单闭环流量比值控制系统设计

合集下载

单闭环比值控制系统3

单闭环比值控制系统3

比值控制系统一、比值控制原理基本概念与原理比值控制中,需要保持比例的两种物料:处于主导地位的称为主动量,通常用FM表示,如燃烧中的燃料量。

另一种物料称为从动量,用FS表示,如燃烧比值系统中的空气(氧气)量。

比值控制系统要实现:FS/FM=kk为从动量与主动量的比值。

图9-12 燃烧过程比值控制系统在石化、制药等生产过程中,经常要两种或两种以上的物料保持一定的比例关系。

燃烧过程:燃料与空气要保持一定比例,才能满足生产和环保要求。

造纸过程:浓纸浆与水要以一定比例混合,才能制造出合格的纸浆。

不少化学反应过程,多个进料要保持一定的比例。

比值系数计算流量比值与设置于仪表的比值系数是两个不同的概念,它们都为无量纲系数,但两者的数值是不等的。

流量比值k是流量的比值,它们可以同为质量流量、体积流量或折算为标准情况下的流量。

比值系数K是设置于比值函数模块或比值控制器中的参数。

1、采用线性流量检测单元的情况在正常工况下,主动量与从动量的输出值(无量纲)分别为F1/F1MAX,F2/F2MAX。

所以单元组合仪表的比值系数为:该比值系数只与变送器的量程和所要求从动量与主动量的对应比例关系有关,与变送器的电气零点无关。

2、采用差压法未经开方流量检测单元的情况此时,主动量与从动量的输出值(无量纲)分别为(F1/F1MAX)2,(F1/F1MAX)2 。

所以比值系数为:该比值系数只与变送器的量程和所要求从动量与主动量的对应比例关系有关,与变送器的电气零点无关。

3、几点说明(1)采用线性流量检测方法时,只有在F1MAX=F2MAX的场合,k=K;在采用差压法未经开方流量检测时,在时,k=K(2)采用相乘或相除的方案中,比值函数部件可以改接在F2一侧,即实现。

此时,K’=1/K。

(3)在同样的比值k下,通过调整F1MAX,F2MAX也可以改变比值系数。

单闭环管道流量比值控制系统设计

单闭环管道流量比值控制系统设计

《单闭环管道流量比值控制系统》过程控制系统课程设计说明书专业班级:11级自动化1班姓名:孙勇李自强周程鲍凯学号:080311009 080311022080311035 080311047指导教师:陈世军设计时间: 2014年6月11日物理与电气工程学院2014年 6 月11 日摘要在现代工业生产过程中,工艺上常需要两种或两种以上的物料流量保持一定的比例关系,一旦比例失调,就会影响生产的正常进行,影响产品质量,浪费原料,消耗动力,造成环境污染,甚至产生生产事故。

实现两个或两个以上参数符合一定比例关系的控制系统,称为比值控制系统。

通常以保持两种或几种物料的流量为一定比例关系的系统,称之为流量比值控制系统,这次课程设计的内容就是流量比值过程控制系统。

流量测量是比值控制的基础。

各种流量计都有一定的适用范围(一般正常流量选在满量程的70%左右),必须正确选择使用。

在工程上,具体实施比值控制时,通常有比值器、乘法器或除法器等单元仪表可供选择,相当方便。

若采用计算机控制来实现,只要进行乘法或除法运算即可,我们这次就主要使用计算机及组态王软件进行设计。

关键词:组态王;流量;比值控制系统目录1、引言 (1)1.1主要内容 (1)1.2任务要求 (1)2、设计方案 (2)2.1设计原理 (2)2.2系统原理图 (2)2.3 仿真调试 (3)3、硬件设计 (4)3.1使用仪器 (4)4、软件设计 (7)4.1 程序 (7)4.2 系统组态设计 (11)4.2.1组态图 (11)4.2.2静态画面 (12)4.2.3数字字典 (14)4.2.4系统应用程序 (16)4.2.5动画连接 (17)5、课程设计总结 (17)6、参考文献 (18)1、引言1.1主要内容本课程设计是学完《过程控制系统》课程后的一个应用性实践环节。

通过本课程设计的训练,对过程控制工程设计的概念有完整地了解,同时培养综合应用基础课、专业课所学知识与工程实际知识的能力。

基于mcgs的单闭环流量比值控制系统的设计

基于mcgs的单闭环流量比值控制系统的设计

标题:探究基于MCGS的单闭环流量比值控制系统的设计在当今工业自动化控制系统中,流量控制系统是至关重要的一环。

而基于MCGS(多变量控制系统)的单闭环流量比值控制系统的设计,更是一项挑战而又高效的技术。

本文将从深度和广度探讨该主题,帮助读者更好地理解这一概念。

一、流量控制系统概述1.1 什么是流量控制系统在工业生产中,流体的流动是一个普遍存在的过程,而流量控制系统则是用来准确控制流体的流动速度、流量和压力的系统。

它可以应用在化工、石油、制药等领域,对生产过程起着至关重要的作用。

1.2 流量控制系统的主要组成部分基于MCGS的单闭环流量比值控制系统由哪些主要组成部分组成?(这里可以详细介绍各个部分的功能和作用)二、基于MCGS的单闭环流量比值控制系统的设计2.1 MC基于MCGS的单闭环流量比值控制系统的设计,首当其冲的就是MC (多变量控制系统)。

MC是一种先进的控制系统,它采用多个输入、多个输出(MIMO)的控制方法,相比传统的单变量控制系统(SISO),MC能够更准确地控制流量的比值。

2.2 单闭环流量比值控制系统(这里可以详细描述单闭环流量比值控制系统的特点和设计原理,以及与MC的结合)三、个人观点和理解在我看来,基于MCGS的单闭环流量比值控制系统的设计不仅是技术创新的体现,更是工业自动化控制系统发展的必然趋势。

