第四章图形的初步认识知识点总结

合集下载

小学一年级数学第4讲:图形的初步认识

小学一年级数学第4讲:图形的初步认识

第四讲:图形的初步认识一、知识点:1. 各种平面图形和立体图形;2. 点、线段、曲线、角、三角形、正方形、圆、立体体、球等二、课堂引入:同学们自己说说所知道的图形?你们能不能画出自己所知道的图形呢?上黑板来画出所知道的图形引入今天的课题,图形的初步认识三、教学内容:例1:认识点、直线、射线和线段。

.第一张是直线,直线没有端点,两段可以无限延伸,不可以度量第二张是射线,射线有一个端点,一端可以无限延伸,不可以度量第三张是线段,线段有两个端点两段都不可以延伸,可以度量学习了三种最基本的图形,让同学们说说自己周围有哪些东西是直线,射线,或者线段自己在纸上画一画这三种例2:认识相交、垂直和平行;(1)(2)(3)解:(1)是两条直线相交,只有一个交点;(2)是两条直线相交,只有一个交点,夹角是直角,两条直线互相垂直;(3)是两条直线平行,没有交点,永远不会相交;同学们自由讨论周围有哪些直线相交的情况,直线垂直的情况,直线平行的情况;自己画一画相交,垂直,平行。

例3:认识角;边顶点边(1)(2)(3)(4)分析:(1)是一个角,角是从一点引出的两条射线组成的图形,这个点叫做顶点(2)是一个直角,直角的两条边互相垂直;(3)是一个锐角,锐角比直角小;(4)是一个钝角,钝角比直角大。

例4:认识三角形。

顶点顶点边顶点(1)(2)(3)(4)分析:(1)是一个三角形,三角形有三条边、三个角、三个顶点;(2)是一个直角三角形,直角三角形有一个直角、两个锐角;(3)是一个锐角三角形,锐角三角形的三个角都是锐角;(4)是一个钝角三角形,钝角三角形有一个钝角、两个锐角。

说说自己身边有哪些物体是三角形的,自己动手画一画不同的三角形同步练习:说说下面的三角形都是哪种三角形?例5:认识正方形与长方形(1)(2)分析:一个四边形,四边形有四条边、四个角;(1)是一个正方形,正方形的四边相等,四个角都是直角;(2)是一个长方形,长方形两组对边分别平行而且相等,四个角都是直角;正方形和长方形都是四边形例6:(1)上图中有种不同的图形;(2有个,个;(3)给所有的三角形涂上红色。

七年级数学上册第四章几何图形初步认识4

七年级数学上册第四章几何图形初步认识4

D
C (F) D A C (F)
人教版七年级数学上册第四章几何图形初步认识
A (D)
B (E)
C (F)
(3)∠ABC = ∠DEF
人教版七年级数学上册第四章几何图形初步认识
估计图中∠1与∠2的大小关系,并用适当的方法检验.
2 1
(1)
2
1
(2)
人教版七年级数学上册第四章几何图形初步认识
角的大小与角的两边画出的长短有关吗?
(1)角的大小与角的两边画出的长短没有关系. (2)角张开的程度越小,角度就越小.
人教版七年级数学上册第四章几何图形初步认识
用放大镜看蚂蚁,用放大镜看自己的手,用放大镜看 精致的邮票,用放大镜从太阳光里取火等等,都会得到令 人开心的结果.那么,有没有放大镜放不大的事物呢?
你知道放大镜不能“放大”角的度数的原因吗?
已知O为直线AB上一点,OE平分∠AOC,OF平分 ∠COB, 求∠EOF的大小.
C
E
F
A
O
B
人教版七年级数学上册第四章几何图形初步认识
解:∵ OE平分∠AOC,OF平分∠COB,
∴∠EOC=
1 2
∠AOC
∠COF= 1∠COB (角平分线的定义),
2
∵∠AOB=∠AOC+∠COB=180°
(平角的定义),
∠ABC > ∠DEF
D
70°
B
C
E
30°
F
人教版七年级数学上册第四章几何图形初步认识
比较两个角的大小的方法有三种: • 观察法 • 叠合法 • 度量法
人教版七年级数学上册第四章几何图形初步认识
两个角的大小关系有三种,记作:

