结构振动控制技术 PPT
合集下载
建筑结构抗震设计振动控制
优化布置
通过合理的布置方式,使隔震支座充分发挥作用,提高整个结构的抗震性能。
04 消能减震设计策略及实施方法
金属阻尼器消能减震原理
塑性变形耗能
金属阻尼器利用金属材料的塑性变形能力,在地震作用下发生塑性变形,吸收并耗散地震能量,从而减小结构的 地震响应。
滞回耗能
金属阻尼器通过合理设计,使阻尼器在地震作用下产生滞回变形,滞回变形过程中吸收地震能量,并通过阻尼器 的热耗散将能量释放,降低结构的地震反应。
建筑结构抗震设计振 动控制
汇报人:戴老师 2023-12-02
目录
• 抗震设计基本原则 • 振动控制技术与方法 • 建筑结构隔震设计策略 • 消能减震设计策略及实施方法
目录
• 结构振动台试验与数值模拟分析 • 工程案例分析与经验总结
01 抗震设计基本原则
地震力与作用
地震力
地震时地面运动对建筑物产生的 惯性力,其大小与建筑物的质量 、地震加速度及建筑物与地面的 连接方式有关。
利用智能材料(如压电材料、磁 流变材料等)实现结构振动的主 动与被动控制。
03
优化设计与控制策 略
通过优化设计和控制策略,实现 混合控制系统在宽频带范围内的 有效减震。
03 建筑结构隔震设计策略
基础隔震系统原理及应用
原理
通过在建筑物基础与上部结构之间设置隔震层,使上部结构 与基础隔离,从而减少地震能量向上部结构的传递,达到减 震的目的。
上部结构的传递。
消能减震技术
02 在结构中设置阻尼器、耗能支撑等消能构件,吸收和
耗散地震能量。
被动调谐质量阻尼器(TMD)
03
利用附加质量与结构振动的相对运动,产生阻尼力减
小结构振动。
通过合理的布置方式,使隔震支座充分发挥作用,提高整个结构的抗震性能。
04 消能减震设计策略及实施方法
金属阻尼器消能减震原理
塑性变形耗能
金属阻尼器利用金属材料的塑性变形能力,在地震作用下发生塑性变形,吸收并耗散地震能量,从而减小结构的 地震响应。
滞回耗能
金属阻尼器通过合理设计,使阻尼器在地震作用下产生滞回变形,滞回变形过程中吸收地震能量,并通过阻尼器 的热耗散将能量释放,降低结构的地震反应。
建筑结构抗震设计振 动控制
汇报人:戴老师 2023-12-02
目录
• 抗震设计基本原则 • 振动控制技术与方法 • 建筑结构隔震设计策略 • 消能减震设计策略及实施方法
目录
• 结构振动台试验与数值模拟分析 • 工程案例分析与经验总结
01 抗震设计基本原则
地震力与作用
地震力
地震时地面运动对建筑物产生的 惯性力,其大小与建筑物的质量 、地震加速度及建筑物与地面的 连接方式有关。
利用智能材料(如压电材料、磁 流变材料等)实现结构振动的主 动与被动控制。
03
优化设计与控制策 略
通过优化设计和控制策略,实现 混合控制系统在宽频带范围内的 有效减震。
03 建筑结构隔震设计策略
基础隔震系统原理及应用
原理
通过在建筑物基础与上部结构之间设置隔震层,使上部结构 与基础隔离,从而减少地震能量向上部结构的传递,达到减 震的目的。
上部结构的传递。
消能减震技术
02 在结构中设置阻尼器、耗能支撑等消能构件,吸收和
耗散地震能量。
被动调谐质量阻尼器(TMD)
03
利用附加质量与结构振动的相对运动,产生阻尼力减
小结构振动。
《振动力学基础》课件
非耦合振动
各自由度之间相互独立,可分别进行分析。
固有频率和主振型
多自由度系统具有多个固有频率和相应的主振型 。
连续系统的振动
分布参数系统
描述长弦、长杆等连续介质的振动,需要考虑空间位 置的变化。
集中参数系统
将连续介质离散化,用弹簧、质量等元件模拟,适用 于简单模型。
波的传播
连续系统中振动能量的传播形式,如声波、地震波等 。
线性振动和非线性振动
