自感系数与自感电动势

合集下载

自感电动势与自感系数

自感电动势与自感系数

3-6 自感电动势与自感系数一、教学目的:1、了解自感现象和自感系数的概念。

2、了解自感电动势的大小与什么因素有关,掌握自感电动势的方向判定。

二、教学重点:能够运动自感电动势判定,解决工作中的实际问题。

三、教学用具:日光灯一套、万用表、测电笔等。

四、教学过程:1、自感现象:通过如图3-28所示的实验来观察两种自感现象。

(1)在图3—28a电路中,HL1、HL2是两只完全相同的小灯泡,R为电阻,L是一个电感较大的铁心线圈,并且选择线圈的电阻和HL2支路的串联电阻R相等。

当开关S闭合瞬间,通过线圈的电流发生了由无到有的变化,线圈中的磁通呈增加的趋势。

根据楞次定律可知,线圈中的感应电动势要阻碍电流的增加,因此灯泡HL1发生逐渐变亮现象。

但HL2支路因串联的是一线性电阻而不会发生上述过程,因而灯泡HL2在接通电源后立即就亮。

(2)在图3—28b电路中线圈L和灯泡HL并联在直流电源上。

当开关S闭合后,灯亮。

但当开关S突然断开时,会发现灯泡并不是立即熄灭,而是猛然更亮了一下,然后才熄灭。

这是因为电源被切断瞬间,线圈产生一个很大的感应电动势,加在灯泡两端,在回路中形成很强的感应电流,使灯泡发出短暂的强光。

上述两种现象虽然不同,但本质却是相同的,都是由于线圈自身电流发生变化而引起的。

我们把这种由于流过线圈本身的电流发生变化而产生感应电动势的现象叫做自感应现象,简称自感。

由自感现象产生的电动势称自感电动势。

2、自感系数:当一个空心线圈通过电流后,这个电流产生的磁场使每匝线圈具有的磁通叫自感磁通。

使N匝线圈具有的磁通叫自感磁链。

我们把线圈中通过单位电流所产生的自感磁链称为自感系数,也称自感量。

简称电感。

电感量是衡量线圈通过单位电流时能够产生自感受磁链的物理量。

当线圈通过1A的电流能够产生1Wb的自感磁链,则该线圈的电感量就是1H。

电感的大小不但与线圈的匝数以及几何形状密切关系。

对有铁心线圈,L 不是常数,对空心线圈,因其媒体介质是空气,而空气磁导率是恒定不变的,当其结构一定时,L是常数。

电感的三个公式

电感的三个公式

电感的三个公式
电感的三个公式包括:
1. 自感公式:V = L di/dt,其中 V 表示自感电动势,L 是自感系数,di 是电流的变化量,dt 是电流变化的时间。

2. 尼黑定律:EMF = n (E1 - E2),其中 n 表示电子路径的长度,E1 表示电子由中性对对象流入极 A 所准备的势,E2 表示电子由中性对象流入极 B 所准备的势。

3. 特尔定律:EMF = I1 (R1 + R2),其中 I1 表示电子由极 A 流入极 B 所提供的电流,R1 和 R2 分别表示两个电极之间的电阻。

这些公式涵盖了电感的不同方面,包括自感、尼黑定律和特尔定律。

希望以上信息对您有所帮助,如果您还有其他问题,欢迎告诉我。

哈工大-大学物理-习题课-电磁感应和电磁场理论的基本概念-2010.7.9

哈工大-大学物理-习题课-电磁感应和电磁场理论的基本概念-2010.7.9

设单位长度电缆的自感为L,则单位长度电缆储存的磁能也可 设单位长度电缆的自感为 , 表示为
由方程
µ0I 2 1 R 1 2 2 LI = + ln R 2 4 4 π 1
µ0 1 R 2 可得出 L = + ln 从能量出发,求解自感系数 2 4 R π 1
10cm

dϕ 2 dB ei = = πr = π ×(10×10−2 )2 ×0.1 dt dt
= π ×10−3 = 3.14×10−3V
(3) 根据欧姆定律,圆环中的感应电流为 根据欧姆定律, ei π −3 −3
Ii = R = 2 ×10 =1.57×10 A
× × × × × × × × × × × ×
电场的电力线是同心圆, 且为顺时针绕向。 因此, 电场的电力线是同心圆 , 且为顺时针绕向 。 因此 , 圆环上 任一点的感生电场,沿环的切线方向且指向顺时针一边。 任一点的感生电场 , 沿环的切线方向且指向顺时针一边 。 其大小为
1 dB 1 E旋= r = ×10×10−2 ×0.1 2 dt 2
3、 在图示虚线圆内的所有点上,磁感 、 在图示虚线圆内的所有点上, 应强度B为 应强度 为 0.5T,方向垂直于纸面向里 , , 方向垂直于纸面向里, 且每秒钟减少0.1T。虚线圆内有一半径 且每秒钟减少 。 的同心导电圆环, 为 10 cm 的同心导电圆环,求: (1)圆环上任一点感生电场的大小和方向。 圆环上任一点感生电场的大小和方向。 圆环上任一点感生电场的大小和方向 (2)整个圆环上的感应电动势的大小。 整个圆环上的感应电动势的大小。 整个圆环上的感应电动势的大小
在圆柱与圆筒之间的空间距轴线r处 取一半径为 、厚为dr、 在圆柱与圆筒之间的空间距轴线 处,取一半径为r、厚为 、 单位长度的共轴薄壁圆柱壳、 单位长度的共轴薄壁圆柱壳、薄壁圆柱壳内磁能密度

法拉第电磁感应定律及应用

法拉第电磁感应定律及应用

法拉第电磁感应定律及应用高考要求:1、法拉第电磁感应定律。

、法拉第电磁感应定律。

2、自感现象和、自感现象和自感系数自感系数。

3、电磁感应现象的综合应用。

、电磁感应现象的综合应用。

一、法拉第电磁感应定律一、法拉第电磁感应定律1、 内容:电路中感应电动势的大小,跟穿过这一电路的内容:电路中感应电动势的大小,跟穿过这一电路的磁通量磁通量的变化率成正比。

的变化率成正比。

即E =n ΔФ/Δt 2、说明:1)在电磁感应中,E =n ΔФ/Δt 是普遍适用公式,不论导体回路是否闭合都适用,一般只用来求感应电动势的大小,方向由楞次定律或方向由楞次定律或右手定则右手定则确定。

2)用E =n ΔФ/Δt 求出的感应电动势一般是平均值,只有当Δt →0时,求出感应电动势才为瞬时值,若随时间均匀变化,则E =n ΔФ/Δt 为定值为定值3)E 的大小与ΔФ/Δt 有关,与Ф和ΔФ没有必然关系。

没有必然关系。

3、 导体在磁场中做切割磁感线运动导体在磁场中做切割磁感线运动1) 平动切割:当导体的运动方向与导体本身垂直,但跟磁感线有一个θ角在匀强磁场中平动切割磁感线时,产生感应电动势大小为:E =BLvsin θ。

此式一般用以计算感应电动势的瞬时值,但若v 为某段时间内的平均速度,则E =BLvsinθ是这段时间内的平均感应电动势。

其中L 为导体有效切割磁感线长度。

为导体有效切割磁感线长度。

2) 转动切割:线圈绕垂直于磁感应强度B 方向的转轴转动时,产生的感应电动势为:E =E m sin ωt =nBS m sin ωt 。

3) 扫动切割:长为L 的导体棒在磁感应强度为B 的匀强磁场中以角速度ω匀速转动时,棒上产生的感应电动势:①动时,棒上产生的感应电动势:① 以中心点为轴时E =0;② 以端点为轴时E=BL 2ω/2;③;③ 以任意点为轴时E =B ω(L 12 -L 22)/2。

二、自感现象及自感电动势二、自感现象及自感电动势1、 自感现象:由于导体本身自感现象:由于导体本身电流电流发生变化而产生的电磁感应现象叫自感现象。

自感、交流电

自感、交流电

S R
L R K E
L S K (b)
E
A、D
(a)
例3.在下列各图中,六个灯泡相同,线 圈电阻很小,闭合电键后缓慢变亮的是 哪盏灯,断开电键后闪亮一下的是哪盏 灯,并说明此时灯中电流的方向。
1 3 L L 5 L 6 K
2
4
K (2)
K
(1)
(3)
例4.如图所示,电键K原来是接通的,这时安培 计中指示某一读数,在把K断开瞬间,安培计中出 现: A、电流强度立即为零。 B、与原来方向相同逐渐减弱的电流。 C、与原来方向相同突然增大的电流。 D、与原来方向相反突然增大的电流
交变电流的变化规律
a B b
b
b
a
B a
bB
b
a
a
BLeabharlann (a)(b)(c)
(d)
(e)
例1.交流发电机的线圈在匀强磁 场中转动一周的时间内 A.感应电流的方向改变两次 B.线圈内穿过磁通量最大的时 刻,电流达到最大 C.线圈内穿过磁通量是零的时 刻,电流达到最大 D.线圈内电流有两次达到最大
A、C、D
自感
一、自感现象、自感电动势 由于本身的电流发生变化而产生的电磁感应现象,叫自感现象。在自 感现象产生的电动势叫自感电动势。 二、自感系数
t
自感电动势跟其他感应电动势一样,是跟穿过线圈的磁通量的变化率
成正比,磁通量Φ 跟磁感应强度B成正比,磁感应强度B又跟产生这个磁场 的电流I成正比,所以Φ 跟I成正比,Δ Φ 跟Δ I成正比,由此可知自感电动 势E=Δ Φ /Δ t跟Δ I/Δ t成正比,即
O
C
B A O′ R

B
例5.如图所示,abcd是一金属线框,处 于磁感应强度为B的匀强磁场中。线框 ab=cd=l,ad=cb=L,线框在绕垂直于磁力 线的轴OO'以角速度ω做匀速转动。从图中 所示的位置开始计时,求在线框中产生的 感应电动势。