它将有效提高生产过程的稳定性和效率,为工业生产带来巨大的益处。

总结和回顾通过本文的探讨,我们对基于MCGS的单闭环流量比值控制系统的设计有了更深入的了解。

从流量控制系统的概述,到MC和单闭环流量比值控制系统的设计,再到个人观点和理解,我们获得了全面、深刻和灵活的知识体系。

基于MCGS的单闭环流量比值控制系统的设计是一项充满挑战和机遇的工作,它必将推动工业自动化控制系统向更高水平迈进。

希望本文能够帮助读者更好地理解和应用这一技术,为工业生产带来更大的效益。

在文章中,我尽力多次提及了指定的主题文字“基于MCGS的单闭环流量比值控制系统的设计”,并按照知识的文章格式进行撰写,保证了文章内容的丰富和深度。

实验二十——精选推荐

实验二十——精选推荐

实验⼆⼗实验⼆⼗⽐值控制系统实验第⼀节单闭环流量⽐值控制系统⼀、实验⽬的1、了解单闭环⽐值控制系统的原理与结构组成。

2、掌握⽐值系数的计算。

3、掌握⽐值控制系统的参数整定与投运。

⼆、实验设备1、THJ-2型⾼级过程控制实验装置2、计算机、上位机MCGS组态软件、RS232-485转换器1只、串⼝线1根3、万⽤表 1只三、系统结构框图图6-1单闭环流量⽐值控制系统结构图四、实验原理在⼯业⽣产过程中,往往需要⼏种物料以⼀定的⽐例混合参加化学反应。

如果⽐例失调,则会导致产品质量的降低、原料的浪费,严重时还发⽣事故。

例如在造纸⼯业⽣产过程中,为了保证纸浆的浓度,必须⾃动地控制纸浆量和⽔量按⼀定的⽐例混合。

这种⽤来实现两个或两个以上参数之间保持⼀定⽐值关系的过程控制系统,均称为⽐值控制系统。

本实验是流量⽐值控制系统。

其实验系统结构图如图6-1所⽰。

该系统中有两条⽀路,⼀路是来⾃于电动阀⽀路的流量Q1,它是⼀个主动量;另⼀路是来⾃于变频器—磁⼒泵⽀路的流量Q2,它是系统的从动量。

要求从动量Q2能跟随主动量Q1的变化⽽变化,⽽且两者间保持⼀个定值的⽐例关系,即Q2/Q1=K。

图6-2 单闭环流量⽐值控制系统⽅框图图6-2为单闭环流量⽐值控制系统的⽅框图。

由图可知,主控流量Q1经流量变送器后为I1(实际中已转化为电压值,若⽤电压值除以250Ω则为电流值,其它算法⼀样),如设⽐值器的⽐值为K,则流量单闭环系统的给定量为KI1。

如果系统采⽤PI调节器,则在稳态时,从动流量Q2经变送器的输出为I2,不难看出,KI1=I2。

五、⽐值系数的计算设流量变送器的输出电流与输⼊流量间成线性关系,当流量Q由0→Qmax变化时,相应变送器的输出电流为4→20mA。

由此可知,任⼀瞬时主动流量Q1和从动流量Q2所对应变送器的输出电流分别为I1= (1)I2= (2)式中Q1max和Q2max分别为Q1和Q2 最⼤流量值。

设⼯艺要求Q2/Q1=K,则式(1)可改写为Q1= Q1max (3)同理式(2)也可改写为Q2= Q2max (4)于是求得= (5)折算成仪表的⽐值系数K′为:K′ = K (6)六、实验内容与步骤1、按图6-1所⽰的实验结构图组成⼀个为图6-2所要求的单闭环流量⽐值控制系统。

单闭环流量定值控制系统毕业设计分解

单闭环流量定值控制系统毕业设计分解

开封大学毕业论文单闭环流量定值控制系统专业:[电气自动化]班级:[2班]学生姓名:[毕士杰]指导教师:[曹红英]完成时间:2018年10月13日目录第1章实验装置介绍 (1)1.1对象系统组成 (1)1.2 对象系统主要特点 (2)第2章系统的方案设计 (3)2.1硬件设计 (5)2.2软件设计 (6)第3章组态王软件设计 (10)3.1组态王软件介绍 (10)3.2使用组态王 (11)3. 3 创建组态画面 (14)3. 4 动画连接 (18)第4章系统中的问题和解决方案 (22)4.1控制规律的确定 (22)4.2调节器参数的整定方法 (23)总结 (27)参考文献 (28)第1章实验装置介绍1.1 对象系统组成(1)过程控制实验对象系统实验对象系统包含有:不锈钢储水箱;上、中、下三个串接有机玻璃圆筒型水箱;三相4.5kw电加热锅炉(由不锈钢锅炉内胆加热筒和封闭式外循环不锈钢冷却锅炉夹套构成)和铝塑盘管组成。

系统动力系统两套:一套由三相(380V交流)不锈钢磁力驱动泵、电动调节阀、交流电磁阀、涡轮流量计等组成;另一套由日本三菱变频器、三相不锈钢磁力驱动泵(220V变频)、涡轮流量计等组成。

整套对象系统完全由不锈钢材料制造,包括对象框架、管道、底板、甚至小到每一颗紧固螺钉。

如图1-1(2)对象系统中的各类检测变送及执行装置扩散硅压力变送器三只:分别检测上水箱、中水箱、下水箱液位;涡轮流量计三只:分别检测两条动力支路及盘管出水口的流量;Pt100热电阻温度传感器六只:分别用来检测锅炉内胆、锅炉夹套、盘管(三只)及上水箱出水口水温;控制模块:包括电磁阀、电动调节阀各一个;三相380V不锈钢磁力驱动泵、三相220V不锈钢磁力驱动泵;1.2 对象系统主要特点(1)被调参数囊括了流量、压力、液位、温度四大热工参数;(2)执行器中既有电动调节阀仪表类执行机构,又有变频器等电力拖动类执行器;(3)系统除了能改变调节器的设定值作阶跃扰动外,还可在对象中通过电磁阀和手操作阀制造各种扰动;(4)一个被调参数可用不同的动力源、不同的执行器和不同的工艺线路下可演变成多种调节回路,以利于讨论、比较各种调节方案的优劣;(5)能进行多变量控制系统及特定的过程控制系统实验。

