第6章常微分方程与差分方程

合集下载

常微分方程与差分方程

常微分方程与差分方程

数值解法的改进
高精度算法
随着计算机技术的发展,人们开发出了许多高精度、高效率的数值解法,如谱方法、有限元方法等。
自适应算法
自适应算法可以根据问题的复杂性和解的特性自动调整计算精度和计算量,提高了数值解法的可靠性和效率。
THANKS FOR WATCHING
感谢您的观看
常微分方程的解法
总结词
求解常微分方程的方法有多种,如分离变量法、积分 因子法、参数变易法等。
详细描述
求解常微分方程的方法有多种,其中分离变量法和积 分因子法是比较常用的方法。分离变量法是将方程中 的变量分离出来,转化为多个简单的微分方程,然后 分别求解。积分因子法是通过引入一个因子,将原方 程转化为易于求解的形式。此外,参数变易法也是求 解常微分方程的一种常用方法,它通过将参数引入到 原方程中,使得原方程转化为易于求解的形式。
VS
详细描述
根据形式和性质的不同,常微分方程可以 分为多种类型。常见的一阶常微分方程是 形式为dy/dx = f(x, y)的方程,其中f(x, y)是一个关于x和y的函数。二阶常微分方 程是形式为y'' = f(x, y')的方程,其中y'表 示y对x的导数。此外,根据是否含有线性 项和非线性项,常微分方程还可以分为线 性常微分方程和非线性常微分方程。
02 差分方程的基本概念
差分方程的定义
差分方程是描述离散变量之间关系的 数学模型,通常表示为离散时间点的 函数值的差分关系式。
它与微分方程类似,但时间变量是离 散的,而不是连续的。
差分方程的分类Leabharlann 01一阶差分方程只包含一个差分的方程,如 (y(n+1) - y(n) = f(n))。

6考研数学大纲知识点解析(第六章微分方程和差分方程(数学一))

6考研数学大纲知识点解析(第六章微分方程和差分方程(数学一))

满足初始条件
的特
【解析】令
,则
,原方程化为
,即

于是 因
,得
,故
,由

知,应取
.

,解得
,又由
,得
,故

(3)型如: 间变量,即
.方程的特点是不显含自变量 .令 ,由复合函数求导的链式法,则有
,视 为中
将之代入方程,得 这是函数 关于变量 的一阶微分方程.若能求出其通解
则可再由方程

两边积分后求得方程的通解
【解析】 将
代入方程
(D)

,得
由题设可知 从而有
类似地,将
代入方程
解得
,故选(A).

,得

【例题】(89 年,数学一/数学二/数学三)设线性无关的函数
都是二阶非齐次线性
方程 .
的解,
是任意常数,则该非齐次方程的通解是
(A)

(B)ቤተ መጻሕፍቲ ባይዱ

(C)
. (D)

【答案】(D).
【解析】根据解的性质,
均为齐次方程的解,且线性无关,因此

(2) 求出特征根 和 ;
(3) 根据特征根的不同情形按下表写出方程(1)的通解:
表 二阶常系数线性齐次微分方程的通解
特征根情形
通解形式
相异实根 相同实根 共轭复根
【例题】求微分方程 【解析】特征方程为 故齐次微分方程的通解为
的通解.
,解特征根为

.其中
为任意常数.
【例题】求微分方程 【解析】特征方程为 故齐次方程的通解为

设非齐次方程

常微分方程的差分的方法

常微分方程的差分的方法

对于二阶常微分方程 $y'' = f(t, y, y')$,可以采用隐式差分法或显式差 分法进行求解。
VS
隐式差分法需要解方程组,计算量大, 但精度高;显式差分法精度低但计算 量小。
复杂微分方程组的求解实例
对于多个一阶或二阶常微分方程组成的复杂微分方程组,可以采用耦合差分法或龙格-库塔法进行求 解。
差分方法的基本概念和原理
基本概念
差分方法的基本概念是将时间或空间离散化,将连续的微分方程转化为离散的差 分方程。在时间离散化中,我们使用向前、向后或中心差分近似微分项;在空间 离散化中,我们使用有限差分近似微分项。
原理
差分方法的原理是将连续的微分方程转化为离散的差分方程,然后通过迭代或递 推的方式求解该差分方程。在每一步迭代或递推中,我们使用已知的函数值和差 分近似来计算新的函数值,直到达到所需的精度或收敛条件。
耦合差分法是将多个微分方程转化为耦合的差分方程组进行求解;龙格-库塔法是一种迭代算法,通过 已知的$y_n$和$y'_n$来求解$y_{n+1}$。
THANKS
感谢观看
REPORTING
https://
改进的龙格-库塔方法
引入预估校正步骤
为了提高数值解的精度和稳定性,可以在龙 格-库塔方法中引入预估校正步骤。通过预 估和校正两个步骤的结合,可以减小数值误 差并提高方法的收敛速度。
考虑非线性项的处理
在求解二阶常微分方程时,非线性项的处理 对于数值解的精度和稳定性具有重要影响。 通过改进非线性项的处理方式,可以进一步 提高改进的龙格-库塔方法的性能。
有限差分法
有限差分法的原理
有限差分法是一种基于离散化的数值方法, 通过将微分方程转化为差分方程来求解。该 方法的关键在于选择合适的差分格式和离散 化方案,以保证数值解的精度和稳定性。

微分方程和差分方程解的区别与联系

微分方程和差分方程解的区别与联系

微分方程和差分方程解的区别与联系哎,说起这微分方程和差分方程啊,简直就是数学里的双胞胎,长得有点像,性格却又大相径庭。

我呢,学数学那会儿,可没少被它们俩搞得头昏脑涨。

不过呢,经过一番苦战,我总算是摸出点门道来,今天就跟大家聊聊这俩家伙的区别与联系,希望能帮到同样被它们困扰的同学们。

首先啊,咱们说说微分方程。

这家伙就像是数学里的“连续剧”,讲的是变量随着时间或者其他什么因素连续变化的故事。

比如说,你扔个石头到水里,水面上的波纹就会随着时间一圈圈地扩散开去,这个过程就可以用微分方程来描述。

微分方程里头的那个“微分”,就像是连续剧里的每一帧,细腻地刻画了变化的每一个瞬间。

而差分方程呢,它更像是数学里的“动画片”,走的是离散化的路子。

它不看重那些连续的、细腻的变化,而是关注变量在每个时间节点上的跳跃式变化。

比如说,你养了一盆花,每天记录一下它的高度,这些离散的数据点之间,就可以通过差分方程来找出规律。

差分方程里的“差分”,就像是动画片里的每一帧,虽然不如连续剧那样细腻,但也能把变化的轮廓勾勒出来。

那么,这俩家伙到底有啥区别呢?简单来说,微分方程擅长处理连续变化的问题,就像是在画一幅流畅的线条画;而差分方程呢,它更擅长处理离散变化的问题,像是在用一块块拼图拼凑出一幅完整的画面。