电磁感应定律

电磁感应定律

电磁感应定律法拉第电磁感应定律即电磁感应定律。

因磁通量变化产生感应电动势的现象,闭合电路的一部分导体在磁场里做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应。

闭合电路的一部分导体在磁场中做切割磁感线运动,导体中就会产生电流。

这种现象叫电磁感应现象。

产生的电流称为感应电流。

这是初中物理课本为便于学生理解所定义的电磁感应现象,不能全面概括电磁感现象:闭合线圈面积不变,改变磁场强度,磁通量也会改变,也会发生电磁感应现象。

所以准确的定义如下:因磁通量变化产生感应电动势的现象。

[1]电动势的方向(公式中的负号)由楞次定律提供。

楞次定律指出:感应电流的磁场要阻碍原磁通的变化。

对于动生电动势也可用右手定则判断感应电流的方向,进而判断感应电动势的方向。

“通过电路的磁通量”的意义会由下面的例子阐述。

传统上有两种改变通过电路的磁通量的方式。

至于感应电动势时,改变的是自身的磁场,例如改变生成场的电流(就像变压器那样)。

而至于动生电动势时,改变的是磁场中的整个或部份电路的运动,例如像在同极发电机中那样。

感应电动势的大小由法拉第电磁感应定律确定;e(t) = -n(dΦ)/(dt)。

对动生的情况也可用E=BLV来求。

法拉第电磁感应定律的综合一. 教学内容:法拉第电磁感应定律的综合二. 学习目标:1、掌握自感现象的原理及应用其典型的题型分析思路。

2、重点掌握电磁感应与能量综合、与图象综合类问题的分析方法。

3、掌握与电磁感应现象相联系的物理模型的分析。

考点地位:电磁感应现象与能量及图象的综合问题历来是高考的重点和难点,出题的形式一般以大型的计算题的形式出现,从深层次上考查了学生对于能量观点的理解,数学方法在分析物理问题中的应用能力,同时电磁感应问题与日常生活实际相联系的问题能够很好的考查学生抽象物理模型分析物理模型的能力,如2007年全国理综1卷第21题,2007年江苏卷第18题,2006年广东卷第16题,2006年上海高考试题的第22题,2006年天津理综卷的第20题,2005年江苏高考卷的第16题都突出了对于这方面问题的考查。

当线圈中电流变化时

当线圈中电流变化时

M21 = M12 = M
就叫做这两个线圈的互感系数,简称为互感。 M 就叫做这两个线圈的互感系数,简称为互感。
M=
φ21
I1
=
φ12
I2
它的单位:亨利( ) 它的单位:亨利(H)
要求: Φ+与对应的I+符合右手螺旋关系
8
互感系数与两线圈的大小、形状、 互感系数与两线圈的大小、形状、磁介质和相对 位置有关。 位置有关。
φ 21 = N 2ϕ m 21 = ln2 B1S
µ
= ln2 µn1 I1S
中产生的互感系数: 线圈 1 在线圈 2 中产生的互感系数:
S n1 n2
M 21 =
φ 21
I1
= µn1n2lS
设线圈 2 中的电流为 I2, 线圈 2 在线圈 1 中产生的磁链: 中产生的磁链:
φ12 = N1ϕ m12 = ln B S = ln µn I S 1 2 1 2 2
7
根据毕奥—萨尔定 根据毕奥 萨尔定 律 写成等式: 写成等式:φ21 = M21i1,
r r r µ0 Idl × r dB = 4π r 3 ,
φ 21 ∝ I1 , φ12 ∝ I 2
φ12 = M12i2
M21 、M12是比例系数,M21称为线圈 1 对线圈 2 的互感 是比例系数, 系数, M12 称为线圈 2 对线圈 1 的互感系数, 系数 的互感系数, 从能量观点可以证明两个给定的线圈有: 从能量观点可以证明两个给定的线圈有:
2.自感系数 L 自感系数 自感磁通--由回路电流产生穿过电流自身回路的磁通 由回路电流产生穿过电流自身回路的磁通。 自感磁通 由回路电流产生穿过电流自身回路的磁通。 表示。 用 ϕL表示。 自感磁链--由回路电流产生穿过电流自身回路各匝线 自感磁链 由回路电流产生穿过电流自身回路各匝线 圈磁通的和。 表示。 圈磁通的和。用 ΦL表示。

自感系数的计算方法

自感系数的计算方法

自感系数的计算方法
自感系数的计算方法是用来测量电路中电感元件对自身电流变化的敏感程度的
参数。

它表示了电感元件在电流变化时,会引起电感自感电压的变化程度。

计算自感系数的方法通常基于法拉第定律,即电感的自感电动势等于电流对时
间的导数乘以一个常数L,其中L为电感的自感系数。

一种常用的方法是利用恒定电流源和开关来测量电感的自感系数。

首先,将电
感元件与一个电流源和一个开关连接,并使电流流过电感。

然后,突然打开或关闭开关,记录电感两端的电压随时间的变化。

利用电流对时间的导数定义自感系数。

当开关关闭时,电感的自感电动势为零;当开关打开时,自感电动势随电流的变化而发生变化。

通过测量自感电动势的变化和电流对时间的导数,可以计算出电感的自感系数。

另一种常见的方法是使用电压源和电容来测量自感系数。

通过将电感元件与电
容器和电源连接,并将电容器的电压与电感元件的电流进行比较,可以计算出电感的自感系数。

总之,计算自感系数可以通过测量电感两端的电压随时间的变化或者通过比较
电容器的电压与电感元件的电流来实现。

这些方法可以帮助我们了解电感元件对电流变化的敏感程度,并在电路设计和分析中起到重要的作用。

2016届高三物理一轮复习学案:电磁感应

2016届高三物理一轮复习学案:电磁感应

2016届高三物理一轮复习学案:电磁感应一、知识梳理(一)电磁感应现象1、磁通量(1)定义:设在磁感应强度为 B 的匀强磁场中,有一个与磁场方向垂直的平面,面积为 S,我们把 B 与 S 的乘积叫做穿过这个面积的磁通量,简称磁通。

用字母Φ 表示。

(2)公式:Φ = BS(条件:B⊥S)。

(3)单位:韦伯(Wb),1 Wb = 1 T·m²。

(4)磁通量是标量,但有正负之分。

2、电磁感应现象(1)定义:当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中就产生感应电流,这种利用磁场产生电流的现象叫做电磁感应。

(2)产生感应电流的条件:穿过闭合回路的磁通量发生变化。

(二)感应电流方向的判定1、楞次定律(1)内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

(2)应用楞次定律判断感应电流方向的步骤:①确定原磁场的方向;②确定穿过闭合回路的磁通量是增加还是减少;③根据楞次定律,确定感应电流的磁场方向;④利用安培定则,确定感应电流的方向。

2、右手定则(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内;让磁感线从掌心进入,并使拇指指向导线运动的方向,这时四指所指的方向就是感应电流的方向。

