工程力学_静力学与材料力学习题答案完整版

合集下载

工程力学(静力学与材料力学)课后习题答案(单辉祖)

工程力学(静力学与材料力学)课后习题答案(单辉祖)

1-1试画出以下各题中圆柱或圆盘的受力图。

与其它物体接触处的摩擦力均略去。

解:1-2 试画出以下各题中AB 杆的受力图。

(aB(b(c(dA(eBA(a(bA(cA(dA A(eB (c)(a)(b)解:1-3 试画出以下各题中AB 梁的受力图。

(d)(e)(e)B(a)B(b)(c)F BF(a)W(c)AF(b)A DB(d)(e)1-4 试画出以下各题中指定物体的受力图。

(a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。

解:(a)AF(b)WA(c)(d)F D(e)F Bx(a)(b)(c)(d)CD(e)W(f)BF D1-5 试画出以下各题中指定物体的受力图。

(a) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。

(d)F CCD(e)B WB(f)F ABFBC(a)(c)(d)(b)解:(a)(b)(c)AF ABF ATF AF BAFCAA C’(e)(e)DD F C’B2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445N ,F 2=535 N ,不计杆重,试求两杆所受的力。

解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆,(2) 列平衡方程:12140 sin 600530 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。

2-3 水平力F 作用在刚架的B 点,如图所示。

如不计刚架重量,试求支座A 和D 处的约束力。

解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形:F 1F(2)211 1.1222D A D D A F F FF F BC AB AC F F F F F =====∴===2-4 在简支梁AB 的中点C 作用一个倾斜45o的力F ,力的大小等于20KN ,如图所示。

工程力学(静力学与材料力学)第四版习题答案

工程力学(静力学与材料力学)第四版习题答案

静力学部分第一章基本概念受力图2-1 解:由解析法,23cos 80RX F X P P N θ==+=∑12sin 140RY F Y P P N θ==+=∑故:161.2R F N ==1(,)arccos 2944RY R R F F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑ 13sin 45sin 450RY F Y P P ==-=∑ 故:3R F KN == 方向沿OB 。

2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。

(a ) 由平衡方程有:0X =∑ sin 300AC AB F F -=0Y =∑ cos300AC F W -=0.577AB F W =(拉力) 1.155AC F W =(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑ sin 700AB F W -=1.064AB F W =(拉力)0.364AC F W =(压力)(c ) 由平衡方程有:0X =∑ cos 60cos300AC AB F F -=0Y =∑ sin 30sin 600AB AC F F W +-=0.5AB F W = (拉力)0.866AC F W =(压力)(d ) 由平衡方程有:0X =∑ sin 30sin 300AB AC F F -=0Y =∑ cos30cos300AB AC F F W +-=0.577AB F W = (拉力)0.577AC F W = (拉力)2-4 解:(a )受力分析如图所示:由0x =∑cos 450RA F P -=15.8RA F KN ∴=由0Y =∑sin 450RA RB F F P +-=7.1RB F KN ∴=(b)解:受力分析如图所示:由x =∑cos 45cos 450RA RB F F P --=0Y =∑sin 45sin 450RA RB F F P -=联立上二式,得: 22.410RA RB F KNF KN ==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN = (压力) 5RB F KN =(与X 轴正向夹150度) 2-6解:受力如图所示:已知,1R F G = ,2AC F G =由0x =∑ cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=2sin N F W G W α∴=-⋅=2-7解:受力分析如图所示,取左半部分为研究对象由0x =∑ cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CB RA F F '-= 联立后,解得: 0.707RA F P = 0.707RB F P =由二力平衡定理 0.707RB CB CB F F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC P F α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力) 列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑0RD REF F '= 0Y =∑0RD F Q -=联立方程后解得:RD F =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得:RA F =2RB F Q P=+(3)取BCE 部分。

工程力学-静力学与材料力学课后答案

工程力学-静力学与材料力学课后答案

工程力学 静力学与材料力学 (单辉祖 谢传锋 著) 高等教育出版社 课后答案 1-1试画出以下各题中圆柱或圆盘的受力图。

与其它物体接触处的摩擦力均略去。

解:1-2 试画出以下各题中AB 杆的受力图。

(a) B(b)(c)(d)A(e)A(a)(b) A(c)A(d)A(e)(c)(a)(b)工程力学 静力学与材料力学 (单辉祖 谢传锋 著) 高等教育出版社 课后答案 解:1-3 试画出以下各题中AB 梁的受力图。

(d)(e)BB(a)B(b)(c)F B(a)(c)F (b)(d)(e)解:1-4 试画出以下各题中指定物体的受力图。

(a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。

解:(a)F (b)W(c)(d)D(e)F Bx(a)(b)(c)(d)D(e)W(f)(a)D(b) CB(c)BF D1-5 试画出以下各题中指定物体的受力图。

(a) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。

解:(a)(d) FC(e)WB (f)F FBC(c)(d)AT F BAF (b)(e)(b)(c)(d)(e) F ABF ACAA C’CDDB2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。

解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆,(2) 列平衡方程:12140 sin 600530 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。

工程力学(工程静力学与材料力学)第二版答案(完整资料).doc

工程力学(工程静力学与材料力学)第二版答案(完整资料).doc

(a) (b)习题1-1图 【最新整理,下载后即可编辑】1-1 图a 、b 所示,Ox 1y 1与Ox 2y 2分别为正交与斜交坐标系。

试将同一方F 分别对两坐标系进行分解和投影,并比较分力与力的投影。

解:(a ),图(c ):11 sin cos j i F ααF F +=分力:11 cos i F αF x = , 11 sin j F αF y = 投影:αcos 1F F x = , αsin 1F F y =讨论:ϕ= 90°时,投影与分力的模相等;分力是矢量,投影是代数量。

