小学数学毕业(升学)模块总复习第12讲:比和比例---比和比例的意义和性质(知识梳理,易错在线,能力拓展)

合集下载

小学数学知识点复习:比和比例

小学数学知识点复习:比和比例

小学数学知识点复习:比和比例小升初数学知识点复习开始了,你还记得我们在小学学习生活中学到的数学知识点吗,小编和你一起总结复习小升初数学知识点:比和比例。

1.比的意义和性质(1) 比的意义两个数相除又叫做两个数的比。

:是比号,读作比。

比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

比值通常用分数表示,也可以用小数表示,有时也可能是整数。

比的后项不能是零。

根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

(2)比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

(3) 求比值和化简比求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。

它的结果必须是一个最简比,即前、后项是互质的数。

(4)比例尺图上距离:实际距离=比例尺要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。

线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。

(5)按比例分配在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。

这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

2 比例的意义和性质(1) 比例的意义表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

(2)比例的性质在比例里,两个外项的积等于两个两个内向的积。

这叫做比例的基本性质。

(3)解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

3 正比例和反比例(1) 成正比例的量两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

小学数学比例的意义和基本性质课件ppt

小学数学比例的意义和基本性质课件ppt
y : 36 = 8 : 6 y = 48
答:足球的单价是 48 元。
三 课堂小结
判定两个比能否组成比例,一是要观 察两个比的比值是否相等,二是在比例里 两个外项的积是否等于两个内项的积。
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
x=4
11. 汽车厂按 1:20 的比生产了一批汽车模型。 (1)轿车模型长 24.3 cm,轿车的实际长度是多少?
解:设轿车的实际长度是 x cm。 24.3 : x = 1 : 20 x = 20×24.3 x = 486
答:轿车的实际长度是 486 cm。
11. 汽车厂按 1:20 的比生产了一批汽车模型。 (2)公共汽车长11.76m,模型车的长度是多少?
解:设模型车的长度是 x cm。 x : 11.76 = 1 : 20 20 x = 11.76×1 x = 0.588
答:模型车的长度是 0.588 m。
12. 博物馆展出了一个高为 19.6 cm 的秦代将军俑模型, 它的高度与实际高度的比是 1 : 10。这个将军俑的 实际高度是多少?
解:设这个将军俑的实际高度是 x cm。 19.6 : x = 1 : 10 x =应用比例的基本性质,判断下面哪组中的两个比可 以组成比例。
(1)6 : 9 和 9 : 12 6×12 = 72 9×9 = 81 6×12 ≠ 9×9 不能组成比例
(2)1.4 : 2 和 28 : 40 1.4×40 = 56 2×28 = 56 1.4×40 = 2×28 能组成比例 1.4 : 2 和 28 : 40
4. 李叔叔承包了两块水稻田,面积分别为 0.5 公顷和 0.8 公顷。秋收时,两块水稻田的产量分别为 3.75 t 和 6 t 。

六年级数学《比和比例》知识点

六年级数学《比和比例》知识点

六年级数学《比和比例》知识点一、比的意义和性质1、比的意义两个数相除又叫做两个数的比。

2、比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。

3、比的应用通过比可以应用一些问题。

二、比例的意义和性质1、比例的意义表示两个比相等的式子叫做比例。

2、比例的性质在一个比例中,组成比例的两个数,叫做比例的项。

在一比例里,两外项的积等于两内项的积。

这叫做比例的基本性质。

3、解比例根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。

这个求未知项的过程,叫做解比例。

三、正比例和反比例1、成正比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量。

2、成反比例的量如果两种量是相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量。

3、正比例和反比例的判断方法判断两种量是否成正比例或反比例的方法:一是看这两种相关联的量中相对应的两个数的比值是否一定;二是看这两种量中相对应的两个数的积是否一定。

比的意义:两个量的关系可以用比来表示,我们通常称之为“比”。

定义:在两个量的比中,我们把数量放在前面,单位“1”放在后面,我们称之为前项,后项。

比与除法、分数的关系:比的前项相当于被除数或分子,后项相当于除数或分母,比值相当于商或分数值。

比的性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变。

比例的意义:表示两个比相等的式子叫做比例。

组成比例的四个数叫做比例的项。

两外两项叫做内项,中间两项叫做外项。

如果中间的两项是两个相同的数,这样的比例叫做对称比例。

比例尺的意义:我们把图上距离和实际距离的比叫做比例尺。

我们把比例尺分为放大比例尺和缩小比例尺两种。

缩小比例尺的计算方法:已知实际距离求图上距离,根据公式计算即可;已知图上距离求实际距离根据公式计算即可。

六年级数学毕业复习_比和比例知识点资料讲解

六年级数学毕业复习_比和比例知识点资料讲解

六年级数学毕业复习_比和比例知识点比和比例知识点---------判断两个量是否成正比例、反比例或不成比例一、写(写出数量关系式)1、根据数量间的关系或公式,写出数量关系式。