(2)适用情况:导体切割磁感线产生感应电流。

(三)法拉第电磁感应定律1、感应电动势(1)定义:在电磁感应现象中产生的电动势叫做感应电动势。

(2)产生条件:无论回路是否闭合,只要穿过回路的磁通量发生变化,回路中就会产生感应电动势。

2、法拉第电磁感应定律(1)内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

(2)公式:E =nΔΦ/Δt(n 为线圈的匝数)。

(四)导体切割磁感线时的感应电动势1、导体垂直切割磁感线(1)公式:E = BLv(B、L、v 两两垂直)。

(2)当 v 是瞬时速度时,E 为瞬时感应电动势;当 v 是平均速度时,E 为平均感应电动势。

法拉第电磁感应定律自感

法拉第电磁感应定律自感

考点解读 典型例题知识要点1.法拉第电磁感应定律:(1)感应电动势:在电磁感应现象中产生的电动势叫做感应电动势.感生电动势:由感生电场产生的感应电动势. 动生电动势:由于导体运动而产生的感应电动势.(2)内容:电路中感应电动势大小,跟穿过这一电路的磁通量的变化率成正比.(3)公式:E n t∆Φ=∆. (4)注意:①上式适用于回路磁通量发生变化的情况,回路不一定要闭合,只要穿过电路的磁通量发生变化,就会产生感应电动势;若电路是闭合的就会有感应电流产生.②△Φ不能决定E 的大小,t∆∆Φ才能决定E 的大小,而t∆∆Φ与△Φ之间无大小上的必然联系. ③公式只表示感应电动势的大小,不涉及方向. ④当△Φ仅由B 引起时,则tBnS E ∆∆=;当△Φ仅由S 引起时,则tSnBE ∆∆=. ⑤公式tnE ∆∆Φ=,若△t 取一段时间,则E 为△t 这段时间内感应电动势的平均值.当磁通量的变化率t∆∆Φ不随时间线性变化时,平均感应电动势一般不等于初态与末态电动势的平均值.若△t 趋近于零,则表示瞬时值.(5)部分导体切割磁感线产生的感应电动势的大小:E=BLVsinθ.①式中若V 、L 与B 两两垂直,则E=BLV ,此时,感应电动势最大;当V 、L 与B 中任意两个量的方向互相平行时,感应电动势E=0.②若导体是曲折的,则L 应是导体的两端点在V 、B 所决定的平面的垂线上投影间的.即L 为导体切割磁感线的等效长度.③公式E=BLV 中若V 为一段时间的平均值,则E 应是这段时间内的平均感应电动势;若V 为瞬时【例1】如图9-2-1所示,半径为r 的金属环,绕通过某直径的轴OO /以角速度ω转动,匀强磁场的磁感应强度为B .从金属环的平面与磁场方向重合开始计时,则在转过30O的过程中,环中产生的感应电动势的平均值是多大?【例2】在图9-2-2中,设匀强磁场的磁感应强度B=0.10T ,切割磁感线的导线的长度L=40cm ,线框向左匀速运动的速度V=5.0m/s ,整个线框的电阻R=0.5Ω,试求:感应电动势的大小;②感应电流的大小.【例3】如图9-2-3所示,固定在匀强磁场中的正方形导线框abcd ,各边长为L ,其中ab 边是一段电阻为R 的均匀电阻丝,其余三边均为电阻可忽略的铜导线,磁场的磁感应强度为B 方向垂直纸面向里.现有一与ab 段的材料、粗细、长度都相同的电阻丝PQ 架在导线框上,以恒定速度从ad 滑向bc .当PQ 滑过图9-2-3图9-2-1图9-2-2值,则E 应是某时刻的瞬时值.2.互感两个相互靠近的线圈中,有一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感生电动势,这种现象叫做互感,这种电动势叫做互感电动势.变压器就是利用互感现象制成的.3.自感:(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象.(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势.自感电动势的大小取决于自感系数和本身电流变化的快慢.(3)自感电流:总是阻碍导体中原电流的变化,当自感电流是由于原电流的增加引起时,自感电流的方向与原电流方向相反;当自感电流是由于原电流的减少引起时,自感电流的方向与原电流的方向相同.楞次定律对判断自感电流仍适用.(4)自感系数:①大小:线圈的长度越长,线圈的面积越大,单位长度上的匝数越多,线圈的自感系数越大;线圈有铁芯时自感系数大得多.②单位:亨利(符号H),1H=103mH=106μH ③物理意义:表征线圈产生自感电动势本领大小的物理量.数值上等于通过线圈的电流在1秒内改变1安时产生的自感电动势的大小.疑难探究4.如何理解和应用法拉第电磁感应定律? 对于法拉第电磁感应定律E n t∆Φ=∆应从以下几个方面进行理解:⑴它是描述电磁感应现象的普遍规律.不管是什么原因,用什么方式所产生的电磁感应现象,其感应电动势的大小均可由它进行计算.⑵一般说来,在中学阶段用它计算的是△t 时间内电路中所产生的平均感应电动势的大小,只有当磁通量的变化率为恒量时,用它计算的结果才等于电路中产生的瞬时感应电动势.L/3的距离时,通过aP 段电阻丝的电流强度是多大?方向如何?【例4】如图9-2-4所示的电路,L 为自感线圈,R 是一个灯泡,E 是电源,当S 闭合瞬间,通过电灯的电流方向是 ,当S 切断瞬间,通过电灯的电流方向是 .【例5】.金属杆ab 放在光滑的水平金属导轨上,与导轨组成闭合矩形电话,长L 1 = 0.8m ,宽L 2 = 0.5m ,回路的总电阻R = 0.2Ω,回路处在竖直方向的匀强磁场中,金属杆用水平绳通过定滑轮连接质量M = 0.04kg 的木块,木块放在水平面上,如图9-2-5所示,磁场的磁感应强度从B 0 = 1T 开始随时间均匀增强,5s 末木块将离开水平面,不计一切摩擦,g = 10m/s 2,求回路中的电流强度.图9-2-5图9-2-4⑶若回路与磁场垂直的面积S 不变,电磁感应仅仅是由于B 的变化引起的,那么上式也可以表述为:B E nSt ∆=∆,Bt∆∆是磁感应强度的变化率,若磁场的强弱不变,电磁感应是由回路在垂直于磁场方向上的S 的变化引起的,则SE nnB t t∆Φ∆==∆∆.在有些问题中,选用这两种表达方式解题会更简单. ⑷在理解这部分内容时应注意搞清楚:在电磁感应现象中,感应电流是由感应电动势引起的.产生感应电动势的那部分电路相当于电源,电动势的方向跟这段电路上的感应电流方向相同.当电路断开时,虽有感应电动势存在,并无感应电流,当电路闭合时出现感应电流.感应电流的大小由感应电动势的大小和电路的电阻决定,可由闭合电路的欧姆定律算出.感应电动势的大小由穿过这部分回路的磁通量变化率决定,与回路的通断,回路的组成情况无关.⑸要严格区分磁通量Φ、磁通量的变化量△Φ和磁通量的变化率t∆Φ∆这三个不同的概念. Φ、△Φ、t ∆Φ∆三者的关系尤如υ、△υ、tυ∆∆三者的关系.磁通量Φ等于磁感应强度B 与垂直于磁场方向的面积S 的乘积,即Φ=BS,它的意义可以形象地用穿过面的磁感线的条数表示.磁通量的变化量△Φ是指回路在初末两个状态磁通量的变化量,△Φ=Φ2-Φ1.△Φ与某一时刻回路的磁通量Φ无关,当△Φ≠0时,回路中要产生感应电动势,但是△Φ却不能决定感应电动势E 的大小.磁通量的变化率t∆Φ∆表示的是磁通量变化的快慢,它决定了回路中感应电动势的大小.t∆Φ∆的大小与Φ、△Φ均无关.5.公式E=BLV 使用时应注意那些问题? ⑴公式E=BLV 是法拉第电磁感应定律的一种特殊形式,不具有普遍适用性,仅适用于计算一段导体因切割磁感线而产生的感应电动势,且在匀强磁场中B 、L 、V 三者必须互相垂直.【例6】如图9-2-6所示,光滑导体棒bc 固定在竖直放置的足够长的平行金属导轨上,构成框架abcd ,其中bc 棒电阻为R ,其余电阻不计.一不计电阻的导体棒ef 水平放置在框架上,且始终保持良好接触,能无摩擦地滑动,质量为m .整个装置处在磁感应强度为B 的匀强磁场中,磁场方向垂直框面.若用恒力F 向上拉ef ,则当ef 匀速上升时,速度多大?【例7】如图9-2-9所示,两根电阻不计,间距为l 的平行金属导轨,一端接有阻值为R 的电阻,导轨上垂直搁置一根质量为m 、电阻为r 的金属棒,整个装置处于竖直向上磁感强度为B 的匀强磁场中.现给金属棒施一冲量,使它以初速0V 向左滑行.设棒与导轨间的动摩擦因数为μ,金属棒从开始运动到停止的整个过程中,通过电阻R 的电量为q .求:(导轨足够长)(1)金属棒沿导轨滑行的距离;(2)在运动的整个过程中消耗的电能.图9-2-6 图9-2-9⑵当V 是切割运动的瞬时速度时,算出的是瞬时电动势;当V 是切割运动的平均速度时,算出的是一段时间内的平均电动势.⑶若切割磁感线的导体是弯曲的,L 应理解为有效切割长度,即导体在垂直于速度方向上的投影长度.⑷公式E=BLV 一般适用于在匀强磁场中导体各部分切割速度相同的情况,对一段导体的转动切割,导体上各点线速度不等,怎样求感应电动势呢?如图9-2-7所示,一长为L 的导体棒AC 绕A 点在纸面内以角速度ω匀速转动,转动区域内在垂直于纸面向里的电动势.AC 转动切割时各点的速度不等,υA =0,υC =ωL,由A 到C 点速度按与半径成正比增加,取其平均切割速度12L υω=,得212E BL BL υω==.⑸若切割速度与磁场方向不垂直,如图9—28所示,υ与B 的夹角为θ,将υ分解为:υ∥=υcosθυ⊥=υsinθ,其中υ∥不切割磁感线,根据合矢量和分矢量的等效性得E=BLV ⊥=BLVsinθ.⑹区分感应电量与感应电流.回路中发生磁通量变化时,由于感应电场的作用使电荷发生定向移动而形成感应电流,在△t 内迁移的电量(感应电量)为E q I t t t R R t R∆Φ∆Φ=∆=∆=∆=∆ 仅由回路电阻和磁通量变化决定,与发生磁通量变化的时间无关.因此,当用一根磁棒先后两次从同一处用不同速度插至线圈中同一位置时,线圈里积聚的感应电量相等.但快插与慢插时产生的感应电动势、感应电流不同,外力做的功也不同.6.通电自感和断电自感的两个基本问题?【例8】CD 、EF 为两足够长的导轨,CE =L ,匀强磁场方向与导轨平面垂直,磁感强度为B ,导体CE 连接一电阻R ,导体ab 质量为m ,框架与导体电阻不计,如图9-2-11所示.框架平面与水平面成θ角,框架与导体ab 间的动摩擦因数为μ,求导体ab 下滑的最大速度?【例9】.如图9-2-12所示,两光滑平行导轨MN 、PQ 水平放置在匀强磁场中,磁场方向与导轨所在平面垂直,金属棒ab 可沿导轨自由移动,导轨左端M 、P 接一定值电阻,金属棒以及导轨的电阻不计.现将金属棒由静止向右拉,若保持拉力F 恒定,经过时间t 1后,金属棒的速度为v ,加速度为a 1,最终以2v 作匀速运动;若保持拉力F 的功率恒定,经过时间t 2后,金属棒的速度为v ,加速度为a 2,最终以2v 作匀速运动.求a 1与 a 2的比值.图9-2-7图9-2-8图9-2-11对自感要搞清楚通电自感和断电自感两个基本问题,尤其是断电自感,特别模糊的是断电自感中“小灯泡在熄灭之前是否要闪亮一下”的问题,如图9-2-10所示,原来电路闭合处于稳定状态,L 与A 并联,其电流分别为I L 和I A ,都是从左向右.在断开K 的瞬时,灯A 中原来的从左向右的电流I A 立即消失.但是灯A 与线圈L 组成一闭合回路,由于L 的自感作用,其中的电流I L 不会立即消失,而是在回路中逐渐减弱维持短暂的的时间,这个时间内灯A 中有从右向左的电流通过.这时通过A 的电流是从I L 开始减弱,如果原来I L >I A ,则在灯A 熄灭之前要闪亮一下;如果原来I L ≤I A ,则灯A 逐渐熄灭不再闪亮一下.