Ax=b是否有解;4.求线性方程组Ax=b的极小范数解,或者极小范数最小二乘解x0。

(要求指出所求的是哪种解)七.(15分已知欧式空间R22的子空间R22中的内积为V中的线性变换为T(X=XP+XT, 任意XV,1.给出子空间V的一个标准正交基;2.验证T是V中的对称变换;3.求V的一个标准正交基,使T在该基下的矩阵为对角矩阵.八.(7分设线性空间V n的线性变换T在基下的矩阵为A,T e表示V n的单位变换,证明:存在x00,使得T(x0=(T e-T(x0的充要条件是为A的特征值.矩阵论试题(07,12)一.(18分填空:1.矩阵的Jordan标准形为J=2.设则3.若A是正交矩阵,则cos(A=4.设,A+是A的Moore-Penrose逆,则(-2A, A+=5.设,则AB+I2I3的全体特征值是()。

6.设向量空间R2按照某种内积构成欧式空间,它的两组基为和且与的内积为则基的度量矩阵为()。

矩阵论考试试题(含答案)精选全文

矩阵论考试试题(含答案)精选全文

可编辑修改精选全文完整版矩阵论试题一、(10分)设函数矩阵 ()⎪⎪⎭⎫⎝⎛-=t t t t t A sin cos cos sin 求:()⎰tdt t A 0和(()⎰20t dt t A )'。

解:()⎰t dt t A 0=()⎪⎪⎪⎭⎫ ⎝⎛-⎰⎰⎰⎰tttt tdt tdt dt t dtt 000sin cos cos sin =⎪⎪⎭⎫⎝⎛---t tt t cos 1sin sin cos 1 (()⎰2t dt t A )'=()⎪⎪⎭⎫⎝⎛-=⋅22222sin cos cos sin 22t t t t t t t A 二、(15分)在3R 中线性变换σ将基⎪⎪⎪⎭⎫ ⎝⎛-=1111α,⎪⎪⎪⎭⎫ ⎝⎛-=1202α,⎪⎪⎪⎭⎫⎝⎛-=1013α变为基 ⎪⎪⎪⎭⎫ ⎝⎛-=0111β,⎪⎪⎪⎭⎫ ⎝⎛-=1102β,⎪⎪⎪⎭⎫ ⎝⎛-=2303β(1)求σ在基321,,ααα下的矩阵表示A;(2)求向量()T 3,2,1=ξ及()ξσ在基321,,ααα下的坐标; (3)求向量()()ξσξ及T 3,2,1=在基321,,βββ下的坐标。

解:(1)不难求得:()2111ααβασ-==()32122αααβασ++-==()321332αααβασ++-== 因此σ在321,,ααα下矩阵表示为⎪⎪⎪⎭⎫ ⎝⎛---=110211111A(2)设()⎪⎪⎪⎭⎫ ⎝⎛=321321,,k k k αααξ,即⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛321111021101321k k k 解之得:9,4,10321-=-==k k k 所以ξ在321,,ααα下坐标为()T 9,4,10--。

()ξσ在321,,ααα下坐标可得⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛133223*********1111321y y y (3)ξ在基321,,βββ下坐标为⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---6151941001111110194101A()ξσ在基321,,βββ下坐标为⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---94101332230111111011332231A三、(20分)设⎪⎪⎪⎭⎫ ⎝⎛-=301010200A ,求At e 。

矩阵论典型试题解析

矩阵论典型试题解析

习题11.计算下列方阵的幂(1)n cos sin sin cos θθ⎡⎤⎢⎥-θθ⎣⎦; (2)1111n ⎡⎤⎢⎥-⎣⎦; (3)1111na a a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 解:(1)由 cos sin sin cos n n n n ⎡⎤⎢⎥-⎣⎦θθθθcos sin sin cos θθ⎡⎤⎢⎥-θθ⎣⎦= cos(1) sin(1)sin(1) cos(1)n n n n ++⎡⎤⎢⎥-++⎣⎦θθθθ,故由归纳法知cos sin sin cos nn n A n n ⎡⎤=⎢⎥-⎣⎦θθθθ。

法2:由矩阵cos sin sin cos A ⎡⎤=⎢⎥-⎣⎦θθθθθ为正交矩阵,且二维平面中任一向量x y ⎛⎫α= ⎪⎝⎭.则向量cos sin x A sin cos y θθθ⎡⎤⎛⎫α= ⎪⎢⎥-θθ⎣⎦⎝⎭相当于将向量x y ⎛⎫α= ⎪⎝⎭顺时针针旋转θ角度,故由此几何意义,有:() cos sin sin cos n n n n A A n n ⎡⎤==⎢⎥-⎣⎦θθθθθθ (2)由11441144cos sin A sin cos ππ⎡⎤⎥⎡⎤==⎥⎢⎥-ππ⎣⎦⎥-⎢⎥⎣⎦,得11441144n n n n cos sin(n n sin cos ππ⎡⎤⎢⎥⎡⎤=⎢⎥⎢⎥-ππ⎣⎦⎢⎥-⎢⎥⎣⎦ (3)记J=0 1 0 1 1 0 ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,则由于B J J J E ⋅==⋅,2010010100101001010000J ,J ,,⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 0K J =其中5K ≥112244113311 () n n n n n n n n n n n n n nk k n k n n n n n a C a C a C a a C a C a A aE J C a J a C a a -------⎡⎤⎢⎥⎢⎥⎢⎥=+==⎢⎥⎢⎢⎢⎣⎦40k =⎥⎥⎥∑(规定:0k n C (n k )=<)2. 求平方等于单位阵的所有二阶方阵 。