单闭环流量比值控制系统

单闭环流量比值控制系统

单闭环流量比值控制系统一、实验目的1.了解单闭环比值控制系统的原理与结构组成。

2.掌握比值系数的计算方法。

3.掌握比值控制系统的参数整定与投运方法。

二、实验设备三、实验原理在工业生产过程中,往往需要几种物料以一定的比例混合参加化学反应。

如果比例失调,则会导致产品质量的降低、原料的浪费,严重时还会发生事故。

这种用来实现两个或两个以上参数之间保持一定比值关系的过程控制系统,均称为比值控制系统。

本实验是单闭环流量比值控制系统。

其实验系统结构图如图1所示。

该系统中有两条支路,一路是来自于电动调节阀支路的流量Q1,它是一个主流量;另一路是来自于变频器—磁力泵支路的流量Q2,它是系统的副流量。

要求副流量Q2能跟随主流量Q1的变化而变化,而且两者之间保持一个定值的比例关系,即Q2/Q1=K。

图1 单闭环流量比值控制系统(a)结构图 (b)方框图由图中可以看出副流量是一个闭环控制回路,当主流量不变,而副流量受到扰动时,则可通过副流量的闭合回路进行定值控制;当主流量受到扰动时,副流量按一定比例跟随主流量变化,显然,单闭环流量控制系统的总流量是不固定的。

四、比值系数的计算设流量变送器的输出电流与输入流量间成线性关系,即当流量Q 由0~Q max 变化时,相应变送器的输出电流为4~20mA 。

由此可知,任一瞬时主流量Q 1和副流量Q 2所对应变送器的输出电流分别为I 1=416max11+⨯Q Q (1) I 2=416max 22+⨯Q Q (2) 式中Q 1max 和Q 2max 分别为Q 1和Q 2 最大流量值,即涡轮流量计测量上限,由于两只涡轮流量计完全相同,所以有Q 1max =Q 2max 。

设工艺要求Q 2/Q 1=K ,则式(1)、(2)可改写为Q 1=16)4(1-I Q 1max (3) Q 2=16)4(2-I Q 2max (4) 于是求得12Q Q =4412--I I ×max 1max 2Q Q =4412--I I (5) 折算成仪表的比值系数K ′为K ′=K ×max2max 1Q Q =K (6) 五、实验内容与步骤本实验选择电动阀支路和变频器支路组成流量比值控制系统。

单闭环流量定值控制系统

单闭环流量定值控制系统

第二节单闭环流量定值控制系统一.实验目的:1.了解单闭环流量控制系统的结构组成与原理。

2.掌握单闭环流量控制系统调节器参数的整定方法。

3.研究P、PI、PD和PID四种控制分别对流量系统的控制作用。

二.实验原理:离心泵恒流量控制系统图如图5.3-1所示,控制系统方框图如图5.3-2所示。

图5.3-1 离心泵恒流量控制系统图图5.3-2 离心泵恒流量控制系统方框图离心泵恒流量控制系统为单回路简单控制系统,安装在离心泵出口管路上涡轮流量传感器TT将离心泵出口流量转换成脉冲信号,其脉冲频率经频率/电压转换器转换成电压信号后输出至流量调节器TC,TC将流量信号与流量给定值比较后,按PID调节规律输出4—20mA信号,驱动电动调节阀改变调节阀的开度,达到恒定离心泵出口流量的目的。

离心泵恒流量控制系统方框图如图十三所示。

控制参数如下:1.控变量y:离心泵出口流量Q。

2.定值(或设定值)ys:对应于被控变量所需保持的工艺参数值3.测量值ym:由传感器检测到的被控变量的实际值4.操纵变量(或控制变量):实现控制作用的变量,在本实验中为离心泵出口流量。

使用电动调节阀作为执行器对离心泵出口流量进行控制。

电动调节阀的输入信号范围:4—20mA。

5.干扰(或外界扰动)f:干扰来自于外界因素,将引起被控变量偏离给定值。

在本实验中采用突然改变离心泵转速的方法,改变离心泵出口压力,人为模拟外界扰动给控制变量造成干扰。

6.偏差信号e:被控变量的实际值与给定值之差, e=ys-ym 。

ym---离心泵出口流量值Q 。

ys---离心泵出口流量设定值。

7.控制信号u :工业调节器将偏差按一定规律计算得到的量。

离心泵恒流量控制系统采用比例积分微分控制规律(PID)对离心泵流量进行控制。

比例积分微分控制规律是比例、积分与微分三种控制规律的组合,理想的PID 调节规律的数学表达式为:01()()()()tP D I de t u t K e t e t dt T T dt ⎡⎤∆=++⎢⎥⎣⎦⎰ 三.实验方法:1.向V103中注入2/3以上清水 2.打开设备总电源,检查各仪表,执行器是否正常3.打开阀门VA110或VA111,A112,A117,其余阀门关闭4.松动离心泵放气螺丝,直到有水流出,拧紧螺丝5.将离心泵出口压力测量表(PI-03)设为手动输出且输出值为100,变频器的频率即设为50.00Hz6.打开实验软件,进入流量曲线界面点击菜单栏中的“曲线 流量控制曲线”开始记录液位变化7.将流量测量表(FI-01)设为自动输出且SV 值为4.00,P=3,I=5,D=1.5 FILE=58.打开立式离心泵向观察曲线变化情况,待流量稳定后,点击菜单栏中的“曲线 流量控制曲线”重新记录液位变化9.大约10秒钟后通过以下几种方式加干扰:(1)突增(或突减)仪表设定值的大小,使其有一个正(或负)阶跃增量的变化;(此法推荐,下面方法仅供参考)。

