金属有机化学(5)资料

合集下载

第5章-过渡金属有机化学基础

第5章-过渡金属有机化学基础
金属有机化学
5.2 八隅体规则和有效原子序数规则(18电子规则 )
八隅体规则适用于主族金属有机化合物:对热力学稳 定的主族金属有机化合物而言,其中心金属原子的价 电子数与配体所提供的电子数总和等于8。 例如:(CH3)4Sn Ph2AsCl 等
第IA、IIA和IIIB的金属有机化合物,常不遵守八隅体 规则。 PhMgBr Me2AlCl
金属有机化学
5.1.2 中心金属的d电子数、配位数及几何构型 1. d10 Pt的外层电子结构是 5d96s1。由于5d和6s轨道 能量相近,在生成过渡金属有机配合物时,容易 发生 d→s 跃迁。在过渡金属有机化学中,人们更 关注d电子,所以也把Pt0称为d10元素 Ni0 、 Pd0 、 Pt0 , Cu+ 、 Ag+ 、 Au+ , Zn2+ 、 Cd2+、Hg2+等也都称为d10元素
第五章
过渡金属有机化学基础
金属有机化学
金属有机化合物的分类
• 按照所含金属以及与金属相连的特征配体 分类 • 按照M-C键的性质分类
金属有机化学
按照所含金属以及与金属相连的特征配体分类
• 主族金属有机化合物: RLi RMgX RmAlX3-m • 过渡金属有机化合物 过渡金属羰基化合物、卡宾和卡拜配合物 、茂金属配合物、过渡金属氢化物等
3. d8 Ni2+ 、 Pd2+ 、 Pt2+ 、 Rh+ 、 Ir+ 等都形成 d8 配合 物,中心金属离子采用dsp2杂化,中心金属的配位 数为4,按平面四边形排布
金属有机化学
4. d7, d6 d7, d6 的中心金属,如 [Co(CN)6]4- 中钴的 3d 轨 道上一个电子被激发到能量更高的 5s 轨道上,采 取d2sp3杂化,中心金属的配位数为6,所生成的配 合物为正八面体构型 5. d5, d4 d5, d4的中心金属, 同样采取 d2sp3 杂化,中 心金属的配位数为 6,所 生成的配合物为八面体 构型

金属有机化学

金属有机化学

金属有机化学基础第5章非过渡金属有机化合物第5章非过渡金属有机化合物⏹反应试剂:许多非过渡金属有机化合物是高活性、高选择性的有机合成试剂,如Grignard试剂、锂试剂、硼试剂等在现代有机合成中占有重要位置。

⏹辅助催化剂:过渡金属有机化合物是配位催化的催化剂,但也离不开非过渡金属有机化合物作为助催化剂,如著名的Ziegler-Natta催化剂中必须用一个非过渡金属有机化合物活化。

⏹合成方法:许多过渡金属有机化合物可借鉴合成非过渡金属有机化合物的方法并用非过渡金属有机化合物作为试剂来制备。

⏹反应性质:过渡金属有机化合物的一些基本化学性质、结构也与非过渡金属有机化合物密切相关。

第5章非过渡金属有机化合物⏹非过渡金属有机化合物的通用制法⏹碱金属有机化合物----有机锂⏹碱土金属有机化合物----有机镁⏹硼族有机化合物----有机铝和有机硼⏹金属与卤代烃反应的机理自由基反应–––非过渡金属易失去价电子,卤代烃接受了这个电子后生成烃基自由基,这是速度控制阶段。

Mꞏ+ R-X → M++ Rꞏ + X-●对第IA族金属,烃基自由基与另一个零价金属反应生成金属有机化合物,金属正离子与卤素负离子形成盐,如合成锂有机化合物。

Mꞏ+ R ꞏ→ MRM++ X-→ MXMꞏ+ R-X → M++ Rꞏ + X-●第IIA族金属失去一个价电子后与卤素负离子生成一价的盐,但这个金属上还有一个价电子,它立即与烃基自由基结合得到金属有机化合物,如合成Grignard试剂。