线性振动
满足叠加原理,各激励之间互不影响,系统响应与激励成正比。
非线性振动
不满足叠加原理,激励之间存在相互作用,系统响应与激励不成正 比。
周期性振动和非周期性振动
根据振动是否具有周期性进行分类。
CHAPTER 03
振动分析方法
频域分析法
01
频域分析法是一种通过将时间域的振动问题转换为频率域的振动问题 ,从而利用频率特性来分析振动的方法。
CHAPTER 02
振动的基本原理
单自由度系统的振动
自由振动
无外力作用下的振动,系统具有固有频率和固有振型。
强迫振动
在外力作用下产生的振动,其频率与外力频率相同或相近。
阻尼振动
由于系统内部摩擦或外部阻尼作用导致的振动,能量逐渐耗散。
多自由度系统的振动
耦合振动
多个自由度之间相互影响,振动频率和振型较为 复杂。
汽车悬挂系统和路面激励会导致车内振动,影响乘客舒适性。
船舶与海洋工程
船舶和海洋结构的振动会影响其性能和安全性,需要进行有效的振 动控制。
建筑领域
结构健康监测
对建筑物和桥梁等大型结构进行振动监测,可以评估其健康状况和 安全性。
地震工程
地震引起的振动对建筑结构的影响非常大,需要进行抗震设计和分 析。
各自由度之间相互独立,可分别进行分析。
固有频率和主振型
多自由度系统具有多个固有频率和相应的主振型 。
连续系统的振动
分布参数系统
描述长弦、长杆等连续介质的振动,需要考虑空间位 置的变化。
集中参数系统
将连续介质离散化,用弹簧、质量等元件模拟,适用 于简单模型。
波的传播
连续系统中振动能量的传播形式,如声波、地震波等 。
线性振动和非线性振动
线性振动
满足叠加原理,各激励之间互不影响,系统响应与激励成正比。
非线性振动
不满足叠加原理,激励之间存在相互作用,系统响应与激励不成正 比。
周期性振动和非周期性振动
根据振动是否具有周期性进行分类。
CHAPTER 03
振动分析方法
频域分析法
01
频域分析法是一种通过将时间域的振动问题转换为频率域的振动问题 ,从而利用频率特性来分析振动的方法。
CHAPTER 02
振动的基本原理
单自由度系统的振动
自由振动
无外力作用下的振动,系统具有固有频率和固有振型。
强迫振动
在外力作用下产生的振动,其频率与外力频率相同或相近。
阻尼振动
由于系统内部摩擦或外部阻尼作用导致的振动,能量逐渐耗散。
多自由度系统的振动
耦合振动
多个自由度之间相互影响,振动频率和振型较为 复杂。
汽车悬挂系统和路面激励会导致车内振动,影响乘客舒适性。
船舶与海洋工程
船舶和海洋结构的振动会影响其性能和安全性,需要进行有效的振 动控制。
建筑领域
结构健康监测
对建筑物和桥梁等大型结构进行振动监测,可以评估其健康状况和 安全性。
地震工程
地震引起的振动对建筑结构的影响非常大,需要进行抗震设计和分 析。
振动力学教程PPT课件
动的叠加-----------谐波分析
•
2、非周期:利用傅立叶积分作谐波分析
• δ函数又称为单位脉冲函数-----它的性质、应用
示成一系列简谐振
第22页/共35页
第一节:简谐振动及其表示方法
•一、简谐振动的表示方法
• (一)正弦函数表示
2、A、ω、Φ ------简谐振动三要素
第23页/共35页
第24页/共35页
船舶的模态分析和强度分析,飞行器的结构振动和声疲劳分析等。
3) 在土木建筑、地质工程中:建筑、桥梁等结构物的模态分析,地震
引起结构物的动态响应,爆破技术的研究等。
4) 在医学、生物工程中:脑电波、心电波、脉搏波动等的信号处理等。
第12页/共35页
2途径:
1)从具体的工程对象提炼出力学模型 2)建立数学模型------应用力学知识建立所研究问题的数学模型 3)对数学模型进行分析和计算,求出请确、近似或数值解。 4) 比较------将计算结果与工程问题的实际现象或实验研究的测试结果进行 比较,考察理论结果是否解决该工程问题,如不能解决而数学模型及求解均无错 误,则需要修改力学模型重复上述过程。