矩阵论考试题和答案(详细)

矩阵论考试题和答案(详细)
1 1 1 1
因此 B = Udiag (λ ,L , λ )U = Vdiag (λ ,L , λ )V H = E 。
H
1 3 1
1 3 n
1 3 1
1 3 n
-------------4
(2)因为 A ≥ 0 ,所以 A 的特征值均非负。设 A 的特征值为 λ1 ,L , λn ,且 λ1 ≥ L ≥ λn ≥ 0 , 则 A2 的特征值为 λ12 ,L , λn2 ,于是
AT Ax = AT b
的解, 所以不相容线性方程组 Ax = b 的最小二乘解唯一当且仅当 AT A 非奇异, 即 rank ( AT A) = n 。因为 rank ( AT A) = rank ( A) ,所以不相容线性方程组 Ax = b 的最 小二乘解唯一当且仅当 A 列满秩。 -----------4
记 P = U H V = ( pij ) ,则 diag (λ1 ,L , λn ) P = Pdiag (λ1 ,L , λn ) ,从而
λi pij = λ j pij (i, j = 1,L , n) ,
于是
1 1
λi3 pij = λ j3 pij (i, j = 1,L , n) ,

diag (λ13 ,L , λn3 ) P = Pdiag (λ13 ,L , λn3 ) ,
A + = C T ( CC
T
-----------------5
1 4 0 1 − 4
)−1 ( B T B )−1 B T
1 − 4 = 0 1 4
0 1 0
---------5
1 (2)因为 AA + b = 2 ≠ b ; 所以不相容的。 -----------3 2 1 4 -----------3 其极小最小二乘通解为 x = A + b = 2 1 − 4 (3)因为 x 是不相容线性方程组 Ax = b 的最小二乘解当且仅 x 是如下相容线性方程组
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017—2018学年第一学期《矩阵论》试卷
(17级专业硕士)
专业 学号 姓名 得分
一.判断题(每小题3分,共15分)
1.线性空间V 上的线性变换A 是可逆的当且仅当零的原像是零,
即ker A =0。

( )
2.实数域上的全体n 阶可逆矩阵按通常的加法与数乘构成一个
线性空间。

( )
3.设A 是n 阶方阵,则k A ),2,1( =k 当∞→k 时收敛的充分
必要条件是A 的谱半径1)(<A ρ。

( )
4.n 阶多项式矩阵)(λA 与)(λB 相抵当且仅当它们具有相同的秩。

( )
5.对于任意n 阶复矩阵A 与B ,有B A B A e e e +=⋅。

( )
二.填空题(每小题4分,共20分)
1.设V 是数域K 上全体n 阶反称矩阵按通常的加法与数乘构成的一个 线性空间,则其维数V dim = ,V 的一组基是。

2.⎪⎪⎪⎭
⎫ ⎝⎛+-=)1()1(1)(223λλλλλA 的初等因子组为
,不变因子组为。

3.设⎪⎪⎭
⎫ ⎝⎛--=211`2A ,则1||||A = ,F A ||||= , 2||||A = ,=2)(A cond 。

4. 设1][-n x P 是数域K 上次数不超过1-n 的多项式空间,求导算子D
在基12,,,,1-n x x x 以及基12)!
1(1,,!21,
,1--n x n x x 下的矩阵分别为
, 。

5.设A 是复数域上的正规矩阵,则A 满足: ,并
写出常用的三类正规矩阵 。

三.计算题(每小题12分,共48分)
1.在3R 中,试用镜像变换(Householder 变换)将向量T )2,2,1(-=α
变为与T e )1,0,0(3=同方向的向量,写出变换矩阵。

2. 22⨯R 中,取基(I ):⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=1000,0100,0010,000122211211E E E E ,以及基(II ):⎪⎪⎭
⎫ ⎝⎛='⎪⎪⎭⎫ ⎝⎛='⎪⎪⎭⎫ ⎝⎛='⎪⎪⎭⎫ ⎝⎛='1001,0111,0011,000122211211E E E E , (1)求基(I )到基(II )的过渡矩阵;(2)若定义22⨯R 中线性变换
A A c b a
A ⎪⎪⎭⎫ ⎝⎛=0
)(,求A 在基(I )下的矩阵。

3.设⎪⎪⎪⎭
⎫ ⎝⎛-----=539649214A ,试求:(1)A 的不变因子及初等因子;
(2)A 的极小多项式及若尔当(Jordan )标准形J 。

(3)求变换矩阵P ,使得J AP P =-1。

4.设⎪⎪⎭
⎫ ⎝⎛-=0112A ,(1)求At e 及At sin (要求用两种方法)
四.证明题(第一小题10分,第二小题7分)
1.设A 是n 阶矩阵,如果A 的某算子范数1||||<A ,证明: A E -可逆,且||
||1||||||)(||1A A A E E -≤---。

2.设A 是数域K 上n 维线性空间V 上的线性变换,满足A 2= A , {|1α=V A 0=α},{|2α=V A αα=},证明:21V V V ⊕=。

相关文档
最新文档