七年级数学上册第四章几何图形初步总结(重点)超详细

七年级数学上册第四章几何图形初步总结(重点)超详细

(名师选题)七年级数学上册第四章几何图形初步总结(重点)超详细单选题1、下列图形属于平面图形的是()A.正方体B.圆柱体C.圆D.圆锥体答案:C分析:根据题意可知,正方体、圆柱体、圆锥体都是立体图形,圆是平面图形,据此即可求解.解:圆是平面图形,正方体、圆柱体、圆锥体都是立体图形故选C小提示:本题考查了平面图形与立体图形的认识,正确的区分是解题的关键.2、下列说法:①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形.正确的个数是.()A.2个B.3个C.4个D.5个答案:B分析:根据棱柱由上下两个底面以及侧面组成;上下两个底面可以是全等的多边形,侧面是四边形.根据柱体,锥体的定义及组成,即可求解.解:①柱体包括圆柱、棱柱;所以柱体的两个底面一样大;故此选项正确,②圆柱、圆锥的底面都是圆,正确;③棱柱的底面可以为任意多边形,故错误;④长方体符合柱体的条件,一定是柱体,正确;⑤只有直棱柱的侧面才一定是长方形,故错误;共有3个正确.故选B.小提示:本题考查了认识立体图形,注意棱柱由上下两个底面以及侧面组成;上下两个底面可以是全等的多边形,侧面是四边形是解题的关键.3、由5个相同的小正方体组成的几何体如图所示,从正面看该几何体得到的平面图形是()A.B.C.D.答案:D分析:从正面看该几何体得到的平面图形是主视图,根据主视图的定义进行判断.解:主视图有3列,每列小正方形数目分别为2,1,1,故选:D.小提示:此题主要考查了不同角度看几何体,主视图是从物体的正面看得到的视图.4、如图,已知直线上顺次三个点A、B、C,已知AB=10cm,BC=4cm.D是AC的中点,M是AB的中点,那么MD=()cm.A.4B.3C.2D.1答案:C分析:由AB=10cm,BC=4cm.于是得到AC=AB+BC=14cm,根据线段中点的定义由D是AC的中点,得到AD,根据线段的和差得到MD=AD−AM,于是得到结论.解:∵AB=10cm,BC=4cm,∴AC=AB+BC=14cm,∵D是AC的中点,AC=7cm;∴AD=12∵M是AB的中点,AB=5cm,∴AM=12∴DM =AD −AM =2cm . 故选:C .小提示:此题主要考查了两点之间的距离,线段的和差、线段的中点的定义,利用线段差及中点性质是解题的关键.5、粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,在这个过程中,你认为下列判断正确的是( )A .点动成线B .线动成面C .面动成体D .面与面相交得到线 答案:B分析:点动线,线动成面,将滚筒看做线,在运动过程中形成面. 解:滚筒看成是线,滚动的过程成形成面, 故选:B .小提示:本题考查点、线、面的关系;理解点动成线,线动成面的过程是解题的关键. 6、流星滑过天空留下一条痕迹,这种生活现象可以反映的数学原理是( ) A .点动成线B .线动成面C .面动成体D .以上都不对 答案:A分析:流星是点,光线是线,所以说明点动成线.解:流星滑过天空留下一条痕迹,这种生活现象可以反映的数学原理是:点动成线. 故选:A小提示:此题主要考查了点、线、面、体,关键是掌握点动成线,线动成面,面动成体.7、如图,点M 在线段AN 的延长线上,且线段MN=20,第一次操作:分别取线段AM 和AN 的中点M 1,N 1;第二次操作:分别取线段AM 1和AN 1的中点M 2,N 2;第三次操作:分别取线段AM 2和AN 2的中点M 3,N 3;……连续这样操作10次,则每次的两个中点所形成的所有线段之和M 1N 1+M 2N 2+⋯+M 10N 10=( )A .20−1029B .20+1029C .20−10210D .20+10210 答案:A分析:根据MN=20,M1、N1分别为AM、AN的中点,求出M1N1的长度,再由M1N1的长度求出M2N2的长度,找到M n N n的规律即可求出M1N1+M2N2+⋯+M10N10的值.解:∵MN=20,M1、N1分别为AM、AN的中点,∴M1N1=AM1−AN1=12AM−12AN=12(AM−AN)=12×20=10,∵M2、N2分别为AM1、AN1的中点,∴M2N2=AM2−AN2=12AM1−12AN1=12(AM1−AN1)=12×10=5,根据规律得到M n N n=202n,∴M1N1+M2N2+⋯+M10N10=202+2022+⋯+20210=20(12+122+⋯+1210)=20−1029,故选A.小提示:本题是对线段规律性问题的考查,准确根据题意找出规律是解决本题的关键,相对较难.8、如果A,B,C三点同在一直线上,且线段AB=6cm,BC=3cm,A,C两点的距离为d,那么d=()A.9cmB.3cmC.9cm或3cmD.大小不定答案:C分析:根据点C在线段AB上和线段AB延长线上计算即可;C在线段AB上,AC=6﹣3=3(cm),C在AB延长线上,AC=6+3=9(cm).故选:C.小提示:本题主要考查了线段上两点间的距离求解,准确计算是解题的关键.9、如图,在同一平面内,∠AOB=∠COD=90°,∠AOF=∠DOF,点E为OF反向延长线上一点(图中所有角均指小于180°的角).下列结论:①∠COE=∠BOE;②∠AOD+∠BOC=180°;③∠BOC−∠AOD=90°;④∠COE+∠BOF=180°.其中正确结论的个数有()A.1个B.2个C.3个D.4个答案:C分析:由∠AOB=∠COD=90°,根据等角的余角相等得到∠AOC=∠BOD,结合∠AOF=∠DOF即可判断①正确;由∠AOD+∠BOC=∠AOD+∠AOC+∠AOD+∠BOD,结合∠AOB=∠COD=90°即可判断②正确;由∠BOC-∠AOD=∠AOC+90°-∠AOD,而不能判断∠AOD=∠AOC,即可判断③不正确;由E、O、F三点共线得∠BOE+∠BOF=180°,而∠COE=∠BOE,从而可判断④正确.解:∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,而∠AOF=∠DOF,∴180°-∠AOC-∠AOF=180°-∠BOD-∠DOF,即∠COE=∠BOE,所以①正确;∠AOD+∠BOC=∠AOD+∠AOC+∠AOD+∠BOD=∠COD+∠AOB =180°,所以②正确;∠COB-∠AOD=∠AOC+90°-∠AOD,而∠AOC≠∠AOD,所以③不正确;∵E、O、F三点共线,∴∠BOE+∠BOF=180°,∵∠COE=∠BOE,∴∠COE+∠BOF=180°,所以④正确.所以,正确的结论有3个.故选:C.小提示:题考查了余角和补角、角度的计算、余角的性质以及角平分线的定义等知识,准确识图是解题的关键.10、用一个平面去截如图所示的立体图形,可以得到三角形截面的立体图形有( )A.4个B.3个C.2个D.1个答案:B分析:根据截面与几何体的三个面相交,可得截面是三角形.解:用一个平面去截一个几何体,可以得到三角形的截面的几何体有:圆锥,长方体,三棱柱,故选:B.小提示:本题考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.填空题11、如图,已知∠AOB=90°,射线OC在∠AOB内部,OD平分∠AOC,OE平分∠BOC,则∠DOE=_____°.答案:45°.分析:根据角平分线的定义得到∠DOC=12∠AOC,∠COE=12∠BOC,根据角的和差即可得到结论.解:∵OD平分∠AOC,∴∠DOC=12∠AOC,∵OE平分∠BOC,∴∠COE=12∠BOC,∴∠DOE=∠DOC+∠COE=12(∠AOC+∠BOC)=12∠AOB=45°.所以答案是:45°.小提示:本题考查了角平分线的定义以及有关角的计算,解题关键是熟练掌握角平分线的定义.12、如图所示,∠AOC与∠BOD都是直角,且∠AOB:∠AOD=2:11,则∠AOB=_______.答案:20°分析:由∠AOB+∠BOC=∠BOC+∠COD知∠AOB=∠COD,设∠AOB=2α,则∠AOD=11α,故∠AOB+∠BOC=5α=90°,解得α即可.解:∵∠AOB+∠BOC=∠BOC+∠COD,∴∠AOB=∠COD,设∠AOB=2α,∵∠AOB:∠AOD=2:11,∴∠AOB+∠BOC=9α=90°,解得α=10°,∴∠AOB=20°.故答案为20°.小提示:此题主要考查了角的计算以及余角和补角,正确表示出各角度数是解题关键.13、一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“学”相对面上所写的字是___.答案:素分析:利用正方体及其表面展开图的特点解题即可.解:这是一个正方体的平面展开图,共有六个面,和“学”相对面上所写的字是素;所以答案是:素.小提示:此题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手、分析及解答问题.14、有一块积木,每一块的各面都涂上红绿黑白蓝黄六种不同的颜色,下面是它摆放的三种不同方向的图像,请根据图像判断绿色面的对面是_____色答案:黄分析:根据图形可得涂有绿色一面的邻边是白,黑,红,蓝,即可得到结论.解:∵涂有绿色一面的邻边是白,黑,红,蓝,∴涂成绿色一面的对面的颜色是黄色,所以答案是:黄.小提示:本题考查了正方体相对两个面上的文字问题,此类问题可以制作一个正方体,根据题意在各个面上标上图案,再确定对面上的图案,可以培养动手操作能力和空间想象能力.15、如图,M、N分别为AC、BC的中点,若AB=8、BC=3,则MN=_____;若MN=7、BC=3,则AM=______.答案: 4 172分析:①求出MC的长度,再求出CN的长度,则可算出MN的长度;②先求NC的长度,再求出MC的长度,则可算出AM的长度.解:①∵AB=8,BC=3,AC=AB+BC=8+3=11,∵M,N分别为AC,BC的中点,∴MC=12AC=112,CN=12BC=32,∴MN=MC−NC=112−32=4,②∵BC=3,N是BC的中点,∴NC=32,∵MN=7,∴MC=MN+NC=7+32=172,∵M是AC的中点,∴AM=MC=172,所以答案是:4;172.小提示:本题考查了线段的中点,解题的关键是根据题中所给的中点求出相应的线段的长度.解答题16、某摄制组从A市到B市有一天的路程,由于堵车中午才赶到一个小镇(D),只行驶了原计划的三分之一(原计划行驶到C地),过了小镇,汽车赶了400千米,傍晚才停下来休息(休息处E),司机说:再走从C地到这里路程的二分之一就到达目的地了,问:A,B两市相距多少千米.答案:A,B两市相距600千米.分析:根据题意可知DE的距离且可以得到AD=12DC,EB=12CE,AD+EB=12(DC+CE)=12DE,由AB=AD+EB+DE=12DE+DE计算即可得出结果.如图,由题意可知,DE=400千米,AD=12DC,EB=12CE,∴AD+EB=12(DC+CE)=12DE=12×400=200(千米)∴AB=AD+EB+DE=200+400=600(千米)答:A,B两市相距600千米.小提示:本题考查了求解线段长度在实际生活中的应用,能够找出线段之间的等量关系是解题关键.17、十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式.请你观察下列几种简单多面体模型,解答下列问题:(1)根据上面多面体模型,完成表格中的空格:)之间存在的关系式是.(2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是.(3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处都有3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值.答案:(1)填表见解析,V+F-E=2;(2)20;(3)14分析:(1)观察可得顶点数+面数-棱数=2;(2)代入(1)中的式子即可得到面数;(3)得到多面体的棱数,求得面数即为x+y的值.解:(1)四面体的棱数为6;正八面体的顶点数为6;关系式为:V+F-E=2;(3)∵有24个顶点,每个顶点处都有3条棱,两点确定一条直线;∴共有24×3÷2=36条棱,那么24+F-36=2,解得F=14,∴x+y=14.小提示:本题考查多面体的顶点数,面数,棱数之间的关系及灵活运用.18、如图,点P是直线l外一点,过点P画直线PA,PB,PC,…,分别交直线l于点A,B,C,….用量角器量出∠1,∠2,∠3的度数,并量出PA,PB,PC的长度,你发现了什么?答案:∠1=35°,∠2=56°,∠3=68°,PA=2.8cm,PB=2cm,PC=1.8cm,在P点与直线上的点的连线中,与直线的夹角越大(不超过90°),P点与直线交点连线的线段长度越短;反之亦然.分析:使用量角器度量角度,带刻度的直尺度量线段的长度,根据度量的数据分析角度和长度之间的关系即可.解:量得∠1=35°,∠2=56°,∠3=68°,PA=2.8cm,PB=2cm,PC=1.8cm,由此发现,在P点与直线上的点的连线中,与直线的夹角越大(不超过90°),P点与直线交点连线的线段长度越短;反之亦然.小提示:本题考查了度量线段,度量角度,角度大小的比较,会使用度量工具度量是解题的关键.。