不过,别看它们性格迥异,其实还是有不少共同点的。

比如说,它们都是用来描述变量之间关系的工具,都能帮助我们找出隐藏在数据背后的规律。

而且啊,在某些情况下,它们还能互相转化呢。

就像是你看一部动画片,虽然它是离散的,但当你把它放慢无数倍,每个画面都连接起来,就变成了一部连续的“电影”。

差分方程在某些条件下,也可以转化为微分方程,让我们从另一个角度去看待问题。

记得有一次,我在解一道复杂的微分方程时,卡壳了半天。

后来,我突然灵光一闪,试着把它转化成了差分方程,嘿,你还别说,这一转化,思路立马就清晰了起来,问题也迎刃而解了。

那一刻,我简直觉得自己就像是个数学界的魔术师,把难题变得无影无踪。

第6章 常微分方程与差分方程

第6章 常微分方程与差分方程

第六章 常微分方程与差分方程 一、基本盖帘 1.常微分方程含有自变量、自变量未知函数及未知函数的导数或微分的方程,称为微分方程,当未知函数是一元函数时,则称为常微分方程 2.微分方程的阶在微分方程中出现的未知函数的最高阶导数的阶数,称为微分方程的阶 3.微分方程的解若把某函数及其导数代入微分方程能使该方程称为恒等式,则称这个函数是该微分方程的一个解。

通常要求微分方程的解具有和该微分方程的阶数同样阶数的连续导数 4.微分方程的通解和特解含有与微分方程的阶数同样个数的独立任意常数的解,称为微分方程的通解,不含任意常数的解,称为微分方程的特解 5.微分方程的初始条件给定微分方程中未知函数及其导数在指定点的函数值的条件,称为微分方程的初始条件,初始条件的个数应与微分方程的阶数相同二、一阶微分方程一阶微分方程的基本类型是变量可分离的方程和一阶线性微分方程,而齐次微分方程可通过变量代换为变量可分离的方程 (一)变量可分离的方程 1.变量可分离方程的概念称为变量可分离的方程或dy y N x Q dx y M x P y g x f y )()()()()()('==2.变量可分离方程的特解⎰⎰⎰⎰+=+=≠≠方程的通解就是分别上述两个微分分,然后求积分,所得积端,把变量分离分别同除微分方程的两或时,用或用变量分离法:当,)()()()()()()()()(0)()(,0)(C dx x Q y P dy y M y N C dx x f y g dyy N x Q y g y N x Q y g(二)齐次微分方程1.齐次微分方程的标准形式)('xy f y =2.齐次微分方程的求解丢掉解,在求解过程中不要常数的解也是原微分方程的或注意:即可得到原方程的通解换回最后把可得通解于是有则首先作变量代换,令)()(0)(,0)(;0)(ln )()(','',u u f y M x Q y g xyu Cx C x dxu u f du u u f xu xu u y xyu -===+=+=--=+==⎰⎰(三)一阶线性微分方程1.一阶线性微分方程的标准形式性微分方程否则称为一阶非齐次线方程,称为一阶齐次线性微分即方程,当其中的自由项0)(',0)()()('=+≡=+y x p y x q x q y x p y 2.一阶线性微分方程的求解[],即得通解公式两端积分后再同乘乘积的导数公式同乘方程的两端,根据,积分因子法,用方法:性微分方程的通解公式代入即得一阶非齐次线积分可求出满足微分方程,把它代入原来的非齐次解即设非齐次微分方程的该为函数把其中的常数的通解,性微分方程先求对应的一阶齐次线:常数变易法方法公式:公式法直接利用通解方法⎰⎰=+⎰=⎰+⎰=⎥⎦⎤⎢⎣⎡⎰⎰⎥⎦⎤⎢⎣⎡⎰+⎰=⎰+==⎰⎰=⎰==+⎥⎦⎤⎢⎣⎡⎰+⎰=⎰⎰⎰-----dxx p dx x p dx x p dx x p dx x p dx x p dxx p dx x p dx x p dx x p dx x p dx x p dxx p dx x p dx x p e e x q y x p y e e x yp e y ye e e x q C e y e x q C x C x q e x C x C e x C y x C C Ce y y x p y e x q C e y )(-)()()()()()()()()()()()()()()()(')(''3)()()(),()(')()(),(0)('2)(1三、线性微分厂房解的性质与结构二阶线性方程的一般形式均为连续函数,其中)(),(),()()(')(''x f x q x p x f y x q y x p y =++ 否则称为非齐次方程称二阶线性齐次方程,当右端项0)(≡x f的特解是则的两个特解与分别是方程与,设解的性质(叠加原理))()()(')('')()()()(')('')()(')('')()(.121212121x f x f y x q y x p y x y x y x f y x q y x p y x f y x q y x p y x y x y +=+++=++=++是非齐次方程的解则其的任意特解一阶、二阶为齐次方程的一个特解,一阶、二阶为非齐次方程若的特解一阶、二阶是对应齐次方程则其差的两个特解一阶、二阶为非齐次方程,若的解一阶、二阶仍为齐次方程则其线性组合的两个特解一阶、二阶为齐次方程,若)()()()()()()3()()(-)()()()()2()()()()()()()1(2121221121x y x y x y x y x y x y x y x y x y C x y C x y x y ++**为任意常数其中的通解为解,则二阶非齐次方程是二阶非齐次方程的特由二阶齐次方程的通解为个线性无关的特解,则为二阶非齐次方程的两,若为任意常数解,其中是一阶非齐次方程的通则个特解是一阶非齐次方程的一又的通解为特解,则一阶齐次方程是一阶齐次方程的非零设通解的结构212211*********,)()()()()()()()()2()()()(),()()1(.2C C x y x y C x y C y x y x y C x y C y x y x y C x y x Cy y x y x Cy y x y ****++=+=+==四、二阶常系数齐次线性微分方程(一)二阶常系数齐次线性微分方程的形式,0)(')(''2=++=++q p q p y x q y x p y λλ为常数,其特征方程为,其中分方程二阶常系数齐次线性微(二)二阶常系数齐次线性微分方程通解的形式 依据特征方程判别式的符号,其通解有三种形式为两个任意实数,其中,通解,特种方程有共轭复根,通解,特种方程有重根,通解,的实根,特种方程有两个相异212121*********),sin cos ()(04.3)()(04.2)(04.11121C C x C x C e x y i q p e x C C x y q p e C e C x y q p x xx x βββαλλλλλλλλ+=±-=∆+===-=∆+=-=∆五、二次常系数非齐次线性微分方程(一)二阶常系数非齐次微分方程的一般形式自由项已知函数,称为方程的的为一个不恒等于为常数,,其中微分方程二阶常系数非齐次线性0)(,)()(')(''x f q p x f y x q y x p y =++(二)二阶常系数非齐次微分方程的通解形式为待定系数次多项式,为系数待定的表中的B A n x R n ,)(六、含变限积分的方程对某些含变限积分的方程,可通过对方程求导的方法,转化为求解相应的微分方程的通解或微分方程初值问题的特解七、差分的概念及其性质 (一)差分的概念tt t t t t t t t t t t t t t t t t n t y y y y y y y y y y y y y y y y y y y y y y y t t f y +-=--=∆-∆=∆∆=∆-=∆∆-=++++++++1211212112102)(-)()(,...,,...,,,)(二阶差分分,记为的差分,也称为一阶差称为函数差个数列,则其值可以排列成一记其函数值为取所有的非负整数,并中的自变量设函数(二)差分的性质tt t t t t t t t t t t t t z y y z z y y z z y b a z b y a bz ay ∆+∆=∆+∆=⋅∆∆+∆=+∆++11)()2(,,)()1(为常数其中八、一阶常系数线性差分方程(一)一阶常系数线性差分方程的概念及一般形式0),(11=+≠=+++t t t t ay y a t f ay y 对应的齐次方程为其中常数式为线性差分方程的一般形分方程,一阶常系数及其差分方程,称为差自变量,自变量未知数同微分方程类似,含有(二)一阶常系数线性差分方程的通解与特解tt t t t t t t t t t t a C y y y t f ay y a C y C y C a C y ay y )()()(,)(010001-+==+-==-==+**++通解之和,与对应齐次方程的一个特解其通解也是非齐次方程对于非齐次方程即为满足该条件的特解则定初始条件是一个任意常数,若给,其中的通解齐次方程为下表总结了几种常见情形下非齐次方程特解所应具有的形式形式两种情况来设定特解的他们可以分别归结为前,而当,或当是两个待定系数和次多项式,是待定系数的上表特解中t m M t N t M M t N t M B A m t Q )1(sin cos ,sin cos 20)(-=+∏==+∏==ωωωωωωω九、常考题型及其解题方法与技巧题型一、变量可分离的方程与齐次微分方程的解法 题型二、一阶线性微分方程的解法题型三、有关线性微分方程解的性质及解的机构问题题型四、二阶常系数线性微分方程的解法题型五、含变限积分方程的求解题型六、由自变量与因变量增量间的关系给出的一阶方程题型七、综合题与证明题题型八、一阶常系数线性差分方程的解法题型九、微分方程的应用问题。