(b ),图(d ):1y F x xF 1y Fα1xF y F(c )2F2y F2y2x 2x F2y FF(d )(a) (b)习题1-2图F DR AC BD AxF AyF(a-1)Ay F FB C A AxF 'F C(a-2) C DF DR(a-3)AxFF A C BD AyF (b-1) 分力:22)tan sin cos (i F ϕααF F x -= ,22sin sin j FϕαF y =投影:αcos 2F F x = , )cos(2αϕ-=F F y 讨论:ϕ≠90°时,投影与分量的模不等。

1-2 试画出图a 、b 两情形下各物体的受力图,并进行比较。

比较:图(a-1)与图(b-1)不同,因两者之F R D 值大小也不同。

1-3 试画出图示各物体的受力图。

习题1-3图F AxFAyF D C BABF或(a-2)FB AF DCA(a-1)BF AxF AAyF C(b-1)WF BD CF FCBBF AACBF(f-1)(e-3)'A(f-2)1O(f-3)c FF AF DF BF AF A习题1-4图1-4 图a所示为三角架结构。

力F1作用在B铰上。

杆AB 不计自重,杆BD杆自重为W。

试画出图b、c、d所示的隔离体的受力图,并加以讨论。

工程力学(静力学与材料力学)课后习题答案(单辉祖)

工程力学(静力学与材料力学)课后习题答案(单辉祖)

1-1试画出以下各题中圆柱或圆盘的受力图。

与其它物体接触处的摩擦力均略去。

解:1-2 试画出以下各题中AB杆的受力图。

A(BF((W(AW(F(F(F(FW(AW(FBDB解:1-3 试画出以下各题中AB 梁的受力图。

B(BB(F BF(FB (DB F F(FB((B F(BB1-4 试画出以下各题中指定物体的受力图。

(a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。

解:B(B F (W ((D(F Bx(DC(D((B(WB(1-5 试画出以下各题中指定物体的受力图。

(a) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。

(DCD(B(BF D(F CC(WB(F AB F BC((C(A(解:(a)(b)(c)AF ABF ATF AF BAFCC’CD((e)D DC’2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。

解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆,(2) 列平衡方程:12140 sin 600530 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。

2-3 水平力F 作用在刚架的B 点,如图所示。

如不计刚架重量,试求支座A 和D 处的约束力。

解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形:FF43xFF F AF D(2) 由力三角形得211 1.122D A D D A F F FF F BC AB AC F F F F F =====∴===2-4 在简支梁AB 的中点C 作用一个倾斜45o 的力F ,力的大小等于20KN ,如图所示。

工程力学(静力学与材料力学)第四版习题答案

工程力学(静力学与材料力学)第四版习题答案

静力学部分第一章基本概念受力图2-1 解:由解析法,23cos 80RX F X P P N θ==+=∑12sin 140RY F Y P P N θ==+=∑故:161.2R F N ==1(,)arccos 2944RY R R F F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑ 13sin 45sin 450RY F Y P P ==-=∑ 故:3R F KN == 方向沿OB 。

2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。

(a ) 由平衡方程有:0X =∑ sin 300AC AB F F -=0Y =∑ cos300AC F W -=0.577AB F W =(拉力) 1.155AC F W =(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑ sin 700AB F W -=1.064AB F W =(拉力)0.364AC F W =(压力)(c ) 由平衡方程有:0X =∑ cos 60cos300AC AB F F -=0Y =∑ sin 30sin 600AB AC F F W +-=0.5AB F W = (拉力)0.866AC F W =(压力)(d ) 由平衡方程有:0X =∑ sin 30sin 300AB AC F F -=0Y =∑ cos30cos300AB AC F F W +-=0.577AB F W = (拉力)0.577AC F W = (拉力)2-4 解:(a )受力分析如图所示:由0x =∑cos 450RA F P -=15.8RA F KN ∴=由0Y =∑sin 450RA RB F F P +-=7.1RB F KN ∴=(b)解:受力分析如图所示:由x =∑cos 45cos 450RA RB F F P --=0Y =∑sin 45sin 450RA RB F F P -=联立上二式,得: 22.410RA RB F KNF KN ==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN = (压力) 5RB F KN =(与X 轴正向夹150度) 2-6解:受力如图所示:已知,1R F G = ,2AC F G =由0x =∑ cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=2sin N F W G W α∴=-⋅=2-7解:受力分析如图所示,取左半部分为研究对象由0x =∑ cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CB RA F F '-= 联立后,解得: 0.707RA F P = 0.707RB F P =由二力平衡定理 0.707RB CB CB F F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC P F α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力) 列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑0RD REF F '= 0Y =∑0RD F Q -=联立方程后解得:RD F =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得:RA F =2RB F Q P=+(3)取BCE 部分。

工程力学(静力学与材料力学)课后习题答案(单辉祖)

工程力学(静力学与材料力学)课后习题答案(单辉祖)

1-1试画出以下各题中圆柱或圆盘的受力图。

与其它物体接触处的摩擦力均略去。

解:1-2 试画出以下各题中AB 杆的受力图。

(a) B(b)(c)(d)A(e)A(a)(b) A(c)A(d)A(e)(c)(a)(b)解:1-3 试画出以下各题中AB 梁的受力图。

(d)(e)BB(a)B(b)(c)F B(a)(c)F (b)(d)(e)解:1-4 试画出以下各题中指定物体的受力图。

(a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。

解:(a)F (b)W(c)(d)D(e)F Bx(a)(b)(c)(d)D(e)W(f)(a)D(b)B(c)BF D1-5 试画出以下各题中指定物体的受力图。