如,①宽一定,长方形的面积和长是否成正比例。

根据“长方形的面积=长×宽”得到“宽(一定)长长方形的面积”,因为长方形的面积和长是相关联的量,宽一定,也就是它们的比值一定,所以“宽一定,长方形的面积和长是成正比例”。

②圆锥的体积一定,底面积和高是否成反比例。

根据“底面积×高×31=圆锥的体积”得到“底面积×高=圆锥的体积×3”,因为底面积和高是相关联的量,圆锥的体积一定,“圆锥的体积×3"的结果也一定,就是底面积和高的积一定(底面积×高=圆锥的体积×3(一定)),所以圆锥的体积一定,底面积和高是成反比例。

2、注意:写出的数量关系式,其中的一边(左边)只能有这两个相关联的量,不能有多余的量和数字。

如,“(长+宽)×2=长方形的周长”的左边就多了×2,长方形的周长”应变为“(长+宽)=2又如,梯形的上底和下底不变,面积和高。

可以这样写关系式:(a+b)×h÷2=s→(a+b)×h÷2÷h=s÷h→(a+b)÷2 =s÷h→s÷h=(a+b)÷2,因为上底和下底不变,(a+b)÷2的结果也是一定的,所以梯形的上底和下底不变,面积和高成正比例。

3、还有些数量之间是无法写关系式的。

如,“小明的身高和跳高的高度成正比例”是无法写出关系式的。

二、看(1、看是否相关联2、看是否能变化3、看是否商(积)一定)1、看是否相关联:也就是一个量变化了,另一个量是否也会随着变化。

如,长方形的面积一定,长和宽就是相关联的量,因为长变化了,宽也会随着变化。

六年级比和比例知识点讲解

六年级比和比例知识点讲解

六年级比和比例知识点讲解比和比例是数学中重要的概念之一,对于六年级的学生来说,理解和掌握比和比例的概念非常重要。

本文将详细介绍比和比例的定义、性质以及应用,帮助学生更好地理解和运用比和比例知识。

一、比的概念及性质比是指两个量之间的大小关系,可以用分数或比例的形式表示。

比的一般形式为a:b,读作“a比b”。

其中,a称为比的前项,b称为比的后项。

比的两个项必须是同类的量,即具有相同的单位。

比的性质如下:1. 相等性:如果两个比的前项与后项互相相等,那么这两个比相等。

例如,4:6和2:3是相等的比。

2. 反比:两个比的前项与后项互为倒数时,这两个比称为反比。

例如,3:4和4:3是反比。

3. 异比:两个比的前项与后项既不相等,也不互为倒数时,这两个比称为异比。

例如,5:6和3:4是异比。

二、比例的概念及性质1. 比例的概念:当两个或多个比相等时,它们之间称为比例。

比例通常用冒号(:)或“=”符号表示。

2. 比例的性质:比例有以下几个重要的性质:a. 交换性:比例中的前、后项可以互换位置而保持比例不变。

例如,如果a:b=c:d,那么b:a=d:c。

b. 归结性:如果在一个比例中,两个比都是由同一个数相除而得到的,那么这两个比互为倒数。

例如,如果a:b=4:6,那么b:a=6:4=3:2。

c. 增量乘性:比例中的前、后项同时乘以同一个数,得到的新比例与原比例相等。

例如,如果a:b=4:6,那么2a:2b=8:12。

d. 变量比例:比例中的前项与后项都含有一个变量时,可以通过代入不同的值来求解这个变量的取值。

例如,如果a:b=3:5,且a=12,那么可以利用已知比例求解b的值。

三、比和比例的应用比和比例在日常生活和实际问题中有广泛的应用。

以下是一些常见的应用场景:1. 真实比例:在地图上,使用比例尺可以将真实世界的地理距离映射到纸面上,帮助我们进行测量和导航。

2. 长度比例:在实际测量中,我们可以使用比例来计算物体的长度、宽度等尺寸。

小学六年级__比和比例知识点梳理.docx

小学六年级__比和比例知识点梳理.docx

复习课 :比和比例知识点一 :比和比例的联系与区别比比例意义表示两数相除表示两个比相等的式子各部分名称9: 6=9:6=3: 2↑↑↑↑↑前项比号后项比值基本性质比的前项和后项同时乘或除在比例里,两个外项的积等于以相同的数(0 除外),比值两个内项的积。

不变。

化简比的依据。

解比例的依据。

知识点二:比和分数、除法的联系名称联系比前项:(比号)后项比值分数分子—(分数线)分母分数值除法被除数(除号)除数商知识点三:求比值和化简比意义方法结果求比值前项除以后项所得的用前项除以后项一个数(是整数、分商数或小数)化简比把两个数的比化简成前项和后项同时乘或一个比最简单的整数比除以相同的数( 0除外),也可以用求比值的方法,用前项除以后项,得出一个分数值。