单闭环流量比值控制系统matlab

单闭环流量比值控制系统matlab

单闭环流量比值控制系统matlab在控制系统工程中,单闭环流量比值控制系统是一种常见的控制系统结构,它可以实现对给定流量比值的精准控制。

在本文中,我们将探讨这一主题,并结合Matlab的实际应用来深入理解。

1. 单闭环流量比值控制系统概述单闭环流量比值控制系统是指在控制过程中,通过检测两个流量变量的比值,从而实现对流量比值的控制。

这种控制系统结构通常包括传感器、控制器和执行器等组成部分,它能够在一定程度上解决流量控制中的非线性和耦合问题。

2. 控制系统参数评估在设计单闭环流量比值控制系统时,需要对系统参数进行评估。

我们需要确定传感器的精度和灵敏度,以确保能够准确地检测流量比值。

控制器的参数也需要进行调整,包括比例、积分和微分参数的设定,以实现对流量比值的精准控制。

在Matlab中,可以通过仿真和参数优化的方法来进行参数评估,从而实现系统控制的优化。

3. Matlab在单闭环流量比值控制系统中的应用Matlab作为一种功能强大的工具,可以用于建立单闭环流量比值控制系统的数学模型,并进行仿真分析。

通过Matlab/Simulink工具箱,可以方便地搭建系统模型,并对控制器参数和系统结构进行优化。

Matlab还提供了丰富的数据可视化和分析工具,可以帮助工程师更直观地理解控制系统的性能,并进行系统设计与优化。

4. 个人观点和理解在实际工程应用中,单闭环流量比值控制系统具有广泛的应用价值,尤其是在化工、环保和生物工程等领域。

通过Matlab对控制系统进行建模和仿真分析,可以帮助工程师更加深入地理解系统动态特性和稳定性,从而实现系统设计的优化。

在实际工程中,需要综合考虑系统的稳定性、鲁棒性和实时性等因素,进一步优化单闭环流量比值控制系统的性能和可靠性。

总结回顾通过本文对单闭环流量比值控制系统的深入探讨,我们更深入地理解了控制系统工程中的关键概念和方法。

Matlab作为一种功能强大的工具,为工程师提供了便利的系统设计与优化评台,可以帮助实现对单闭环流量比值控制系统的高效建模和仿真分析。

单闭环流量定值控制系统毕业设计

单闭环流量定值控制系统毕业设计

目录第1章实验装置介绍 (1)1.1对象系统组成 (1)1.2 对象系统主要特点 (2)第2章系统的方案设计 (3)2.1硬件设计 (5)2.2软件设计 (6)第3章组态王软件设计 (10)3.1组态王软件介绍 (10)3.2使用组态王 (11)3. 3 创建组态画面 (14)3. 4 动画连接 (18)第4章系统中的问题和解决方案 (22)4.1控制规律的确定 (22)4.2调节器参数的整定方法 (23)总结 (27)参考文献 (28)第1章实验装置介绍1.1 对象系统组成(1)过程控制实验对象系统实验对象系统包含有:不锈钢储水箱;上、中、下三个串接有机玻璃圆筒型水箱;三相4.5kw电加热锅炉(由不锈钢锅炉内胆加热筒和封闭式外循环不锈钢冷却锅炉夹套构成)和铝塑盘管组成。

系统动力系统两套:一套由三相(380V交流)不锈钢磁力驱动泵、电动调节阀、交流电磁阀、涡轮流量计等组成;另一套由日本三菱变频器、三相不锈钢磁力驱动泵(220V变频)、涡轮流量计等组成。

整套对象系统完全由不锈钢材料制造,包括对象框架、管道、底板、甚至小到每一颗紧固螺钉。

如图1-1(2)对象系统中的各类检测变送及执行装置扩散硅压力变送器三只:分别检测上水箱、中水箱、下水箱液位;涡轮流量计三只:分别检测两条动力支路及盘管出水口的流量;Pt100热电阻温度传感器六只:分别用来检测锅炉内胆、锅炉夹套、盘管(三只)及上水箱出水口水温;控制模块:包括电磁阀、电动调节阀各一个;三相380V不锈钢磁力驱动泵、三相220V不锈钢磁力驱动泵;1.2 对象系统主要特点(1)被调参数囊括了流量、压力、液位、温度四大热工参数;(2)执行器中既有电动调节阀仪表类执行机构,又有变频器等电力拖动类执行器;(3)系统除了能改变调节器的设定值作阶跃扰动外,还可在对象中通过电磁阀和手操作阀制造各种扰动;(4)一个被调参数可用不同的动力源、不同的执行器和不同的工艺线路下可演变成多种调节回路,以利于讨论、比较各种调节方案的优劣;(5)能进行多变量控制系统及特定的过程控制系统实验。

实验单闭环比值控制系统

实验单闭环比值控制系统

实验内容
1. 进行系统信号连线,完成构建单闭环比值系统的工作; 2. 对流量计进行现场的量程标定; 3. 根据要求的流量比例关系,计算流量信号的比值系数K′,并进行设
置; 4. 主动量保持手动操作,从动量控制系统无扰动地切换为自动; 5. 调整控制器的P、I参数,达到几乎无超调、无震荡的过渡过程,确
• 从动流量闭环系统的设定值:SP2=FT101*K’ • 主流量手动调节:MV1,即变频器输出U101 • 副流量自动调节:MV2,及控制阀FV101输出 • 信号比:K' =K*F1max/F2max
单闭环比值控制系统的信号连线
• 流量F1变送器FT101输出接在1#控制器的输入端(PV),其输入的 信号在计算机内利用组态监控软件,除了在屏幕上显示,进行曲线绘 制、存储外,还在软件中进行乘法运算,与比值系数K’相乘,运算 的 结 果 通 过 智 能 模 块 的 模 拟 量 输 出 端 AO0 连 接 到 从 动 量 控 制 器 (2#PID控制器)的外给定端(SP)
实验步骤
5. 根据流量比K=2.5:1的要求,计算并设定单闭环比值系数
K’=K*(F1max/F2max)。
6. 预置PID2的P=100,I=20,将PID2投自动,注意无扰动投运;投自动后等 待SP2变为或接近外给定的值F1*K’,如果SP2不变化,需等待一段时间 (几秒~五分钟不等),仍无变化则改变一下PID1的MV1;
过程控制工程实验
实验六 单闭环比值控制系统
比值控制的意义
• 比值控制主要目的:保证两路或多路流体计量关系的比值。在生产中, 这种比例关系可能直接影响到产品的产量、质量,生产的能耗与安全; 在化学反应过程的进料比或加热比、燃烧过程的燃-空比、蒸馏过程 多组分的进料或采出的进料比与采出比等,常采用比值控制方案