(a) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。

解:(a)(d)FC(e)WB(f)F FBC(c)(d)AT F BAF (b)(e)(b)(c)(d)(e)CAA C’CDDC ’B2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。

解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆,(2) 列平衡方程:12140 sin 600530 cos6005207 164 o y AC ox BC ACAC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。

2-3 水平力F 作用在刚架的B 点,如图所示。

如不计刚架重量,试求支座A 和D 处的约束力。

解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形:(2)F 1F FDF F AF D211 1.122D A D D A F F FF F BC AB AC F F F F F =====∴===2-4 在简支梁AB 的中点C 作用一个倾斜45o 的力F ,力的大小等于20KN ,如图所示。

工程力学(静力学与材料力学)习题及答案 - 静力学设计

工程力学(静力学与材料力学)习题及答案 - 静力学设计

习题13-4图 工程力学(静力学与材料力学)习题第13章 杆类构件的静力学设计13-1 关于低碳钢试样拉伸至屈服时,有如下结论:(A )应力和塑性变形很快增加,因而认为材料失效;(B )应力和塑性变形虽然很快增加,但不意味着材料失效;(C )应力不增加塑性变形很快增加,因而认为材料失效;(D )应力不增加塑性变形很快增加,但不意味着材料失效。

正确答案是 。

13-2 韧性材料应变硬化之后,材料的力学性能发生下列变化:(A )屈服应力提高,弹性模量降低;(B )屈服应力提高,韧性降低;(C )屈服应力不变,弹性模量不变;(D )屈服应力不变,韧性不变。

正确答案是 。

13-3 关于条件屈服应力有如下论述:(A )弹性应变为0.2%时的应力值;(B )总应变为0.2%时的应力值;(C )塑性应变为0.2%时的应力值;(D )弹性应变为0.2时的应力值。

正确答案是 。

13-4 螺旋压紧装置如图所示。

现已知工作所受的压紧力为F = 4kN ,旋紧螺栓螺纹的内径d 1 = 13.8mm ,固定螺栓内径d 2 = 17.3mm 。

两根螺栓材料相同,其许用应力][σ= 53.0MPa 。

试校核各螺栓之强度是否安全。

13-5 现场施工中起重机吊环的每一侧臂AB 和BC ,均由两根矩形截面杆组成,连接处A 、B 、C 均为铰链,如图所示。

已知起重载荷F P = 1200kN ,每根矩形杆截面尺寸比例为b /h = 0.3,材料的许用应力][σ= 78.5MPa 。

试设计矩形杆的截面尺寸b 和h 。

13-6 图示结构中BC 和AC 都是圆截面直杆,直径均为d = 20mm ,材料都是Q235钢,其许用应力][σ= 157 MPa 。

试求该结构的许可载荷。

(有人说:根据垂直方面的平衡条件,有P N N 45cos 30cos F F F AC BC =︒+︒,然后将])[4/(2N σπd F BC =,])[4/(2N σπd F AC =代入后即可得许可载荷,这种解法对吗?为什么?)习题13-5图习题13-7图 习题13-8图 习题13-9图13-7 图示汽缸内径D = 560mm ,内压p = 2.5MPa,活塞杆直径d = 100mm ,所以用材料的屈服应力s σ= 300MPa 。

工程力学工程静力学与学习材料力学第二版本包括答案.doc

工程力学工程静力学与学习材料力学第二版本包括答案.doc

1- 1 图 a 、b 所示,1 1与22分别为正交与斜交坐标系。

试将同一方F 分别对两坐标系进行分解OxyOxy和投影,并比较分力与力的投影。

(a) (b)习题 1-1 图yy 2F y 1FFy 2FFy 1Fy 2F x 1xFx 2x 2F x 1Fx 2(c )(d )解:(a ),图( c ): FFsoc i 1 Fnis j 1分力: Fx1 F cos i 1 , F y1 F sinj1投影:F x1F cos, F y1 F sin讨论:= 90 °时,投影与分力的模相等;分力是矢量,投影是代数量。

(b ),图( d ):分力: F x2 ( F cosF sin tan )i 2 F sinj 2, F y 2sin投影: FF cos ,F y2 F cos()x 2讨论: ≠ 90°时,投影与分量的模不等。

1 -2试画出图 a 、 b 两情形下各物体的受力图,并进行比较。

FAyFAxACDFRDFB(a)(b)(a-1)习题 1-2 图FAyFCF CF AyFF AxF AxACBA CBD'F CF RDF RDD(a-2)(a-3)(b-1)比较:图( a-1 )与图( b-1 )不同,因两者之 F R D 值大小也不同。

1 -3 试画出图示各物体的受力图。

..习题 1-3 图FDCFDC CBFF BAFAxABFAxBAF AF BFAyF BFAy(a-1)或(a-2)(b-1)CB FBDF DCF BF BABWFAxCAF AF AFAyD或(b-2) (c-1)(d-1)F CDFFCCFAxABCF cAFAyDF ABF AF D(e-1)F B或(d-2) F D(e-2)D FF O 1'CF AF O 1AF OxAFOxOOO 1FOyFOyABF AF AA ..WF B W(f-2)(e-3)(f-1)(f-3)F AF AF B1 -4 图 a 所示为三角架结构。

工程力学(静力学与材料力学)课后习题答案(单辉祖)

工程力学(静力学与材料力学)课后习题答案(单辉祖)