《高等数学II》第6章常微分方程练习题

《高等数学II》第6章常微分方程练习题

第六章 常微分方程与差分方程一、单项选择题1.微分方程0)'()''(3)'''(5423=++-x y y y 阶数是 ( )A.4阶 B .3阶 C .2阶 D .1阶2.微分方程222y x dxdy x +=是 ( ) A.一阶可分离变量方程 B.一阶齐次方程 C.一阶非齐次线性方程 D.一阶齐次线性方程3.下列方程中,是一阶线性微分方程的是 ( )A.0'2)'(2=+-x yy y xB.0'2=-+x yy xyC.0'2=+y x xyD.0)()67(=++-dy y x dx y x4.方程x y xy =-'满足初始条件11==x y 的特解是 ( )A.x x x y +=lnB.Cx x x y +=lnC.x x x y +=ln 2D.Cx x x y +=ln 25.微分方程y y x 2='的通解为 ( )A .2x y =B . c x y +=2C . 2cx y =D .0=y 6.微分方程y y x ='满足1)1(=y 的特解为 ( )A.x y =B. c x y +=C.cx y =D.0=y7.微分方程y xy xy -='是 ( )A 可分离变量方程B 齐次方程C 一阶齐次线性方程 D.一阶非齐次线性方程8.微分方程05))(sin(2''=+-+x y y xy y 是 ( )A 一阶微分方程B 二阶微分方程C 可分离变量的微分方程D 一阶线性微分方程9.微分方程0)()(=++-++dy e e dx e e y y x x y x 为 ( )A 齐次方程B 一阶线性齐次方程C 一阶线性非齐次方程D 可分离变量的微分方程10.下列方程中是可分离变量的微分方程的是( )A x x y x y cos )(tan '2-+=B 0ln '=--y y y xey x C dxdy xy dx dy x y =+22 D 0)cos 1(cos sin ln '=-+y x y y x xy 11.微分方程02=+'-''y y y 的一个特解是 ( )A x e x y 2=B x e y =C x e x y 3=D x e y -=A 0'''=-y yB 0'''=+y yC 0''=-y yD 0''=+y y13.微分方程052=+'+''y y y 的通解y 等于 ( )A.x c x c 2sin 2cos 21+B. )2sin 2cos (21x c x c e x +C.)2sin 2cos (21x c x c e x +-D.)2sin 2cos (21x c x c x +14.微分方程:0''=+y y 满足初始条件2|',1|00====x x y y 的特解为 ( )A x x y sin cos +=B x x y sin 2cos +=C 122++=x x yD x C x C y sin cos 21+=15.设21,y y 是二阶常系数微分方程0=+'+''qy y p y 的两个解,则下列说法不正确的是( )A .21y y +是此方程的一个解 B.21y y -是此方程的一个解C .2211y c y c +是此方程的通解 (21,c c 为任意常数)D .若21,y y 线性无关,则2211y c y c +是此方程的通解(21,c c 为任意常数)16.用待定系数法求微分方程x xe y y 2''=-的一个特解时,应设特解的形式为 ( )A.x e Bx Ax y )(2*+=B.x e B Ax y )(*+=C.B Axe y x +=*D. x e Ax y 2*=17.用待定系数法求微分方程x e y y y 396=+'-''的一个特解时,应设特解的形式为( )A.x e Ax y 32*=B.x e x y 32*=C.x Axe y 3*=D.x Ae y 3*=18.二阶线性微分方程5y 3y 4y '''=-+对应的齐次方程的特征方程为 ( )A .5342=-+r r B.0342=-+r r C.534=-+r r D.0342=-+r r r19.已知722-=x y 是微分方程32"2-=+x y y 的一个特解,则其通解为 ( )A 72sin cos 221-++=x x c x c xB 72221-++=-x ec e c x x x C 72221-++=-x ec c x x D ()72221-++=x e x c c x x 20.微分方程x xe y y y 2'"44=+-的特解形式为 ( )A x eB Ax 2)(+ B x e B Ax x 2)(+C x e B Ax x 22)(+D xe Ax 23 21.下列函数中哪组是是线性无关的 ( )A.2x ln ,x ln B.x ,x ln C.x 2ln ,x D.2x ln ,x lnA.0'''=-y yB.0'''=+y yC.0''=-y yD.0''=+y y二、填空题1.微分方程()03"')4(3=++y y y y 的阶数为______; 2.微分方程0=+y dxdy 的通解是_______ ___; 3.微分方程02=+'xy y 的通解是______________; 4.微分方程0e y y x =+'+的通解是_______ ___;5.微分方程x y sin ''=的通解是________________; 6.微分方程04'4''=+-y y y 的通解为_________;7.微分方程02'"=+y y 的通解为_____________; 8.微分方程x e y y 2'=+的通解为____________ 9.求微分方程x x e y y 2''y =+'+的特解的形式为_________________________________;10.若)(x f 是方程x y dx y d 2sin 422=+的一个特解,则方程的通解为__________________; 三.求解下列常微分方程1.0ln ln =+ydy x xdx y 2.dxdy xy y dx dy x=+3.x e y y =-' 4.0,cos 0sin ==+'=-x x y e x y y5.0)1()1(22=-+-dy x y dx y x 6.()01=+-xdy dx y7.0'=-y xy 8.y2x y 2dx dy -=9.x ey y -=+' 10.0)6(22=-+dy x y ydx11.1='+''y y 12.x y y +'=''13.1)1(,12=-=y x dx dy xy14.02='+''y y15.1x y y +='+'' 16.02'''=--y y y17.0y 'y 4''y 4=++ 18.09'6"=++y y y ,1',000====x x y y19.x e y y y 232'''=-+ 20.233'2"+=--x y y y四.已知特征方程的两个根为:i r +-=21,i r --=22,求相应的二阶常系数的齐次线性微分方程及其通解。