知识点四:正比例和反比例的意义和判断方法1、正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

正比例的关系式:y k(一定)x2、反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。

反比例的关系式:xy k (一定)3、判断正、反比例的方法:一找二看三判断(1)找变量:分析数量关系,确定哪两种量是相关联的量。

(2)看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。

(3)判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例4、正比例、反比例的区别与联系名称不同点意义不相同正比例两种量中相对应的两个数的比值,也就是商一定反比例两种量中相对应的两个数的积一定变化方向不相同关系式不同一种量扩大(或yk (一定)缩小),另一种量x也随之扩大(或缩小)。

一种量扩大(或xy k (一定)缩小),另一种量也随之缩小(或扩大)。

小学六年级:比与比例知识点梳理

小学六年级:比与比例知识点梳理

小学六年级:比与比例知识点梳理YUKI was compiled on the morning of December 16, 2020复习课:比和比例知识点一: 比和比例的联系与区别知识点二:比和分数、除法的联系知识点三:求比值和化简比知识点四:正比例和反比例的意义和判断方法1、 正比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的比值(商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

正比例的关系式:k xy =(一定) 2、 反比例的意义:两种相关联的量,一种量变化另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做正比例关系。

反比例的关系式:k xy =(一定)3、 判断正、反比例的方法:一找二看三判断(1) 找变量:分析数量关系,确定哪两种量是相关联的量。

(2) 看定量,分析这两种相关联的量,它们之间的关系是商一定还是积一定。

(3) 判断:如果商一定,就成正比例;如果积一定就成反比例;如果商和积都不是定量,就不成比例4、 正比例、反比例的区别与联系知识点五:用比例知识解决问题1、按比例分配问题(1)按比例分配应用题:把一个量按照一定的比分配成几部分,求每个部分数量各是多少的应用题叫做按比例分配应用题。

(2)解题方法一般方法:把比转化成为分数,用分数方法解答,即先求出总分数,然后求出各部分量占总量的几分之几,最后按照求一个数的几分之几多少的解题方法,分别求出各部分的量是多少归一法:把比看做分得的分数,先求出各部分的总分数,然后再用“总量÷总份数=平均每份的量(归一)”,再用“一份的量⨯各部分量所对应的份数”,求出各部分的量。

用比例知识解答:首先设未知量为。

再根据题中“已知比等于相对应的量的比”作为等量关系式列出含有x的比例式,再解比例求出x。

2、用正、反比例知识解答应用题的步骤(1)分析数量关系。

人教版六年级数学下册总复习课件第十三课时_比和比例—比例

人教版六年级数学下册总复习课件第十三课时_比和比例—比例

比例尺的分类:
数值比例尺 按形式分: 线段比例尺
0 50km
1:5000000
缩小比例尺
1:5000000 50:1
按用途分:
放大比例尺
与比例尺有关的计算:
1、右图中,荷花村 到杏花村的图上距离 为2.5厘米,表示实 际距离10千米。求这 幅图的比例尺。
2.5cm : 10km
杏花村
荷花村
=2.5cm : 1000000cm
=10(m)
杏花村
荷花村 0 4km
答:两个村的实际距离是10m。
4、量得北京到天津的图上距离是3cm, 实际距离是多少千米?
3×50 =150(km) 答:北京到天津的实际 距离是150km。 比例尺
0 50km
5、在比例尺是1︰5000000的云南地图上,量得大理到 楚雄的距离是3.2厘米。计算一下,大理到楚雄的实际 距离大约是多少千米?
表示两个 比例 比相等
两个外项的积等于两个 4项 内项的积。
比例是一 个等式
比例的判断:
判断两个比能不能组成比例,可以有两种方法:
(1)根据比例的意义判断:看两个比值是否相等。
(2)根据比例的基本性质判断:看两个内项的积
是否等于两个外项的积。
判断下面每组中的两个比能否组成比例? (1) 6:15 和 8:20


(2)18:30和3:5可以组成比例。(


(3)如果4X=3Y,(X和Y均不为0), 那么4:X=3:Y。(
×) ×)
(4)因为3×10=5×6,所以3:5=10:6。(
千帆竞发,帆帆顺风; 万树争春,树树参天。
20:40=3:6 3和40当内项