第9页/共35页
5 随机振动
20世纪50年代,航空和航天工程的发展对振动力学提出了更高 的要求,确定性的力学模型无法处理包含随机因素的工程问题----如大气湍流引起的飞机颤振、喷气噪音导致飞行器表面结构 的声疲劳、火箭运载工具有效负荷的可靠性等。工程的需要迫使 人们用概率统计的方法研究承受非确定性载荷的机械系统和结构 的响应、稳定性和可靠性等, 从而 形成了随机振动这一振动力 学的重要组成部分。 在工程问题中振动信号的采集和处理是随机振动理论应用的前提, 由于计算机的迅速发展和快速第1傅0页/立共35叶页 变换算法的出现,随机振动
振动控制 PPT课件
绪 论
振源
受控对象
吸振
3. 吸振:又称动力吸振。在受控对象上附加一个子系 统称之为动力吸振器,用它产生吸振力以减小受控 对象对振源激励的响应。
– 从能量的角度,使激励能量分配到受控对象和子系统上,并 使分配到受控对象上的能量最小,以达到减振目的。
2019/10/17
南京航空航天大学 振动工程研究所
17
– 作业:迟交或缺一次作业扣10分,两次取消考试资格 – 缺席处理:无故缺席一次扣10分,三次取消考试资格
推荐两个论坛:
SIMWE仿真论坛:/ 振动论坛:/forum/index.php
课件交流邮箱: vc_nuaa@, 密码:vc666888
振动控制 Vibration Control
振动控制 Vibration Control
2019/10/17
南京航空航天大学 振动工程研究所
1
振动控制 Vibration Control
课程在学科体系中的位置
• 振动控制是联系振动理论和控制理论的一门交叉 学科。
• 结构动力学 • 振动数值分析(有限元计算) • 振动测试与分析、模态分析理论
4
振动控制 Vibration Control
参考书籍
• 顾仲权, 振动主动控制 • 张阿舟, 振动控制工程 • 张阿舟, 实用振动工程2 -- 振动控制与设计 • Richard C. Dorf, 现代控制系统(第八版中译
版)
• Wodek K. Gawronshi, Advanced Structural Dynamics and Active Control of Structures
• 主动控制(Active Control):除外界振动源或干扰外,有 其他外部能量输入或交换的振动系统;
城市轨道交通(地下段)结构振动与结构噪声监测实例幻灯片PPT
监测结果与评价
❖ 该房屋所处声功能区类别为2类区,按照标准: ❖ 住宅建筑构造振动昼间限值标准72dB,夜间限值标准69dB; ❖ 住宅建筑构造噪声昼间限值标准45dB〔A〕,夜间限值标准35dB
〔A〕,夜间最大值限值标准45dBห้องสมุดไป่ตู้A〕。
❖ 〔3〕地面采用浮筑聚氨脂橡胶隔震,隔音垫加浇混凝土情况下 ❖ △2点LAeq实测值与背景值之差小于0.5dB〔A〕,故视作无影响。 ❖ △2点构造噪声夜间最大值均超过排放限值。 ❖ ◇2点构造振动昼间夜间上、下行方向均达标。
监测体会
在整个监测过程中,发现外界环境对测试有一定干扰, 尤其是LAmax的测试,当外界噪声较大时,特别是当居民楼 靠近交通干道第一排时应当尽量防止交通噪声的影响,当外 界环境噪声大于地铁引起噪声时,最大值可能测到的是外界 最大值噪声,对测定结果就造成影响。
监测体会
监测体会
通过监测,轨道交通顶峰时段负载人员约80%情况下和 夜间负载人员约20%的情况下,从监测数据分析上、下行构 造噪声和构造振动无明显差异。从同向通过5列列车的单次 数据比较,当车速越快时,其相应的振动也越大。