差分方程与微分方程的区别

差分方程与微分方程的区别

差分方程与微分方程的区别
差分方程和微分方程是数学中两个不同的概念。

差分方程是描述离散时间下变量变化的数学方程。

它们通常表示为递归式形式,其中下一时间步的值取决于之前的值。

差分方程通常与迭代算法一起使用,以解决离散时间下的问题,例如数字信号处理和时间序列分析。

另一方面,微分方程是描述连续时间下变量变化的数学方程。

它们通常表示为微分式形式,其中变量的导数取决于自变量。

微分方程通常用于建模物理系统和自然现象,例如天体运动和流体力学。

总之,差分方程和微分方程都是解决数学问题的重要工具。

它们在不同的领域和应用中发挥着不同的作用。

了解它们的区别和相似之处有助于更好地理解和应用它们。

- 1 -。

常微分方程数值解法_OK

常微分方程数值解法_OK

y(xi )
O(h3)][yi
hf
(xi ,
yi )]
h2 2
y(xi ) O(h3 )
O(h2 )
欧拉法具有 1 阶精度。4
2. 隐式 Euler法
用向后差商公式代替导数项
y(xi1 ) h
y(xi )
y' (xi1 )
h 2
y' ' ( i
)
y(xi1 ) h
y(xi )
f (xi1, y(xi1 ))
i1 y(xi1 ) yi1 O(h3f)x ( x, y) f y ( x, y) f ( x, y) Step 1: 将 K2 在 ( xi , yi ) 点作 Taylor 展开
K2 f (xi ph, yi phK1)
f (xi , yi ) phfx (xi , yi ) phK1 f y (xi , yi ) O(h2 ) y(xi ) phy(xi ) O(h 2 )
f
(
xi
1
,
y(
xi
1
))]
h3 12
f
''( )
所以,有格式为:
yi1
yi
h[ f 2
(xi , yi )
f
(xi1, yi1 )]
上式称为梯形格式。
类似,可以算出梯形格式的误差估计式:
i1 O(h3 )
2阶的方法
梯形法是二阶、隐式单步的方法,要用迭代法求解。怎么求?
8
改进欧拉格式 /* modified Euler’s Formula */
xi1, yi h f ( xi , yi )
(i 0, ..., n 1)

(整理)高等数学概率论线性代数

(整理)高等数学概率论线性代数

高等数学概率论线性代数回答者:357386379|四级| 2009-12-3 19:40数三考试科目是《高等数学》、《线性代数》、《概率论与数理统计》这三门,这个数三的大纲可以参考一下:第一章:函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则(单调有界准则和夹逼准则)两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1、理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系。

2、了解函数的有界性、单调性、周期性和奇偶性。

3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4、掌握基本初等函数的性质及其图形,了解初等函数的概念。

5、了解数列极限和函数极限(包括左极限与右极限)的概念。

6、了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法。

7、理解无穷小的概念和基本性质。

掌握无穷小的比较方法。

了解无穷大量的概念及其与无穷小量的关系。

8、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

9、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

第二章:一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(l'hospital)法则函数的极值函数单调性的判别函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1、理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。

差分方程

差分方程

当 为常数时, yx = x和它的各阶差商有倍数关系,
所以可设 yx = x为方程(11)的解. 代如方程(11)得 x+2 + ax+1 + bx = 0,
2 + a + b = 0,
方程(12)称为齐次差分方程(11)的特征方程.
(12)
由特征方程的根的情况可得齐次方程的通解:
第八节 差分方程
一、差分 二、差分方程的概念 三、一阶常系数线性差分方程 四、二阶常系数线性差分方程
一、差分 微分方程是自变量连续取值的问题, 但在很多实际问 题中, 有些变量不是连续取值的. 例如, 经济变量收入、储
蓄等都是时间序列, 自变量 t 取值为0, 1, 2, , 数学上把这
种变量称为离散型变量. 通常用差商来描述因变量对自变 量的变化速度.
其中B0 , B1 , , Bm为待定系数.
例10 求差分方程 yx+2 + yx+1 2yx = 12x的通解.
解 对应的齐次方程的特征方程为
2 + 2 = 0.
方程的根为
1 = 2, 2 = 1,
y* C1 C2 (2) x . x
齐次方程的通解为
因为 a = 1, b = 2, 1+a+b = 0, 但 a+2 = 3 0,所以, 设
例如, yx+2 + yx+1 = 0为差分方程, yx = x不是差分方
程. 差分方程式(2)中, 未知函数下标的最大差数为 n, 则 称差分方程为n 阶差分方程.
定义4 如果一个函数代入差分后, 方程两边恒等, 则 称此函数为该差分方程的解. 例3 验证函数 yx = 2x + 1是差分方程 yx+1 yx = 2的 解. 解 yx+1 = 2(x + 1) + 1 = 2x +3, yx+1 yx = 2x + 3 (2x +1) = 2, 所以yx = 2x + 1是差分方程 yx+1 yx = 2的解. 定义5 差分方程的解中含有任意常数, 且任意常数