M ꞏ++ X-→ MX ꞏR ꞏ +MX ꞏ →RMX●与第IIA族金属一样,第14族金属先失去一个价电子后与卤素负离子形成RMX,但它是不稳定的,继续与卤代烃反应,得到第14族金属有机化合物。

[RMX] + RX → R2MX25.1.2 用非过渡金属有机化合物对金属烃基化反应这是由一种金属有机化合物制备另一种金属有机化合物的方法,也称为转金属化反应(Transmetalation)。

第五章 过渡金属有机化合物的基元反应

第五章 过渡金属有机化合物的基元反应

金属有机化学
配体的配位和解离反应
◎过渡金属和烯烃的配位
按照Chatt -Dewar -Duncanson模型,乙烯和过渡金属的 配位键包括: ● 烯烃的成键π轨道供给电子和金属的空d 轨道相重叠; ● 金属的满填d 轨道和烯烃的反键π* 轨道相重叠,即金 属的反馈。
金属有机化学
二、 氧化加成与还原消除
O OC CO Mn OC CO CO
14
CH3 +
14
OC CO OC
CO
C
CH3
Mn CO CO
金属有机化学
插入反应和反插入反应
不饱和化合物插入M—H键,如:
[R h (N H 3 ) 5 H ]
2+
+ C H 2=C H 2
[R h (N H 3 ) 5 C 2 H 5 ]
2+
如不饱和化合物插入M—R键则可表示为:
M
L
L
M
S
+
L
L
L
S
: S o lv e n t
M L3
+
L’ M L 3L ’
M L 3L ’
L
: lig a n t
K = M L3 L’
通常人们喜欢:易生成配位饱和的配合物而分离、纯化易, 而其中某个配体又极易在温和条件下解离,生成配位不饱和 的配合物而发生反应。
P d ( P P h 3) 4 P d ( P P h 3) 3 + PPh3
LnM R + C C LnM C C R
插入反应还有:
T i(N R 2 ) 4 + 4 C S 2 R 3P b R ' + S O 2 R 3S n -N R 2 + C O 2 T i(S 2 C N R 2 ) 4 R 3P b O S O R ' R 3S n O C O N R 2

金属有机化学 第5章 羰基配合物

金属有机化学 第5章 羰基配合物

过渡金属原子簇化合物的结构和性质
多核配位化合物,并不一定是原子簇化合物,因一般 的多核体系中,M 与 M 之间不一定存在 M-M 键。例如 Cr2O7= 并不是簇合物,因 Cr 与 Cr 之间由O来键合。上世 纪的60年代以前仅合成了几个簇合物,如 K3W2Cl9,Fe2(CO)9 等。但近年来发展非常迅速,已合成出了数百个结构新颖 的簇合物。
侧基配位的情况比较少, 此时, CO可认 为是一个四电子给予体, 它一方面以5孤 对电子同M1配位,同时又以1电子同M2 配位。

C :
O

M1
M2
12
2) 边桥基配位 在双核或多核羰基化合物中,用符号“-CO” 表示,CO作为两电子配体,能够同时和两个金属原 子的空轨道重叠;另一方面金属原子充满电子的轨 道也能同CO的*反键轨道相互作用,形成反馈键。 结果是CO作为桥将两个金属联结到一起.
7
(2)与酸作用生成羰基氢化物
(3)配体取代反应 Fe2(CO)9+4NO
(4)氧化还原反应 Mn2(CO)10 +Br2
羰基配合物的成键: CO哪些分 子轨道上的电子能给予中心原子 形成配位键? (sp-sp反键)
(二重简并) (sp(C))
(二重简并)
(sp-sp成键) (sp(O))
8
4 轨道由于电子云大部分集中在CO核之间, 不能给予其它原子。 能给予中心金属原子电子对的只有3、1和 5电子。 3电子是 属于氧的孤对电子,由于氧的电负性比碳原子大, 除少数情况之外, 氧很难将3电子对拿出来给予中心金属原子, 因此,能与中心金 属原子形成σ 配键的分子轨道就只有1和 5了。
29
硼烷簇化合物的结构类型
structure type