单闭环流量比值控制系统设计

单闭环流量比值控制系统设计

摘要在现代工业生产过程中,工艺上常需要两种或两种以上的物料流量保持一定的比例关系,一旦比例失调,就会影响生产的正常进行,影响产品质量,浪费原料,消耗动力,造成环境污染,甚至产生生产事故。

例如氨分解工艺中的氨分解炉,入炉煤气和空气应保持一定的比例,否则将使燃烧反应不能正常进行,而煤气和空气比例超过一定的极限将会引起爆炸。

实现两个或两个以上参数符合一定比例关系的控制系统,称为比值控制系统。

通常以保持两种或几种物料的流量为一定比例关系的系统,称之为流量比值控制系统,这次课程设计的内容就是单闭环流量比值过程控制系统。

在实际的生产过程控制中,比值控制系统除了实现一定比例的混合外,还能起到在扰动影响到被控过程质量指标之前及时控制的作用.而且当最终质量指标难于测量,变送时,可以采用比值控制系统,使生产过程在最终质量达到预期指标下安全正常地进行,因为比值控制具有前馈控制的实质。

关键词:流量;比值控制;PID控制;可编程控制器目录1设计背景 (1)2比值控制系统概述 (2)2.1 比值控制系统定义 (2)2.2 比值控制原理 (2)2.3 比值控制系统特点 (2)2.4 比值控制系统的类型 (3)2.4.1 开环比值控制系统 (3)2.4.2 单闭环比值控制系统 (4)3单闭环流量比值控制系统方案设计 (7)3.1 系统方案设计 (7)3.2 系统硬件设计 (7)4上位机组态与程序设计 (10)4.1 组态软件WinCC (10)4.1.1 WinCC简介 (10)4.1.2 WinCC的发展及应用 (10)4.2 上位机组态设计 (11)4.3 PLC程序设计 (12)5 PID参数整定及系统调试 (17)5.1 PID控制器 (17)5.1.1 PID控制器的优点 (18)5.1.2 控制规律的选择 (18)5.2 PID控制器参数的调节及其对控制性能的影响 (19)5.2.1 比例控制对控制性能的影响 (19)5.2.2 积分控制对控制性能的影响 (20)5.2.3 微分控制对控制性能的影响 (22)5.3 控制系统的整定 (23)5.3.1 控制系统整定的基本要求 (23)5.3.2 调节器参数的整定方法 (23)5.4 调节器参数的整定及调试 (25)总结 (28)参考文献 (29)1设计背景石油炼制生产过程中,把两种或两种以上基础组分油与各种添加剂按一定比例均匀混合,从而成为一种新产品的过程称为调和。

单闭环比值控制课程设计

单闭环比值控制课程设计

单闭环比值控制课程设计一、课程目标知识目标:1. 理解单闭环比值控制的基本概念,掌握其数学模型和物理意义;2. 掌握单闭环比值控制系统的参数设计方法,能够分析系统性能;3. 了解单闭环比值控制在实际工程中的应用,如电机转速控制、温度控制等。

技能目标:1. 能够运用数学工具对单闭环比值控制系统进行建模和分析;2. 学会使用仿真软件进行单闭环比值控制系统的模拟和调试;3. 能够独立设计简单的单闭环比值控制系统,并进行性能评估。

情感态度价值观目标:1. 培养学生对自动控制技术的兴趣,激发其探索精神;2. 培养学生严谨的科学态度,使其认识到理论与实践相结合的重要性;3. 增强学生的团队合作意识,培养其沟通交流和协作解决问题的能力。

课程性质:本课程属于自动控制原理的一部分,以理论教学和实践操作相结合的方式进行。

学生特点:学生已具备一定的数学基础和物理知识,具有一定的分析问题和解决问题的能力。

教学要求:结合理论教学和实际操作,注重培养学生的实际应用能力和创新思维。

在教学过程中,将课程目标分解为具体的学习成果,以便于后续的教学设计和评估。

二、教学内容1. 单闭环比值控制基本概念:介绍单闭环比值控制系统的定义、组成及其在自动控制中的应用。

- 教材章节:第三章第二节- 内容:控制系统概述、单闭环比值控制系统的结构及原理。

2. 单闭环比值控制数学模型:分析单闭环比值控制系统的数学建模方法,包括传递函数、状态空间方程等。

- 教材章节:第三章第三节- 内容:数学模型建立、传递函数求解、状态空间方程描述。

3. 单闭环比值控制系统参数设计:讲解单闭环比值控制系统的参数设计方法,分析系统性能指标。

- 教材章节:第三章第四节- 内容:PID控制器设计、系统稳定性分析、性能指标优化。

4. 单闭环比值控制系统仿真与实验:运用仿真软件(如MATLAB)进行单闭环比值控制系统模拟和调试,开展实验操作。

- 教材章节:第三章第五节- 内容:仿真软件应用、模拟调试方法、实验操作步骤。

单闭环流量比值控制系统设计

单闭环流量比值控制系统设计

摘要在现代工业生产过程中,工艺上常需要两种或两种以上的物料流量保持一定的比例关系,一旦比例失调,就会影响生产的正常进行,影响产品质量,浪费原料,消耗动力,造成环境污染,甚至产生生产事故。