七年级数学第四章图形的初步认识(知识点归纳+达标检测)

七年级数学第四章图形的初步认识(知识点归纳+达标检测)

第四章图形的初步认识(知识点归纳+达标检测)4.1.1认识几何图形几何图形我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学过的三角形、四边形等,都是从形形色色的物体外形中得出的。

我们把这些图形称为几何图形。

1)立体图形长方体、正方体、球、圆柱、圆锥等。

2)平面图形平面图形的概念线段、角、三角形、长方形、圆等它们的各部分都在同一平面内,它们是平面图形。

注:立体图形与平面图形是两类不同的几何图形,它们的区别和联系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。

【达标提升】下列几种图形:①长方形;②梯形;③正方体;④圆柱;⑤圆锥;⑥球.其中属于立体图形的是()A.①②③;B.③④⑤;C.①③⑤;D.③④⑤⑥总结:1、2、平面图形与立体图形的关系:立体图形的各部分不都在同一平面内,而平面图形的各部分都在同一平面内;立体图形中某些部分是平面图形。

4.1.2几何图形立体图形转化平面图形1:从正面、左面、上面观察得到的平面图形你能画出来吗?【达标提升】1.如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是()A.B.C.D.2.右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。

现实物体几何图形平面图形立体图形看外形4.1.3几何图形(一)、立体图形的展开1、试一试:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗?圆柱圆锥三棱柱长方体思考:请你指出上面展开图各部分与几何体的哪一部分相对应?2、剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会?再将所有的展开图画出来,以上画出了部分了展开图,除此之外还有5种,共有11种,请你画出其余5种。

(二)、立体图形的折叠探究:下图是一些立体图形的展开图,用它们能围成怎样的立体图形?做一做:下面是一些常见几何体的展开图,你能正确说出这些几何体的名字么?【达标提升】1.下列图形中,不是正方体的表面展开图的是()A.B.C.D.12122.一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是()A.和B.谐C.沾D.益4.2.1点、线、面、体1.几何体的概念(1)长方体是一个几何体,我们还学过哪些几何体?_______________________________________________________________________;(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?这些面有什么区别?2.面的分类通过对上面问题的解决,得出面的分类:____面和___面。

人教版七年级数学上册第四章 几何图形初步 知识点总结及精选题

人教版七年级数学上册第四章 几何图形初步 知识点总结及精选题

几何图形初步知识点总结及精选题1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

3、生活中的立体图形圆柱柱体棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……生活中的立体图形球体(按名称分) 圆锥椎体棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

棱柱的所有侧棱长都相等,棱柱的上下两个底面是相同的多边形,直棱柱的侧面是长方形。

棱柱的侧面有可能是长方形,也有可能是平行四边形。

5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。

7、三视图物体的三视图指主视图、俯视图、左视图。

主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

平面图形的认识线段,射线,直线 名称 不同点联系 共同点延伸性 端点数 线段 不能延伸 2 线段向一方延长就成射线,向两方延长就成直线都是直的线射线 只能向一方延伸 1 直线可向两方无限延伸无点、直线、射线和线段的表示在几何里,我们常用字母表示图形。

一个点可以用一个大写字母表示,如点A一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示,如直线l ,或者直线AB一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面),如射线l ,射线AB一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示,如线段l ,线段AB点和直线的位置关系有两种:①点在直线上,或者说直线经过这个点。