有机金属化学

有机金属化学

(四)金属有机化学和无机化学
(Ph3P)2PdMe2与 (Ph3P)4Pd性质类似 RSi(OR)3与Si(OR)4性质类似
金属有机化学与不含碳-金属键的络合物化 学重叠,与无机化学重叠
金属有机化学是介于无机化学和有机化 学之间的边缘学科。
(五)有些含M-C键的化合物不属于 金属有机化合物
1983年,K. G.Bergman和
W.A.G.Graham在金属络合物和烷烃的 分子间反应中观察到了C—H键活化,再次掀 起金属有机化学的热潮
三、金属有机化合物分类
(一)按中心金属元素在周期表中的位置: 主族金属有机化合物
包括IA,IIA,IIIA,IVA,VA族及IIB族的金属与准金属
随后,很多化学家对砷、锑、锡、汞的 元素有机化合物进行过不少研究工作。
我国的化学家于20世纪五六十年代,制备了 许多锑化合物,用于治疗血吸虫病和黑热病。 为了减低锑化合物的毒性,还合成了一些新 的有机锑化合物。
其他,如锡有机物作为杀菌剂,汞有机物作 为消毒剂,“顺铂”做为抗癌药物等
(二)金属有机化合物的工业直接应用
四乙基铅:汽油的抗震剂,有机锡化合物:高分子
聚合物的稳定剂和聚烯烃、橡胶等的防老剂等
硅酮聚合物:橡胶、塑料、涂料、粘合剂、润滑剂等, 可用作火箭、高速飞机等领域中耐油、耐高温或低温 的特种材料。
其他元素有机聚合物,包括高分子金属络合物,可用 作胶粘剂、阻燃剂、催化剂等。
金属有机聚合物在粘流态拉丝或制成其他形状,然后 高温裂解,可制得特定形状的陶瓷材料。用这种方法 已合成出有机碳硅烷--碳化硅纤维。
1917年,W.Schlenk从有机汞试剂出发,合成了烷
基锂试剂,并发展了金属有机化学实验中常用的 Schlenk 系列玻璃仪器及其相关操作

金属有机化学

金属有机化学
有机金属化学
有机金属化学是现代化学发展最迅速的领域之一,是无机化 学、配位化学和有机化学形成的交叉学科。100多年前制备的 Zeise盐(分子式为Na[PtCl3(C2H4)]),是人们在有机金属化学领域 迈出的第一大步。本世纪初,由W. Hieber所发展起来的过渡金 属羰基化合物, 进一步推动了有机金属化学的发展。五十年代 初,G. Pansan等合成出第一个环戊二烯类金属化合物—二茂 铁;随后,E. O. Fischer测定和描述了二茂铁的结构,即由上下 两个平行的环戊二烯与一个铁原子配位而形成的夹心结构。
1981 年 R. West 合成出含有稳定双键的化合物:(1,3,5−Me3C6H2)4Si2。
1981 年
Nobel 奖授予 R. Hoffmann 和 K. Fukui 以表彰它们在无机、有机、有机 金属化合物分子结构及其反应活性分子轨道理论处理上的成就,即等瓣 相似理论(isolobal analogies)。
1922年 T. Midgley和T. A. Boyd首先将Pb(C2H5)4作为抗震剂添 加到汽油中,促进了汽车工业的发展,同时也埋下了环境污 染的隐患。
1928年 W. Hieber系统地研究了过渡金属羰基化合物,奠定了 羰基化合物化学的基础。
1929年 F. A. Panth通过PbR4的热分解来获取有机自由基。
1909年 P. Ehrlich,化疗法的创始人,获Nobel奖
1917年 W. Schlenk制备了各种有机锂化合物,并发展了无水 无氧操作技术—Schlenk技术。
2 Li + R2Hg2 ⎯⎯→ LiR + Hg 2 EtLi + Me2Hg2 ⎯⎯→ MeLi + Et2Hg
1919年 F. Hein研究了CrCl3与PhMgBr的反应,得到了一种未 知的化合物。后来这种未知物测定为具有Sandwich结构 的化合物。