例如氨分解工艺中的氨分解炉,入炉煤气和空气应保持一定的比例,否则将使燃烧反应不能正常进行,而煤气和空气比例超过一定的极限将会引起爆炸。

实现两个或两个以上参数符合一定比例关系的控制系统,称为比值控制系统。

通常以保持两种或几种物料的流量为一定比例关系的系统,称之为流量比值控制系统,这次课程设计的内容就是单闭环流量比值过程控制系统。

在实际的生产过程控制中,比值控制系统除了实现一定比例的混合外,还能起到在扰动影响到被控过程质量指标之前及时控制的作用.而且当最终质量指标难于测量,变送时,可以采用比值控制系统,使生产过程在最终质量达到预期指标下安全正常地进行,因为比值控制具有前馈控制的实质。

关键词:流量;比值控制;PID控制;可编程控制器目录1设计背景 (1)2比值控制系统概述 (5)2.1 比值控制系统定义 (5)2.2 比值控制原理 (5)2.3 比值控制系统特点 (5)2.4 比值控制系统的类型 (6)2.4.1 开环比值控制系统 (6)2.4.2 单闭环比值控制系统 (7)3单闭环流量比值控制系统方案设计 (10)3.1 系统方案设计 (10)3.2 系统硬件设计 (10)4上位机组态与程序设计 (13)4.1 组态软件WinCC (10)4.1.1 WinCC简介 (10)4.1.2 WinCC的发展及应用 (10)4.2 上位机组态设计 (11)4.3 PLC程序设计 (12)5 PID参数整定及系统调试 (20)5.1 PID控制器 (20)5.1.1 PID控制器的优点 (21)5.1.2 控制规律的选择 (21)5.2 PID控制器参数的调节及其对控制性能的影响 (22)5.2.1 比例控制对控制性能的影响 (19)5.2.2 积分控制对控制性能的影响 (20)5.2.3 微分控制对控制性能的影响 (22)5.3 控制系统的整定 (23)5.3.1 控制系统整定的基本要求 (23)5.3.2 调节器参数的整定方法 (23)5.4 调节器参数的整定及调试 (28)总结 (31)参考文献 (32)1设计背景石油炼制生产过程中,把两种或两种以上基础组分油与各种添加剂按一定比例均匀混合,从而成为一种新产品的过程称为调和。

单闭环流量PID控制.

单闭环流量PID控制.

摘要本文简要介绍了PID调节的工作原理,详细论述了调节器PID参数的整定,对于PID单回路调节器在工业中的应用具有很重要的现实意义。

提出一种对液体流量进行实时的精确控制的设计方案. 该方案以PLC 控制为基础,由上位机、PLC. 触摸屏、靶式流量计、电动调节阀组成. 它不仅适用于流量控制,在改变动作设备后同样适用于对温度、液位、速度、高度等模拟量的控制.关键词:PLC; PID调节器;流量控制系统;参数整定;目录1 设计目的与要求 (2)1.1 设计目的 (2)1.2 设计要求 (2)2 系统结构设计 (3)2.1 控制方案 (3)2.2 系统结构 (4)3 实验系统组成 (6)3.1系统简介 (6)3.2系统组成 (7)4 下位机软件 (10)4.1 STEP 7简介 (10)4.2 STEP 7的安装 (10)4.3 STEP 7的硬件配置和程序结构 (11)5 上位机组态软件简介 (15)5.1 WINCC 概述 (15)5.2 WINCC的安装 (15)5.3 WINCC的通讯连接和画面组态方法 (16)6 PID作用与整定 (17)6.1 实验结果 (17)6.2 PID调节作用 (19)6.2.1 比例作用(P) (19)6.2.2积分作用(I) (20)6.2.3 微分作用(D) (20)6.3控制器PID参数的整定 (21)6.3.1经验法 (21)6.3.2临界比例度法 (22)总结 (24)参考文献 (25)1 设计目的与要求1.1 设计目的通过某种组态软件,结合实验已有设备,按照定值系统的控制要求,根据较快较稳的性能要求,采用但闭环控制结构和PID控制规律,设计一个具有美观组态画面和较完善组态控制程序的流量单回路过程控制系统。

1.2 设计要求(1) 根据流量单回路过程控制系统的具体对象和控制要求,独立设计控制方案,正确选用过程仪表。

(2)了解单闭环流量控制系统的结构组成与原理。

过程控制课程设计-流量比值控制

过程控制课程设计-流量比值控制

一.设计任务分析1.1设计任务的描述在了解、熟悉和掌握双闭环流量比值控制系统的工艺流程和生产过程的静态和动态特性的基础之上,根据生产过程对控制系统所提出的安全性、经济性和稳定性要求,应用控制理论对控制系统进行分析和综合,最后采用计算机控制技术予以实现。

1.2设计的目的通过对一个完整的生产过程控制系统的课程设计,使我们进一步加深对《过程控制系统》课程中所学内容的理解和掌握,提高我们将《过程检测与控制仪表》、《自动控制原理》、《微机控制技术》和《过程工程基础》等课程中所学到知识综合应用的能力。

锻炼学生的综合知识应用能力,让学生了解一般工程系统的设计方法、步骤,系统的集成和投运。

从而培养学生分析问题和解决问题的能力。

1.3设计的要求1.从组成、工作原理上对工业型流量传感器、执行机构有一深刻的了解和认识。

2.分析控制系统各个环节的动态特性,从实验中获得各环节的特性曲线,建立被控对象的数学模型。

3.根据其数学模型,选择被控规律和整定调节器参数。

4.在Matlab上进行仿真,调节控制器参数,获得最佳控制效果。

5.了解和掌握自动控制系统设计与实现方法,并在THJ-2型高级过程控制系统平台上完成本控制系统线路连接和参数调试,得到最佳控制效果。

6.分析仿真结果与实际系统调试结果的差异,巩固所学的知识。

1.4本次设计的具体要求1.控制电磁阀的开度实现流量的单闭环的PI调节。

2.通过变频器控制电磁阀运行实现流量的单闭环的PI调节3.用比例控制系统使副回路的流量跟踪主回路的流量,满足一定的工艺生产要求二.总体设计方案2.1方案论证根据实际生产情况,比值控制系统可以选择不同的控制方案,比值控制系统的控制方案主要有开环比值控制系统,单闭环比值控制系统,双闭环比值控制系统几种。