原来的I L 和I A 哪一个大,要由L 的直流电阻R L 与A 的电阻R A 的大小来决定.如果R L ≥R A ,则I L ≤I A ;如果R L <R A ,则I L >I A .典型例题答案【例1】解析:金属环在转过300的过程中,磁通量的变化量201221030sin r B BS π=-=Φ-Φ=∆Φ 又ωπωπωθ66===∆t 所以223621r B r B tE ωωππ==∆∆Φ=【例2】解析:①线框中的感应电动势 E=BLV=0.10×0.40×5.0V=0.20V ②线框中的感应电流A A R E I 40.050.020.0===【例3】解析:当PQ 滑过L/3时,PQ 中产生感应电动势为E=BLV ,它相当于此电路中的一个电源,其内电阻r=R .此时外电阻R aP =R/3,R bP =2R/3,总的外电阻为R R RR R 923231=⨯=总, 由全电路欧姆定律得到,通过PQ 的电流强度为RBLVR R BLV r R E I 11992=+=+=总; 则通过aP 的电流强度为RBLV I I aP 11632==, 方向由P 到a.【例4】解析:当S 闭合时,流经R 的电流是A —B .当S 切断瞬间,由于电源提供给R 及线圈的电流立即消失,因此线圈要产生一个和原电流方向相同的自感电动势来阻碍原电流减小,所以线圈此时相当于一个电源,产生的自感电流流经R 时的方向是B —A .【例5】解析:设磁感应强度B 的变化率tB∆∆ = k ,则B = B 0 + kt ,并根据法拉第电磁感应定律ε= N ·tB ∆∆,有:21L Lk S tB ⋅⋅=⋅∆∆=ε图9-2-10PM NQR a bF图9-2-12则感应电流 RL kL RI 21==ε 感应电流所受安培力F 安为:()2210L RL kL kt B BIL F ⋅+==安 当F 安= Mg 时木块离开水平面,即()()A R L kL I T k k k MgL RL L k kt B 4.02.05.08.02.02.01004.05.02.05.08.051212210=⨯⨯===⨯=⨯⨯⨯+=⋅⋅+∴ 感应电流的电流强度为0.4A .【例6】解析:当杆向上运动时,杆ef 受力如图9-2-7所示.由牛顿第二定律得:maF mg F =--安,mF mg F a 安--=,当F 、mg 都不变时,只要v 变大,E =BLv 就变大,REI =变大,F 安变大,从而a 变小.当v 达到某一值,则a =0,此后杆ef 做匀速运动.因此,杆ef 做加速度越来越小的加速运动,当a =0时最终匀速上升.当杆匀速上升时,有F =F 安+mg …………①F 安=BIL =Rv L B 匀22…………②由①、②式得:v 匀=()22L B R mg F -【例7】解析:(1)设滑行的距离为L 由法拉第电磁感应有tlBL t S B t Φ∆⨯=∆∆=∆∆=ε ① 而由电流定义有tqI ∆=② 由闭合电路的欧姆定律得rR I +=ε③由①②③解得q r R l BL=+⋅得lB rR q L ⋅⋅+=(2)由功能原理得20210)(mV Q W f -=-+- ④而lB rR mgq mgL W f ⋅⋅+==μμ ⑤ 所以:lB rR mgqmV Q ⋅⋅+-=μ2021 【例8】解析:由能的转化和守恒定律知,当导体ab 以最大速度v m 匀速运动以后,导体ab 下滑过程中,减少的重力势能(机械能)等于克服摩擦力所做的功和电阻R 产生的热量,并设以最大速度运动的时间为t ,则:mgsin θ·(v m t )= μmgcos θ·(v m t ) +I 2Rt mgsin θ·(v m t ) =μmgcos θ·(v m t ) +Rt R v l B m2222 解得:()22cos sin l B mgR v m θμθ-=【例9】解析:F 恒定,当金属棒速度为2v 时:RvL B L BI F 2222== 当金属棒速度为v 时: mRv L B a ma R vL B R v L B ma L BI F 22112222112==-=- F 功率恒定,设为P .当金属棒速度为2v 时:R v L B v F P 222242==当金属棒速度为v 时: mRv L B a ma Rv L B v P ma L BI F 2222222113==-='- 则:3121=a a图9-2-针对练习 1.在电磁感应现象中,通过线圈的磁通量与感应电动势关系正确的是( )A .穿过线圈的磁通量越大,感应电动势越大B .穿过线圈的磁通量为零,感应电动势一定为零C .穿过线圈的磁通量变化越大,感应电动势越大D .穿过线圈的磁通量变化越快,感应电动势越大2.如图9-2-13所示的电路中,A 1和A 2是完全相同的灯泡,线圈L 的电阻可以忽略.下列说法中正确的是()A .合上开关S 接通电路时,A 2先亮,A 1后亮,最后一样亮B .合上开关S 接通电路时,A 1和A 2始终一样亮C .断开开关S 切断电路时,A 2立刻熄灭,A 1过一会儿才熄灭D .断开开关S 切断电路时,A 1和A 2都要过一会儿才熄灭3. (2006年潍坊市高三统一考试)如图9-2-14所示,a 、b 是平行金属导轨,匀强磁场垂直导轨平面,c 、d 是分别串有电压表和电流表的金属棒,它们与导轨接触良好,当c 、d 以相同的速度向右运动时,下列说法正确的是()A.两表均无读数B.两表均有读数C.电流表有读数,电压表无读数D.电流表无读数,电压表有读数4.如图9-2-15示,甲中有两条不平行轨道而乙中的两条轨道是平行的,其余物理条件都相同.金属棒MN 都正在轨道上向右匀速平动,在棒运动的过程中,将观察到 ( )A .L 1,L 2小电珠都发光,只是亮度不同B .L l ,L 2都不发光C .L 2发光,L l 不发光D .L l 发光,L 2不发光5.(连云港2006年第一学期期末调研考试)如图9-2-16所示,AOC 是光滑的直角金属导轨,AO 沿竖直方向,OC 沿水平方向,ab 是一根金属直棒,如图立在导轨上(开始时b 离O 点很近).它从静止开始在重力作用下运动,运动过程中a 端始终在AO 上,b 端始终在OC 上,直到ab 完全落在OC 上,整个装置放在一匀强磁场中,磁场方向垂直纸面向里,则ab 棒在运动过程中( )A.感应电流方向始终是b→aB.感应电流方向先是b→a,后变为a→bC.受磁场力方向垂直于ab 向上D.受磁场力方向先垂直ab 向下,后垂直于ab 向上6.如图9-2-17所示,在两平行光滑导体杆上,垂直放置两导体ab 、cd ,其电阻分别为R l 、R 2,且R 1<R 2,其他电阻不计,整个装置放在磁感应强度为B 的匀强磁场中.当ab 在外力F l 作用下向左匀速运动,cd 则在外力F 2作用下保持静上,则下面判断正确的是( )A .F l >F 2,U ab >U abB .F l =F 2,U ab =U cdC .F 1<F 2,U ab =U cdD .F l =F 2,U ab <U cd图9-2-17图9-2-14图9-2-13 图9-2-16A CabO图9-2-15单元达标1.穿过闭合回路的磁通量φ随时间t变化的图象分别如图9-2-18①~④所示,下列关于回路中产生的感应电动势的论述,正确的是( )A.图①中回路产生的感应电动势恒定不变B.图②中回路产生的感应电动势一直在变大C.图③中回路在0~t1时间内产生的感应电动势小于在t1~t2时间内产生的感应电动势D.图④中回路产生的感应电动势先变小再变大2.如图9-2-19所示,两个互连的金属圆环,粗金属环的电阻是细金属环电阻的二分之一.磁场垂直穿过粗金属环所在区域.当磁感应强度随时间均匀变化时,在粗环内产生的感应电动势为E,则a、b两点间的电势差为:()A.E21B.E31C.E32D.E3.水平放置的金属框架cdef处于如图9-2-20所示的匀强磁场中,金属棒ab置于粗糙的框架上且接触良好.从某时刻开始磁感应强度均匀增大,金属棒ab始终保持静止,则()A.ab中电流增大,ab棒受摩擦力也增大B.ab中电流不变,ab棒受摩擦力也不变C.ab中电流不变,ab棒受摩擦力增大D.ab中电流增大,ab棒受摩擦力不变4.如图9-2-21所示,让线圈由位置1通过一个匀强磁场的区域运动到位置2,下述说法中正确的是:()A.线圈进入匀强磁场区域的过程中,线圈中有感应电流,而且进入时的速度越大,感应电流越大B.整个线圈在匀强磁场中匀速运动时,线圈中有感应电流,而且感应电流是恒定的C.整个线圈在匀强磁场中加速运动时,线圈中有感应电流,而且感应电流越来越大D.线圈穿出匀强磁场区域的过程中,线圈中有感应电流,而且感应电流越来越大5.如图9-2-22中所示电路,开关S原来闭合着,若在t1时刻突然断开开关S,则于此时刻前后通过电阻R1的电流情况用图9-2-23中哪个图像表示比较合适()6.如图9-2-24所示,一宽40cm的匀强磁场图9-2-22图9-2-20图9-2-19图9-2-18××××××××××××1 2图9-2-21图9-2-23区域,磁场方向垂直纸面向里,一边长为20cm的正方形导线框位于纸面内,以垂直于磁场边界的恒定速度v=20cm/s通过磁场区域,在运动过程中,线框中有一边始终与磁场区域的边界平行,取它刚进入磁场的时刻t=0,在图9-2-25的图线中,正确反映感应电流强度随时间变化规律的是()7.如图9-2-26所示,一闭合小铜环用绝缘细线悬挂起来,铜环从图示位置静止释放,若不计空气阻力,则()A.铜环进入或离开磁场区域时,环中感应电流方向都沿顺时针方向B.铜环进入磁场区域后,越靠近OO′位置速度超大,产生的感应电流越大C.此摆的机械能不守恒D.在开始一段时间内,铜环摆动角度逐渐变小,以后不变8.如图9-2-27所示,在光滑绝缘水平面上,有一矩形线圈以一定的初速度进入匀强磁场区域,线圈全部进入匀强磁场区域时,其动能恰好等于它在磁场外面时的一半,设磁场区域宽度大于线圈宽度,则()A.线圈恰好在完全离开磁场时停下B.线圈在未完全离开磁场时已停下C.线圈能通过场区不会停下D.线圈在磁场中某个位置停下9.如图9-2-28所示,水平金属导轨足够长,处于竖直向上的匀强磁场中,导轨上架着金属棒ab,现给ab一个水平冲量,ab将运动起来,最后又静止在导轨上,对此过程,就导轨光滑和粗糙两种情况比较有()A.安培力对ab棒做功相等B.电流通过整个回路做功相等C.整个回路产生的热量相等D.两棒运动的路程相等10.如图9-2-29所示,两个相同的线圈从同一高度自由下落,途中在不同高度处通过两处高度d 相同、磁感应强度B相等的匀强磁场区域后落到水平地面上,则两线圈着地时动能E Ka、E Kb的大小和运动时间t a、t b的长短关系是()A.E Ka=E Kb,t a=t bB.E Ka>E Kb,t a>t bC.E Ka>E Kb,t a<t bD.E Ka<E Kb,t a<t b图9-2-29图9-2-28图9-2-27图9-2-24图9-2-25图9-2-2611.如图9-2-30所示,导体ab 可无摩擦地在足够长的处在匀强磁场中的竖直导轨上滑动,除电阻R 外,其余电阻不计,在ab 下落过程中,试分析(1)导体的机械能是否守恒.________ (2)ab 达到稳定速度之前,其减少的重力势能________(填“大于”“等于”或“小于”)电阻R 上产生的内能.12.如图9-2-31所示,两反向匀强磁场宽均为L ,磁感应强度均为B ,正方形线框边长也为L ,电阻为R ,当线框以速度v 匀速穿过此区域时,外力所做的功为________.图9-2-30图9-2-31。