.精品文档,放心下载,放心阅读1-1试画出以下各题中圆柱或圆盘的受力图。

与其它物体接触处的摩擦力均略去。

解:1-2 试画出以下各题中AB 杆的受力图。

(a)B (b)(c)(d)A(e)A(a)(b) A(c)A(d)A(e)(c)(a)(b)解:1-3 试画出以下各题中AB 梁的受力图。

(d)(e)BB(a)B(b)(c)F B(a)(c)F (b)(d)(e)解:1-4 试画出以下各题中指定物体的受力图。

(a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。

解:(a)F (b)W(c)(d)D(e)F Bx(a)(b)(c)(d)D(e)W(f)(a)D(b)B(c)BF D1-5 试画出以下各题中指定物体的受力图。

(a) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。

解:(a)(d) FC(e)WB (f)F FBC(c)(d)AT F BAF (b)(e)(b)(c)(d)(e) F ABF ACAA C’CDDB2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。

解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆,(2) 列平衡方程:12140 sin 600530 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。

2-3 水平力F 作用在刚架的B 点,如图所示。

如不计刚架重量,试求支座A 和D 处的约束力。

解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形:(2)F 1F FDF F AF D211 1.1222D A D D A F F FF F BC AB AC F F F F F =====∴===2-4 在简支梁AB 的中点C 作用一个倾斜45o的力F ,力的大小等于20KN ,如图所示。

工程力学(静力学与材料力学)第四版习题答案

工程力学(静力学与材料力学)第四版习题答案

静力学部分第一章基本概念受力图2-1 解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:161.2R F N==1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 3R F KN== 方向沿OB 。

2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。

(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)由x =∑cos 450RA F P -=15.8RA F KN∴=由Y =∑sin 450RA RB F F P +-=7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑cos 45cos 450RA RB F F P --=0Y =∑sin 45sin 450RA RB F F P -=联立上二式,得:22.410RA RB F KN F KN==三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=2sin N F W G W α∴=-⋅=2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC P F α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及 ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD PF F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力) 列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑0RD REF F '= 0Y =∑0RD F Q -=联立方程后解得:RD F =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得:RA F =2RB F Q P=+(3)取BCE 部分。

工程力学课后习题答案(静力学和材料力学)

工程力学课后习题答案(静力学和材料力学)

1 一 3 试画出图示各构件的受力图。
F
D
习题 1-3 图
C
F
D
C
A
B
FA
FB
习题 1-3a 解 1 图
F Ax
A
B
FAy
FB
习题 1-3a 解 2 图
C
BF
B
D
FB
FD
C
A
FA 习题 1-3b 解 2 图
W
FAx
FAy
习题 1-3c 解图
F
A
A
F
α
B C
FA
D
FAFD 习题 1-3d 解 2 图
FB2 x
B
FDy
C FB2 y
F Dx D
W
习题 1-4b 解 2 图
F'B1
B
F'B2x
F'B2 y F1
A B
F'B2x
习题 1-4c 解 1 图
F1 F'B2 y
FDx D FDy
F'B2x B
C
F'B2 y
W
F'B2 B
习题 1-4c 解 2 图
习题 1-4b 解 3 图
FA
A
B
F B1
习题 1-4d 解 1 图
可推出图(b)中 FAB = 10FDB = 100F = 80 kN。
FED αD
FDB FD′ B
FCB
α
B
F 习题 1-12 解 1 图
F AB 习题 1-12 解 2 图
1—13 杆 AB 及其两端滚子的整体重心在 G 点,滚子搁置在倾斜的光滑刚性平面上,如

(完整版)工程力学(静力学与材料力学)第四版习题答案

(完整版)工程力学(静力学与材料力学)第四版习题答案

静力学部分第一章基本概念受力图2-1 解:由解析法,23cos 80RX F X P P N θ==+=∑12sin 140RY F Y P P N θ==+=∑故: 22161.2R RX RY F F F N =+=1(,)arccos 2944RY R R F F P F '∠==o v v2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN ==++=∑o o13sin 45sin 450RY F Y P P ==-=∑o o故: 223R RX RY F F F KN =+= 方向沿OB 。

2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。

(a ) 由平衡方程有:0X =∑ sin 300AC AB F F -=o0Y =∑ cos300AC F W -=o0.577AB F W =(拉力) 1.155AC F W =(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=o0Y =∑ sin 700AB F W -=o1.064AB F W =(拉力)0.364AC F W =(压力)(c ) 由平衡方程有:0X =∑ cos 60cos300AC AB F F -=o o0Y =∑ sin 30sin 600AB AC F F W +-=o o0.5AB F W = (拉力)0.866AC F W =(压力)(d ) 由平衡方程有:0X =∑ sin 30sin 300AB AC F F -=o o0Y =∑ cos30cos300AB AC F F W +-=o o0.577AB F W = (拉力)0.577AC F W = (拉力)2-4 解:(a )受力分析如图所示:由0x =∑ 22cos 45042RA F P -=+o15.8RA F KN ∴= 由0Y =∑ 22sin 45042RA RB F F P +-=+o7.1RB F KN ∴=(b)解:受力分析如图所示:由 0x =∑ cos 45cos 45010RA RB F F P --=o o0Y =∑sin 45sin 45010RA RB F F P -=o o联立上二式,得: 22.410RA RB F KNF KN ==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以: 5RA F KN = (压力) 5RB F KN =(与X 轴正向夹150度) 2-6解:受力如图所示:已知,1R F G = ,2AC F G =由0x =∑ cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由0x =∑ cos 45cos 450RA CB P F F --=o o0Y =∑sin 45sin 450CB RA F F '-=o o 联立后,解得: 0.707RA F P = 0.707RB F P =由二力平衡定理 0.707RB CB CB F F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=o o0Y =∑sin 30sin 600AB AC F F W +-=o o联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC P F α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '=Q 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=o o0Y =∑cos 75cos 750AB AD F F P +-=o o联立后可得: 2cos 75AD AB PF F ==o取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=o ocos5cos80NDAD F F '=⋅oo由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N NDADP F F F KN '∴===⋅=o o o o o2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=o0Y =∑sin sin 300RA F P α-=o联立上二式得:2.92RA F KN=1.33DC F KN=(压力) 列C 点平衡x =∑405DC AC F F -⋅=Y=∑305BC ACF F+⋅=联立上二式得: 1.67ACF KN=(拉力)1.0BCF KN=-(压力)2-13解:(1)取DEH部分,对H点列平衡x=∑05RD REF F'=Y=∑05RDF Q-=联立方程后解得:5RDF Q=2REF Q'=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=o0Y =∑sin 450RB RA F F P --=o且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。