(完整版)北师大数学七年级上册第四章多边形和圆的初步认识

(完整版)北师大数学七年级上册第四章多边形和圆的初步认识

多边形和圆的初步认识知识讲解【学习目标】1.经历从现实世界中抽象出平面图形的过程,感受图形世界的丰富多彩;2. 在具体情景中认识多边形、正多边形、圆、扇形;3. 能根据扇形和圆的关系求扇形的圆心角的度数;4.在丰富的活动中发展有条理的思考和表达能力.【要点梳理】要点一、多边形及正多边形1.定义:多边形是由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形.其中,各边相等、各角也相等的多边形叫做正多边形.如下图:要点诠释:正多边形必须同时满足“各边相等”,“各角相等”两个条件,二者缺一不可;2.相关概念:顶点:每相邻两条边的公共端点叫做多边形的顶点.边:组成多边形的各条线段叫做多边形的边.内角:多边形相邻两边组成的角叫多边形的内角(可简称为多边形的角),一个n 边形有n个内角.外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角.对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.要点诠释:(1)过n边形的一个顶点可以引(n-3)条对角线,n边形对角线的条数为(3)2n n.(2)过n边形的一个顶点的对角线可以把n边形分成(n-2)个三角形.要点二、圆及扇形1. 圆的定义如图,在一个平面内,一条线段绕着它固定的一个端点旋转一周,另一个端点所形成的图形叫做圆,固定的端点叫做圆心,线段OA 叫做半径.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可.②圆是一条封闭曲线.2.扇形(1)圆弧:圆上任意两点A ,B 间的部分叫做圆弧,简称弧,记作AB ,读作“圆弧AB”或“弧AB”. 如下图:(2)扇形的定义:如上图,由一条弧AB 和经过这条弧的端点的两条半径OA ,OB 所组成的图形叫做扇形.要点诠释:圆可以分割成若干个扇形.(3)圆心角:顶点在圆心的角叫做圆心角. 如上图,∠AOB 是圆的一个圆心角,也是扇形OAB 的圆心角.【典型例题】类型一、多边形及正多边形1.如图,(1)从正六边形的顶点A 出发,可以画出 条对角线,分别用字母表示出来为 ;(2)这些对角线把六边形分割成 个三角形.【思路点拨】画出对角线,并按一定规律数出对角线的条数及分割成的三角形的个数即可.【答案】(1)3,线段AC 、线段AD 、线段AE ;(2)4. E A B CF D【总结升华】(1)n边形有n个顶点,n条边,n个内角.(2)过n边形的每一个顶点有(n-3)条对角线,n边形总共(3)2n n条对角线.(3)n边形从一个顶点出发,分别连接这个顶点和其余各顶点,可以分割(n-2)个三角形. 举一反三:【变式】(2016春•荣成市期中)从一个n边形的某个顶点出发,分别连接这个点与其他顶点可以把这个n边形分割成三角形个数是()A.3个B.(n﹣1)个C.5个D.(n﹣2)个【答案】D2.同学们在平时的数学活动中会遇到这样一个问题:把正方形纸片截去一个角后,还剩多少角,余下的图形是几边形,亲爱的同学们,你知道吗?【答案与解析】解:这个问题,我们可以用图来说明.按图(1)所示方式去截,不经过点B和D,还剩五个角,即得到一个五边形.按图(2)所示方式去截,经过点D(或点B).不经过点B(或点D),还剩4个角,即得到一个四边形.按图(3)所示方式去截,经过点D、点B,则剩下3个角,即得到三角形.答:余下的图形是五边形或四边形或三角形.【总结升华】一个n边形剪去一个角后,可能是(n+1)边形,也可能是n边形,也可能是(n-1)边形,利用它我们可以解决一些具体问题.举一反三:【变式】一个多边形共有20条对角线,则多边形的边数是().A.6B.7C.8D.9【答案】C.3.如图是对称中心为点的正六边形.如果用一个含角的直角三角板的角,借助点(使角的顶点落在点处),把这个正六边形的面积等分,那么的所有可能的值是___________ __ .【答案】根据圆内接正多边形的性质可知,只要把此正六边形再化为正多边形即可,即可知:360÷30=12;360÷60=6;360÷90=4;360÷120=3;360÷180=2.故n的所有可能的值是2,3,4,6,12.类型二、圆4.(2015•丰泽区校级质检)如图,MN为⊙O的弦,∠M=50°,则∠MON等于.【思路点拨】利用等腰三角形的性质可得∠N的度数,根据三角形的内角和定理可得所求角的度数.【答案】80°.【解析】解:∵OM=ON,∴∠N=∠M=50°,∴∠MON=180°﹣∠M﹣∠N=80°,故答案为80°.【总结升华】考查圆的认识;利用圆的半径相等这个知识点是解决本题的突破点.【变式】如图,一根5m长的绳子,一端栓在柱子上,另一端栓着一只羊,请画出羊的活动区域.【答案】类型三、扇形5. 将一个半径为3的圆形草坪分割成三个扇形,分别种植三种花草,他们的圆心角的度数之比为2:3:4,求这三个圆心角的度数,并尝试求他们的面积,你还能求他们的面积之比吗,你发现了什么【思路点拨】考查扇形面积及圆心角的概念.【答案与解析】解:这三个圆心角的度数分别为: °°236080234⨯=++;°°3360120234⨯=++;°°4360160234⨯=++. 圆的面积29r ππ=,这三个圆心角的面积分别为:8092360ππ⨯=;12093360ππ⨯=;16094360ππ⨯=.这三个圆心角的面积之比为:2:3:4πππ=2:3:4. 发现:扇形的面积之比等于圆心角之比.【总结升华】一个扇形的面积与对应圆的面积比等于扇形圆心角的度数n 与360的比, 即S 扇:S 圆=n :360, 几个半径相等的扇形的面积比等于这几个扇形的圆心角的比.6.一个扇形圆心角120°,以扇形的半径为边长画一个正方形,这个正方形的面积是16平方厘米.这个扇形的面积为多少?【思路点拨】由题意可知,这个扇形所在的圆的半径r 就是这个正方形的边长,即r 2=边长2=120平方厘米.【答案与解析】解:设扇形所在圆的半径为r,则216r=,则:扇形的面积为:1203.141616.75360⨯⨯≈(平方厘米).答:这个扇形的面积为16.75平方厘米.【总结升华】此题在求面积时用到了整体代换,此外注意扇形的面积的计算方法.【巩固练习】一、选择题1.下列几何图形中,平面图形的个数为()个.①三角形,②圆,③圆柱,④圆锥,⑤正方体,⑥扇形.A.4B.5C.3D.62.从n边形的一个顶点出发共有对角线() .A.(n-2)条B.(n-3)条C.(n-1)条D.(n-4)条3.如图,图中四边形有() .A.3个B.5个C.2个D.6个4以已知点O为圆心,已知线段a为半径作圆,可以作().A.1个 B.2个 C.3个 D.无数个5(2016•重庆校级一模)从一个多边形的任何一个顶点出发都只有6条对角线,则它的边数是()A.6 B.7 C.8 D.96 (2015•重庆校级模拟)如图,正四边形有2条对角线,正五边形有5条对角线,正六边形有9条对角线,则正十边形有()条对角线.A.27 B.35 C.40 D.44二、填空题7.(2015春•龙口市期中)从多边形的一个顶点出发引对角线,可以把这个多边形分割成7个三角形,则该多边形为边形.8. 已知圆的半径,可以画____个圆;已知圆心,可以画____个圆;已知圆心和半径可以画_____个圆.9.一个圆的圆心决定这个圆的_________,圆的半径决定这个圆的_________.10.(2016•哈尔滨)一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为cm.11.一个七边形的边数减少1,则它的对角线条数减少________,n边形的边数增加2,则对角线增加______.12.平面内到定点A的距离等于3cm的点组成的图形是 .三、解答题13.已知从n边形的一个顶点出发共有4条对角线,其周长为56,且各边长是连续的自然数,求这个多边形的各边长.14.已知多边形的边数恰好是从这个多边形的一个顶点出发的对角线条数的2倍,求此多边形的边数.15. (2014秋•腾冲县校级期末)如图,⊙A、⊙B、⊙C两两不相交,且半径都是0.5cm,求图中的三个扇形(即阴影部分)的面积之和.(友情提示:三个圆心角之间有何关系)【答案与解析】一、选择题1. 【答案】C;【解析】①⑥②为平面图形.2. 【答案】B;3. 【答案】A;【解析】四边形有:四边形ABCD,四边形ABOD,四边形ABCO.4. 【答案】A;【解析】以定点为圆心,定长为半径作圆,只能作一个,故选A.5. 【答案】D;【解析】设多边形有n条边,则n﹣3=6,解得n=9.6. 【答案】B二、填空题7. 【答案】九【解析】由题意可知,n﹣2=7,解得n=9.则这个多边形的边数为9,多边形为九边形.8. 【答案】无数;无数;1;【解析】圆心确定圆的位置,半径确定圆的大小,二者缺一不可.9. 【答案】位置,大小;10.【答案】6;【解析】设该扇形的半径为R ,则212012360ππR ⨯= ,解得R =6. 11.【答案】5,2n -1;【解析】七边形的对角线条数为:7(73)142⨯-=(条),七边形的边数减少1,即六边形的对角线条数为6(63)92⨯-=(条),相减得5条,所以一个七边形的边数减少1,它的对角线条数减少5条;同理n 边形的边数增加2,则对角线增加(2)(23)(3)2122n n n n n ++---=-(条) . 12. 【答案】以A 为圆心3cm 为半径的圆.三、解答题13.【解析】解:由题意n -3=4,n =7.设各边长为x -3,x -2,x -1,x ,x+1,x+2,x+3,则有: x -3+ x -2+ x -1+x+x+1+x+2+x+3=56, 7x =56,x =8. ∴ 各边长为5,6,7,8,9,10,11.14.【解析】解:设多边形的边数为n ,根据题意,有:n =2(n -3),解得n =6,故这个多边形的边数为6.15.【解析】解:∵∠A+∠B+∠C=180°∴答:图中的三个扇形面积之和为.。