最新小学六年级比和比例知识点复习.docx

最新小学六年级比和比例知识点复习.docx

最新小学六年级比和比例知识点复习1、基本概念( 1)两个数 相除 , 又叫做 两个数的 比 , “ ∶ ”是 比号 , 比号前面的数叫做比的 前 , 比号后面的数叫做比的后 , 前 除以后 所得的商叫做 比 . 比的后 不能 0. ( 2)分数的基本性 ∶ 分数的分子和分母同 乘以或者除以相同的数(0 除外) ,分数的大小不. 乘 是 1 的两个数互 倒数 .1 的倒数是1,0 没有倒数 .( 3)商不 的 律∶在除法里 , 被除数和除数同 大或者同 小相同的倍(0 除外) , 商不 .( 4)比的基本性 ∶比的前 和后 同 乘以或者除以相同的数( 0 除外) , 它 的比 不.( 5)小数的性 ∶ 在小数的末尾添上零或者去掉零小数的大小不.( 6)公因数只有1 的两个数叫做 互 数 . 如( 5 和 7,7 和 9)最 整数比 ∶比的前 和后 是互 数.( 7)比的化 ∶用商不 的性 、分数的基本性 或比的基本性 来化.化 比的方法整数比 比的前 和后 同 除以它 最大公因数(也可以一步一步的除)如,18:6= (18÷ 6):(6÷ 6) =3:1 或 18:6= ( 18÷2):( 6÷ 2) =9:3= ( 9÷ 3):( 3÷ 3) =3:1 小数比 先把比的前 和后 同 乘以10、 100⋯⋯ , 成整数比;再把整数比化成最 比如, 0.25:1.5= ( 0.25 × 100):( 1.5 × 100) =25:150=1:6 分数比先把比的前 和后 同 乘以它 分母的最小公倍数如, 5 : 3=( 5 × 24):( 3× 24) =20:968 6 8混合比先把混合比 成小数比或分数比 (如果比中的分数不能化成有限小数的, 一般化 分数比) , 再成整数比 , 最后把整数比化成最 比如,5: 0.3 中的5不能化成有限小数,所以把5: 0.3先化 分数比 .5: 0.3=5 : 3=25:96 666610求比 :比的前 除以比的后 所得的商叫做比 .( 8)比例 ∶①表示两个比相等的式子叫做比例. 比例有四个, 分 是两个 内 和两个 外 . 在3∶ 4=9∶ 12 中 , 其中 3 与 12 叫做比例的外 ,4 与 9 叫做比例的内 . 比例的四个数均不能0.( 9)比例的基本性∶在一个比例中 , 两个外 的 等于两个内 的.( 10)比、比例、比例尺、百分数的后面不能 位.( 11) “比” 行分配 .基本方法: 1. 先求出 份数 , 先求出每份数 , 再求每份数分 占各部分的几分之几 . 2.然后用 量乘以每份数分 占各部分的几分之几 , 求出各部分的数量 .2、正比例 ∶两种相关 的量 , 一种量 化 , 另一种量也随着 化 , 如果 两种量相 的两个数的比(也就是商)一定 , 两种量就叫做成正比例的量, 它 的关系叫做正比例关系 .( 1)用字母表示∶y= k(一定)x( 2 )正比例关系两种相关 的量的 化 律∶ 同 大 , 同 小 , 比 不 .3、反比例 ∶两种相关 的量一种量 化 , 另种量也随着 化 , 如果 两种量中 , 相 的两个数的 一定 ,两种量就叫做成反比例的量 , 它 的关系叫做成反比例关系 .( 1)用字母表示∶xy=k (一定)( 2 )反比例关系的两种相关 的量的 化 律: 是一种量 大 , 另一种量 小 , 一种量 而另一种量, 成整数比;再把整数比化成最 比则扩大 , 积不变 . 例如: 图上距离一定 , 实际距离和比例尺是否成反比例.4、正比例和反比例的比较共同点不同点两种量中相对应的两个数的比值(也就是商)一定正比例两种量相关联 , 一种量变 即 y= k (一定)化 , 另一种量也随着变化 .x两种量中相对应的两个数的积一定反比例即 xy = k(一定)5、比例尺( 1)比例尺是一幅图的图上距离与实际距离的比.图上距离 公式为∶ 比例尺 =图上距离∶实地距离或 比例尺 =实际距离比例尺有两种表示方法: 数值比例尺 和线段比例尺 . 两种种表示方法可以互换.( 2)比例尺的表现方式∶①数值比例尺 ∶用数字的比例式或分数式表示比例尺的大小 .例如:地图上 1 厘米代表实地距离500 千米 , 可写成∶ 1∶ 50,000,000 或写成∶1.50000000②线段比例尺 ∶在地图上画一条线段 , 并注明地图上 1 厘米所代表的实际距离 .6. 比和比例区别联系比比例意义两个数相除 , 又叫做两个数的比 . 表示两个比相等的式子叫做比例.如 ,90 ÷ 60=90:60(90 比 60) 如 ,90: 60 = 3 : 290: 60=1.590: 60=3 : 2各部分名内项称前项比号 后项比值外项(共有 2 个项)(共有 4 个项)基本 比的前项和后项都乘上或除以相同的数( 0 在比例中 , 两个外项的积等于两个内项的积.性质除外) , 比值不变 .如 ,90: 60 = 3 : 2如 ,90:60= ( 90× 5) : ( 60× 5) =1.5 90× 2=60× 390:60= ( 90÷ 15) : ( 60÷ 15) =1.5两个外项的积两个内项的积化简比的依据解比例的依据如 ,90:60= ( 90÷ 15) : (60÷ 15)=6:4如 ,5 : x=1.6 : 3.21.6x=5 ×3.27. 比值和化简比意义方法结果求比值比的前项除以比的后项前项除以后项结果是一个数 (整数、 小数、分数), 不能所得的商叫做比值 .写成比的一般形式.如,60:50=1.2不能写成 60:50=6:5化简比把两个数的比化成最简前项和后项都乘或除以结果是一个比 , 不能写成整数和小数 .单的整数比相同的数( 0 除外)18:6=3:1 不能写成 18:12=3。