金属有机化学

金属有机化学
1963年他们分享了诺贝尔化学奖。
1954年维蒂希(G.Wittig)发现磷叶立德 与羰基化合物反应生成结构确定的烯烃。
1956年布朗(H.C.Brown)发现了烯烃的 硼氢化反应。 1979年布朗与维蒂希分享诺贝尔化学奖。
1958年齐格勒的学生维尔克(Wilke)发 现镍配合物催化丁二烯的环齐聚反应并第 一次通过分离鉴定反应活性物种来确定反 应机理。他还发现了[CpMo(CO)3]2金属之 间存在共价键,为过渡金属原子簇合物奠 定了基础。
➢Ni-CO是π配位 ➢金属羰基配合物及其衍生物在过渡金属有机化合物
的合成和很多催化反应中都有重要的意义
C Ni O
=
5)金属有机化学是研究金属有机化合物和 类金属有机化合物的化学。 无机化学(欧美)
金属有机化学 有机化学(中国)
实际上处于有机化学与无机化学之间的 一门边缘学科。
二、金属有机化学的发展历史
宝库。现在人们称镁nt)。镁有机化合物同有机 化合物的反应称为格林雅反应(Grignard Reaction)。为此,1912年他获得诺贝尔化学 奖。这是第一个获诺贝尔奖的金属有机化学 家。
1922年:T.Midgley T.A. Boyd Pd(C2H5)4作为汽 油中的抗震剂。
RCH 2CH2CHO+RCH 3CCHO
• 这一反应应称之为氢甲酰化反应,但在工业 界常称作Oxo反应,这是起初误以为是氧化 反应,故称为“Oxonation”或Oxo反应。由这 一过程产生的醇,已习惯地称作Oxo醇。这 个反应是第一个均相催化工业应用的例子。
1951年鲍森(Pauson)和米勒(Miller)分别发现了二茂 铁Fe(C5H5)2。 次年威金森(Wilkinson)等确定了它具有夹 心面包式分子结构及新的化学键理论,激起了化 学家对过渡金属有机化合物研究的热情,大大推动 了过渡金属有机化合物的发展。

金属有机化学基础-过渡金属有机化合物的基元反应

金属有机化学基础-过渡金属有机化合物的基元反应

b)金属上的正电荷增加还原消除的速率
MeOH Pt(PEt3)2Ph2I2 C6H6 No reaction [Pt(PEt3)2Ph2I(MeOH)]+ + I-
reductive elimination PhI [Pt(PEt3)2Ph(MeOH)]+I-
Pt(PEt3)2PhI
c)加入其它配体降低金属上的电子云密度增加还原消除的速率
3)氧化加成的的SN1反应机理
4)氧化加成的自由基机理
主要针对卤代烃的氧化加成; 金属碱性越强,对反应越有利; RI > RBr > RCl; 叔R > 仲R > 伯R > Me (自由基的稳定程度); 立体化学发生消旋化。
(a) 非链式自由基机理
(b) 链式自由基机理
需要自由基引发剂,O2
H alkyl H > M > M H
M
R
金属上的电子密度对消除反应有影响:
a)易发生消除反应的金属及d “构型”
通常见于满足18e-的金属化合物,且还原消除能得到稳定的金属碎片; 氧化态越高,越容易发生还原消除; d8 = Ni(II), Pd(II), Au(III) d6 = Pt(IV), Pd(IV), Ir(III), Rh(III)
羰基的插入
许多含M-R键的过渡金属有机配合物能插入CO,得到 酰基配合物。 O CO M C R M R CO插入M-R键可能有两种途径,即CO直接插入到M-R 键中和R基团迁移到CO上:
R LnM CO R LnM CO
直接插入
烷基迁移
研究表明是烷基迁移而不是CO插入。
烷基的迁移插入过程可以看成是分子内的亲核进攻, 插入过程中烷基碳立体化学得以保留:

金 属 有 机 化 学

金 属 有 机 化 学

金属有机化学1.序言2.主族金属有机化学3.过渡金属有机化学4.稀土金属有机化学5.有机合成中的金属有机化学6.金属有机化学催化反应一、序言1. 定义:金属有机化学是研究含有金属-碳键的化合物的化学,包括合成、结构、反应性质及催化性能等。