监测结果与评价
❖ 该房屋所处声功能区类别为2类区,按照标准: ❖ 住宅建筑构造振动昼间限值标准72dB,夜间限值标准69dB; ❖ 住宅建筑构造噪声昼间限值标准45dB〔A〕,夜间限值标准35dB
〔A〕,夜间最大值限值标准45dB〔A〕。
❖ 〔2〕对墙体采用外包框架加固条其改片伐根底情况下 ❖ △2点LAeq实测值与背景值之差小于0.5dB〔A〕,故视作无影响。 ❖ △2点构造噪声夜间最大值均超过排放限值。 ❖ ◇2点构造振动昼间夜间上、下行方向均达标。
过程按DB 31/T470-2021附录B进展。测量列车 运行时段的等效声级LAeq,测量时间不少于 20min。同时测量背景值,无城市轨道交通〔地下 段〕列车进展时,其它声环境与测量时的声环境保 持一致。夜间最大声级值,测量不少于5列轨道交 通列车〔测量对测点影响较大的一侧轨道线路通过
建筑结构减震隔震设计方案PPT教案
(2)隔震层以上结构的隔震措施 ①隔震层以上结构应采取不阻碍隔震层在罕遇地震下发生大变形; ②隔震层顶部应设置梁板式楼盖,隔震层与上部结构的连接,隔震 层顶部梁板的刚度和承载力,宜大于一般楼面梁板的刚度和承载力
;
③隔震墙下隔震支座的间距不宜大于2.0m; ④外露的预埋件应有可靠的防锈措施。预埋件的锚固钢筋应与钢板 牢固连接,锚固钢筋的锚固长度宜大于20倍锚固钢筋直径,且不应 小于250mm等。
由于目前的橡胶隔震支座对竖向地震几乎没有减震效果,因此 ,须在隔震建筑设计时考虑这一因素。主要是在隔震层以上结构和 隔震层设计中考虑这一因素。
第14页/共25页
8.2.4 隔震结构构造要求
(1) 隔震层应提供必要的竖向承载力、侧向刚度和阻尼;穿过隔震 层的设备配管、配线,应采用柔性连接或其他有效措施适应隔 震层的罕遇地震水平位移。
第22页/共25页
8.4背景知识 工程结构减震控制包括隔震、消能减震和各种被动控制、主动
控制、混合控制等内容。传统的抗震结构体系是通过“加强结构” 的途径来提高结构的抗震能力,但结构减震控制体系则是通过调整 结构动力特性的途径,大大减小了结构在地震(或强风)中的振动 反应,从而保护结构以及结构内部的设备、仪器、网络和装饰物等 不受任何损害。这是一种采用新概念、新机理的新结构体系、新理 论和新技术方法。在很多情况下,它更加安全和经济,它为工程结 构的地震防护、减振抗风提供了一条崭新的途径,日益引起国内外 学术界、工程界的兴趣和重视。目前,这个新领域仍处于不断发展 和完善的阶段,随着技术的成熟和现代化社会的发展,工程结构减 震控制技术将会越来越广泛地被应用,将取得显著的社会效益和经 济效益。
U型软钢板
滚珠或滚轴
第10页/共25页
8.2.3 基础隔震结构设计
;
③隔震墙下隔震支座的间距不宜大于2.0m; ④外露的预埋件应有可靠的防锈措施。预埋件的锚固钢筋应与钢板 牢固连接,锚固钢筋的锚固长度宜大于20倍锚固钢筋直径,且不应 小于250mm等。
由于目前的橡胶隔震支座对竖向地震几乎没有减震效果,因此 ,须在隔震建筑设计时考虑这一因素。主要是在隔震层以上结构和 隔震层设计中考虑这一因素。
第14页/共25页
8.2.4 隔震结构构造要求
(1) 隔震层应提供必要的竖向承载力、侧向刚度和阻尼;穿过隔震 层的设备配管、配线,应采用柔性连接或其他有效措施适应隔 震层的罕遇地震水平位移。
第22页/共25页
8.4背景知识 工程结构减震控制包括隔震、消能减震和各种被动控制、主动
