《平行线分线段成比例》ppt
《平行线分线段成比例》PPT课件 (共14张PPT)
7.(4
分)如图,AB∥CD,AD PPT模板:/moban/ PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: 语文课件:/kejian/yuw en/
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/ PPT课件:/kejian/ 数学课件:/kejian/shu xue/
14.(1)∵EF∥BD,∴AADE=AABF,又∵EF∥AC, ∴BBCE=ABFB,∴AADE+BBCE=AABF+ABFB=AABB=1
(2)∵EF∥AC,∴AECF=ABFB,又 EF∥BD, ∴BEDF =AABF,∴AECF +BEDF =BFA+BAF=1, ∴A1C+B1D=E1F
▱ 13.(1)四边形 BDEF 为
(2)∵EF∥AB,∴BCCF=ACCE,又∵DE∥BC, ∴ACCE=BADB,∴BADB=BCCF
【综合运用】 14.(20 分)如图,AC∥EF∥BD. (1)求证:AADE+BBCE=1;
(2)求证:A1C+B1D=E1F; (3)若 AC=3,EF=2.求 BD 的值.
A.ADDF =BCCE
B.BCCE=ADDF
C.CEDF =BBCE
D.CEDF =AADF
2.(4 分)在△ABC 中,D,E 分别是 AB,AC 上的点,且
DE∥BC,则下列结论不正确的是( D)
A.ADDB=AECE
B.ADBB=AECC
C.AADB=AACE
D.ADDB=ABCC
3.(4分)如图,已知直线a∥b∥c,直线m,n与a,b,c分别交 于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF= (B )
《平行线分线段成比例》课件
A
A
ED
A
D
EB
C
B
CD
EB
C
DE // BC
AD AE DB EC
上 下
=
上 下
AD AE AB AC
上 全
=
上 全
BD CE AB AC
下 全
=
下 全
归纳总结
熟悉该定理及推论的几种基本图形
A
D
DA
A
D
B
E
BE
B
E
C DA
FC
F A
B
E
D
B
C
FE
C
F
C
D
A
B
C
E
典例精练
例:如图,在△ABC中,E,F分别是AB和AC上的 点,且EF∥BC.
A
解:(2) ∵ EF∥BC,
E
F
∴ —A—E = —AF—, AB AC
即
—160—=
—5—. AC
B
C
∴
AC
=
—25—, 3
∴ FC = 1—30.
当堂检测
1.如图,已知l1∥l2∥l3,下列比例式错误的是( )
A. —AC—= —BD— CE DF
B. A—C—= —BD— AE BF
C. CA—EE—=—DBF—F D. A—E—=—BD—
BF AC
AB
l1
C
D
l2
E
F
l3
当堂检测
2.如图,已知l1∥l2∥l3,下列比例式成立的是( )
A. A—D— =—CE— DF BC
B. AB—ED—= —ABFC— C. A—F—=—BE—
平行线分线段成比例ppt课件
2 3 2 3
=
=
1 2 1 2
,
2 3 1 3
1 2 1 2
,
2 3 1 3
=
=
1 2 1 2
,
1 3 1 3
1 2 1 3
,
1 3 2 3
=
=
1 2 1 3
,
1 3 2 3
1 3
.
2 3
=
1 3
C,D,E,F.
(1)如果AB=4,BC=8,EF=12,求DE的长;
解:∵直线l1∥l2∥l3,
4
∴ =
= =
8
1
1
1
.
∴DE=
EF= ×12=6.
2
2
2
图4-2-4
探
究
与
应
用
2
(2)如果AB= AC,DF=9,求EF的长.
5
2
解:∵AB= AC,
5
∴
=
2
.∴
5
=
究
与
应
用
应用二 利用平行线分线段成比例的基本事实的推论求
线段的长
例2 (教材典题)如图4-2-7,在△ABC中,E,F分别是AB和AC上
的点,且EF∥BC.
(1)如果AE=7,EB=5,FC=4,那么AF的长是多少?