其中金属包括硼、硅、砷等类金属。

严格区分:有机金属化合物 M -C金属有机化合物 M -O ,M -N ,M -C金属有机化学是无机化学和有机化学的交叉学科,既可以归属于无机化学,也可以归属于有机化学。

2. 发展史1760年 合成第一个金属有机化合物1827年 合成第一个过渡金属有机化合物(第一个含烯烃的金属有机化合物)Zeise’s 盐,Na[Pt(C 2H 4)Cl 3]1849年 E. Frankland 用氢气作保护气体3C 2H 5I + 3Zn → (C 2H 5)2Zn + C 2H 5ZnI + ZnI 21890年 第一个有工业应用价值的金属有机化合物Ni(CO)4,可用于提纯金属镍。

1901年 格氏试剂的发现,V . Grignard (1912年诺贝尔奖)RX + Mg → RMgX1919年 H. Hein, CrCl 3 + PhMgBr → Ph 2Cr1925年 Fischer-Tropsch 反应的发现,其机理的研究目前仍然是金属有机化学的一个重要研究领域,可能是先生成M -C 或者M =C 。

1938年 O.Roelen 发现氢甲酰化反应(Hydroformylation, oxo process)。

PdCl 2催化乙烯水合生成乙醛。

1938~1945年 Reppe 合成的发展CO + H 2 + CH 2=CH 2 → CH 3CH 2CHO1951年 二茂铁的发现 FeCl 2 + C 5H 5- → Fe(C 5H 5)2,导致烯烃-金属π络合物理论的提出。

1953年 Wittig 反应的发现,利用膦叶立德合成烯烃的方法1955年 Ziegler-Natta 催化剂的发现 MCl 3/AlR 3催化烯烃低压聚合 "Cadet's fuming liquid" [(CH 3)2A s]2O A s 2O 3 + 4CH 3COOK1956年H. C. Brown 硼氢化反应的发现,符合反马可夫尼可夫原则,R 2B 接在最少取代的碳原子上。

金属有机化合物

金属有机化合物

有机膦酸化合物可作质子导体。
⑨ 一些层状化合物可嵌入胺、氨、或醇分 子,从而可用于分子识别或吸收剂。 ⑩ 表面金属有机化合物可用于多相催化。
16
二、 有机金属化合物的分类
① 离子型、共价型金属有机化合物; ② 主族和过渡元素型……; ③ 烷基、芳基、酰基和共轭烯烃……。
17
18
1、 离子型有机金属化合物 R—H 的盐 R—M (M=ⅠA,ⅡA)
1912瑞典皇家科学院鉴于格林尼亚发明了格
氏试剂,对当时有机化学发展产生的重要影响,
决定授予他诺贝尔化学奖。
波多丽女伯爵骂倒了一个纨绔子弟,骂出了一
个诺贝尔奖获得者。
6
③ 1865 合成三甲基铝
1953 Zieglar试剂(三乙基铝 + 四氯化钛) 应用于烯烃定向聚合。(1~5atm、50℃ )
1963 Zieglar-Natta德-意大利 诺 化学奖
3
dsp2空轨道
M→L
π*空轨道
M←L
(a) M ← L 配位
(b)M→ Lπ 配位
Pt-乙烯配合物中成键的DCD模型
反馈键加强了Pt2+和乙烯直间的结合;削弱了C=C键。
4
②1900 (法) Grignard 合成有机镁试剂
C6H5Br Mg C6H5MgBr
纯醚
R- X+ R - MgX R- R + MgX
Zieglar试剂 包括烷基铝(R3Al), 烷基卤化铝(R2AlX,RAlX2),
烷基氢化铝( R2AlH,RAlH2 ),
烷基烷氧化铝( R2AlOR‘,), 芳基铝、以及含N、S、P等有机铝。
9
④ 1951 合成夹心结构二茂铁 火箭燃料添加剂

金属有机化学课件(带目录)

金属有机化学课件(带目录)