控制、混合控制等内容。传统的抗震结构体系是通过“加强结构” 的途径来提高结构的抗震能力,但结构减震控制体系则是通过调整 结构动力特性的途径,大大减小了结构在地震(或强风)中的振动 反应,从而保护结构以及结构内部的设备、仪器、网络和装饰物等 不受任何损害。这是一种采用新概念、新机理的新结构体系、新理 论和新技术方法。在很多情况下,它更加安全和经济,它为工程结 构的地震防护、减振抗风提供了一条崭新的途径,日益引起国内外 学术界、工程界的兴趣和重视。目前,这个新领域仍处于不断发展 和完善的阶段,随着技术的成熟和现代化社会的发展,工程结构减 震控制技术将会越来越广泛地被应用,将取得显著的社会效益和经 济效益。
U型软钢板
滚珠或滚轴
第10页/共25页
8.2.3 基础隔震结构设计
结构随机振动
• 对于离散随机变量 假定实现值 ( x1 , x2 ,..., xn ) , 那么相应的累 对于离散随机变量, 积分布定义为 F ( x ) = ∑ Pr ( x j ) , x j ≤ x
j
对于连续随机变量, 的导数为概率密度函数 对于连续随机变量 定义累积分布F ( x ) 的导数为概率密度函数 p(x)(the probability density function).即有 即有
∞ ∂ p ( x1 ) = F ( x1 ) = ∫ p ( r1 , r2 )dr2 −∞ ∂x1
F ( x1 , x2 ) = ∫ F ( ∞, ∞ ) = ∫∞来自x1−∞ −∞ ∞
∫
x2
p ( r1 , r2 ) dr1dr2
−∞ −∞
∫
p ( r1 , r2 ) dr1dr2 = 1
• 边缘一维概率函数 边缘一维概率函数(the marginal one-dimensional probability functions)可以从相应的联合概率密度函数导出 即 可以从相应的联合概率密度函数导出, 可以从相应的联合概率密度函数导出 ∞ x1 F ( x1 ) = ∫ dr2 ∫ p ( r1 , r2 )dr1
我们把这类载荷称为随机过程, 我们把这类载荷称为随机过程 我们知道这类载荷的输入具有 一定的统计特性, 即均值, 一定的统计特性 即均值 方差等等, 我们想知道输出的统 计特性.这就是随机结构动力学要研究的对象 显然它不同于我们 计特性 这就是随机结构动力学要研究的对象, 这就是随机结构动力学要研究的对象 已经学过的结构动力学课程. 这门课程的先修课程为概率论, 已经学过的结构动力学课程 这门课程的先修课程为概率论 随 机过程,和确定性振动理论 和确定性振动理论. 机过程 和确定性振动理论 1.2 问题的分类 1. 按随机性的来源分 一个是激励过程的随机性 这是随机振 按随机性的来源分:一个是 的随机性,这是随机振 动理论主要解决的问题; 一个是振动系统的参数的随机性, 动理论主要解决的问题 的随机性 这是参数随机振动理论. 这是参数随机振动理论 2. 正问题和反问题 已知输入和系统求输出这是正问题,称为响 正问题和反问题:已知输入和系统求输出这是正问题 称为响 已知输入和系统求输出这是正问题 应确定问题; 已知输入和输出求系统的参数这是反问题,称为 应确定问题 已知输入和输出求系统的参数这是反问题 称为 系统识别问题,我们这门课程不涉及 有专门课程. 我们这门课程不涉及,有专门课程 系统识别问题 我们这门课程不涉及 有专门课程 3. 非线性的来源分:一个是振荡系统的力学参数的非线性, 非线性的来源分 一个是 对于地震工程来说,一般是指 对于地震工程来说 一般是指迟滞行为,这样的系统常常显 这样的系统常常显 示复杂的非线性现象,例如多吸引子 跳跃现象,分岔和混沌 例如多吸引子,跳跃现象 分岔和混沌; 示复杂的非线性现象 例如多吸引子 跳跃现象 分岔和混沌
《振动力学结构力学》课件
静力学基础
静力学基本概念:力的平衡、力矩平衡、力系平衡等 静力学基本原理:牛顿三大定律、胡克定律等 静力学基本方法:力法、位移法、能量法等 静力学基本应用:结构分析、结构设计等