工程力学(静力学和材料力学)课后习题答案

工程力学(静力学和材料力学)课后习题答案

工程力学(静力学与材料力学)习题详细解答(第1章)(a) (b) 习题1-1图第1章 静力学基础1一1 图a 和b 所示分别为正交坐标系11y Ox 与斜交坐标系22y Ox 。

试将同一个力F 分别在两中坐标系中分解和投影,比较两种情形下所得的分力与投影。

解:图(a ):11 sin cos j i F ααF F +=分力:11 cos i F αF x = , 11 sin j F αF y = 投影:αcos 1F F x = , αsin 1F F y =讨论:ϕ= 90°时,投影与分力的模相等;分力是矢量,投影是代数量。

图(b ): 分力:22)tan sin cos (i F ϕααF F x −= , 22sin sin j F ϕαF y =投影:αcos 2F F x = , )cos(2αϕ−=F F y讨论:ϕ≠90°时,投影与分量的模不等。

1一2 试画出图a 和b 两种情形下各构件的受力图,并加以比较。

比较:解a 图与解b 图,两种情形下受力不同,二者的F R D 值大小也不同。

DR习题1-2b 解图DR习题1-2a 解2图C习题1-2a 解1图(a) (b)习题1-2图1一3 试画出图示各构件的受力图。

习题1-3图B F 习题1-3a 解2图 B习题1-3a 解1图习题1-3b 解1图F Ay Ax 习题1-3c 解图 A习题1-3b 解2图习题1-3d 解1图习题1-3e 解1图习题1-3e 解2图1-4 图a 所示为三角架结构。

荷载F 1作用在B 铰上。

AB 杆不计自重,BD 杆自重为W ,作用在杆的中点。

试画出图b 、c 、d 所示的隔离体的受力图,并加以讨论。

习题1-4图1习题1-3f 解1图F习题1-3e 解3图'A习题1-3f 解2图1O 习题1-3f 解3图F F'F 1习题1-4d 解2图F y B 21习题1-4c 解1图 AA B 1B FDx y2B 习题1-4b 解2图 1习题1-4b 解3图 F y B 2习题1-4c 解2图 F A B1B FAxF'习题1-5b 解3图E D(a-3)E B F习题1-5b 解2图习题1-5b 解1图'AxFF B习题1-5c 解图1一5 试画出图示结构中各杆的受力图。