七年级上数学第四章知识点总结

七年级上数学第四章知识点总结

七年级上数学第四章知识点总结
第四章图形的认识初步
一、知识框架
本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认
识从感性逐步上升到抽象的几何图形.通过从不同方向看立体图形和展开立体图形,初步
认识立体图形与平面图形的联系.在此基础上,认识一些简单的平面图形——直线、射线、线段和角.
二、本章书涉及的数学思想:
1.分类讨论思想。

在过平面上若干个点画直线时,应注意对这些点分情况讨论;在画
图形时,应注意图形的各种可能性。

2.方程思想。

在处理有关角的大小,线段大小的计算时,常需要通过列方程来解决。

3.图形变换思想。

在研究角的概念时,要充分体会对射线旋转的认识。

在处理图形时
应注意转化思想的应用,如立体图形与平面图形的互相转化。

4.化归思想。

在进行直线、线段、角以及相关图形的计数时,总要划归到公式nn-1/2的具体运用上来。

感谢您的阅读,祝您生活愉快。

人教版七年级数学上册知识点思维导图及总结-七年级整数思维导图

人教版七年级数学上册知识点思维导图及总结-七年级整数思维导图

人教版七年级数学上册知识点思维导图及总结-七年级整数思维导图本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March人教版七年级数学上册知识点思维导图及总结人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容.第一章有理数一、知识框架二.知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a . 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

人教版七年级数学上册第四章知识点总结及阶梯练习

人教版七年级数学上册第四章知识点总结及阶梯练习

人教版七年级数学上册第四章知识点总结第四章图形的初步认识1、几何体也简称为体,包围体的是面,面面相交为线,线线相交为点;点动成线,线动成面,面动成体,几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

2、线段有两个端点,射线有一个端点,直线没有端点;线段可以度量,直线、射线不能度量。

3、直线、线段性质:经过两点有一条直线,并且只有一条直线;或者说两点确定一条直线;两点之间,线段最短。

4、角的意义:有公共端点的两条射线组成的图形叫做角,公共端点是角的顶点,这两条射线是角的两条边,角也可以看做由一条射线绕着它的端点旋转而形成的图形。

角的大小的比较:(1)叠合法,使两个角的顶点及一边重合,另一边在重合边的同旁进行比较;(2)度量法。

角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线二、基础知识巩固1、如图所示,讲台上放着一本书,书上放着一个粉笔盒,指出右边三个平面图形分别是左边立体图形的哪个视图。

(1)(2)(3)2、(1)过一个已知点的直线有多少条?答:(2)过两个已知点的直线有多少条?答:(3)过三个已知点的直线有多少条?答:(4)经过平面上三点A,B,C中的每两点可以画多少条直线?请画出图来。

(5)根据(4)的结论,猜想经过平面上四点A,B,C,D中的任意两点画直线,会有什么样的结果?如果不能画,请简要说明理由;如果能画,请画出图来。

3、(1)计算:①27°42′30″+1070′;②63°36′-36.36°。

(2)用度、分、秒表示48.12°。

(3)用度表示50°7′30″。

4、小明从A点出发,向北偏西33°方向走33 m到B点,小林从A点出发,向北偏东20°方向走了6.6 m到C点,试画图确定A,B,C三点的位置(1cm表示3m),并从图上求出点B,C的实际距离。