弹性力学基础
弹性力学的定义:研究弹性体在外力作用下的变形和应力分布的学科 弹性力学的基本假设:连续性假设、小变形假设、均匀性假设、各向同性假设 弹性力学的基本方程:胡克定律、泊松比定律、弹性模量定律 弹性力学的应用:结构设计、地震工程、航空航天等领域
相位:振动 的起始位置
振型:振动 的形态和形 状
阻尼:振动 的衰减程度
共振:振动 的放大效应
振动系统的基本组成
阻尼:阻碍振动的力,影响 振动的衰减和能量损失
弹簧:连接物体和支撑物的 弹性元件,影响振动的频率 和振幅
质量:物体本身的质量,影 响振动的频率和振幅
支撑物:支撑物体的物体, 影响振动的频率和振幅
振添加动副力标学题 结构力学 PPT课件
汇报人:
目录
PART One
振动力学概述
PART Two
结构力学基本概念
PART Three
振动力学中的基本 理论
PART Five
振动力学与结构力 学的应用
PART Four
结构力学中的基本 理论
PART Six
案例分析
振动力学概述
振动的定义和分类
振动:物体 在平衡位置 附近做往复 运动
振动分类: 自由振动物体在平衡 位置附近做 往复运动, 没有外力作 用
受迫振动: 物体在平衡 位置附近做 往复运动, 受到外力作 用
自激振动: 物体在平衡 位置附近做 往复运动, 没有外力作 用,但受到 自身振动的 影响
振动的物理量描述
《结构随机振动》课件
环境振动试验技术
环境振动试验技术概述
环境振动试验是一种模拟结构在自然环境中的振动响应, 以检验结构的动力特性和稳定性。
环境振动试验的原理
通过模拟自然环境中的振动载荷,如地震、风等,对结构 进行振动响应测试,以检验结构的动力特性和稳定性。
环境振动试验的步骤
包括建立模型、安装试件、施加环境载荷、数据采集与分 析等步骤。
模态分析法
通过模态叠加的方法,将复杂结构的随机振动分解为若干个简单 模态的振动。
CHAPTER
03
结构随机振动分析
单自由度系统随机振动分析
响应分析
详细阐述如何通过随机振动理论计算系统 的响应,包括均值和方差等统计特性的求
解。
A 模型建立
介绍单自由度系统随机振动模型的 建立过程,包括系统阻尼、激励等
04
主动控制技术具有较高的控制效率和精度,但需要使 用复杂的控制系统和传感器,成本较高。
被动控制技术
01
被动控制技术是指通过改变结构的动力学特性来减小或抑制振动的技 术。
02
被动控制技术通常使用特殊的材料或结构来改变结构的刚度、阻尼等 动力学特性,从而减小结构的振动。
03
被动控制技术具有较低的成本和简单的实现方式,但控制效果相对较 差。
大。
常见的混合控制技术包括主 动约束层与被动阻尼控制的 结合、主动质量阻尼与被动
隔振控制的结合等。
CHAPTER
06
课程总结与展望
本课程总结
课程内容概述
本课程介绍了结构随机振动的基本理论、分析方法和工程应用。通过学习,学生掌握了随机振动的基本概念、随机过 程和随机振动分析方法,了解了随机振动在工程领域的应用。
随机过程
结构动力学之多自由度体系的振动问题ppt课件
1 536EI
448 (1 536)2
m1m2l 6 (EI )2
0
解得
21
23l3 (m1 m2 2 1 536EI
)
529(m1 m2 )2l6 41 5362 (EI )2
448m1m2l 6 1 5362 (EI )2
从而得第一和第二阶自振频率
1
1
1
2
1
2
为了确定第一阶振型,可将1代入平衡方程。
其展开式是关于λ的n次代数方程,先求出λi再求 出频率ωi
柔度法
(11m1 )
12m2
...
21m1 ( 22m2 ) ...
...
...
...