差分方程与微分方程的求解

差分方程与微分方程的求解

求解 1. 求差分方程满足初值问题之解:11232133123123(1)3()()()(1)2()()(1)()()2()(1)(1)1,(1)0x n x n x n x n x n x n x n x n x n x n x n x x x +=-+⎧⎪+=+⎪⎨+=-+⎪⎪===⎩ 解:原差分方程组可化为:112233(1)311()(1)201()(1)112()x n x n x n x n x n x n +-⎛⎫⎛⎫⎛⎫⎪ ⎪⎪+= ⎪ ⎪⎪ ⎪ ⎪⎪+-⎝⎭⎝⎭⎝⎭则令311201112-⎛⎫⎪= ⎪ ⎪-⎝⎭A ,求矩阵A 的特征值及特征向量 设特征值分别为123,,λλλ,对应的特征向量分别为123β,β,β.则231121(2)(1)0112λλλλλλ---=-=--=--A E可解得1232,2,1λλλ===设1λ对应的特征向量1111a b c ⎛⎫ ⎪= ⎪ ⎪⎝⎭β,则满足111111022101100a b c -⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭可化简为11100a b c -=⎧⎨=⎩,令111a b ==可以得到特征向量1110⎛⎫⎪= ⎪ ⎪⎝⎭β同理可得到特征向量2110-⎛⎫ ⎪=- ⎪ ⎪⎝⎭β,3011⎛⎫ ⎪= ⎪ ⎪⎝⎭β设方程组的通解为:111222333()nnnx n c c c λλλ=++βββ代入特征值、特征向量,可得到方程组的通解为:123110()21211001n n x n c c c -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=+-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭代入初值条件:123(1)(1)1,(1)0x x x ===得到12123322122110n n n n n c c c c c c ⎛⎫-⎛⎫ ⎪ ⎪--= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭可得123120c c c ⎧-=⎪⎨⎪=⎩,可以令11c =,所以212c =;综上所述,满足方程初值方程组的解为:11()210n x n -⎛⎫⎪= ⎪ ⎪⎝⎭2. 求差分方程之通解:2(4)2(2)()32nx n x n x n n n+-++=-+ 解:原方程的特征方程为:42210λλ-+= 即22(1)0λ-=从而求得特征根为11λ=-(二重),21λ=(二重) 因此原方程所对应的齐次方程的通解为:()(1)()1()n n xn A Bn C Dn =-+++ 即 ()(1)()nxn A Bn C Dn =-+++ 而原方程的特解为2(4)2(2)()3x n x n x n n +-++=-的特解1()x n与(4)2(2)()2n x n x n x n n +-++=的特解2()x n 之和.从而原方程具有如下的特解形式:221201201()()()()2()n x n x n x n n A n A n A B n B =+=++++将特解形式代入原方程,可得0010120014811922402244883914890A A A A A AB B B =⎧⎪+=⎪⎪++=-⎨⎪=⎪⎪+=⎩,从而0120114816124194881A A A B B ⎧=⎪⎪⎪=-⎪⎪⎪=⎨⎪⎪=⎪⎪⎪=-⎪⎩综上,原方程的通解为22111148()()()(1)()()2()48624981n n x n xn x n A Bn C Dn n n n n =+=-++++-++- 3. 求微分方程满足初值问题之解:211212212121120d d d 320d d d d d 20d d d (0)1,-1,(0)0d t x x x x x tt t xx x x t t x x x t =⎧++++=⎪⎪⎪++-=⎨⎪⎪===⎪⎩解:方法一:降阶法令13d d x x t =,则原方程组可表示为:13323122312d d d d 320d d d 20d x x t xx x x x tt x x x x t ⎧=⎪⎪⎪++++=⎨⎪⎪++-=⎪⎩化简得:132123323d d d 2d d 22d x x t xx x x t x x x t ⎧=⎪⎪⎪=-+-⎨⎪⎪=--⎪⎩它的系数矩阵为001211022⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A ,特征方程是01211(2)(2)(1)0022λλλλλλλ--=---=+-++=---A E特征根为1232,2,1λλλ=-==-求得特征根所对应的特征向量分别为1102⎛⎫ ⎪= ⎪ ⎪-⎝⎭T ,21221⎛⎫⎪ ⎪=- ⎪ ⎪⎪⎝⎭T ,31121⎛⎫ ⎪ ⎪= ⎪ ⎪-⎝⎭T .故方程组的通解为1222123311()121()e 0e 2e 221()1t t t x t x t C C C x t --⎛⎫⎛⎫ ⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪=+-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭- ⎪⎝⎭⎝⎭根据初值1120d (0)1,-1,(0)0d t x x x t====得12312323112211202C C C C C C C C ⎧++=⎪⎪-+-=-⎨⎪⎪-+=⎩解得123112,,463C C C === 则原方程组的解为:22122112()e e e 412311()e e 33t t t t tx t x t ---⎧=++⎪⎪⎨⎪=-+⎪⎩方法二:消元法设dd t λ=,则原方程组可化为21212(32)(1)0(1)(2)(1)0(2)x x x x λλλλλ⎧++++=⎨++-=⎩(1)(2)λ-得21(2)(21)0(3)x λλλ++--= (2)(3)-得22(2)0x λλ--=解得两个特征根为122,1λλ==- 则2x 可表示为:2212e e ttx C C -=+ 根据初值2(0)0x =得22e e ttx C C -=- 将2x 代入(2)得212e 2e ttx C C λ-+=+ 即211d 2e 2e (4)d t t x x C C t-+=+ 下面用常数变易法求解(4) 先解对应齐次方程11d 20d x x t+=得齐次通解211e t x C -= 由常数变易法,令211(t)etx C -=为非齐次方程(4)的解,代入后得221()e e 2e t t t C t C C --'=+积分得41()e 2e 4tt C C t C =+ 则(4)的通解为2211e e 2e 4t tt C x C C --=++ 根据初值110d (0)0,-1d t x x t===得112142212C C C C C C ⎧++=⎪⎪⎨⎪-+-=-⎪⎩解得11314C C ⎧=⎪⎪⎨⎪=⎪⎩ 则221112()e e e 4123t t tx t --=++ 将13C =代入22e e t tx C C -=-得方程组的解为 22122112()e e e 412311()e e 33t t t t tx t x t ---⎧=++⎪⎪⎨⎪=-+⎪⎩4. 利用待定系数法求解下列初值问题之解:Td (),(0)(0,1)d xA x f t x t=+= 其中TT 1235(,),,()(e ,0)53t x x x A f t -⎛⎫===⎪-⎝⎭解:方法一:待定系数法原方程组所对应的齐次方程组为112212d 35d d 53d x x x tx x xt⎧=+⎪⎪⎨⎪=-+⎪⎩特征方程235(3)25053λλλλ--==-+=--A E求得特征根为1,235i λ=±下求135i λ=+所对应的特征向量,设112αα⎛⎫=⎪⎝⎭ξ 则111225i 50()55i 0ααλαα-⎛⎫⎛⎫⎛⎫⎛⎫-==⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭A E 从而可取11α=,则2i α= 于是由132()1e (cos5isin 5)()i t x t t t x t ⎛⎫⎛⎫=+⎪ ⎪⎝⎭⎝⎭得到齐次方程的通解为:11322()cos5sin 5e ()sin 5cos5t xt C t t x t C t t ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭下求非齐次方程的特解利用待定系数法,可设特解为12()e ()e t t x t A x t B --⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭将其代入原方程组,可得e 3e 5e ee 5e 3et t t tt t tA AB B A B -------⎧-=++⎪⎨-=-+⎪⎩ 即451540A B A B +=-⎧⎨-=⎩,从而求得441541A B ⎧=-⎪⎪⎨⎪=-⎪⎩ 因此原方程的通解为113224()cos5sin 541e e ()sin 5cos5541t t x t C t t x t C t t -⎛⎫-⎪⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪⎝⎭⎝⎭- ⎪⎝⎭ 代入初值条件T(0)(0,1)x =得到1240415141C C ⎧-=⎪⎪⎨⎪-=⎪⎩,从而124414641C C ⎧=⎪⎪⎨⎪=⎪⎩.综上,原方程组满足初值条件的解为:13244()cos5sin 54141e e ()sin 5cos54654141t t x t t t x t t t -⎛⎫⎛⎫-⎪ ⎪⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎪ ⎪⎝⎭- ⎪ ⎪⎝⎭⎝⎭方法二:常数变易法利用常数变易法,可设特解为11322()()cos5sin 5e ()()sin 5cos5t x t C t t t x t C t t t ⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 带回到原方程,可得到132()cos5sin 5e e ()sin 5cos50t tC t t t C t t t -'⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪'-⎝⎭⎝⎭⎝⎭从而1132()cos5sin 5e e cos5e ()sin 5cos50e sin 5t t t t C t t t t C t t t t ----'⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪ ⎪'-⎝⎭⎝⎭⎝⎭⎝⎭进而4142()e cos5()e sin 5t tC t t C t t --'⎛⎫⎛⎫= ⎪ ⎪'⎝⎭⎝⎭两边积分可得414254()e (sin 5cos5)414145()e (sin 5cos5)4141t t C t t t C t t t --⎧=-⎪⎪⎨⎪=--⎪⎩因此原方程组的通解为111222()()()()()()x t xt x t x t x t x t ⎛⎫⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13254sin 5cos5cos5sin 5cos5sin 54141e e sin 5cos5sin 5cos545sin 5cos54141t t t t C t t t t C t t t t t t -⎛⎫- ⎪⎛⎫⎛⎫⎛⎫=+⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎪⎝⎭-- ⎪⎝⎭344cos5sin 54141e e sin 5cos54654141t t t t t t -⎛⎫⎛⎫-⎪ ⎪⎛⎫=+ ⎪⎪ ⎪-⎝⎭⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭代入初值条件T(0)(0,1)x =得到1240415141C C ⎧-=⎪⎪⎨⎪-=⎪⎩,从而124414641C C ⎧=⎪⎪⎨⎪=⎪⎩.综上,原方程组满足初值条件的解为13244()cos5sin 54141e e ()sin 5cos54654141t t x t t t x t t t -⎛⎫⎛⎫-⎪ ⎪⎛⎫⎛⎫=+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎪ ⎪⎝⎭- ⎪ ⎪⎝⎭⎝⎭.。