4 自感和互感

4 自感和互感
美国物理学家, 美国物理学家,1832年受聘为新泽西学院物理 年受聘为新泽西学院物理 学教授, 学教授,1846年任华盛顿史密森研究院首任院 年任华盛顿史密森研究院首任院 年被选为美国国家科学院院长。 长,1867年被选为美国国家科学院院长。他在 年被选为美国国家科学院院长 1830年观察到自感现象,直到 年观察到自感现象, 年观察到自感现象 直到1932年7月才将题 年 月才将题 长螺线管中的电自感》的论文, 为《长螺线管中的电自感》的论文,发表在 美国科学杂志》 《美国科学杂志》上。亨利与法拉第是各自独 立地发现电磁感应的,但发表稍晚些。 立地发现电磁感应的,但发表稍晚些。强力实 用的电磁铁继电器是亨利发明的, 用的电磁铁继电器是亨利发明的,他还指导莫 尔斯发明了第一架实用电报机。 尔斯发明了第一架实用电报机。 亨利的贡献很大,只是有的没有立即发表, 亨利的贡献很大,只是有的没有立即发表,因而失去了许多发 明的专利权和发现的优先权。但人们没有忘记这些杰出的贡献, 明的专利权和发现的优先权。但人们没有忘记这些杰出的贡献, 为了纪念亨利,用他的名字命名了自感系数和互感系数的单位, 为了纪念亨利,用他的名字命名了自感系数和互感系数的单位, 简称“ 简称“亨”。
第五版
8-3
自感和互感
ψ 假定螺线管通入电流 I, , L= I 2 N ψ = NΦ = NBS = N ( ? ) S = N (µ 0 nI ) S = µ 0 IS l 真空中 N ψ N2 L = = µ0 S S l I I 2 = µ 0 n V体 可见“L”是常数 可见“ 是常数 l
电压互感器
电流互感器
第八章 电磁感应 电磁场
感应圈
10
物理学
第五版
8-3
自感和互感

自感电动势与自感系数

自感电动势与自感系数
t
4.楞次定律的内容是什么? 答:当穿过线圈的磁通(原有的磁通)发生变化时,感应电动势的方向
3
总是企图使它的感应电流产生的磁通阻止原有磁通的变化。
授新课
课时计划副页
授 课内 容
第2页
共9页
时间 分配
3-7 自感电动势与自感系数
设问:除可以采用向线圈中插入或拔出磁铁的方法使线圈中磁通发 10 分
生变化而产生电磁感应现象外,还有没有其他办法呢?
t
eL =0


若 i 一定,L 越大,
t
eL 越大。
L 越小, eL 越小。
下面通过举例对 eL
L i t
进行应用。
例 3-6 电感量 L=0.12H 线圈在 0.5s 内电流自 2A 均匀地降
到 0.5A,求此线圈所产生的自感电动势eL ?
解:
eL
L i t
0.12 0.5 2 0.5
0.36V
2
课时计划副页
第1页 共9页
授 课内 容
时间 分配
复习:(为了调动学生的积极性,采用学生抢答形式,抢答正确后算成 5 分
平时成绩进行加分)
1.什么叫电磁感应现象?
答:由于磁通变化而在导体或线圈中产生感应电动势的现象。
2.产生电磁感应的条件是什么? 答:通过线圈回路的磁通必须发生变化。 3.法第电磁感应定律的内容及公式是怎样的? 答:①内容:线圈感应电动势的大小与通过同一线圈的磁通的变化 率(即变化快慢)成正比。②公式: e N
课时计划副页
第3页 共9页
授 课内 容
时间 分配
由学生回答:当开关 S 闭合时,通过线圈中的电流发生了由无到
有的变化,线圈中的磁通呈增加的趋势。

自感互感与磁能3

自感互感与磁能3

当然,这只是相似,并非全同! 当然,这只是相似,并非全同! 因而研究中还要抓住特异点。 因而研究中还要抓住特异点。 类比研究有利于思维联想,能够开拓思路。 类比研究有利于思维联想,能够开拓思路。我 们要学会抓住各学科的交叉渗透现象, 们要学会抓住各学科的交叉渗透现象,要从看上去 互不相关的现象中寻找内在的联系。 互不相关的现象中寻找内在的联系。 建议阅读文献: 建议阅读文献: 费曼物理学讲义 第一卷 25 章
d 2q dI =L 2 U=L dt dt
dI d 2q U=L =L 2 dt dt
线圈 U I q
dv d2x 比较 F = m =m 2 dt dt
牛顿粒子 F v x m mv 1 2 mv 2
L LI(自磁链) (自磁链) 1 2 LI 2
?
相同的方程应该有相同的解。 相同的方程应该有相同的解。这种形式上的对 提供给我们一个可能是正确的信息: 可能是正确的信息 比,提供给我们一个可能是正确的信息: 1 2 LI 应该具有能量的意义 !? 2 这种从数学形式相同出发进行类比的研究方法 是非常有效的。 是非常有效的。 非常有趣的是,物理学中既存在相似定律, 非常有趣的是,物理学中既存在相似定律,也 存在相似现象, 存在相似现象,如 万有引力定律 机械振动 ─ ─ 库仑定律 电磁振荡 相似定律 相似现象
Ψ µ N 2 h R2 L= = ln( ) 2π R1 I
自感线圈的串联
L 1
L 2
L 1
L 2
a I
b
c
d
a I
b
c
d
(a)顺接 )
(b)逆接 )
L= L + L2 +2M 1
L= L + L2 −2M 1

大学物理自感和互感

大学物理自感和互感

~
~
变压器
收音机中的磁棒天线
19
10 - 4 自感和互感
第十章 电磁感应
互感的防止
电话串音(两路电话间的互感) 电路设计中互感的避免
20
10 - 4 自感1和0 -互5感磁场能量 第十章 电磁感应
一、自感磁能
L
考察在开关合上后的一段时
R
间内,电路中的电流滋长过程: 由全电路欧姆定律
BATTE
RY 电池
称为该线圈的自感系数,用L表示。
L的计算: LI
LI
注意:自感系数与电流无关,只决定于线圈本 身的性质--几何尺寸、匝数、介质。
3
10 - 4 自感和互感
第十章 电磁感应
4、自感电动势
根据法拉第电磁感应定律:
Ψ自 LI
L
d自 dt
d( LI ) dt
L dI I dL dt dt
若回路几何形状、 尺寸不变,周围介 质的磁导率不变
16
10 - 4 自感和互感
第十章 电磁感应
例. 如图,在磁导率为的均匀磁介质中,一长直导线与
矩形线圈一边相距为a,线圈共N匝,求互感系数.
解:设直导线中通有自下而上的电流I,它激发的磁场通过
矩形线圈的磁通链数为
N sB dS
ab I
NIl a b
N a
ldr ln
2r
2 a
互感为 M Nl ln a b
第十章 电磁感应
M12
I1
I2 M21
L1
L2
线圈中产 生焦耳热
反抗自感 电动势做功
反抗互感 电动势做功
互感磁能
W
1 2
L1I12
1 2