工程力学静力学与材料力学

工程力学静力学与材料力学

工程力学 静力学与材料力学 (单辉祖 谢传锋 著) 高等教育出版社 课后答案1-4 试画出以下各题中指定物体地受力图.(a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B. 解:2-6 如图所示结构由两弯杆ABC 和DE 构成.构件重量不计,图中地长度单位为cm.已知F =200N,试求支座A 和E 地约束力.(a)(b)(c)(d)D(e)W(f)(a)D(b)B(c)BF D(d)F C(e) WB(f) F F BC解:(1) 取DE 为研究对象,DE 为二力杆;F D = F E(2) 取ABC 为研究对象,受力分析并画受力图;画封闭地力三角形:'15166.7 23A D E F F F F N ===⨯= 2-7 在四连杆机构ABCD 地铰链B 和C 上分别作用有力F 1和F 2,机构在图示位置平衡.试求平衡时力F 1和F 2地大小之间地关系.解:(1)取铰链B 为研究对象,AB 、BC 均为二力杆,画受力图和封闭力三角形;F A FF BC1BC F(2) 取铰链C 为研究对象,BC 、CD 均为二力杆,画受力图和封闭力三角形;22cos302o CB F F F ==由前二式可得:121222120.61 1.634BC CB F F F F F F or F F ==∴===AB 、AC 杆受拉,AD 杆受压.CF CD F 2F CB F CD0 cos 0 cos cos B B A B M M F l M F l MF F l θθθ=⨯⨯-==∴==∑3-2 在题图所示结构中二曲杆自重不计,曲杆AB 上作用有主动力偶,其力偶矩为M ,试求A 和C 点处地约束力.解:(1) 取BC 为研究对象,受力分析,BC 为二力杆,画受力图;B C F F =(2) 取AB 为研究对象,受力分析,A 、B 地约束力组成一个力偶,画受力图;()''30 0.35420.354B B AC M M F a a M F a MF F a=⨯+-===∴==∑ 3-8 在图示结构中,各构件地自重都不计,在构件BC 上作用一力偶矩为M 地力偶,各尺寸如图.求支座A 地约束力.FC解:(1) 取BC 为研究对象,受力分析,画受力图;0 0 C C M M F l M F l=-⨯+==∑(2) 取DAC 为研究对象,受力分析,画受力图;画封闭地力三角形;解得'cos 45C A oF F == F ’CF D F A F ’CF D4-18 由杆AB 、BC 和CE 组成地支架和滑轮E 支持着物体.物体重12 kN.D 处亦为铰链连接,尺寸如题4-18图所示.试求固定铰链支座A 和滚动铰链支座B 地约束力以及杆BC 所受地力.解:(1) 研究整体,受力分析,画出受力图(平面任意力系);(2) 选坐标系0: 012 kNxAx Ax FF W F =-==∑()()()0: 4 1.52010.5 kNAB B MF F W r W r F =⨯-⨯-+⨯+==∑0: 01.5 kNyAy B Ay FF F W F =+-==∑(3) 研究CE 杆(带滑轮),受力分析,画出受力图(平面任意力系);Ax(4) 选D 点为矩心,列出平衡方程;()()0: sin 1.5 1.5015 kNDCB CB MF F W r W r F α=⨯-⨯-+⨯==∑约束力地方向如图所示.4-19 起重构架如题4-19图所示,尺寸单位为mm.滑轮直径d =200 mm,钢丝绳地倾斜部分平行于杆BE .吊起地载荷W =10 kN,其它重量不计,求固定铰链支座A 、B 地约束力.解:(1) 研究整体,(2) 选坐标系Bxy ,列出平衡方程;()0: 6001200020 kNBAx Ax MF F W F =⨯-⨯==∑0: 020 kNxAx Bx Bx FF F F =-+==∑WF CBW0: 0yAy By FF F W =-+-=∑(3) 研究A CD 杆,受力分析,画出受力图(平面任意力系);(4) 选D 点为矩心,列出平衡方程;()0: 80010001.25 kNDAy C Ay MF F F F =⨯-⨯==∑(5) 将F Ay 代入到前面地平衡方程;11.25 kN By Ay F F W =+=约束力地方向如图所示.4-20 AB 、AC 、DE 三杆连接如题4-20图所示.DE 杆上有一插销F 套在AC 杆地导槽内.求在水平杆DE 地E 端有一铅垂力F 作用时,AB 杆上所受地力.设AD =DB ,DF =FE ,BC =DE ,所有杆重均不计.解:(1) 整体受力分析,根据三力平衡汇交定理,可知B 点地约束力一定沿着BC 方向;(2) 研究DFE 杆,受力分析,画出受力图(平面任意力系);(3) 分别选F 点和B 点为矩心,列出平衡方程;()0: 0FDy Dy M F F EF F DE F F=-⨯+⨯==∑()0: 02BDx Dx MF F ED F DB F F=-⨯+⨯==∑(4) 研究ADB 杆,受力分析,画出受力图(平面任意力系);Dx(5) 选坐标系Axy ,列出平衡方程;'()0: 0ADx B B MF F F F F=⨯-⨯==∑'0: 0xAx B Dx Ax FF F F F F=--+==∑'0: 0yAy Dy Ay FF F F F=-+==∑约束力地方向如图所示.6-11 均质梯长为l ,重为P ,B 端靠在光滑铅直墙上,如图所示,已知梯与地面地静摩擦因数f sA ,求平衡时θ=?解:(1) 研究AB 杆,当A 点静滑动摩擦力达到最大时,画受力图(A 点约束力用全约束力表示);由三力平衡汇交定理可知,P 、F B 、F R 三力汇交在D 点;(2) 找出θmin 和ϕ f 地几何关系;min min minmin sin tan cos 211tan 2tan 21arctan2f f sAsAll f f θϕθθϕθ⨯=⨯==∴= (3) 得出θ角地范围;190arctan2o sAf θ≥≥ 6-15 砖夹地宽度为25 cm,曲杆AGB 与GCED 在G 点铰接.砖地重量为W ,提砖地合力F 作用在砖对称中心线上,尺寸如图所示.如砖夹与砖之间地摩擦因数f s =0.5,试问b 应为多大才能把砖夹起(b 是G 点到砖块上所受正压力作用线地垂直距离).解:(1) 砖夹与砖之间地摩擦角:arctan arctan0.525.6o f s f ϕ===(2) 由整体受力分析得:F=W (2) 研究砖,受力分析,画受力图;(3) 列y 方向投影地平衡方程;0: 2sin 01.157yR f R FF W F Wϕ=⨯-==∑(4) 研究AGB 杆,受力分析,画受力图;D《工程力学》习题选解(5) 取G 为矩心,列平衡方程;''()0: sin 3cos 9.5010.5 cmGR f R f MF F F b F b ϕϕ=⨯⨯-⨯⨯+⨯==∑6-18 试求图示两平面图形形心C 地位置.图中尺寸单位为mm.解:(a) (1) 将T 形分成上、下二个矩形S 1、S 2,形心为C 1、C 2;(2) 在图示坐标系中,y 轴是图形对称轴,则有:x C =0 (3) 二个矩形地面积和形心;211222501507500 mm 225 mm 5020010000 mm 100 mmC C S y S y =⨯===⨯==(4) T 形地形心;0750022510000100153.6 mm750010000C i iC ix S y y S=⨯+⨯===+∑∑ (b) (1) 将L 形分成左、右二个矩形S 1、S 2,形心为C 1、C 2;(a)(b)(3) 二个矩形地面积和形心;21112222101201200 mm 5 mm 60 mm 7010700 mm 45 mm 5 mmC C CC S x y S x y =⨯====⨯===(4) L 形地形心;120057004519.74 mm1200700120060700539.74 mm1200700i iC i i iCiS x x S S y y S⨯+⨯===+⨯+⨯===+∑∑∑∑6-19试求图示平面图形形心位置.尺寸单位为mm.解:(a) (1) 将图形看成大圆S 1减去小圆S 2,形心为C 1和C 2;(2) 在图示坐标系中,x 轴是图形对称轴,则有:y C =0 (3) 二个图形地面积和形心;2211222220040000 mm 0806400 mm 100 mmC C S x S x ππππ=⨯===⨯==(a)(b)(4) 图形地形心;640010019.05 mm4000064000i iCiC S x x Sy πππ-⨯===--=∑∑(b) (1) 将图形看成大矩形S 1减去小矩形S 2,形心为C 1和C 2;(2) 在图示坐标系中,y 轴是图形对称轴,则有:x C =0 (3) 二个图形地面积和形心;21122216012019200 mm 60100606000 mm 50 mmC C S y S y =⨯===⨯==(4) 图形地形心;0192006060005064.55 mm192006000C i iC ix S y y S=⨯-⨯===-∑∑ 8-16 题8-14所述桁架,试定载荷F 地许用值[F ].