1n mn 2nmn 0
...
n1m1
n2m2 ... ( nnmn )
将λi代入 ( [δ] [M] - λi [I ] ){Y(i)}={0} 可求出n个主振型。
多个自由度体系的自由振动
结构在受迫振动时的动力响应与结构的动力特性 密切相关;另外,当用振型叠加法计算任意干扰力 作用下结构的动力响应时,往往要用到自由振动的 频率(frequency)和振型(mode)。
为此,要需要首先分析自由振动。
自振频率和振型的计算
m1
m2
mi
mn
y1(t) y2(t)
yi(t)
刚度法
其中最小的频率1 称为最低自振频率,或称
基本频率。 通常将上述每一个频率所对应的振动都称为
主振动,对应于每一个主振动的形状称为主振 型。
1)如果各质体的初速度为零,而初位移和某 一振型成比例,然后任其自然,则系统就按 这个振型作简谐自由振动,此解答就相应于 该振动的一组特解;
448 (1 536)2
m1m2l 6 (EI )2
0
解得
21
23l3 (m1 m2 2 1 536EI
)
529(m1 m2 )2l6 41 5362 (EI )2
448m1m2l 6 1 5362 (EI )2
从而得第一和第二阶自振频率
1
1
1
2
1
2
为了确定第一阶振型,可将1代入平衡方程。
其展开式是关于λ的n次代数方程,先求出λi再求 出频率ωi
柔度法
(11m1 )
12m2
...
21m1 ( 22m2 ) ...
...
...
...
1n mn 2nmn 0
...
n1m1
n2m2 ... ( nnmn )
将λi代入 ( [δ] [M] - λi [I ] ){Y(i)}={0} 可求出n个主振型。
多个自由度体系的自由振动
结构在受迫振动时的动力响应与结构的动力特性 密切相关;另外,当用振型叠加法计算任意干扰力 作用下结构的动力响应时,往往要用到自由振动的 频率(frequency)和振型(mode)。
为此,要需要首先分析自由振动。
自振频率和振型的计算
m1
m2
mi
mn
y1(t) y2(t)
yi(t)
刚度法
其中最小的频率1 称为最低自振频率,或称
基本频率。 通常将上述每一个频率所对应的振动都称为
主振动,对应于每一个主振动的形状称为主振 型。
1)如果各质体的初速度为零,而初位移和某 一振型成比例,然后任其自然,则系统就按 这个振型作简谐自由振动,此解答就相应于 该振动的一组特解;
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地震的破坏作用
中间层刚度突变,剪断 Lessons from Earthquakes: damage by weak story in middle height
地震的破坏作用
平面不规则 单层Lessons from Earthquakes: Low rise buildings also are were severely damaged
地震作用(国外发生的16次地震)
2003年12月 伊朗6.6级强震,5万人死亡。 2004年2月 摩洛哥6.5级地震, 564人死亡。 2005年3月 苏门答腊8.7级地震, 1300人死亡。 2005年3月 日本南部7级地震, 1人死亡,672人受伤。 2005年2月 伊朗南部6.4级地震, 602人死亡。 2006年5月 印尼爪哇6.2级地震, 5782人死亡。 2007年7月 日本新潟6.8级地震,地震造成11人死亡。 2006年7月 印尼7.7级强震, 668人死亡。 2007年9月 印尼7.9级海底地震,10人死亡数百人受伤。 2007年8月 秘鲁8级强震, 510人死亡。 2009年9月 印尼7.9级地震, 5000人死亡。 2010年1月 海地7.3级地震,十余万人死亡。 2010年2月 智利8.8级地震, 799人死亡。 2011年2月 新西兰6.3级地震,200人遇难。 2011年3月 日本9.0级强震 2011年3月日本东北部海岸发生9.0级地震。 2011年3月缅甸7.2级地震。
地震的破坏作用
房屋内部设备仪器倒塌破坏Lessons from Earthquakes:
Facilities inside the buildings were severely damaged
地震中破坏的桥梁
风的作用
风作用下结构可能发生颤振、驰振、涡振以及静风失稳