金属有机化学课件一、引言金属有机化学是研究金属与有机物之间的化学键、反应和应用的学科。

它是现代化学的一个重要分支,涉及有机化学、无机化学和物理化学等多个领域。

金属有机化学的研究不仅可以丰富化学的理论体系,还可以为材料科学、催化科学、生命科学等领域提供重要的理论支持和实践应用。

本课件旨在介绍金属有机化学的基本概念、重要反应和应用领域,以帮助学生更好地理解和掌握这一学科。

二、金属有机化学的基本概念1.金属有机化合物金属有机化合物是由金属原子与有机基团通过共价键连接而成的化合物。

金属原子通常与碳、氮、氧、硫等非金属原子形成配位键,形成金属有机配合物。

金属有机化合物具有独特的化学性质和广泛的应用领域。

2.配位键配位键是指金属原子与有机基团之间的共价键。

在金属有机化合物中,金属原子通常提供一个或多个空轨道,而有机基团提供一个或多个孤对电子,它们之间通过共价键相连。

配位键的形成使金属原子能够与多种有机基团形成稳定的化合物。

3.配合物配合物是由中心金属原子和周围的配体通过配位键连接而成的化合物。

配合物通常具有确定的结构和独特的性质,如催化活性、光学活性等。

配合物在材料科学、催化科学和生命科学等领域具有重要应用。

三、金属有机化学的重要反应1.均相催化反应均相催化反应是指在金属有机化合物催化下,反应物和催化剂处于同一相(液相或气相)的催化反应。

均相催化反应具有高效、选择性好和反应条件温和等优点,广泛应用于有机合成、石油化工和环境保护等领域。

2.配位聚合反应配位聚合反应是指在金属有机化合物催化下,通过配位键的形成将单体连接成高分子聚合物的反应。

配位聚合反应具有活性高、选择性可控和产物性能优异等特点,是合成高性能高分子材料的重要方法。

3.金属有机化合物的合成反应金属有机化合物的合成反应包括有机配体的合成、金属有机化合物的合成和金属有机配合物的合成等。

这些合成反应通常涉及有机合成、无机合成和物理方法等多种技术手段,需要根据目标产物的结构和性质进行合理设计。

(化学)金属有机化学

(化学)金属有机化学

Na[ (C2H4)PtCl3 + NaCl
Pt(PPh3)4 + 2PhC CPh
(PPh3)2( PhC CPh )2 + 2PPh3
金属有机化合物的制备(V)
⑸ 小分子的配位反应:一些小分子化合物如CO、 CO2、N2、SO2、CS2等也可和金属进行配位:
(PEt3)2Pt(CH3)Cl + CO (CH3)Mn(CO)5 + CO*
满足电子构型要求,或者单核金属成分不能满足电 子构型要求,可以通过二聚体等各种方式达到电子 构型的要求,以达到稳定存在的目的。
金属有机化合物的制备(I)
⑴ 金属元素与烃类或卤代烃的反应:
Na + RC CH
RC CH + H2
2Al + 3H2 + 6CH CH
2(C2H5)3Al
RX + 2Li
(C2H5)2Hg + 2CH3Li
金属有机化合物的制备(IV)
⑷ 烯(炔)烃的插入反应和取代反应,烯烃或
炔烃可以通过插入金属与氢或金属与碳之间的键 中或取代某个配体而生成新的配位化合物:
(PEt3)2Pt(H)Cl + CH2 CH2
(PEt3)2Pt(C2H5)Cl
Na2PtCl4 + CH2 CH2
(PEt3)2Pt(COCH3)Cl (CH3CO)Mn(CO)4CO*
金属有机化合物的制备(VI)
⑹ 分解反应:酰基、羰基、芳基磺酸基和重氮化合物等都
可以发生分解反应脱去一分子小分子得到新的金属有机化
合物。
N2Cl
HgCl
+ HgCl2
COCl
+ N2