解:(1) 由8-14得到AB 、AC 两杆所受地力与载荷F 地关系;AC AB F F == (2) 运用强度条件,分别对两杆进行强度计算;[]211160 154.54ABAB F MPa F kN A d σσπ==≤=≤[]222160 97.14ACAC F MPa F kN A d σσπ==≤=≤ 取[F ]=97.1 kN.8-18 图示阶梯形杆AC ,F =10 kN,l 1= l 2=400 mm,A 1=2A 2=100 mm 2,E =200GPa,试计算杆AC 地轴向变形△l .SS解:(1) 用截面法求AB 、BC 段地轴力;12 N N F F F F ==-(2) 分段计算个杆地轴向变形;33112212331210104001010400200101002001050 02 N N F l F l l l l EA EA .mm⨯⨯⨯⨯∆=∆+∆=+=-⨯⨯⨯⨯=-AC 杆缩短.8-22 图示桁架,杆1与杆2地横截面面积与材料均相同,在节点A 处承受载荷F 作用.从试验中测得杆1与杆2地纵向正应变分别为ε1=4.0×10-4与ε2=2.0×10-4,试确定载荷F 及其方位角θ之值.已知:A 1=A 2=200 mm 2,E 1=E 2=200 GPa.解:(1) 对节点A 受力分析,求出AB 和AC 两杆所受地力与θ地关系;00000 sin 30sin 30sin 00 cos30cos30cos 0x AB AC yAB AC AB AC FF F F FF F F F F F θθ=-++==+-===∑∑(2) 由胡克定律:1111222216 8 AB AC F A E A kN F A E A kN σεσε======F AB代入前式得:o 21.2 10.9F kN θ==8-23 题8-15所述桁架,若杆AB 与AC 地横截面面积分别为A 1=400 mm 2与A 2=8000 mm 2,杆AB 地长度l =1.5 m,钢与木地弹性模量分别为E S =200 GPa 、E W =10 GPa.试计算节点A 地水平与铅直位移. 解:(1) 计算两杆地变形;31313232501015000.938 2001040070.71015001.875 10108000AB S AC W F l l mmE AF l mm E A ⨯⨯∆===⨯⨯⨯∆===⨯⨯1杆伸长,2杆缩短.(2) 画出节点A 地协调位置并计算其位移;水平位移:10.938 A l mm ∆=∆=铅直位移:0001221'sin 45(cos45)45 3.58 A f A A l l l tg mm ==∆+∆+∆=8-26 图示两端固定等截面直杆,横截面地面积为A ,承受轴向载荷F 作用,试计算杆内横截面上地最大拉应力与最大压应力.解:(1)列平衡方程:0 0xA B FF F F F =-+-=∑(2) 用截面法求出AB 、BC 、CD 段地轴力;(b)A ’1△l123 N A N A N B F F F F F F F =-=-+=-(3) 用变形协调条件,列出补充方程;0AB BC CD l l l ∆+∆+∆=代入胡克定律;231 /3()/3/3 0N BC N CDN ABAB BC CD A A B F l F l F l l l l EA EA EAF l F F l F l EA EA EA∆=∆=∆=-+-+-=求出约束反力:/3A B F F F ==(4) 最大拉应力和最大压应力; 21,max ,max 2 33N N l y F F F FA A A Aσσ====- 8-27 图示结构,梁BD 为刚体,杆1与杆2用同一种材料制成,横截面面积均为A =300 mm 2,许用应力[σ]=160 MPa,载荷F =50 kN,试校核杆地强度.解:(1) 对BD120 220BN N mF a F a F a =⨯+⨯-⨯=∑(2) 由变形协调关系,列补充方程;212 l l ∆=∆代之胡克定理,可得;21212 2N N N N F l F lF F EA EA== 解联立方程得:F F N 11224 55N N F F F F == (3) 强度计算;[][]3113222501066.7 160 530045010133.3 160 5300N N F MPa MPaA F MPa MPaA σσσσ⨯⨯====⨯⨯⨯====⨯ 所以杆地强度足够.8-30 图示桁架,杆1、杆2与个杆3分别用铸铁、铜与钢制成,许用应力分别为[σ1] =80 MPa,[σ2]=60 MPa,[σ3] =120 MPa,弹性模量分别为E 1=160 GPa,E 2=100 GPa,E 3=200 GPa.若载荷F =160 kN,A 1=A 2 =2A 3,试确定各杆地横截面面积.解:(1) 对节点C 进行受力分析,假设三杆均受拉; 画受力图;列平衡方程;0120320 cos3000 sin 300x N N yN N F F F FF F F =--==+-=∑∑(2) 根据胡克定律,列出各杆地绝对变形;01112221211220333333cos3016021002sin 30200N N N N N N F l F l F l F l l l E A A E A A F l F l l E A A∆==∆==⨯⨯∆==(3) 由变形协调关系,列补充方程;N3FF N 1N 3C 2△l0003221sin30(cos30)30l l l l ctg ∆=∆+∆-∆简化后得:123153280N N N F F F -+=联立平衡方程可得:12322.63 26.13 146.94N N N F kN F kN F kN =-==1杆实际受压,2杆和3杆受拉. (4) 强度计算;[][][]312123123283 436 1225 N N N F F F A mm A mm A mm σσσ≥=≥=≥=综合以上条件,可得12322450 A A A mm ==≥9-18 题9-16所述轴,若扭力偶矩M =1 kNm,许用切应力[τ] =80 MPa,单位长度地许用扭转角[θ]=0.5 0/m,切变模量G =80 GPa,试确定轴径. 解:(1) 考虑轴地强度条件;[][]6max133116max233222211016 80 50.311611016 80 39.9116AB BC M d mm d d M d mm d d ττππττππ⨯⨯⨯=≤≤≥⨯⨯=≤≤≥(2) 考虑轴地刚度条件;[]0603134118021032180 100.5 73.5 8010TAB AB pAB M d mm GI d θθπππ⨯⨯=⨯≤⨯⨯≤≥⨯⨯ []0603234218011032180 100.5 61.8 8010TBC BCpBC M d mm GI d θθπππ⨯⨯=⨯≤⨯⨯≤≥⨯⨯ (3) 综合轴地强度和刚度条件,确定轴地直径;1273.5 61.8d mm d mm ≥≥9-19 图示两端固定地圆截面轴,直径为d ,材料地切变模量为G ,截面B 地转角为υB ,试求所加扭力偶矩M 之值.解:(1) 受力分析,列平衡方程;0 0xA B MM M M =-+-=∑(2) 求AB 、BC 段地扭矩;AB A BC A T M T M M ==-(3) 列补充方程,求固定端地约束反力偶;()44322320 0A A AB BCM M aM a G d G d ϕϕππ-+=+=与平衡方程一起联合解得21 33A B M M M M == (4) 用转角公式求外力偶矩M ;44323 64A BABB M a G d M G d aπϕϕϕπ=== 11-14 图示槽形截面悬臂梁,F =10 kN,M e =70 kNm,许用拉应力[σ+]=35 MPa,许用压应力[σ-]=120 MPa,试校核梁地强度.解:(1) 截面形心位置及惯性矩:112212(150250)125(100200)15096 (150250)(100200)C A y A y y mm A A ⋅+⋅⨯⋅+-⨯⋅===+⨯+-⨯3322841505025200(15050)(25)2(25200)(150)12121.0210 zCC C I y y mm ⎡⎤⨯⨯=+⨯⋅-++⨯⋅-⎢⎥⎣⎦=⨯ (2) 画出梁地弯矩图BMC(3) 计算应力A +截面下边缘点处地拉应力及上边缘点处地压应力分别为:68(250)4010(25096)60.4 1.0210C A A zCM y MPa I σ+++⋅-⨯-===⨯ 6840109637.61.0210CA A zCM y MPa I σ-++⋅⨯⨯===⨯ A -截面下边缘点处地压应力为68(250)3010(25096)45.3 1.0210C A A zCM y MPa I σ---⋅-⨯-===⨯ 可见梁内最大拉应力超过许用拉应力,梁不安全.。