第6章常微分方程初值问题的解法

第6章常微分方程初值问题的解法
yk 1ykh 2 k[f(xk,yk)f(xk 1,yk 1)]
ykh 2 k[ (ykx k 1 ) ( yk 1x k 1 1 )]
yk11 29 1yk1k05110
预估-校正Euler方法:
y k 1 0 .90 y k 5 0 .00 k 9 0 .1 5
20
Euler方法
xk
yk
yk y(xk)
0.0 1.000000
0.0
梯形方法
yk
yk y(xk)
1.000000
0.0

预估-校正方法
yk
yk y(xk)
1.000000
0.0
0.1 1.000000 0.2 1.010000
4.8×10-3 8.7×10-3
1.004762 1.018594
y(0) 1
其解析解为: y1xe-t2dt x[0,1] 0 很难得到其解析解
4
例如:
y=x+y , x[0,1]

y(0) 1
其解析解为 yx12ex
只有一些特殊类型的微分方程问题能够得到用解析表达式 表示的函数解,而大量的微分方程问题很难得到其解析解。
因此,只能依赖于数值方法去获得微分方程的数值解。
例如:
y=x+y , x[0,1]

y(0) 1
其解析解为:yx12ex
3
但是, 只有一些特殊类型的微分方程问题能够得到用解析 表达式表示的函数解,而大量的微分方程问题很难得到其解 析解。
因此,只能依赖于数值方法去获得微分方程的数值解。
例如:
y =e-x2 ,
x[0,1]
7.5×10-5 1.4×10-4

常微分方程课件

常微分方程课件

在经济中的应用
描述经济现象:通过常微分方程描述经济现象的变化趋势和规律 预测经济走势:利用常微分方程对经济走势进行预测和分析 优化资源配置:通过常微分方程找到最优的资源配置方案,提高经济效益 制定经济政策:利用常微分方程分析政策对经济的影响,制定合理的经济政策
在生物与工程中的应用
描述种群增长模型
常微分方程是描述函数随时间变化的数学模型。 常微分方程的性质包括解的存在性、唯一性和连续依赖性。 解的存在性是指对于给定的初值问题,存在至少一个解。 唯一性是指对于给定的初值问题,存在唯一的解。
分类与表示方法
线性微分方程: 形如y' = px + q的方程,其中p 和q是常数
非线性微分方程: 形如y' = f(y)的 方程,其中f(y) 是一个关于y的 函数
一阶微分方程: 只含有一个自变 量和一个导数的 微分方程
高阶微分方程: 含有多个自变量 和多个导数的微 分方程
求解方法简介
分离变量法 变量代换法 欧拉方法 龙格-库塔方法
03 一阶常微分方程
一阶线性微分方程
定义:形如 y'=f(x)g(y)的 一阶微分方程, 其中f和g都是
可导函数。
求解方法:通 过变量分离法、 积分因子法、 公式法等求解。
感谢您的观看
汇报人:
分岔与混沌
分岔:当系统的参数发生变化时,系统的定性行为发生突然改变的现象。 混沌:在确定性非线性系统中,由于对初值的高度敏感性而产生的复杂运动状态。 举例:Lorenz 方程。 应用:天气预报、生态学、经济学等。
定性理论的应用与限制
应用领域:物理学、生物学、经济学等 解决实际问题:解释自然现象、预测未来趋势等 限制:定性理论无法处理某些复杂系统或非线性问题 未来研究方向:如何克服定性理论的局限性,拓展其应用范围

微积分课后习题参考答案第六章

微积分课后习题参考答案第六章

第六章 微分方程与差分方程§1微分方程的基本概念习 题 6 — 11.验证下列各题中函数是所给微分方程的解,并指出解的类型: ⑴03=+'y y x ,3-=Cx y ; 解:3-=Cx y 是03=+'y y x 的通解;⑵ax xyy +=',bx ax y +=2,其中a ,b 为常数; 解:bx ax y +=2是ax xy y +='的特解(因为b 不是任意常数);⑶()()022='-'+'+''-y y y y x y x xy ,()xy y ln =;解:()xy y ln =是()()022='-'+'+''-y y y y x y x xy 的特解;⑷0127=+'-''y y y ,x xe C e C y 4231+=;解:x xe C eC y 4231+=是0127=+'-''y y y 的通解;⑸x y y y 2103=-'+'',50355221--+=-x e C e C y x x. 解:50355221--+=-x e C eC y x x是x y y y 2103=-'+''的通解. 知识点:,定义6.2(若一个函数代入微分方程后,能使方程两端恒等,则称这个函数为微分方程的解)和若微分方程的解中含有独立的任意常数且个数与微分方程的阶数相同,这样的解叫做微分方程的通解,不含任意常数的解称为特解。