自感现象

自感现象
L R2
S
R1
A1 A2
后稳定时, 解:合上S后稳定时,R2和L中电流方向向右 合上 后稳定时 中电流方向向右 断开S的瞬间 的瞬间, 中电流不能突变 仍然向右, 中电流不能突变, 断开 的瞬间, L中电流不能突变,仍然向右, 通过闭合回路中的电流为逆时针方向, 通过闭合回路中的电流为逆时针方向, A1中 电流方向与原来相反。 电流方向与原来相反。 向左, 所以 A1向左,A2向右
L
线圈中的电流不能突变
I0
R
S R
如图所示的电路, 是自感系数较大的线圈 是自感系数较大的线圈, 例3. 如图所示的电路,L是自感系数较大的线圈, 在滑动变阻器的滑动片P从 端迅速滑向 端迅速滑向B端的过 在滑动变阻器的滑动片 从 A端迅速滑向 端的过 程中,经过AB中点 时通过线圈的电流为I 中点C时通过线圈的电流为 程中,经过 中点 时通过线圈的电流为 1;P从 从 B端迅速滑向 端的过程中 , 经过 点时通过线圈 端迅速滑向A端的过程中 端迅速滑向 端的过程中, 经过C点时通过线圈 的电流为I 固定在C点不动 的电流为 2 ; P固定在 点不动 , 达到稳定时通过 固定在 点不动, 线圈的电流为I ) 线圈的电流为 0,则( D A. I1 = I2= I0 B. I1 > I0 > I2 C. I1 = I2> I0 D. I1 < I0 < I2
L A C B
·P
R
R1
如图14所示的电路 所示的电路, 例4. 如图 所示的电路 ,L1和L2是两个相同的小 电珠, 是一个自感系数相当大的线圈 是一个自感系数相当大的线圈, 电珠,L是一个自感系数相当大的线圈,其电阻与 R相同 , 由于存在自感现象 , 在电键 接通时 , 相同, 接通时, 相同 由于存在自感现象, 在电键S接通时 L1 灯先亮 _______灯先亮;S断开时,_______灯先熄灭。 灯先亮; 断开时 断开时, L2 灯先熄灭 灯先熄灭。

【名师一号】高三物理一轮复习 第九章 第二讲 法拉第电磁感应定律 自感现象课件 新人教版

【名师一号】高三物理一轮复习 第九章 第二讲 法拉第电磁感应定律 自感现象课件 新人教版

A.S 闭合,L1 亮度不变,L2 亮度逐渐变亮,最后两灯 一样亮;S 断开,L2 立即不亮,L1 逐渐变亮
B.S 闭合,L1 不亮,L2 很亮;S 断开,L1、L2 立即不 亮
C.S 闭合,L1、L2 同时亮,而后 L1 逐渐熄灭,L2 亮度 不变;S 断开,L2 立即不亮,L1 亮一下才灭
D.S 闭合,L1、L2 同时亮,而后 L1 逐渐熄灭,L2 则逐 渐变得更亮;S 断开,L2 立即不亮,L1 亮一下才灭
解析 当磁感应强度增加时,若变化率ΔΔBt 不变,线框中 的感应电流不变;若变化率ΔΔBt 增加,线框中的感应电流增加, 若变化率ΔΔBt 减小,线框中的感应电流减小,故选项 A 正确而 选项 B 错误;同理可得,选项 D 正确而 C 错误.
答案 AD
4.如图所示,线圈L的自感系数很大,且其电阻可以忽 略不计,L1、L2是两个完全相同的小灯泡,随着开关S闭合 和断开的过程中,L1、L2的亮度变化情况是(灯丝不会 断)( )
让铜棒从静止开始自由下落,铜棒下落距离为 0.2R 时铜棒中 电动势大小为 E1,下落距离为 0.8R 时电动势大小为 E2.忽略 涡流损耗和边缘效应,关于 E1、E2 的大小和铜棒离开磁场前 两端的极性,下列判断正确的是( )
方向垂直纸面向里.现有一段长度为2l 、电阻为R2的均匀导体 杆 MN 架在导线框上,开始时紧靠 ac,然后沿 ab 方向以恒 定速度 v 向 b 端滑动,滑动中始终与 ac 平行并与导线框保持 良好接触.当 MN 滑过的距离为3l 时,导线 ac 中的电流是多 大?方向如何?
[解析]
MN滑过的距离为
答案 D
5.如图所示,把总电阻为2R的均匀电阻丝焊接成一半 径为a的圆环,水平固定在竖直向下的磁感应强度为B的匀强 磁场中,一长度为2a、电阻等于R,粗细均匀的金属棒MN 放在圆环上,与圆环始终保持良好的接触.当金属棒以恒定 速度v向右移动,且经过圆心时,求:

高中物理选择性必修二学案 第二章第四节 互感和自感

高中物理选择性必修二学案 第二章第四节 互感和自感

第四节 互感和自感[学习目标] 1.了解互感现象及其应用.2.能够通过电磁感应的有关规律分析通电自感和断电自感现象.3.了解自感电动势的表达式E =L ΔI Δt ,知道自感系数的决定因素.4.了解自感现象中的能量转化. 一、互感现象 1.互感和互感电动势:两个相互靠近但导线不相连的线圈A 、B ,当线圈A 中的电流发生变化时,它产生的变化的磁场在线圈B 中激发出了感应电动势.根据对称性思想,线圈B 中感应电流的变化,同时也会在线圈A 中产生相应的感应电动势,这种现象称为互感,所产生的感应电动势称为互感电动势.2.应用:利用互感现象,可以将一个线圈中变化的信号传递到另外一个线圈,如变压器,就是利用互感现象制成的.3.危害:互感现象能发生在任何两个相互靠近的电路之间.在电力工程和电子电路中,互感现象有时会影响电路的正常工作.二、自感现象由于线圈本身的电流发生变化而产生的电磁感应现象称为自感.在自感现象中产生的感应电动势,称为自感电动势.三、自感系数1.自感电动势:E =L ΔI Δt ,其中ΔI Δt是电流的变化率;L 是自感系数,简称自感或电感.单位:亨利,符号:H.2.自感系数与线圈的形状、长短、匝数,以及是否有铁芯等因素有关.四、磁场的能量1.线圈中电流从无到有时,磁场从无到有,电源把能量输送给磁场,储存在磁场中.2.线圈中电流减小时,磁场中的能量释放出来转化为电能.3.自感电动势有阻碍线圈中电流变化的性质.1.判断下列说法的正误.(1)两个线圈相距较近时,可以产生互感现象,相距较远时,不产生互感现象.( × )(2)自感现象中,感应电流一定与原电流方向相反.( × )(3)线圈的自感系数与电流大小无关,与电流的变化率有关.(×)(4)对于同一线圈,当电流变化较快时,线圈中的自感电动势也较大.(√)(5)没有发生自感现象时,即使有磁场也不会储存能量.(×)2.如图1所示,电路中电源内阻不能忽略,L的自感系数很大,其直流电阻忽略不计,A、B为两个完全相同的灯泡,当S闭合时,A灯________变亮,B灯________变亮.当S断开时,A灯________熄灭,B灯________熄灭.(均选填“立即”或“缓慢”)图1答案缓慢立即缓慢缓慢一、互感现象导学探究如图2所示,在法拉第的实验中两个线圈并没有用导线连接,当一个线圈中的电流变化时,在另一个线圈中为什么会产生感应电动势呢?图2答案两个线圈之间并没有导线相连,当一个线圈中的电流变化时,它所产生的变化的磁场会使穿过另一个线圈的磁通量发生变化,从而产生感应电动势.知识深化1.一个线圈中电流变化越快(电流的变化率越大),另一个线圈中产生的感应电动势越大.2.应用与危害(1)应用:变压器、收音机的磁性天线都是利用互感现象制成的.(2)危害:在电力工程和电子电路中,互感现象有时会影响电路的正常工作,这时要设法减小电路间的互感.例如在电路板刻制时就要设法减小电路间的互感现象.(多选)手机无线充电是比较新颖的充电方式.如图3所示,电磁感应式无线充电的原理与变压器类似,通过分别安装在充电基座和接收能量装置上的线圈,利用产生的磁场传递能量.当充电基座上的送电线圈通入正弦式交变电流后,就会在邻近的受电线圈中感应出电流,最终实现为手机电池充电.在充电过程中()图3A.送电线圈中电流产生的磁场呈周期性变化B.受电线圈中感应电流产生的磁场恒定不变C.送电线圈和受电线圈通过互感现象实现能量传递D.手机和基座无需导线连接,这样传递能量没有损失答案AC解析送电线圈中通入的是正弦式交变电流,故产生的磁场也是周期性变化的,受电线圈中产生的感应电流也是周期性变化的,感应电流产生的磁场也是周期性变化的,故A正确,B 错误;送电线圈和受电线圈通过互感现象实现能量传递,故C正确;有一部分能量会以电磁波的形式散发到周围的空间中损失掉,也有一部分能量转化为手机的内能损失掉,故D错误.针对训练1如图4所示,在同一铁芯上绕着两个线圈A、B,单刀双掷开关原来接“1”,现在把它从“1”扳向“2”.则在此过程中,电阻R中的电流方向是()图4A.先由P→Q,再由Q→PB.先由Q→P,再由P→QC.始终由Q→PD.始终由P→Q答案 A解析由于A线圈产生的磁场发生变化,B线圈中会产生感应电流,这就是互感.将开关由“1”扳到“2”的过程中,分两个阶段来分析电阻R上的电流方向.(1)在线圈A中电流沿原方向减小的过程中,线圈A的磁场自右向左也跟着减弱,导致穿过线圈B的磁通量减少.由楞次定律知,线圈B中会产生由P→Q的感应电流;(2)在线圈A中电流沿原方向增大的过程中,线圈A的磁场自右向左也跟着增强,导致穿过线圈B的磁通量增加.由楞次定律知,线圈B中会产生由Q→P的电流.综上分析可知,全过程中流过电阻R的电流方向先是由P→Q,然后是由Q→P,所以A正确.二、自感现象导学探究1.按照图5连接电路.图5(1)开关S接通时,灯泡1和2的发光情况有什么不同?(2)利用已学知识解释该现象.答案(1)灯泡2立即发光,而灯泡1是逐渐亮起来的.(2)接通电源的瞬间,电流增加,线圈L中产生感应电动势.根据楞次定律,线圈L中的感应电动势会阻碍电流的增加,所以灯泡1慢慢地亮起来.2.按照图6连接电路.(已知灯泡的电阻小于线圈L的直流电阻)图6(1)先闭合开关使灯泡发光,稳定后断开开关.观察并说明开关断开时灯泡的亮度.(2)利用已学知识解释该现象.答案(1)灯泡逐渐熄灭.(2)开关断开时,通过线圈L的电流减小,这时会出现感应电动势阻碍线圈L中的电流减小,线圈中产生与原方向相同的电流,与灯泡构成闭合回路,所以灯泡不是马上熄灭,而是慢慢熄灭.知识深化1.对自感现象的理解自感现象是一种电磁感应现象,遵守法拉第电磁感应定律和楞次定律.2.对自感电动势的理解(1)产生原因通过线圈的电流发生变化,导致穿过线圈的磁通量发生变化,因而在线圈上产生感应电动势.(2)自感电动势的方向当原电流增大时,自感电动势的方向与原电流方向相反;当原电流减小时,自感电动势的方向与原电流方向相同(即:增反减同).(3)自感电动势的作用阻碍原电流的变化,而不是阻止,原电流仍在变化,只是使原电流的变化时间变长,即总是起着推迟电流变化的作用.3.对电感线圈阻碍作用的理解(1)若电路中的电流正在改变,电感线圈会产生自感电动势阻碍电路中电流的变化,使通过电感线圈的电流不能突变.(2)若电路中的电流是稳定的,电感线圈相当于一段导线,其阻碍作用是由绕制线圈的导线的电阻引起的.(3)线圈通电和断电时线圈中电流的变化规律如图7.图7考向1通电自感现象如图8所示,电路中电源的内阻不能忽略,A、B为两个完全相同的灯泡,当S闭合时,下列说法正确的是(线圈L的自感系数很大,直流电阻较小)()图8A.A比B先亮,然后A逐渐熄灭B.B比A先亮,然后B逐渐变暗C.A、B一起亮,然后A逐渐熄灭D.A、B一起亮,然后B逐渐熄灭答案 B解析S闭合时,线圈上产生很大的自感电动势,阻碍电流的增大,所以B比A先亮,电路稳定后线圈L的直流电阻较小,故流过B灯支路的电流变小,所以B灯逐渐变暗,故B正确.考向2断电自感现象如图9所示,开关S处于闭合状态,小灯泡A和B均正常发光,小灯泡A的电阻大于线圈L的直流电阻,现断开开关S,以下说法正确的是()图9A.小灯泡A越来越暗,直到熄灭B.小灯泡B越来越暗,直到熄灭C.线圈L中的电流会立即消失D.线圈L中的电流过一会再消失,且方向向右答案 D解析S断开瞬间,B立即熄灭.由于小灯泡A的电阻大于线圈L的直流电阻,所以S断开前线圈的电流大于小灯泡A中的电流.S断开瞬间,线圈中出现自感电动势,从而阻碍电流的减小,线圈中的电流方向不变,但大小由原电流逐渐减小,即线圈L中的电流过一会再消失,且方向向右,因L和A组成新的回路,所以A先亮一下,然后慢慢熄灭,故D正确.在如图10所示的电路中,开关S闭合且稳定后流过自感线圈的电流是2 A,流过灯泡D的电流是1 A,现将开关S突然断开,能正确反映流过灯泡的电流i在开关S断开前后随时间t变化关系的图像是()图10答案 D解析开关S断开前,通过灯泡D的电流是稳定的,其值为1 A.开关S断开瞬间,自感线圈的支路由于自感现象会产生与线圈中原电流方向相同的自感电流,使线圈中的电流从2 A 逐渐减小,方向不变,且与灯泡D 构成闭合回路,通过灯泡D 的电流和线圈L 中的电流相同,也应该是从2 A 逐渐减小到零,但是方向与原来通过灯泡D 的电流方向相反,故D 对.三、自感电动势和自感系数 导学探究 自感电动势的大小与哪些因素有关?自感系数与哪些因素有关?答案 根据公式E =L ΔI Δt可知,自感电动势与自感系数和电流的变化率有关.自感系数与线圈的形状、长短、匝数以及有无铁芯等因素有关.知识深化1.自感电动势(1)表达式:E =L ΔI Δt. (2)理解:①公式中ΔI Δt为电流的变化率,电流变化越快,电流变化率越大,自感电动势也越大. ②公式中L 为线圈的自感系数.2.自感系数关于自感现象、自感系数、自感电动势,下列说法正确的是( )A .当线圈中通恒定电流时,线圈中没有自感现象,线圈自感系数为零B .线圈中电流变化越快,线圈的自感系数越大C .自感电动势与原电流方向相反D .对于确定的线圈,其产生的自感电动势与其电流变化率成正比答案 D解析 当线圈中通恒定电流时,线圈中没有自感现象,不产生自感电动势,但是线圈自感系数不为零,选项A 错误;线圈中电流变化越快,产生的自感电动势越大,线圈的自感系数与电流变化快慢无关,选项B 错误;根据楞次定律,当线圈中电流增大时,自感电动势阻碍电流增大,自感电动势方向与原电流方向相反;当线圈中电流减小时,自感电动势阻碍电流减小,自感电动势方向与原电流方向相同,选项C 错误;对于确定的线圈,自感系数L 一定,其产生的自感电动势与其电流变化率ΔI成正比,选项D正确.Δt1.(互感现象)(多选)目前无线电力传输已经比较成熟,如图11所示为一种非接触式电源供应系统.这种系统基于电磁感应原理可无线传输电力,两个感应线圈可以放置在左右相邻或上下相对的位置,原理示意图如图所示.利用这一原理,可以实现对手机进行无线充电.下列说法正确的是()图11A.只要A线圈中输入电流,B线圈中就会产生感应电动势B.只有A线圈中输入变化的电流,B线圈中才会产生感应电动势C.A中电流越大,B中感应电动势越大D.A中电流变化越快,B中感应电动势越大答案BD解析根据感应电流产生的条件,若A线圈中输入恒定的电流,则A产生恒定的磁场,穿过B的磁通量不发生变化,B线圈中不会产生感应电动势,故A错误;若A线圈中输入变化的电流,根据法拉第电磁感应定律E=nΔΦ可知,B线圈中会产生感应电动势,A线圈中电流变Δt化越快,A线圈中电流产生的磁场变化越快,B线圈中感应电动势越大,故B、D正确,C 错误.2.(自感系数)关于线圈的自感系数,下列说法正确的是()A.线圈的自感系数越大,自感电动势就一定越大B.线圈中电流等于零时,自感系数也等于零C.线圈中电流变化越快,自感系数越大D.线圈的自感系数由线圈本身的因素及有无铁芯决定答案 D解析线圈的自感系数是由线圈本身的因素及有无铁芯决定的,与有无电流、电流变化情况都没有关系,故选项B、C错误,D正确;自感电动势的大小除了与自感系数有关,还与电流的变化率有关,故选项A错误.3.(自感现象)如图12所示,L是电感足够大的线圈,其直流电阻可忽略不计,A和B是两个参数相同的灯泡,若将开关S闭合,等灯泡亮度稳定后,再断开开关S,则()图12A.开关S闭合时,灯泡A比B先亮B.开关S闭合时,灯泡A、B同时亮,最后一样亮C.开关S闭合后,灯泡A逐渐熄灭,灯泡B逐渐变亮,最后亮度保持不变D.开关S断开瞬间,A、B闪亮一下逐渐熄灭答案 C解析开关S闭合时,由于L的阻碍作用,电流从两灯中流过,故两灯同时亮,此后,有电流流过L,且流过L的电流逐渐增大,流过A的电流逐渐减小,电路稳定后,灯泡A被短路而熄灭,B灯比原来更亮且最后亮度保持不变,故C正确,A、B错误;开关S断开瞬间,B 中电流消失,故立即熄灭,由于电感线圈中产生自感电动势,且L和A构成回路,所以A 闪亮一下后逐渐熄灭,故D错误.4.(自感现象中的图像问题)(多选)如图13所示,用电流传感器研究自感现象.电源内阻不可忽略,线圈的自感系数较大,其直流电阻小于电阻R的阻值.t=0时刻闭合开关S,电路稳定后,t1时刻断开S,电流传感器连接计算机分别描绘了整个过程线圈中的电流I L和电阻中的电流I R随时间t变化的图像.下列图像中可能正确的是()图13答案AD考点一互感现象1.(多选)如图1所示,线圈P、Q同轴放置,P与开关S、电源和滑动变阻器R组成回路,Q 与电流计G相连,要使Q线圈产生图示方向的电流,可采用的方法有()图1A.闭合开关S后,把R的滑片右移B.闭合开关S后,把R的滑片左移C.闭合开关S后,把Q靠近PD.无需闭合开关S,只要把Q靠近P即可答案BC解析闭合开关S后,若把R的滑片右移,穿过Q的磁场方向从左向右,且在减小,根据楞次定律,Q线圈中电流方向与题图电流方向相反,故A错误;同理可知,B正确;闭合开关S后,将Q靠近P,穿过Q的磁场方向从左向右,且在增强,根据楞次定律,Q线圈中的电流方向与题图电流方向相同,故C正确;若S不闭合,则Q线圈中无磁场,故Q中不会有电流产生,故D错误.2.如图2(a)所示,线圈ab、cd绕在同一软铁芯上.在ab线圈中通以变化的电流,用示波器测得线圈cd间电压随时间变化的关系如图(b)所示,已知线圈内部的磁场与流经线圈的电流成正比,则下列选项图中描述线圈ab中电流随时间变化关系的图像,可能正确的是()图2答案 C解析线圈内部的磁场与流经线圈的电流成正比,则线圈ab中每个时间段内电流的磁场均匀变化,才能在线圈cd中产生大小不变的电动势,因此可能正确反映这一关系的图像只有C,故C正确,A、B、D错误.考点二自感现象3.如图3,A、B是两个完全相同的白炽灯,L是自感系数很大、直流电阻可忽略的自感线圈.下列说法正确的是()图3A.闭合开关S,A、B灯同时亮B.闭合开关S,A灯比B灯先亮C.闭合开关S,A、B灯最后一样亮D.断开开关S,A灯慢慢熄灭,B灯闪亮一下再慢慢熄灭答案 C解析开关闭合的瞬间,电源两端的电压同时加到两支路的两端,B灯立即发光;由于线圈的自感作用,A灯逐渐发光,由于线圈的直流电阻可以忽略,则电路稳定时两灯一样亮,选项A、B错误,C正确.断开开关的瞬间,原来流过B灯的电流立即消失,流过线圈的电流将要减小,线圈产生自感电动势,相当于电源,线圈与两灯A、B构成一个闭合回路,则两灯同时逐渐熄灭;由于原来通过A、B两灯的电流相等,则B灯不会闪亮,选项D错误.4.如图4所示,多匝线圈L的电阻和电源内阻不计,两个电阻的阻值都是R,开关S原来是断开的,电流I0=E2R,现闭合开关S将一电阻短路,于是线圈有自感电动势产生,则该电动势()图4A.有阻碍电流的作用,最后电流由I0减小到零B.有阻碍电流的作用,最后电流总小于I0C.有阻碍电流增大的作用,因而电流将保持I0不变D.有阻碍电流增大的作用,但电流最后还是增大到2I0答案 D解析开关S由断开到闭合,回路中的电流要增大,因而在L上要产生自感电动势,自感电动势要阻碍原电流的增大,但阻碍不是阻止,电流仍要增大,达到稳定后电流为2I0,选项D 正确.5.(多选)如图5所示,A、B是完全相同的两个小灯泡,L为自感系数很大的线圈,其直流电阻等于灯泡电阻.闭合开关S,电路稳定时,B灯恰能正常发光.则()图5A.开关S闭合时,A、B两灯同时亮B.开关S闭合,电流稳定时,A灯熄灭C.开关S断开时,两灯都会亮一下再熄灭D.开关S断开时,A灯灯丝不可能被烧断答案AD解析开关S闭合瞬间,A和B同时发光,故A正确;电路稳定后L的电感不再起作用,起作用的只是它的直流电阻,因A、B是完全相同的两个小灯泡,B此时正常发光,那么说明灯的额定电流由并联的A和L的直流电阻分配,L的直流电阻等于灯泡电阻,那么A支路的,也就是说其亮度较B灯暗,但不熄灭,故B错误;断开开关S的电流等于其额定电流的12瞬间,由电感的特性可知,L和A组成的回路中的电流大小不变,其数值就是S断开前L支路中的电流,即等于额定电流的一半,A灯不会闪亮一下,灯丝也不可能被烧断,而B灯立即熄灭,故C错误,D正确.6.在如图6所示的电路中,两个完全相同的小灯泡L1和L2分别串联一个带铁芯的电感线圈L和一个滑动变阻器R.闭合开关S待电路稳定后,调整R的滑片使L1和L2亮度一样,此时通过两个灯泡的电流均为I.在之后的t0时刻断开S,则在下列选项中,能正确反映t0前后的一小段时间内通过L1的电流i1和通过L2的电流i2随时间t变化关系的图像是()图6答案 A解析L1与线圈串联,断开S瞬间,流过线圈的电流不变,电感线圈产生与流过它的电流同向的感应电动势,电动势慢慢变小,则电流慢慢变小,故A正确,B错误;S断开的瞬间,流过L2的电流反向,之后电流逐渐减小,故C、D错误.7.(多选)在如图7所示的电路中,L是一个自感系数很大、直流电阻不计的线圈,D1、D2和D3是三个完全相同的灯泡,E是内阻不计的电源.在t=0时刻,闭合开关S,电路稳定后在t1时刻断开开关S.规定以电路稳定时流过D1、D2的电流方向为正方向,分别用i1、i2表示流过D1、D2的电流,则下列图像中能定性描述电流随时间变化关系的是()图7答案BC解析闭合开关S后,通过D1、D2和D3的电流方向都是由上向下,D1中电流逐渐增大至稳定,且D1中稳定电流为D2、D3中稳定电流的2倍,断开开关S后,由于线圈的自感现象,通过D1的电流方向不变,电流逐渐减为0,故选项A错误,B正确;开关断开后,D2和D3中电流方向与原方向相反,大小由D1中的稳定电流值逐渐减为0,故选项C正确,D错误.8.在如图8所示的电路中,L为电阻很小的线圈,G1和G2为零刻度在表盘中央的两个相同的电流表.当开关S闭合时,电流表G1、G2的指针都偏向右方,那么当断开开关S时,将出现的现象是()图8A.G1和G2的指针都立即回到零点B.G1的指针立即回到零点,而G2的指针缓慢地回到零点C.G1的指针缓慢地回到零点,而G2的指针先立即偏向左方,然后缓慢地回到零点D.G2的指针缓慢地回到零点,而G1的指针先立即偏向左方,然后缓慢地回到零点答案 D解析S断开瞬间,由于L的自感电动势的作用,电流不会立即消失,而是与原电流同向,即沿L、G2、G1方向在闭合回路中继续维持一个较短的时间,因此G2的指针缓慢地回到零点,而G1的指针先立即偏向左方,然后缓慢地回到零点,故选D.。