5、已知点C是线段AB的中点,点D是线段BC的中点,CD=2.5厘米,请你求出线段AB、AC、AD、BD的长各为多少?6、如图,经过直线a外一点p的4条直线中,与直线a平行的直线有___,共有__条.∠A与∠C__________.7、如图,如果AB∥CD,那么8、如图中几何体的展开图形是()A B C D9、如图是某些几何体的表面展开图,则这些几何体分别是 图1: 图2: 图3:10、若要使图中平面展开图按虚线折叠成正方体后,相对面上 两个数之和为6,x=_ ___,y=______.11、俯视图为圆的立体图形可能是________或___________。

七年级数学上册 第四章 《几何图形初步》知识讲解

七年级数学上册  第四章  《几何图形初步》知识讲解

《几何图形初步》全章知识讲解【学习目标】1.认识一些简单的几何体的平面展开图及三视图,初步培养空间观念和几何直观; 2.掌握直线、射线、线段、角这些基本图形的概念、性质、表示方法和画法; 3.初步学会应用图形与几何的知识解释生活中的现象及解决简单的实际问题;4.逐步掌握学过的几何图形的表示方法,能根据语句画出相应的图形,会用语句描述简单的图形. 【知识网络】【要点梳理】要点一、多姿多彩的图形 1. 几何图形的分类要点诠释:在给几何体分类时,不同的分类标准有不同的分类结果. 2.立体图形与平面图形的相互转化 (1)立体图形的平面展开图:把立体图形按一定的方式展开就会得到平面图形,把平面图形按一定的途径进行折叠就会立体图形:棱柱、棱锥、圆柱、圆锥、球等. ⎧⎨⎩平面图形:三角形、四边形、圆等.几何图形⎧⎨⎩得到相应的立体图形,通过展开与折叠能把立体图形和平面图形有机地结合起来. 要点诠释:①对一些常见立体图形的展开图要非常熟悉,例如正方体的 11种展开图,三棱柱,圆柱等的展开图;②不同的几何体展成不同的平面图形,同一几何体沿不同的棱剪开,可得到不同的平面图形,那么排除障碍的方法就是:联系实物,展开想象,建立“模型”,整体构想,动手实践. (2)从不同方向看:主(正)视图---------从正面看 几何体的三视图 (左、右)视图-----从左(右)边看 俯视图---------------从上面看要点诠释:①会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图. ②能根据三视图描述基本几何体或实物原型. (3)几何体的构成元素及关系几何体是由点、线 、面构成的.点动成线,线与线相交成点;线动成面,面与面相交成线;面动成体,体是由面组成.要点二、直线、射线、线段1. 直线,射线与线段的区别与联系2. 基本性质(1)直线的性质:两点确定一条直线. (2)线段的性质:两点之间,线段最短. 要点诠释:①本知识点可用来解释很多生活中的现象. 如:要在墙上固定一个木条,只要两个钉子就可以了,因为如果把木条看作一条直线,那么两点可确定一条直线. ②连接两点间的线段的长度,叫做两点的距离.3.画一条线段等于已知线段(1)度量法:可用直尺先量出线段的长度,再画一条等于这个长度的线段. (2)用尺规作图法:用圆规在射线AC 上截取AB=a,如下图:4.线段的比较与运算 (1)线段的比较:比较两条线段的长短,常用两种方法,一种是度量法;一种是叠合法.(2)线段的和与差:如下图,有AB+BC=AC ,或AC=a+b ;AD=AB-BD 。

七年级数学上册第四章图形的初步认识41生活中的立体图形课件新版华东师大版

七年级数学上册第四章图形的初步认识41生活中的立体图形课件新版华东师大版
例1 如图所示,在每个立体图形下面写出其名 称.
三棱柱 圆柱 长方体 圆锥
四棱柱 正方体

导引:根据各类立体图形的外形特征去识别.
总结
知1-讲
采用定义法识别图形:(1)柱体的基本特征:两 个底面互相平行且完全相同 ,当侧面是曲面时是圆 柱 ,当侧面是平面时是棱柱 ;(2)锥体的基本特征: 一个底面一个“尖”,当侧面是曲面时是圆锥,当 侧面是三角形时是棱锥.
1 下列物体中,形状类似于圆柱的是(
知1-练
)
2 下列图形不是立体图形的是( )
A.球
B.棱柱
C.棱锥
D.半圆
3 下列立体图形中,有五个面的是( ) A.四棱锥 B.五棱锥 C.四棱柱 D.五棱柱
知1-练
知识点 2 常见的立体图形
知2-讲
例2 (1)把图中的立体图形分类,并说明分类标准; (2)图中③与⑥各有什么特征?有哪些相同点 和不同点?
知3-讲
例3 如图,其中是圆柱的有__③__④____,是棱柱 的有__②__⑤__⑥__.(只填图的标号)
知3-讲
导引:①⑦有两个底面平行,但大小不相同,所以 它们都不是柱体.②③④⑤⑥都有两个平行 且完全相同的底面,因此它们都是柱体.③ ④的底面是圆,侧面是曲面图形,因此是圆 柱;②⑤⑥的底面是多边形,侧面都是平面 图形,因此是棱柱.
③棱柱的底面是四边形;
④长方体一定是柱体;
⑤棱柱的侧面可能是三角形.
A.2个
B.3个
C.4个
D.5个
知2-练
知识点 3 棱柱的特征
知3-讲
棱柱: ①概念——上、下底面是两个平行且完全相同的多
边形,侧面都是平面图形. ②分类——棱柱可按底面多边形的边数分为三棱柱、

人教版七年级上册数学第4章 几何图形初步 点、线、面、体

人教版七年级上册数学第4章 几何图形初步 点、线、面、体

你能从下面几何体中找出点、线、面吗?
知2-讲
思考:体是由什么围成的?它们有什么不同? 体是由面组成 面与面相交成线 线与线相交成点
知2-讲
物体的运动会留下运动轨迹,这些运动轨迹往往也能 抽象成几何图形.如果把笔尖看成一个点,这个点在 纸上运动时,形成的图形是什么?动手试一试.
归纳结论: 点动成线.
知2-练
3如图所示的几何体是由哪个图形绕虚线旋转一 周形成的( )A
1.谈一谈你认识到的点、线、面、体及它们之间的 关系. 2.说一说通过今天的学习你对周围环境有了哪些新 的认识. 3.想一想在获得一个结论的过程中,我们都经历哪 几个环节,这对你将来探索新知识有何帮助?
完成教材P120练习T1,T2, P122习题4.1T5
4.1几何图形
第四章几何图形初步
第5课时点、线、面、体
1 课堂讲解 图形的构成元素及关系
曲面几何的形成方法
2 课时流程
逐点 导讲练
课堂 小结
课后 作业
问题:物体的构成往往包含多种元素,几何图形也是如 此.观察长方体模型,它有几个面?面与面相交的地方 形成了几条线?线与线相交成几个点,三棱柱呢?
知2-讲
点 点动成线
线
线动成面

面动成体

线与线相交形成点
面与面相交形成线 包围着体的部分是面
知2-讲
例2笔尖在纸上快速滑动写出了一个又一个字,这 说明了______点__动_;成车线轮旋转时,看起来像一个 整体的圆面,这说明了_______线__动_;成直面角三角 形绕它的一条直角边所在的直线旋转一周,形 成了一个圆锥,这说明了______面__动_.成体 导引:构成图形的要素是点、线、面,其中点是构 成图形的最基本元素,判断图形构成情况时, 有三种情况:点动成线,线动成面,面动成 体,通过实际情景,逐一分析便可得结果.