2.在曲线族()xex C C y 221+=中找出满足条件10==x y ,10='=x y 的曲线.解:由题意得:()xe x C C C y 222122++=',∵10==x y ,10='=x y , ∴解得11=C ,12-=C , 故所求曲线为()xex y 21-=(xxe y 2=)。

常微分方程和差分方程

常微分方程和差分方程

详细描述
差分方法将微分方程转化为离散化的差分方 程,然后通过迭代求解这些差分方程来逼近 微分方程的解。该方法适用于大规模问题,
且具有较高的计Leabharlann 效率和精度。05 常微分方程与差分方程的 并行计算
并行计算的基本概念
并行计算
指在同一时间段内处理多个任务或计算多个 数据的方法,以提高计算效率和速度。
并行计算模型
总结词
龙格-库塔方法是一种迭代方法,通过构造一系列近似解来逼近微分方程的精确解。
详细描述
龙格-库塔方法采用了一种更加稳定和精确的方法来逼近微分方程的解,它通过在每个时间步长内应用 一系列线性插值来改进近似解。该方法对于刚性和非刚性微分方程都适用,且具有较高的精度和稳定 性。
差分方法
总结词
差分方法是基于离散化时间或空间的数值方 法,通过将微分方程转化为差分方程来求解 。
常见的并行计算模型包括分布式计算、多线程计算 、GPU加速计算等。
并行计算的优势
通过并行计算,可以显著提高大规模计算任 务的执行效率和速度,减少计算时间。
并行计算在常微分方程中的应用
并行求解常微分方程
01
利用并行计算技术,可以将常微分方程的求解过程分解为多个
子任务,并同时处理这些子任务,从而加快求解速度。
初值问题与解的存在唯一性
初值问题
给定函数在某点的初始值,求解该函数在初始点附近的性质。
解的存在唯一性
对于适当的初值问题,存在唯一的解满足给定的条件。
一阶常微分方程
定义
只含有一个导数的一阶常微分方程。
求解方法
通过积分、代入法、分离变量法等求解。
高阶常微分方程
定义
包含未知函数的高阶导数的常微分方 程。

2023年常微分方程与差分方程解法归纳

2023年常微分方程与差分方程解法归纳

常微分方程解法归纳1.一阶微分方程部分①可分离变量方程(分离变量法)假如一阶微分方程中旳二元函数可表达为),(y x f dxdy =),(y x f 旳形式,我们称为可分离变量旳方程。

)()(),(y h x g y x f =)()(y h x g dx dy =对于此类方程旳求解我们首先将其分离变量为旳形dx x g y h dy )()(=式,再对此式两边积分得到从而解出C dx x g y h dy +=⎰⎰)()()()(y h x g dx dy =旳解,其中C 为任意常数。

详细例子可参照书本P10—P11旳例题。

②一阶线性齐次、非齐次方程(常数变易法)假如一阶微分方程中旳二元函数可表达为),(y x f dxdy =),(y x f 旳形式,我们称由此形成旳微分方程y x P x Q y x f )()(),(-=为一阶线性微分方程,尤其地,当时我们称其)()(x Q y x P dxdy =+0)(≡x Q 为一阶线性齐次微分方程,否则为一阶线性非齐次微分方程。

对于此类方程旳解法,我们首先考虑一阶线性齐次微分方程,这是可分离变量旳方程,两边积分即可得到0)(=+y x P dxdy ,其中C 为任意常数。

这也是一阶线性非齐次微分方程旳⎰=-dx x P Ce y )(特殊状况,两者旳解存在着对应关系,设来替代C ,于是一阶线)(x C 性非齐次微分方程存在着形如旳解。

将其代入⎰=-dx x P e x C y )()(我们就可得到)()(x Q y x P dx dy =+这其实也就是)()()()()()()()()(x Q e x C x P e x C x P e x C dx x P dx x P dx x P =⎰+⎰-⎰'---,再对其两边积分得,于是将其⎰='dx x P e x Q x C )()()(C dx e x Q x C dx x P +⎰=⎰)()()(回代入即得一阶线性微分方程旳通解⎰=-dx x P e x C y )()()()(x Q y x P dx dy =+。

常微分方程和差分方程

常微分方程和差分方程

社会科学领域
将常微分方程和差分方程应用于 社会科学领域,如人口动力学、 经济学、社会学等。
交叉学科研究
结合其他数学分支和工程学科, 开展交叉学科研究,以解决复杂 系统的建模和预测问题。
THANKS
感谢观看
矩阵法
将差分方程转化为矩阵形式,利用矩阵的性质求解未知数,适用 于多变量差分方程。
差分方程的应用
01
经济预测
差分方程可以用于描述经济现象 的离散时间变化规律,如预测股 票价格、市场需求等。
02
03
生物学研究
工程问题
差分方程在生物学研究中被广泛 用于描述种群增长、基因遗传等 现象。
在控制工程、电路分析等领域, 差分方程被用于描述离散时间系 统的动态行为。
05
常微分方程和差分方程的未来发展
数值计算方法的改进
数值稳定性
研究和发展更稳定、更精确的数值计算方法,以 解决常微分方程和差分方程的数值求解问题。
多重网格方法
利用多重网格技术加速求解过程,提高计算效率 和精度。
自适应步长控制
根据求解过程的需要,动态调整步长,以实现更 高效的数值计算。
理论解的研究
微分方程的解法
分离变量法
将方程中的变量分离,转化为易于求解的一 阶微分方程。
积分因子法
通过引入积分因子,将高阶微分方程转化为 低阶微分方程或一阶微分方程组。
参数方法
通过引入参数,将微分方程转化为易于求解 的参数方程。
幂级数法
将未知函数表示为幂级数,然后逐项求导, 代入原方程求解。
微分方程的应用
物理问题
间,f 表示经济模型。
实例三:生态问题中的常微分方程和差分方程
要点一