1897年 英 国 泰 湾 桥 风 毁
地震的破坏作用
震源
产ห้องสมุดไป่ตู้生
地震波
传 递
建筑物所在场地
引 起
结构的地震反应
地震的破坏作用
钢结构 (扭转) Torsion by eccentric stiffness in plan
地震的破坏作用
多高层钢筋混凝土结构 Taiwan Earthquake 1999.9.21 1:47 2,300
底层大空间 Lessons from Earthquakes:
damage by weak first story (only columns)
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
地震的破坏作用
低层剪断滑移 Lessons from Earthquakes: damage by weak first story (only columns)
绪论
(3)结构半主动控制 近几十年来,半主动控制发展迅速。半主动变刚度
,半主动变阻尼:电流变、磁流变。 半主动控制特点:输入能量很小,控制效果接近主
风的作用 斜拉桥拉索风雨振(洞庭湖大桥)
风的作用 Tokyo bay Bridge
振动控制技术的发展现状
结构振动控制
被动控制
主动控制
混合控制
基础 隔震
耗能减震
金 摩粘粘调调
属 擦弹性谐谐
屈 阻性液质液
服 尼阻体量体
阻 器尼阻阻阻
尼
器尼尼尼
器
器器器
质量阻尼器
主
主
混
动
动
合
斜
质
质
撑
量
量
和
阻
阻
锚
尼
尼
索
绪论
研究结构振动控制技术目的 控制结构的振动响应 保证结构安全; 提高结构的舒适性 ; 避免因结构振动引起的公众恐慌。
振动控制技术简介及发展历史 (1)被动控制 a、隔震 1881年,日本河合浩藏提出了结构基础隔震的概念。 1924年,日本鬼头健三郎,提出了基础轴承隔震方案。 1978年,美国Kelly等,提出叠层橡胶支座隔震方案及 技术。
结构振动控制技术
二0一二年三月
第一章 绪论
结构的动力反应
结构在动荷载作用下引起的响应
Axst
1
12 222
常
地震
见
风
激
车辆
励
...
地震作用(中国发生的14次地震)
1556年中国陕西华县8级地震,死亡人数高达83万人。 1668年山东郯(tan)城8.5级,波及8省161县,史称“旷古奇灾” 。 1920年宁夏海原县8.5级,死亡24万人。 1927年甘肃古浪8级地震,死亡4万余人。 1932年甘肃昌马堡7.6级地震,死亡7万人。 1933年四川茂县7.5级地震。 1950年西藏察隅县8.6级地震。 1966年邢台6.8级、7.2级地震,共死亡8064人。 1970年云南省通海县7.7级地震。死亡15621人。 1975年辽宁省海城县7.3级地震。地震被成功预测预报预防。 1976年唐山7.8级地震,死亡24.2万人。 1988年云南省澜沧7.6级(澜沧)、7.2级(耿马)的两次大地震。 2008年汶川8.0级地震,6.9万人遇难。 2010年青海省玉树7.1级地震
器
器
半主动控制 可控流体 磁电主 主 流流动 动 变变变 变 阻阻阻 刚 尼尼尼 度 器器控 控
制制
被动控制形式Passive Control Systems
Excitation
PED Structure
Response
M
M
M
m
M
Passive Damper
Base Isolation
Tuned Mass Damper
风灾破坏事例
1948年美国塔可玛桥(Tacoma Narrow)风毁
风的破坏作用
Tacoma桥风毁视频
风的破坏作用
从 1918年起 ,至少有11座桥梁毁于强风
风灾破坏事例-静风失稳
冷却塔风毁
输电塔风毁
台风毁坏的房屋和桥梁
风的作用
风 灾 使 广 告 牌 毁 坏
风的作用 斜拉桥拉索风雨振(日本)
绪论
b、耗能减振 1970年开始,Kelly提出在结构中设置非结构构件的耗能
元件—金属软钢屈服耗能器,包括:扭转梁,弯曲梁、U型 钢器件等,这一思想是对结构抗震延性设计的一个重要发展 。阻尼器被动减振应用。80年代开始TMD,TLD,TLCD的应用。 (2)主动控制
20世纪50年代,日本Kobori提出结构变刚度减震概念。 1972年,Yao应用现代控制理论,提出了土木工程结构振 动控制的概念,开创了结构主动控制的新里程。 结构主动控制特点:能取得很好的效果,需要很大外部 能量的输入。