解:∵EF=7,EB=5,FC=4,
·
∴AF=
课
堂
小
结
与
检
测
[本课时认知逻辑]
计算
实例
探究
计算或证明
平行线分线段成 图形变换
平行线分线段成比例课件(共23张PPT)
课时导入知识讲解随堂小测1.了解相似多边形和相似比的概念.2.会根据条件判断两个多边形是否为相似多边形(重点)3.掌握相似多边形的性质,能根据相似比进行相关的计算(难点)下图是一架梯子,由生活常识可以知道:AA 1,BB 1,CC 1,DD 1互相平行,且若AB=BC ,你能猜想出什么结果呢?A A 1BC DB 1C 1D 1A 1B 1=B 1C1如图,小方格的边长都是1,直线l1∥l2 ∥l3, 分别交直线m , n 于格点A1,A2,A3,B1,B2,B3 .(1)计算 与 ,与 , 与 的值,你有什么发现?3221A A A A 3221B B B B 3121A A A A 3121B B B B 3132A A A A 3132B B B B(2)将l2向下平移到如下图的位置,直线m,n 与直线l2的交点分别为A2,B2 . 你在问题(1)中发现的结论还成立吗?如果将l2平移到其他位置呢?(3)在平面上任意作三条平行线,用它们截两条直线,截得的线段成比例吗?两条直线被一组平行线所截,所得的对应线段成比例.知识点1 平行线分线段成比例的基本事实数学表达:如图,∵l3∥l4∥l5,∴….,,,DFEFACBCDFDEACABEFDEBCAB===两条直线被一组平行线所截,所得的对应线段成比例.知识点1 平行线分线段成比例的基本事实1.如何理解“对应线段”?2.“对应线段”成比例都有哪些表达形式?如图1,直线 a ∥b ∥c ,分别交直线 m ,n 于点 A 1,A 2,A 3,B 1,B 2,B 3 . 过点 A 1 作直线 n 的平行线,分别交直线 b ,c 于点 C 2,C 3 (如图2),图2中有哪些成比例线段?图1图 2做一做知识点2 成比例线段如图,直线a ∥b ∥ c ,由平行线分线段成比例的基本事实,我们可以得出图中对应成比例的线段.把直线 n 向左或向右任意平移,这些线段依然成比例.A1A 2b mB 1B 2B 3n a ( )A 2平行于三角形一边的直线与其他两边相交,截得的对应线段成比例.推论A 1A 2b cmB 1B 2B 3na ( )A 2直线 n 向左平移到 B 2 与A 2 重合的位置,说说新图形中有哪些成比例线段?刚刚所说的线段是否仍然成比例?例 如图,在△ABC 中,E ,F 分别是AB 和 AC 上的点,且 EF ∥BC . (1) 如果 AE =7,EB =5,FC =4,那么AF 的长是多少?ABCE F 解:(1)∵EF ∥BC ,∴∵ AE =7,EB =5,FC =4,∴=.AE AFEB FC⋅⨯==7428=.55AE FC AF EB例 如图,在△ABC 中,E ,F 分别是AB 和 AC 上的点,且 EF ∥BC . (2) 如果 AB =10,AE =6,AF =5,那么FC 的长是多少?ABCE F (2)∵EF ∥BC ,∴∵ AB =10, AE =6,AF =5,∴∴=.AE AFAB AC=.⋅⨯==1052563AB AF AC AE 25105.33FC AC AF =-=-=1.如图,在△ABC中,点D,E分别在边AB,BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=________.2.如图,DE ∥BC ,AD =4,DB =6,AE =3,则AC = ; FG ∥BC ,AF =4.5,则AG = .ABCE D FG7.563.如图,已知在△ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 上的点,DE ∥BC ,EF ∥AB .求证: . AD DEAB BC=证明:∵DE ∥BC ,EF ∥AB ,∴四边形DEFB 为平行四边形.∴DE =BF .∵DE ∥BC ,∴ ∵EF ∥AB ,∴ 又∵DE =BF ,∴ ∴ AD AEAB AC=.AE BFAC BC =.AE DE AC BC =.AD DEAB BC=两条直线被一组平行线所截,所得的对应线段成比例推论平行于三角形一边的直线与其他两边相交,截得的对应线段成比例.基本事实平行线分线段成比例1.从课后习题中选取;2.完成练习册本课时的习题。
《平行线分线段成比例》PPT课件
BE AE BF AF AB 1. BC AD BA AB AB
即 AE BE 1. AD BC
8.如图,在△ABC中,∠ACB=90°,∠B>∠A,点D为边AB的中 点,DE∥BC交AC于点E,CF∥BA交DE的延长线于点F.
求证:DE=EF.
证明:∵DE∥BC,∴ AD AE .
DB EC ∵点D为AB 的中点,∴AD=DB,即
归纳
平行于三角形一边的直线截其他两边(或两边的延长线), 所得的对应线段成比例.