华东师大版数学七年级上册第4章图形的初步认识小结与复习课件

华东师大版数学七年级上册第4章图形的初步认识小结与复习课件

课堂小结
立体图形 几 何 图 形
平面图形
从不同方向看立体图形
展开立体图形 直线、射线、线段
角的度量 角 角的比较与运算
余角和补角
平面图形
线段大小的比较 两点确定一条直线 两点之间,线段最短
角的平分线 等(同)角的补角相等
等(同)角的余角相等
A
B
C
A
图①
(2)如图②,AC=AB-BC=3-1=2(cm).
C
B
图②
考点四 角的度量及角度的计算
例5 45°52′48″=______°; 126.31°= ____°____′____″; 25°18′÷3=__________;
解:45°52′48″=45°+52′+(48÷60)′=45°+52.8′ =45+(52.8÷60)°=45.88
由图可得
MN==MC(A12-CN-CB=C)A=C-b12 (cmBC)12 .
1 2
针对训练
6.点A,B,C 在同一条直线上,AB=3 cm, BC=1 cm.求AC的长.
【解析】因点A,B,C的顺序不确定,所以要考虑B在线段AC上,B在 线段AC的延长线上两种情况 .
解:(1)如图①,因AB=3cm,BC=1cm, 所以,AC=AB+BC=3+1=4(cm).
从一个角的顶点出发的一条射线,把这个角分成两个相等的角,这条射
线叫做这个角的平分线.
线段和角的大小比较:度量法、叠合法.
同角(等角)的补角相等
同角(等角)的余角相等
考点讲练
考点一 平面图形与立体图形
例1 将下列几何体进行分类:
【解析】正方体和长方体是直棱柱的特殊情况,应将它们归入棱柱一 类.

七年级数学上第四章图形的初步认识知识点

七年级数学上第四章图形的初步认识知识点

相交线和平行线一、基本概念1.直线:(1)直线是向__________无限延伸的,直线没有端点。

(2)经过两点有且只有一条__________。

2.射线:直线上一点和它一旁的部分叫做__________,这个点叫做射线的端点,射线只有一个端点。

2.线段:(1)直线上两点之间的部分叫做__________,__________有两个端点.(2)两点之间,__________最短。

(3)把一条线段分成两条相等线段的点,叫做线段的__________。

4.垂线;当两条直线相交所构成的四个角中有一个角是__________时,叫做两条直线互相垂直;其中一条直线叫做另一条直线的垂线,它们的交点叫做__________。

5、垂线的性质:(1)经过一点,有且只有__________条直线和已知直线垂直;(2)直线外一点与直线上各点连结的所有线段中,__________最短。

6.两点间的距离:连结__________的线段的长度。

7.点到直线的距离:从直线外一点到__________的垂线段的长度。

8.两条平行线间的距离:两条平行线中一条直线上__________到另一条直线的距离。

9、角:有公共端,点的两条__________组成的图形叫做角。

这个公共端点叫做角的顶点,这两条__________叫做角的边。

10、角平分线:从一个角的顶点出发,把这个角分成两个__________的角的射线,叫做角平分线。

11.平角、周角:射线绕端点旋转,当终止位置和起始位置成__________时,所成的角叫做平角;继续旋转回到__________位置时,所成的角叫做周角。

12、角的度量:1周角=__平角=___直角=360°, 1°=___’ , 1’=___”13.小于平角的角的分类:__________角、__________角、__________角。

14.互为余角、补角:如果两个角的和是__________,这两个角叫做互为余角;如果两个角的和是__________,这两个角叫做互为补角。

初一数学第四章总结范文

初一数学第四章总结范文

【一】:人教新课标初一数学第四章图形的初步认识知识点总结【二】:七年级上数学第四章小结与复习七年级数学第四章小结与复习第四章复习知识(一)本章知识一、(1)本章主要研究两条直线的哪几种位置关系(1)关于两线的概念平行线、垂线、垂线段(2)其它点和点的距离。

点到直线的距离、垂直。

1、平行线的定义在同一个平面内,不相交的两条直线叫做平行线. 2、平行线的表示方法和画法.(1)表示方法直线AB与直线CD平行,记作AB∥CD,也可记作CD∥AB,因为两条直线平行是相互的. (2)画法工具一把直尺和一块三角板或用两块三角板.(一块代替直尺)①三角板要两贴紧,一斜边贴紧直线l,另一直角边贴紧直尺.②向下滑动,也可向上推动,都可以画出直线l的平行线,③如果将三角板换成两条直角边做两贴紧也能画出④直尺不能动.⑤不能徒手画.⑥两条线段平行,指它们所在的直线平行. 3、平行公理经过直线外一点,有且只有一条直线与这条直线平行.平行公理的推论如果两条直线都和第三条直线平行,那么这两条直线也互相平行.二、1、(1)垂直的定义当两条直线相交所成的四个角中,有一个是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.(2)符号“⊥”读作“垂直于”如AB⊥CD于O,含义直线AB与直线CD垂直,垂足是O.(3)画法强调用两条直角边“一贴”贴住已知直线,“一靠”靠住已知点再画线(4)对定义的理解(1)在垂直的定义中要强调只有一个角是直角就可以了,不必说四个角都是直角,因为其它三个直角都可推出来. (2)两条直线互相垂直,是指两条直线而言.因此,说到垂线,一定是两条直线的位置关系. (3)定义具有双重性,既是判定垂直的定理,也是垂直的性质定理,在具体应用时要注意书写格式。

一”.②“过一点”的点在直线外,或在直线上都可以.(2)直线外一点与直线上各点连接的所有线段中,最短。

过A点做直线l的垂线,垂足为B点,线段AB的长度叫做点A到直线L的距离。

第四章图形认识的初步——知识总结+考点分析+典型例题(含答案)

第四章图形认识的初步——知识总结+考点分析+典型例题(含答案)

第四章 图形认识初步【知识要点】4.1多姿多彩的图形1.⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧平面图形球体椎体(棱锥、圆锥)柱体(棱柱、圆柱)立体图形几何图形 2.研究立体图形的方法(1)平面展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形。