《代数初步知识》2024春学期小学数学毕业总复习

《代数初步知识》2024春学期小学数学毕业总复习

比和分数的综合运用
(1)、一辆汽车从甲地开往乙地,第一小时行了全程的 1/4,第二小 时行60千米,这时行的路程与全程的比是1:3,甲乙两地全程多少千米? (2)、一辆汽车从甲地开往乙地,第一小时行了全程的1/4,第二小时 行了60千米,这时已行的路程与未行的比是2:3,甲乙两地全程多少千 米? (3)、粮店运进一批大米,第一天卖出总数的1/4,第二天比第一天少卖 15袋,这时卖出的袋数与剩下袋数比是3:5,这批大米共有多少袋?
2
9
全校有多少人?

不对应

例2、食堂有一批大米,吃了
2 9 ,还有280千克,
这批大米共有多少千克?
例3、某校建设校舍共投资121万元,比原计划节约1 Nhomakorabea12
原计划投资多少元?
例4、修路队修一条公路,第一周修了全长的35﹪,第二周修了3600米,这时两周
修的总米数占全长的
还多4 3400米,这条公路
精心设计练习题:
判断下面各式是不是方程:
(1)X-42=78÷3 (2)4X﹤9 (3)5X-2X=150 (4)2X-16
通过此类题型,我们可以复习的知识点有: 方程的意义。
精心设计练习题 求未知数x:
通过此类题型,我们可以复习的知识点有: 解方程、解比例
精心设计练习题
1、在设计图上,用40cm的长度表示实际距离4mm,这幅图的比例尺是( )。
开放性问题
租房、租车船类
两大原则:多租便宜的,尽量满载
育红小学94位同学在两位老师的带领下去租车春游,车站 有54个座位的大客车每辆租费432元,21座的面包车每辆租费 189元,请同学们帮助策划一下,如何包车最合算。
买卖类

人教版小学六年级数学下册总复习比和比例

人教版小学六年级数学下册总复习比和比例
可以用两种方法解答:
(一)用比例解: 设需要X小时,因为工效相等,所以 72:6=120:X 72X=120×6 X=10
(二)用算术方法解:先求出工作效率,再求工作时间:
Page 2
(2)比、比例各部分的名称是什么? (3)比和比例的基本性质是怎样的?

LOGO
比例
意义

表示两个比相等 两个数相除又叫做两个数的比。 的式子叫做比例。。
各部分 名称
90 : 60 = 1.5
9:6 = 3:2
前项 比号 后项
比值
内项 外项
基本 性质
比的前项和后项同时乘或同时除以 相同的数(0除外),比值不变。
二、例4:
LOGO
(1)写出李阿姨平时和节日期间剪纸张数及相应工作时间的比。
李阿姨平时剪纸张数与工作时间的比是: 72:6=12:1 节日期间剪纸张数与工作时间的比是:96:8=12:1
(2)上面两个比能组成比例吗?
这两个比成比例,因为这两个比是相 等的,所以这两个比成比例。
Page 17
(3)如果李阿姨要剪120张剪纸,需要的LOGO 是小时?
12、 人 乱 于 心 ,不 宽余请 。2021/5/102021/5/102021/5/10Monday, Ma 拿 别人 做错的 事来惩 罚自己 。2021/5/102021/5/102021/5/102021/5/105/10/2021
14、 抱 最 大 的 希望 ,作最 大的努 力。2021年 5月 10日星 期一2021/5/102021/5/102021/5/10
种方法化简。
6∶ 2 3
4
2
5 ∶3
5
2
4 ∶3
0.4∶ 2 3

2021年六年级数学期末复习重点归纳比和比例知识点总结

2021年六年级数学期末复习重点归纳比和比例知识点总结

2021年六年级数学期末复习重点归纳比和比例知识点总结小学数学是一门很有趣的课程,可以启迪孩子的心智,可以培养孩子的逻辑思维,小编今天为您带来了六年级数学期末复习重点归纳希望能对您的学习有帮助。

1、比和比例:比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种(如:a:b);比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同(如:a:b=c:d)。