电工学第二章

电工学第二章
第二章 磁场与电磁感应
§2-1 磁场 §2-2 磁场的主要物理量 §2-3 磁场对电流的作用 §2-4 电磁感应 §2-5 自感 §2-6 互感
历史上的磁现象:
东汉王充在《论衡》中写道:“司南之杓,投之于地,其柢指南”
最初发现的磁体是被称为“天然磁石”的矿物,其中含有主要成分为 Fe3O4,能吸引其他物体,很像磁铁。
1T增加到9T。求线圈中的感应电动势。
E=1800V
§2-5 自感
一、自感现象 二、自感系数 三、自感电动势 四、线圈L所储存能量
一、自感现象
a 合上开关, HL2比 HL1亮得慢
b 断开开关,灯泡 闪亮一下才熄灭
分 析:
图a由于线圈L自身的磁通量增加,而产生了感应电动势,这个感
应电动势的作用是阻碍磁通量的增加,即原来所加电压相反,阻碍线 圈中电流的增加,故通过与线圈串联的灯泡的电流不能立即增大到最 大值,它的亮度只能慢慢增加.
磁感线的疏密程度可以大致反映磁感应强度的大小。在同一个磁场 的磁感线分布图上,磁感线越密的地方,磁感应强度越大,磁场越
强。
为讨论问题方便,我们规定用符号⊙ 表示电流或磁力线流出 纸面, 表示电流或磁力线流入纸面。
安培力的大小:由式
B F Il
可知,当测得F、I和l时,就可
方便求出某点的磁感应强度。反之当已知B、I和l时,就可求
现代生活中的磁现象
上海磁悬浮列车专线西起上海地铁 龙阳路站,东至上海浦东国际机场 ,列车加速到平稳运行之后,速度 是430公里/小时。这个速度超过了 F1赛事的最高时速。
§2-1 磁场
一、磁体及其性质 二、磁场与磁感线 三、电流的磁场
一、磁体及其性质
磁性——某些物体能够吸引铁、镍、钴等金属

2022-2023年人教版(2019)新教材高中物理选择性必修2 第2章电磁感应第4节自感和互感课件

2022-2023年人教版(2019)新教材高中物理选择性必修2 第2章电磁感应第4节自感和互感课件

自感电动势的两个特点 1.自感电动势阻碍自身电流的变化,但不能阻止,且自感 电动势阻碍自身电流变化的结果,会对其他电路元件的电流 产生影响. 2.自感电动势的大小跟自身电流变化的快慢有关,电流 变化越快,自感电动势越大.
如图1-6-3所示的电路中,电源电动势为E,内
阻r不能忽略.R1和R2是两个定值电阻,L是一个自感系数较 大的线圈.开关S原来是断开的,从闭合开关S到电路中电流
自感的典型应用——日光灯
1.基本知识 (1)日光灯的构造及电路图 日光灯由灯管、灯丝、 镇流器 和 启动器 组成,灯管中 充有微量的惰性气体和稀薄的汞蒸气,镇流器、灯丝和启动 器的电路是串联的.
电路图如图1-6-2所示: 图1-6-2
(2)启动器的构造及作用 启动器是一个充有氖气的小玻璃泡,里面有两个电极,一 个是固定不动的 静触片 ,另一个是双金属片制成的 U型动触片 .启动器的作用是在开关闭合后,使电路短暂 接通再将电路断开,相当于一个自动开关.
2.思考判断 (1)日光灯正常发光后,拿掉启动器,日光灯将熄灭.(×) (2)日光灯正常工作时,镇流器起降压限流的作用.(√)
3.探究交流 有一次,小飞拿掉家里拉线开关的盒盖,关掉日光灯,看到 了开关上有电火花产生,小飞感到迷惑. 请思考:开关上产生电火花的原因是什么? 【提示】 日光灯正常工作时,有电流通过镇流器的线 圈,当断开开关时,镇流器中电流迅速减少,产生较大的自感电 动势,故在断开开关时,两极间产生了一个瞬时高压,击穿空气, 放电产生火花.
达到稳定为止的时间内,通过R1的电流I1和通过R2的电流I2的
变化情况是(
)
A.I1开始较大而后逐渐变小 B.I1开始很小而后逐渐变大 C.I2开始很小而后逐渐变大 D.I2开始较大而后逐渐变小
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

个人收集整理-ZQ
自感系数与自感电动势
根据毕—萨定律,一个任意给定地线圈中地电流产生地磁感应强度与电流强度地大小成正比,因此通过线圈地磁链也与线圈中地电流强度地大小成正比,即.写成等式,得
式中称为自感系数,它与线圈地形状、大小、匝数及周围介质地情况有关.单位:亨利().此外,还有毫亨(),微亨().
根据法拉第电磁感应定律,自感电动势为
由此可见,在电流变化率相同地情况下,越大,越大,自感作用越强.负号是楞次定律地数学表示,它说明自感电动势将阻碍回路中电流地改变.当电流增加时,与原来地电流方向相反;当电流减小时,与原来地电流方向相同.
1 / 1。

相关文档
最新文档