金属有机化学历史 现状及展望

金属有机化学历史 现状及展望

四、结论与展望
金属有机化学作为一门具有重要应用前景的学科,在能源、环境、材料等领 域都具有广泛的应用前景。随着科技的不断进步和发展,金属有机化学将会有更 加深入的研究和更广泛的应用。因此,我们应当加强金属有机化学的研究投入, 提高其研究水平和应用能力,以更好地服务于人类社会的发展和进步。
参考内容二
在当前有机化学的发展现状中,各种有机化合物的制备方法、应用领域和生 产工艺都取得了显著的进展。然而,也暴露出一些问题和挑战。例如,许多化学 合成方法需要使用大量的有机溶剂,这不仅对环境造成了污染,而且也威胁到人 类的健康。此外,许多化合物的生产工艺复杂,成本较高,难以实现大规模生产。
展望未来,有机化学将迎来更多的发展机遇和挑战。随着绿色化学概念的深 入人心,有机化学家们正致力于开发更加环保的合成方法和生产工艺。在药物制 备领域,有机化学将发挥更加重要的作用,为药物研发提供更多的候选物质。此 外,有机材料科学也将成为未来有机化学发展的一个重要方向,为材料科学领域 注入新的活力。
为了探究有机化学领域的发展现状和未来趋势,我们查阅了大量的文献资料, 并进行了实地调研。分析结果表明,有机化学的发展受到多种因素的影响,包括 科研投入、政策支持、市场需求等。同时,这些因素也将继续推动有机化学在未 来的发展。
总之,有机化学是一门极具重要性和应用价值的学科。在当今社会,有机化 学的地位和作用愈发显得重要。从生活用品到医疗器械,从能源材料到药物研发, 有机化学的身影无处不在。未来,随着科技的进步和社会的发展,有机化学将在 更多领域展现其巨大潜力。
金属有机化学的应用前景非常广泛,主要体现在以下几个方面:
1、新兴领域:随着科技的发展,金属有机化合物在新兴领域的应用越来越 受到。例如,在能源领域,金属有机化合物可以用于太阳能电池的制造和燃料电 池的催化剂;在材料领域,金属有机化合物可以用于高分子材料、光学材料和电 子材料的制备;在生物医学领域,金属有机化合物可以用于药物的设计和开发。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Na2[Fe(CO)4] + CO
➢ Fe(CO)42-是非常有用的试剂,可由此合成许多烃、醛酮、羧 酸、羧酸衍生物,这些反应可用以下方程式概括:
O
RX
Na2Fe(CO)4 R C X
H RH
RFe(CO)4
O
O
R'X RCR' R'X RCFe(CO)3L H
L(CO, PPh3)
O
RCHO
O2
RCOH
O2
O
X2
X2
RCX
R'R''NH O
H2O O R'OH
RCNR'R''
RCOR'
RCOOH
(iii)碱解反应
Fe(CO)5 + 4NaOH
(iv)氢解反应
2
2
Na2[Fe(CO)4] + Na2CO3 + 2H2O
Os(CO)5 + H2 8 MPa H2Os(CO)4 + CO 100-130℃
O O C MCM MM
η 2 μ CO
υ υ
ccoo==η11882 5500μ--117700C00Occmm--11
O
O C
MCM
MMM
η3
M μ
CO
υ coη= 3~1μ625cCmO-1
υ co= ~1625cm-1
➢ IR可以表征各种羰基:
❖CO为2143 cm-1 ❖H3BCO为2164 cm-1,说明其中无 π -反馈键。 ❖Ni(CO)4 2057 cm-1,就要低一点,说明有π-反馈键。
• M-CO键可用下列共振式表示:
M CO A
M CO B
M CO C
C≡O 1.128Å M-C≡O 1.15 Å ∶C≡O类似物有 ∶C≡S, RN≡C∶, N≡O, N≡N。
M-CO键合形式:
M-CO末端羰基 terminal carbonyl IR(cm-1):2140-1800
桥式羰基 bridged carbonyl
Ni + CO Ni(CO)4
R.T. 或 100℃ Ni(CO)4
150℃
Ni + CO
易挥发液体 沸点43℃ 受热易分解
(ii)汽油中抗爆剂
Fe(CO)5也可用来添加到汽油中,代替PbEt4。
(iii)合成其他金属有机化合物
几乎所有的过渡金属皆可形成金属羰基化合物,并能发生 多种类型的化学反应,从而获得各种多样的金属有机化合物。