所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组合而成的。

表示两个比相等的式子叫做比例,是比的意义。

比例有4项,前项后项各2个.2、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。

比值不变。

比的性质用于化简比。

比表示两个数相除;只有两个项:比的前项和后项。

比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。

3、比例的性质:在比例里,两个外项的乘积等于两个内项的乘积。

比例的性质用于解比例。

4、比和比例的区别(1)意义、项数、各部分名称不同。

比表示两个数相除;只有两个项:比的前项和后项。

如:a:b 这是比比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。

a:b=3:4 这是比例。

(2)比的基本性质和比例的基本性质意义不同、应用不同。

比的性质:比的前项和后项都乘或除以一个不为零的数。

比值不变。

比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等。

比例的性质用于解比例。

联系:比例是由两个相等的比组成。

5、比和比例的联系:比和比例有着密切联系。

比是研究两个量之间的关系,所以它有两项;比例是研究相关联的两种量中两组相对应数的关系,所以比例是由四项组成。

比例是由比组成的,如果没有两种量的比,比例就不会存在。

比例是比的发展,如果把比例式中右边的比看成一个数,比和比例此时又可以统一起来。

如果两个比相等,那么这两个比就可以组成比例。

小升初数学知识点之比和比例

小升初数学知识点之比和比例

小升初数学知识点之比和比例数学在人的生活中处处可见,息息相关。

假设能良好的使用数学,那么能使我们的生活变得更加快捷。

下面是查字典数学网为大家分享的数学知识点之比和比例,希望对大家有所帮助!比和比例1.比的意义和性质(1)比的意义两个数相除又叫做两个数的比。

〝:〞是比号,读作〝比〞。

比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

比值通常用分数表示,也可以用小数表示,有时也可能是整数。

比的后项不能是零。

根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

(2)比的性质比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

(3)求比值和化简比求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

根据比的基本性质可以把比化成最简单的整数比。

它的结果必须是一个最简比,即前、后项是互质的数。

(4)比例尺图上距离:实际距离=比例尺要求会求比例尺;图上距离和比例尺求实际距离;实际距离和比例尺求图上距离。

线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。

(5)按比例分配在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。

这种分配的方法通常叫做按比例分配。

方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

2、比例的意义和性质(1)比例的意义表示两个比相等的式子叫做比例。

组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

(2)比例的性质在比例里,两个外项的积等于两个两个内向的积。

这叫做比例的基本性质。

(3)解比例根据比例的基本性质,如果比例中的任何三项,就可以求出这个数比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

3、正比例和反比例(1)成正比例的量两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

六年级下册数学整理与复习 数与代数比和比例》比和比例的意义及基本性质人教版

六年级下册数学整理与复习 数与代数比和比例》比和比例的意义及基本性质人教版

221∶178=4∶3
212∶4=178∶3
3∶187=4∶221
3∶4=187∶221
4∶3=212∶187
4∶221=3∶187
8.若a∶b=2∶5,b∶c=4∶3,c∶d=5∶4,d是24, 则a是多少?
c∶d=5∶4 c∶24=5∶4 c=30 b∶c=4∶3 b∶30=4∶3 b=40 a∶b=2∶5 a∶40=2∶5 a=16
一、二、三车间人数的最简整数比是14∶12∶9。
提分点 2 比的基本性质的运用
6.在 18∶12 中,如果比的前项减去它的13,要使比值不变, 后项应减去多少?
后项应减去4。
提分点 3 比例的基本性质的运用
7.把1871∶78、2122=21、3∶3 4和
4
组成的比例写出来。 178∶3=212∶4
第12课时
6 整理和复习
比和比例》比和比例的意义及 基本性质
RJ 6年级下册
提示:点击 进入习题
1
2
3
4
5
6
7
8
考点 1 比的意义和基本性质
1.填一填。
(1) 3∶( 4 )=( 12 )÷16=34=( 七五 )折。
(2)114∶2.5 的比值是( 0.5 ),如果后项除以 5,要使比值不
变,前项应除以( 5 );如果前项除以 4,后项不变,
比值是(
1 8
)。
(3)圆的周长和直径的比是( π∶1 )。 (4)一项工作,甲独做要21小时,乙独做要51小时,甲、乙的
工作效率的比是( 2∶5 )。
考点 2 比例的意义和基本性质
2.填一填。 (1)已知一个比例的两个内项分别是16和34,组成比例的两个

比和比例的意义与性质(六年级数学总复习)

比和比例的意义与性质(六年级数学总复习)



20 1

x=6


快速填空
(1)一个三角形三个内角度数的比是 7:3:4,这个三角形是(直角 )三 角形。
(2)同一段路程,甲车行完要10 小时,乙车行完要8小时,甲、乙 4:5 )。 两车的速度比是( (3)含盐率10%的盐水中,盐和水 的比是 ( 1:9 )。
快速填空
(4)在比例里两个外项互为倒数,其中 一个内项是0.4另一个内项是( 2.5 )
6)两个数的比值是4,前项扩大3倍,后项缩小 到原来的 3 ,比值是( 36
1
)。
7)等底等高的平行四边形和三角形面积之比是( 2 :1)
选择
1)两个正方体的棱长的比是3:5,它们面积的比是 ( D ),体积的比是( B )。 A、3:5 B、 27:125 C、6:10 D、9:25
2)把100克白糖放如1000克水中,糖和糖水的比是( B
(5)因为13a=5b 所以 a :b=( 5 ):( 13)
(6)1: 8= 64 ) ( 3 ) ÷24= = (
8
1 2
: (4 )
1、甲:乙=3:2,乙:丙=5:7,则 甲:乙:丙=( 15:10:14 )
12 2、7.5:6=(7.5+15):(6+ —— )
3、将5、8和 0.2 再配一个数,组成比例,这 个数可以是 ( 200或0.125或0.32 )