方案一:单闭环控制系统原理设计的系统框图如图2.1所示。

图2.1 单闭环流量比值控制系统原理图单闭环流量比值控制系统与串级控制系统相似,但功能不同。

可见,系统中没有主对象和主调节器,这是单闭环比值控制系统在结构上与串级控制不同的地方,串级控制中的副变量是调节变量到被控变量之间总对象的一个中间变量,而在比值控制中,副流量不会影响主流量,这是两者本质上的区别。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要在现代工业生产过程中,工艺上常需要两种或两种以上的物料流量保持一定的比例关系,一旦比例失调,就会影响生产的正常进行,影响产品质量,浪费原料,消耗动力,造成环境污染,甚至产生生产事故。

例如氨分解工艺中的氨分解炉,入炉煤气和空气应保持一定的比例,否则将使燃烧反应不能正常进行,而煤气和空气比例超过一定的极限将会引起爆炸。

实现两个或两个以上参数符合一定比例关系的控制系统,称为比值控制系统。

通常以保持两种或几种物料的流量为一定比例关系的系统,称之为流量比值控制系统,这次课程设计的内容就是单闭环流量比值过程控制系统。

在实际的生产过程控制中,比值控制系统除了实现一定比例的混合外,还能起到在扰动影响到被控过程质量指标之前及时控制的作用.而且当最终质量指标难于测量,变送时,可以采用比值控制系统,使生产过程在最终质量达到预期指标下安全正常地进行,因为比值控制具有前馈控制的实质。

关键词:流量;比值控制;PID控制;可编程控制器[目录1设计背景 (1):2比值控制系统概述 (2)比值控制系统定义 (2)比值控制原理 (2)比值控制系统特点 (2)比值控制系统的类型 (3)开环比值控制系统 (3)单闭环比值控制系统 (4)3单闭环流量比值控制系统方案设计 (7)-系统方案设计 (7)系统硬件设计 (7)4上位机组态与程序设计 (10)组态软件WinCC (10)WinCC简介 (10)WinCC的发展及应用 (10)上位机组态设计 (11)PLC程序设计 (12):5 PID参数整定及系统调试 (17)PID控制器 (17)PID控制器的优点 (18)控制规律的选择 (18)PID控制器参数的调节及其对控制性能的影响 (19)比例控制对控制性能的影响 (19)积分控制对控制性能的影响 (20)微分控制对控制性能的影响 (22)?控制系统的整定 (23)控制系统整定的基本要求 (23)调节器参数的整定方法 (23)调节器参数的整定及调试 (25)总结 (28)参考文献 (29)%】【1设计背景石油炼制生产过程中,把两种或两种以上基础组分油与各种添加剂按一定比例均匀混合,从而成为一种新产品的过程称为调和。

油品调合主要是指汽油、柴油、润滑以及原油等的调和。

汽油调和是炼厂利用生产的各种汽油组分,按某种比例配方和添剂均匀混合,得到符合质量标准的汽油产品的过程。

它是汽油成品出厂的最后一道工和炼厂生产成品油的最后一个环节,也是保证汽油质量指标满足环保和质量规格要求重要手段,调和效益在生产企业的经济效益中占有举足轻重的地位。

在各种生产过程中,经常遇到生产工艺要求两个或两个以上参数成一定的比例关系,一旦比例失调,就会影响生产的正常运行。

例如在锅炉的燃烧系统中,要保持送进炉膛的风量和燃料成一定的比例,以保证燃烧的经济性。

通常,在两个需要保持一定比例关系的物料中,一个是主动量或关键量,另一个是从动量或辅助量。

由于物料通常是液体,因此称主动量为主流量Q1从动量为副流量Q2。

Q1与Q2之间的关系为Q2=KQ1式中,K为比值系数。

因此,只要主副流量的给定值保持比值关系,或者副流量给定值随主流量按一定比例关系而变化即可实现比值控制。

通过以上分析可见,在配料过程中对生产产品的各种原料的比值进行控制显得尤为重要,常用比值控制来解决此类问题。

比值控制的目的就是为了实现使几种物料混合符合一定比例关系,使生产能安全正常进行。

配料精度的高低制约着整个生产的产品质量和产量,所以应对配料过程的控制给予足够重视。

·2比值控制系统概述2.1比值控制系统定义在化工、炼油及其他工业生产过程中,工艺上常需要两种或两种以上的物料保持一定的比例关系,比例一旦失调,将影响生产或造成事故。

、实现两个或两个以上参数符合一定比例关系的控制系统,称为比值控制系统。

通常以保持两种或几种物料的流量为一定比例关系的系统,称之流量比值控制系统。

比值控制系统可分为:开环比值控制系统,单闭环比值控制系统,双闭环比值控制系统,变比值控制系统,串级和比值控制组合的系统等。

2.2比值控制原理通常,在两个需要保持一定比例关系的物料中,一个是主动量或关键量,另一个是从动量或辅助量。

由于物料通常是液体,因此称主动量为主流量Q1从动量为副流量Q2。

Q1与Q2之间的关系为Q 2=KQ1(2-1)式中,K为比值系数。

因此,只要主副流量的给定值保持比值关系,或者副流量给定值随主流量按一定比例关系而变化即可实现比值控制。

2.3比值控制系统特点·比值控制系统的特征: 是实现两个或两个以上物料保持一定比例关系。

1.主物料,也称为主动量:在要保持一定比例关系的物料中,把起主导作用的物料,称为主物料(主动量),因为在过程控制中经常保持比例的参数是流量,故常用Q1表示。

2.从物料,也称为从动量:另一种随主物料的变化而成比例地变化的物料称为从物料(从动量),常用Q2表示。

3.比值系数:若两物料的比值系数设定为K ,则有:|(2-2)2.4 比值控制系统的类型比值控制系统按比值的特点可分为定比值和变比值控制系统。

两个或两个以上参数之间的比值是通过改变比值器的比值系数来实现的,一旦比值系数确定,系统投入运行后,此比值系数将保持不变(为常数),具有这种特点的系统称为定比值控制系统。