(完整版)工程力学_静力学与材料力学课后习题答案_(单辉祖_谢传锋_着)_高等教育出版社_

(完整版)工程力学_静力学与材料力学课后习题答案_(单辉祖_谢传锋_着)_高等教育出版社_
解:(1)取节点C为研究对象,画受力图,注意AC、BC都为二力杆,
(2)列平衡方程:
AC与BC两杆均受拉。
2-3水平力F作用在刚架的B点,如图所示。如不计刚架重量,试求支座A和D处的约束力。
解:(1)取整体ABCD为研究对象,受力分析如图,画封闭的力三角形:
(2)由力三角形得
2-4在简支梁AB的中点C作用一个倾斜45o的力F,力的大小等于20KN,如图所示。若梁的自重不计,试求两支座的约束力。
(2)列平衡方程:
AB的约束力:
3-8在图示结构中,各构件的自重都不计,在构件BC上作用一力偶矩为M的力偶,各尺寸如图。求支座A的约束力。
解:(1)取BC为研究对象,受力分析,画受力图;
(2)取DAC为研究对象,受力分析,画受力图;
画封闭的力三角形;
解得
4-1试求题4-1图所示各梁支座的约束力。设力的单位为kN,力偶矩的单位为kNm,长度单位为m,分布载荷集度为kN/m。(提示:计算非均布载荷的投影和与力矩和时需应用积分)。
(2)选F点为矩心,列出平衡方程;
(3)不翻倒的条件;
4-13活动梯子置于光滑水平面上,并在铅垂面内,梯子两部分AC和AB各重为Q,重心在A点,彼此用铰链A和绳子DE连接。一人重为P立于F处,试求绳子DE的拉力和B、C两点的约束力。
解:
1-5试画出以下各题中指定物体的受力图。
(a)结点A,结点B;(b)圆柱A和B及整体;(c)半拱AB,半拱BC及整体;(d)杠杆AB,切刀CEF及整体;(e)秤杆AB,秤盘架BCD及整体。
解:(a)
(b)
(c)
(d)
(e)
2-2杆AC、BC在C处铰接,另一端均与墙面铰接,如图所示,F1和F2作用在销钉C上,F1=445N,F2=535N,不计杆重,试求两杆所受的力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档