第五章 CO参与的反应
一、过渡金属羰基化合物
1. 价键与结构
➢ 自从Mond于1890年首次制得Ni(CO)4以来,已经 合成了大量各种金属羰基化合物。
分类:
➢ 按配体种类: 全羰基金属络合物(homoleptic metal carbonyls) 混合配体羰基金属络合物(mixed ligand metal carbonyls)
➢ 按金属所带电荷: 中性、阳性、阴性
➢ 按金属数分:
单核羰基化合物 (mononuclear carbonyls) 多核羰基化合物 (polynuclear carbonyls) ❖ 凡含有两个金属原子以上的羰基化合物,是 一种金属簇化合物 (clusters)
• 金属羰基络合物在理论上和实际应用(金属有 机合成,精细有机合成以及基本有机合成等) 都有重要意义。
(ii)还原反应
V(CO)6 + Na
Na [V(CO)6]
Co2(CO)8 + 2Na
2Na[Co(CO)4]
❖ 金属从活泼金属中接受1个电子,形成单核阴离子络合物 ❖ 这些是活泼的反应中间体,可以用来合成σ-烃基和σ-酰基
络合物,也可以用来形成M-M键化合物。
THF
Fe(CO)5 + Na/Hg
OsO4 + 9CO 高温、高压 Os(CO)5 + 4CO2
b. H2还原:
2CoCO3 + 2H2 + 8CO
120-150℃ 高压
Co2(CO)8 + 2CO2 + 2H2O
c. 活泼金属还原:
VCl3 + Na +6CO
diglyme
1000℃ 200 atm
[Na(diglyme)2] [V(CO)6] 黄色
例:
Ni(CO)4 + PCl3 Fe(CO)5 + PPh3
Fe(CO)5 + 2PPh3 Cr(CO)6 + 3C6H6
Mo(CO)6 + 3C7H8
Ni(CO)3PCl3 + CO Fe(CO)4PPh3 + CO Fe(CO)3(PPh3)2 + 2CO
Cr(C6H6)3(CO)3 + 3CO Mo(C7H8)3(CO)3 + 3CO
➢ 能加强M-C键的因素,必然会削弱CO键,两者 相反。
2. 制备
(i)直接法
Ni + 4CO
常温常压
Ni(CO)4
10MPa Fe + 5CO
470K
Fe(CO)5
1MPa = 9.869 atm
高温高压
2Co + 8CO
Co2(CO)8
此法要求金属必须是新还原产品,处于非常活化状态。
(ii)还原羰基化
H3PO4 25 ℃
[V(CO)6] + Na
diglyme = 二乙二醇二甲醚或二甘醇二甲醚 CH3OCH2CH2OCH2CH2OCH3 diethyleneglyeoldimethylether glyme = 乙二醇二甲醚或甘醇二甲醚 CH3OCH2CH2OCH3 (DME) ethyleneglycoldimethylether
Mn2(CO)10 + H2 200 atm 200℃
2HMn(CO)5
4. 应用
(i)制备纯金属
Fe + 5CO 10 MPa 470K
Fe(CO)5
200℃
Fe(CO)5
Fe + 5CO (纯)
纯铁粉可作磁铁心,催化剂。
Ni/Co共生矿中制取高纯度镍粉: 同样条件下,Co不与CO反应,从而使之分离。
将CO与金属卤化物、硫化物或氧化物、盐类等在还原剂存 在下发生反应。还原剂除可以是CO外,还常用其他活泼金 属(如钠)、氢、以及三烷基铝等。
例如:
a. CO还原:
高温、高压
Re2O7 + 17CO
Re2(CO)10 + 7CO2
3OsO4 + 24CO 高温、高压 Os3(CO)12 + 12CO2
d. 格氏试剂还原:
(iii) 光照(紫外光照射下):
单核
2Fe(CO)5 u.v.
3Fe2(CO)9
Hale Waihona Puke u.v.2Os(CO)5 hv or
多核
2Fe2(CO)9 + CO 2Fe3(CO)12 + 3CO Os2(CO)9 + CO
3. 反应
(i)取代反应
❖ CO可为其他配体取代,如:PX3、PR3、P(OR)3、SR2、 NR3、OR2、RNC、C6H6、C7H8(降冰片二烯)等,它们 皆为电子对的给体,并且具有不同程度的反馈接受能力。
相关文档
最新文档