差分方程

差分方程

一阶常系数线性差分方程的解法
二阶常系数线性差分方程的解法
(3)二阶常系数非齐次线性方程及其特解形式
设 y * 是方程 y" py'qy f ( x).
的一个特解,Y 是其对应齐次方程的通解,则 y y* Y . 是它的通解,下面给出上述非齐次线性方程的特解 形式.
(1) f ( x) e x Pm ( x)型.
特征方程 r 2 pr q 0 的两个根为 r1 , r2 ,
对于高阶线性方程也有与上述定理相对应 的定理.
5. 可分离变量的方程
M1 ( x)M 2 ( y)dx N1 ( x) N2 ( y)dy 0,
M 1 ( x) N 2 ( y) N1 ( x) dx M 2 ( y) dy C
其中 N1 ( x), M 2 ( y) 0.
ex (C1 cosx C2 sin x).
ex [(C1 C2 x Ck x k 1 ) cos x ( D1 D2 x Dk x k 1 ) sin x].
k重实根 r
一对虚根 r1,2= i
一对 k 重虚根
r1,2= i
6
齐次方程
dy y ( )的通解为 dx x
y du (u) u ln x C, 其中 u x .
7.
一阶非齐次线性微分方程
y' P( x) y Q( x)
的通解为 8
ye
P ( x ) dx
P ( x ) dx [ Q( x)e dx C ]
xt p B p xt , p 1
延迟算子
延迟算子类似于一个时间指针,当前序列值乘
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的两个解, 则 y2 y1 是相应的齐次线性(2)
方程的解.
11
5.线性微分方程解的性质及解的结构定理 定理4: 给定 n 阶非齐次线性方程(1)
是对应齐次方程(2)的 n 个线性
无关特解,
是非齐次方程(1)的特解,则非齐次方
程(1)的通解为
Y (x) y(x)
齐次方程通解 非齐次方程特解
12
(c2 c12 0).
(1) 当 a1 b1 时 , 令 u a x b y,
ab
化为可分离变量方程.
(2)
当 a1 a
b1 时, b

x
y
X Y
h ,(其中h和k是待定的常数)
k,
化为齐次方程.
6
4.一阶线性微分方程 •形式 d y P(x) y Q(x) .
dx 当 Q(x) 0时, 称为齐次方程; 当 Q(x) 0时, 称为非齐次方程. •齐次方程的解法 d y P(x) y 0
•n阶线性微分方程的形式
y(n) P1(x) y(n1) Pn1(x) y Pn (x) y f (x) (1)
特别地, n阶齐次线性微分方程
y(n) P1(x) y(n1) Pn1(x) y Pn (x) y 0
(2)
(2)称为(1)相应的齐次方程.
定理1:
是 n 阶齐次方程(2)
15
7.差分与差分方程的概念
•差分 设函数 y f (x) 为定义在非负整数集上的函数,
的 n 个解,则 y C1y1 Cn yn (Ck为任意常数)
也为齐次方程(2)的解. 齐次方程解的叠加原理
10
5.线性微分方程解的性质及解的结构定理
定理2:
是 n 阶齐次方程(2)
的 n 个线性无关解,则方程的通解为
y C1y1 Cn yn (Ck为任意常数) .
定理3:
是 n 阶非齐次方程(1)
作变量代换,
u y , 即 y xu,
x
dy u x du ,
dx
dx
代入原式得 u x du f (u) , dx
分离变量得 du dx ,
f (u) u x
两边积分,将u代回,便得到原方程的通解.
5
•可化为齐次的方程
dy f ( ax by c )
dx
a1x b1 y c1
0 , 不是特征方程的根 ; k 1, 是特征方程的 单特;
2 , 是特征方程的重根 .
14
•简单的非齐次线性微分方程特解的求法
( 2 ) f (x) e x a cos x bsin x
设方程的特解形式为: y xke x Acos x Bsin x
其中 A与B为待定系数,而
0 , i不是特征方程的根; k 1, i是特征方程的单根.
3
2.变量可分离的微分方程
•形式 dy f (x)g( y) .
dx
•解法 分离变量, dy f (x)dx ,
g( y)
两边积分,
dy f (x)dx , g( y)
G(y) F(x) C. 称为隐式通解,或通积分.
4
3.齐次微分方程
•形式 dy f ( y ) .
dx x
•解法
Q(x)

两边积分得 u Q(x)e P(x)d x dx C ,
公式法
故原方程的通解为
y
e
P(
x)
d
x
Q(
x)
e
P(
x)d
x
d
x
C
也即 y Ce P(x)d x e P(x)d x
Q(
x)
e
P(
x)
d
x
d
x
齐次方程通解
非齐次方程特解
8
•伯努利方程 d y P(x) y Q(x) yn ( n 0, 1) dx
解法:
除方程两边,得
yn d y P(x) y1n Q(x) , dx
令 z y1n , 则 d z (1 n) yn d y ,
dx
dx
d z (1 n) P(x) z (1 n)Q(x) . dx
(线性方程)
求出此方程通解后,换回原变量即得伯努利方程的通解.
9
5.线性微分方程解的性质及解的结构定理
13
•二阶常系数非齐次线性微分方程
对应齐次方程 y p y q y 0,
通解结构
y Y y ,
•简单的非齐次线性微分方程特解的求法
(1) f (x) Pn (x)e x (其中Pn (x)为n次多项式)
设方程的特解形式为: y xkQn (x)e x
其中Qn (x)与Pn (x)为同次多项式,而
•线性微分方程 方程中的未知函数及其个阶导数的次数都是 一次,且无交叉乘积项.
y y3 x2 y (sin x)(4) 1, 二阶非线性.
y p(x)y q(x)y f (x) ,

二阶线性.
2
•微分方程的解 代入微分方程能使方程成为恒等式的函数. 通解 解中所含独立的任意常数的个数与方程的阶数相同.
特解 不含任意常数的解.其图形称为积分曲线. 注意,通解不一定是方程的全部解. •初始条件 用来确定任意常数的条件. •初值问题 求微分方程满足初始条件的解的问题.
一阶:
y f (x, y)
y
x
x0
y0
过定点的积分曲线;
二阶:
y f (x, y, y)
y
x
x0
y0 , yxx0
y0
过定点且在定点的切线的斜率为定值的积分曲线.
6.二阶常系数齐次线性微分方程及简单的非齐次线性 微分方程
•二阶常系数齐次线性微分方程
其特征方程为: r2 p r q 0 , 特征根为:
特征根的情况
通解的表达式
两互不相同的实根 r1 r2 y C1er1x C2er2x
二重根 r1 r2
y (C1 C2 x) er1x
两个共轭复根 r1,2 i y e x (C1 cos x C2 sin x)
第五章 常微分方程与差分方程
1
考试内容
1.常微分方程的基本概念
•常微分方程 含有一元未知函数及其导数(或微分)的方程.
•微分方程的阶 微分方程中出现的未知函数的最高阶导数的 阶数.
一般地 , n 阶常微分方程的形式是
F(x, y, y,, y(n) ) 0

y(n) f (x, y, y,, y(n1) ) .
dx
分离变量,
两边积分得, ln y P(x)dx ln C ,
故通解为 y C e P(x) dx .
7
•非齐次方程的解法 d y P(x) y Q(x)
dx
用常数变易法: 作变换 y(x) u(x)e P(x)d x , 则
u
e
P(
x)
d
x
P(x)u eP(x)d x
P(x)u e P(x)d x
相关文档
最新文档