A、 1:12 B、 1:11 c 、 1:10 D、 1:9 5 3 3)甲数的-等于乙数的- ,乙数与甲数的比是(A ) 6 5 A 、 25:18 B、 18:25 c、 1:2 D、 2:1
4)一个圆柱和圆锥的体积相等,高也相等,圆柱的 底面积和圆锥底面积的比是( C )

《比与比例总复习》课件

《比与比例总复习》课件

古代阿拉伯数学家则研究了比例的概念。
近代数学中的比与比例
02
随着数学的发展,比与比例的概念逐渐被统一,形成了现代数
学中的比例概念。
现代数学中的比与比例
03
在现代数学中,比与比例的概念被广泛应用于各个领域,如代
数、几何、三角学和概率统计等。
比与比例在实际问题中的创新应用
工程设计中的应用
在工程设计中,经常需要使用比 与比例的概念来计算各种参数, 如机械零件的尺寸、建筑物的比
健康饮食
保持健康的饮食习惯需要 控制食物摄入的比例,比 如蛋白质、脂肪和碳水化 合物的比例。
比例在数学问题中的应用
面积计算
在几何学中,比例常用于计算面积, 比如相似图形的面积之比等于其边长 的平方之比。
体积计算
比例尺
在工程图纸或地图上,比例尺用于表 示实际尺寸与图纸尺寸的比例关系。
在三维空间中,比例也用于计算体积 ,比如球体体积与半径的比例关系。
比的计算方法
方法一
直接计算法:直接使用比的定义进行 计算,即前项除以后项。这种方法适 用于比的前项和后项都是整数的情况 。
方法二
交叉相乘法:当比的前项和后项都是 分数时,可以使用交叉相乘法来计算 比值。即前项乘以后项的分母,再除 以后项乘以前项的分母。
特殊比值的计算
特殊比值一
1:1:这个特殊比值表示两个数相等,常常用于表示两个量相 等的情况。
比与比例的数学定义
比表示两个数量之间的相对大小,而比例则是表示两个比之间 的关系。
比与比例的性质
比的性质包括交换律、结合律和等比定理;比例的性质包括交叉相 乘、合比和分比等。
比与比例的运算
包括比的化简、求比值、求最简比和比例的化简等。

比和比例知识点归纳

比和比例知识点归纳

比和比例知识点归纳(总5页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除比和比例知识点归纳1、比的意义和性质比的意义:两个数相除又叫做两个数的比。

例如:9 : 6 =前比后比项号项值比的基本性质:比的前项和后项都乘以或除以相同的数(零除外),比值不变。

应用比的基本性质可以化简比。

习题:一、判断。

1、比的前项和后项同时乘一个相同的数,比值不变。

()2、比的基本性质和商的基本性质是一致的。

()3、10克盐溶解在100克水中,这时盐和盐水的比是1:10. ()4、比的前项乘5,后项除以1/5,比值不变。

()5、男生比女生多2/5,男生人数与女生人数的比是7:5. ()6、“宽是长的几分之几”与“宽与长的比”,意义相同,结果表达不同。

()7、2/5既可以看做分数,也可以看做是比。

()二、应用题。

1.一项工程,甲单独做20天完成,乙单独做30天完成。

(1)写出甲、乙两队完成这项工程所用的时间比,并化简。

(2)写出甲、乙两队工作效率比,并化简。

2.育才小学参加运动会的男生人数和女生人数的比是5∶3,其中女生72人。

那么男生比女生多多少人?3.食品店有白糖和红糖共360千克,红糖的质量是白糖的。

红糖和白糖各有多少千克?4.甲、乙两个车间的平均人数是162人,两车间的人数比是5∶7。

甲、乙两车间各有多少人?5.有一块长方形地,周长100米,它的长与宽的比是3∶2。

这块地有多少平方米?6.建筑用混凝土是由水泥、沙、石子按5∶4∶3搅拌而成,某公司建住宅楼需混凝土2400吨,需水泥、沙、石子各多少吨?外项2、比例的意义和性质:比例的意义:表示两个比相等的式子叫做比例。

例如:9 :6 = 3 : 2内项比例的基本性质:在比例中两个内项的积等于两个外项的积。

应用比例的基本性质可以解比例。

3、比和分数、除法的关系:一、填空(1)两个数相除又叫做两个数的()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初毕业总复习模块四:比和比例
比和比例的意义和性质
考点一:比
1.比的意义
两个数相除又叫做两个数的比。