如果生产上因某种需要对参数间的比值进行修正时,需要人工重新设置新的比值系数,这种系统的结构一般比较简单。

两个或两个以上参数之间的比值不是一个常数,而是根据另一个参数的变化而不断的修正,具有这种特点的系统称为变比值控制系统,这种系统的结构一般比较复杂。

比值控制系统按结构特点可分为简单比值和复杂比值控制系统。

比值控制系统可笼统分为:开环比值控制系统、单闭环比值控制系统、双闭环比值控制系统、串级比值及变比值控制系统等。

下面简单介绍这五种控制系统[4]。

2.4.1 开环比值控制系统开环比值控制系统是结构最简单的比值控制系统,其工艺流程图和原理方块图如图所示。

其中FT 为检测变送器,FC 为比值控制器。

,21Q K Q(1)工艺流程图(2)原理方框图图开环比值控制系统|由原理方块图我们可以总结开环比值控制系统的特点如下:1)当系统处于稳定工作状态时,两物料的流量满足比值关系。

2)当主动量受到干扰而发生变化时,系统通过比值器及设定值按比例去改变控制阀的开度,调节从动量使之与主动量仍保持原有的比例关系。

3)当从动量受到外界干扰(如温度、压力扰动)波动时,由于是开环控制,没有调节从动量自身波动的环节,也没有调整主动量的环节,故两种物料的比值关系很难保持不变,系统对此无能为力。

开环比值控制是理解比例控制工作机理的基础,在实际工程上很少应用。

2.4.2单闭环比值控制系统单闭环比值控制系统是在开环比值控制系统上增加对副物料的闭环控制回路,用以实现主、副物料的比值保持不变。

工艺流程图及原理框图如图所示。

;;(1)工艺流程图(2)原理方框图图单闭环比值控制系统1. 单闭环比值控制系统原理单闭环比值控制系统是由两个信号即主流量1Q 、副流量2Q ,两个变送器、调节器、执行机构和一个以2Q 作为反馈信号的闭环回路组成。

在稳定时,能实现主、副流量的工艺比值的要求,即2/1Q Q K = (K 为常数)。

系统原理框图如图6-3所示。

当主流量1Q 不变、而副流量2Q 受到扰动时,则可通过副流量的闭合回路进行定值控制。

主流量调节器1()T W s 的输出作为副流量的给定值。

当主流量1Q 受到扰动时,1()T W s 则按预先设置好的比值使其输出成比例变化,即改变2Q 的给定值。

1()T W s 根据给定值的变化,发出控制命令以改变调节阀的开度,使副流量2Q 跟随主流量1Q 而变化,从而保证原设定的比值不变。

当主副流量同时受到扰动时,调节器1()T W s 在克服副流量扰动的同时,又根据新的给定值,改变调节阀的开度,使主、副流量在新的流量数值的基础上,保持其原设定值的比值关系。

它不但可以实现副流量跟随主流量的变化而变化,而且还可以克服副流量本身干扰对比值的影响。

可见,该系统能确保主、副两个流量的比值不变,同时,系统的结构又较简单,方案实现起来方便,仅用一台比值器或比例调节器即可,因而在工业过程自动化中广泛应用[5]。

2.单闭环比值控制系统的四种工作情况:(1)当系统处于稳定工作状态时,主、副物料流量的比值恒定。

如图单闭环比值控制系统的原理框图,由图可知: 稳态时:【11122()m T m W W Q W Q = (2-3)(2-4)(图 单闭环比值控制系统的原理框图K W W W Q Q m T m =⋅=∴21112当1Q不变,2Q受到扰动时,闭合回路进行定值控制。

当1Q受到扰动时,1()W s输T出变化,2Q跟随1Q变化,保证原设定的比值不变。

单闭环比值控制系统适用于负荷变化不大,主流量不可控制,两种物料间的比值要求较精确的生产过程。

(2)当主物料流量不变,副物料流量受到扰动变化时,可通过副流量的闭合回路调整副物料流量使之恢复到原设定值,保证主、副物料流量比值一定。

(3)当主物料流量受到扰动变化,而副物料不变时,则按预先设置好的比值使比值器输出成比例变化,即改变给定值,根据给定值的变化,发出控制命令,以改变调节阀的开度,使副流量跟随主流量而变化,从而保证原设定的比值不变。

(4)当主、副物料流量同时受到扰动变化时,调节器在调整副物料流量使之维持原设定值的同时,系统又根据主物料流量产生新的给定值,改变调节阀的开度,使主、副物料流量在新的流量数值的基础上,保持原设定值的比值关系不变。

总之, 单闭环比值控制系统虽然能保持主、副物料流量比值不变,但是无法控制主物料的流量不变,因此,对生产过程的生产能力没有进行控制。

该控制系统能保证主、副物料的流量比值不变,同时,系统结构简单,因此在工业生产过程自动化中应用较广。

!@&3单闭环流量比值控制系统方案设计系统方案设计系统结构图如图(a),方框图如图(b)所示<(a)结构图 (b)方框图*图单闭环流量比值控制系统该系统中有两条支路,一路是来自于变频器—磁力泵支路的流量Q1,它是一个主流量;另一路是来自于气动调节阀支路的流量Q2,它是系统的副流量。

要求副流量Q2能跟随主流量Q1的变化而变化,而且两者之间保持一个定值的比例关系,即Q2/Q1=K。

系统硬件设计1、水箱包括下水箱和储水箱。

下水箱采用淡蓝色圆筒型有机玻璃,不但坚实耐用,而且透明度高。

下水箱尺寸为:d=35cm,h=20 cm。

水箱有三个槽,分别是缓冲槽,工作槽,出水槽。

储水箱尺寸为:长×宽×高=68cm×52㎝×43㎝。

储水箱内部有两个椭圆形塑料过滤网罩,防止两套动力支路进水时有杂物进入泵中。

相关文档
最新文档