这样的平面图形称为相应立体图形的展开图。

(2)从不同的方向看(“三视图”)3.几何图形的形成:点动成线,线动成面,面动成体。

4.几何图形的结构:点、线、面、体组成几何图形。

点是构成图形的基本元素。

4.2直线、射线、线段1.点:表示一个物体的位置,通常用一个大写字母表示,如点A 、点B 。

2.直线(1)直线的表示方法:①可以用这条直线上任意两点的字母(大写)来表示;②用一个小写字母来表示。

(2)直线的基本性质:经过两点有一条直线,并且只有一条直线。

简述为,两点确定一条直线。

(3)直线的特征:①直线没有端点,不可量度,向两方无限延伸; ②直线没有粗细; ③两点确定一条直线;④两条直线相交有唯一一个交点。

(4)点与直线的位置关系:①点在直线上(也可以说这条直线经过这个点); ②点在直线外(也可以说直线不经过这个点)。

(5)两条直线的位置关系有两种——相交、平行 3.射线:直线上一点和它一旁的部分叫做射线。

(1)射线的表示方法:①用两个大写字母表示,表示端点的字母写在前面,在两个字母前加上“射线”; ②用一个小写字母表示。

(2)射线的性质:①射线是直线的一部分;②射线只向一方无限延伸,有一个端点,不能度量、不能比较长短; ③射线上有无穷多个点;④两条射线的公共点可能没有,可能只有一个,可能有无穷多个。

4.线段:直线上两点和它们之间的部分叫做线段。

(1)线段的特点:线段是直的,它有两个端点,它的长度是有限的,可以度量,可以比较长短。

(2)线段的表示方法:①用两个端点的大写字母表示; ②用一个小写字母表示。

(3)线段的基本性质:两点的所有连线中,线段最短。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章图形的初步认识知识点总结
1、生活中常见的立体图形(1)球体(2)柱体:包括圆柱和棱柱。

1)圆柱:有两个底面是圆,侧面是曲面。

2)棱柱:上下两个底面是两个平行且相同的多边形,侧面是平行四边形。

棱柱可按底面多边形边数分为三棱柱、四棱柱、五棱柱等。

(3)椎体:包括圆锥和棱锥。

1)圆锥:有一个底面是圆,侧面是曲面。

2)棱锥:底面是多边形,侧面是三角形。

棱锥可按底面多边形边数分为三棱锥、四棱锥、五棱锥等。

(4)多面体:由平的面围成的立体图形。

2、画立体图形(1)视图:就是从正面、上面、和侧面(左面或右面)三个不同的方向看一个物体,然后描绘三张所看到的图,即视图。

正视图:从正面看到的图形。

俯视图:从上面看到的图形。

侧视图:从侧面看到的图形。

依观看方向不同,有左视图、右视图。

三视图:通常把正视图、俯视图、与左(或右)视图称作一个物体的三视图。

(2)球体的三视图都是圆。

正方体的三视图都是正方形圆柱体的正视图和左视图都是长方体,俯视图是圆。

圆锥体的正视图和左视图都是三角形,俯视图是圆,中心有一个点。

3、由视图到立体图形主视图:可分清物体的长与高。

俯视图:可分清物体的长与宽。

左视图:可分清物体的宽与高。

口诀:主俯长对正,主左高齐平,俯左宽相等。

4、立体图形的表面展开图多面体是由平面图形围成的的立体图形,沿着多面体的一些棱将它剪开,可以把多面体的表面展开成一个平面图形,这个平面图形叫做多面体的表面展开图。

正方体的表面展开图:有“一四一型”、“一三二型”、“二二二型”、“三三型”口诀:一行不过四,“田”“凹”应弃之,相间、Z端是对面。

5、平面图形(1)圆是由曲线围成的封闭图形。

(2)多边形:由在同一平面且不在同一直线上的三条或三条以上的线段首尾顺次连结所组成的封闭图形叫做多边形。

按照组成多边形的边的个数,多边形可分为三角形、四边形、五边形、六边形……在多边形里,三角形是最基本的图形,每个n边形都可以分割成(n-2)个三角形。

6、最基本的图形点和线(1)点:通常表示一个物体的位置。

(2)线段、射线、直线线段:有两个端点,不向任何一方延伸,可度量。

有两种表示方法线段AB(BA),或线段a。

aABOA射线:有一个端点,向一方无限延伸,不可度量。

有一种表示方法射线O
A、。

l直线:没有端点,向两方限延伸,不可度量。

有两种表示方法直线AB(BA),直线l。

AB(3)两点之间,线段最短。

经过两点有且只有一条直线。

(4)线段长短的比较1)
度量法2)叠合法,就是把其中一条线段移到另一条线段上,使其一个端点重合,然后去加以比较。

(5)画一条线段等于已知线段。

已知:线段MN,求作:一条线段AC,使AC=MN。

做法:1)画一条射线AB2)用圆规量出线段MN的长3)在射线AB上截取
AC=MN,则线段AC就是要画的线段。

(6)线段中点把一条线段分成相等的点,叫做这条线段的中点。

7、角(1)角是由两条有公共端点的射线组成的图形。

(2)角也可以看成是有一条射线绕着它的端点旋转而成的图形。

射线的端点叫做角的顶点,起始位置的射线叫做角的始边,终止位置的射线叫做角的中边。

【注】
角的大小只与开口大小有关,与角的边的长短无关。

(3)角的表示方法1)用数字表示单独的一个角。

如∠1,∠2等2)用小写的希腊字母表示单独的一个角。

如∠,∠等3)用一个大写的英文字母表示独立(在一个顶点处只有一个角)的角。

如∠O,∠A 等。

4)用三个大写的英文字母表示任意一个角,但必须把表示角的顶点的字母写在中间。

如∠AOB,∠BOC等。

(4)角的分类锐角< ∠<直角∠=钝角<∠<平角角的一条边绕着端点旋转到角的终边和始边成一直线,这时所成的角叫做平角。

∠= 周角角的一条边绕着端点旋转到角的终边和始边再次重合,这时所成的角叫做周角。

(5)角的度量1周角=1平角= 。

(6)用角表示方向一般以正北、正南为基准,向东或向西旋转的角度表示方向。

例如,北偏东。

(7)角的比较1)度量法2)叠合法把一个角放在另一个角上,使它们的顶点重合,其中的一边也重合,并使两个角的另一边都在这一条边的同侧。

(8)画一个角等于已知的角已知:
∠AOB求作:∠CDE=∠AOB作法:1)画射线DE2)以点O为圆心,以适当长为半径画弧,交OA于M,交OB于N。

3)以点D为圆心,以OM长为半径作弧,交DE于P。

4)以点P为圆心,以MN长为半径作弧,交前一条弧于Q。

5)经过点Q画射线DC。

则∠CDE 为所求。

(9)角的平分线从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

(10)角的特殊关系1)互为余角:两个角的和等于(直角),就说这两个角互为余角,简称互余。

互为补角::两个角的和等于(平角),就说这两个角互为补角,简称互补。

2)等角或同角的余角相等。

等角或同角的补角相等。

3)对顶角两条直线相交得到的,有公共的顶点,没有公共边的两个角。

4)对顶角相等。

相关文档
最新文档