比的后项不能为0。

2.比值的意义
比的前项除以后项所得的商叫做比值。

比值是一个数,可以是整数、分数或小数。

3.比与除法、分数的关系
(1)比、除法和分数之间的关系:
(1)比、除法和分数之间的区别
比表示两个数量间的倍比关系;除法是一种运算;分数是一个数。

4.比的基本性质
比的前项和后项同时乘或除以相同的数(0除外),比值不变。

5.化简比和求比值
考点二:比例
1.比例的意义:表示两个比相等的式子叫做比例。

如:1:2=3∶6
2.组成比例的四个数,叫做比例的项。

两端的两项叫做外项,中间的两项叫做内项。

3.比例的基本性质:在比例里,两个外项的积等于两个内项的积。

4.解比例:根据比例的基本性质;如果已知比例中的任何三项,就可以求出这个比例中的另外一个未知项。

求比例中的未知项,叫做解比例。

例题精讲
例1、(1)一辆汽车5小时行了300千米,这辆汽车行驶的路程和时间的比是( ),比值是( );这辆汽车行驶的时间和路程的比是( ),比值是( )。

(2)5:6=( )÷( )=( )。

(3)解比例:3∶x=4∶8。

针对训练
1.(1)甲数是40,乙数是50,甲数和乙数的比是( ),比值是( );乙数和甲数的比是( ),比值是( )。

(2)8÷16=( ):( )=( )。

(3)解比例:x ∶15=10∶30
例2、(1)一个比的前项是9,如果前项加上18,要使比值不变,后项应该( )。

(2)一项工程,甲队单独做要8天完成,乙队单独做要10天完成。

甲乙两队的工作效率之比是( )
(3)如果甲比乙多0.8,甲:乙=4∶3,列出比例,并解比例。

针对训练
1、(1)一个比的前项是6,如果前项加上24,要使比值不变,后项应该( )。

(2)一项工程,甲队单独做要5天完成,乙队单独做要6天完成。

甲乙两队的工作效率之比
是( )。

(3)如果甲比乙少0.4,甲:乙=3∶5,列出比例,解比例。

例3、两个三角形重叠部分的面积相当于大三角形面积的
81,相当于小三角形面积的5
1,大小三角形的面积比是多少?
针对训练
1、小丽和小红都买了一个同样价格的电子手表,小丽用去了所带钱的
51,小红用去所带钱的61。

小丽和 小红原来所带钱数的比是多少?
易错题
判断。

1.化简比1:0.25=(1×100):(0.25×100)=100:25=4。

( )
2.比的前项和后项同时乘或除以相同的数,比值不变。

( )
3.10∶5和1∶2可以组成比例。

( )
4.一个比的后项是12,如果后项加上24,要使比值不变,前项应该加上24。

( )
5.小刚身高135厘米,他妈妈身高16分米,他妈妈与小刚身高的比是16∶135。

( ) 拓展提高
1、分数
295的分子和分母都加上同一个数后,分子和分母的比是7∶19,这个数是多少?
课后练习
一、填空。

1.两个数相除又叫做两个数的( )。

2.比的( )项不能为0。

3.表示两个比相等的式子叫做( )。

4.在比例里,两个外项的积等于两个内项的积,叫做( )。

5.5克盐溶解在100克水中,盐与盐水的重量比是( )。

6.30千克:0.3吨的比值是( )。

7.男生人数占女生的5
4,女生人数与男生人数的比是( )。

8.一面五星红旗,旗面的长是15cm,宽是10cm 。

(1)长和宽的最简整数比是( )。

(2)宽是长的( )。

(3)长比宽多( )%。

9.红花和黄花的朵数比是4∶5,表示红花比黄花少( )%。

10.大圆和小圆的半径比是3:2,它们的周长比是( ),面积的比是( )。

二、判断。

(正确的在后面画"√",错误的在后面画"X")
1.把0.75∶送化成最简整数比是4∶3。

( )
2.25克∶0.25千克化成最简整数比是10。

( )
3.比的前项和后项都是奇数,这个比一定是最简整数比。

( )
4.从电影院到学校,小明用8分钟,小东用10分钟,小明与小东速度比是5∶4。

( )
5.如果A:B=4∶5,那么A=4, B=5。

( )
三、解比例。

1.41:81:12=
x 2. 16.0:6.03:=x
3.()7:21:18=-x
4.
32:94:61=x
能力提升
1.从1,2,3,4,6,12中选出4个数,组成一个比例是( )。

(任写一个即可)
2.如果6a=5b,那么a :b=( ):( )。

3.3:( )=( ):20=0.6=( )%=( )折=( )成
4. 3a=4b,那么号b
a =( )。

5.写出比值等于2的两个比,并组成比例,则这个比例是( )。

(任写一个即可) 6.在比例中,两内项的积为5,其中一个外项为
51,另一个外项是( )。

7.甲数的言61等于乙数的5
1,那么甲数:乙数=( ):( )。

8.甲数是乙数的1.2倍,乙数和甲数的比是( )。

相关文档
最新文档