1.数学表达式:如图,
∵DE∥BC,
∴
AD AE ,AD AE ,BD= CE . DB EC AB AC AB AC
2.要点精析:
(1)本推论实质是平行线分线段成比例的基本事实中一组平行线中
的一条过三角形一顶点,一条在三角形一边上的一种特殊情况.
知识点 3 平行线分线段成比例的基本事实推论2
平行于三角形的一边,并且和其他两边相交的直线,所 截得的三角形与原三角形的对应边成比例.
例3 如图,在△ABC中,EF∥BC,
则
AF AC
和EF 分别是( A )
A. 1 ,3 3
B. 1 ,6 3
C. 1 ,9 2
D.无法确定
AE 1 ,BC=9,
D. 2cm、3cm、4cm、6cm
2.两地实际距离是500 m,画在图上的距离是25 cm,若在此图上量得A、
B两地相距为40 cm,则A,B两地的实际距离是( A )
A. 800m
B. 8000m C. 32250cm
D. 3225m
3.如图,AD//BE//CF,直线l1、l2与这三条平行线分别交于点A、B、C和 点D、E、F.若AB=4.5,BC=3,EF=2,则DE的长度是( B )
平行线分线段成比例-(2)-PPT
A
几何语言表达:
∵DE∥BC,
D
E
AD AE , DB EC ,
DB CE AD AE
B
C
AD AB
AE , AC
DB CE . AB AC
注意:平行线等分线段定理推论的条件
(1)截线与三角形的两边(或两边的延长线)相交;
(2)截线平行于三角形的第三边;
运用平行线分线段成比例定理推论的三种基本图形:
A B C
几何语言表达:
A1 a a // b // c,
B1 b C1 c
直线l1交直线a,b,c于点A, B,C. 直线l2交直线a,b,c于点A1, B1,C1.
AB BC,
l1
l2 A1B1 B1C1.
注意:平行线等分线段定理的条件
相邻的两条平行线间的距离相等
一组平行线中相邻两条平行线间距离不相等,结论又如何呢?
B
C解得AC 5.4
注意:先把要求的线段作为比例式的第一项,再 根据条件列出合适的比例式.
例3 如图,△ABC中,点D,E,F分别在△ABC的边AB, BC,AC上,且DE//BC,DF//AC.
(1)求证:AE CF ; AC BC
(1)证明:∵DE//BC
A
AE AD ,
AC AB
又∵DF//AC
l1
l2
4.常见的线段对应关系有:
AB A1B1 , BC B1C1
上上 下 =下
BC B1C1 , AB A1B1
下下 上 =上
AB A1B1 , AC A1C1
上上 全 =全
BC B1C1 . AC A1C1
下下 全 =全
A B
C l1
湘教版九年级上册数学3.2《平行线分线段成比例》【 课件】 (共26张PPT)
BC
EF
(平行线分线段成比例定理)
L4 L5
A
D
L1
B
E
L2
C
F
L3
L4 L5 L1 L2 L3
L5L4 L1 L2 L3
L5 L4 L1 L2 L3
L5 L4 L1 L2
L3
L5 L4
A
L1
D
E
L2
B
C
L3
数学符号语言
DE // BC
D
AD AB
=
AE AC
ห้องสมุดไป่ตู้
B
A
E
C
L4 L5
A
第3章 · 图形的相似
平行线分线段成比例
导入新课
• 1、比例的基本性质是什么?还有其它什么性质? • 2、什么叫成比例线段?
导入新课
L4 L5
A
D
L1
B
E
L2
C
F
L3
新课学习
三条平行线截两条直线,所得的对应线段成比例.
定理的符号语言
L4 L5
L1//L2//L3
A
D
L1
B
E
AB = DE C
L2 F
D
L1
B
E
L2
C
F
L3
L4 L5 L1 L2 L3
L5L4 L1 L2 L3
L5 L4 L1 L2 L3
L5 L4 L1 L2
L3
L5 L4 L1 L2
L3
L5
L4
L1
L2
L3
L5
L4
E
D
L1
A
L2
平行线分线段成比例ppt
在两个相似三角形中,若一对对应边平行,则一对对应边上的对应高对应成比例,从而可以推出这两个三角形 相似。
02
平行线分线段成比例定理的 证明
定理的直接证明
准备知识
平行线的性质、等腰三角形的性质、三角形相似的定义。
证明过程
过任意一点作平行线,利用相似三角形的性质,证明分线段成比例。
定理证明方法
可以用梅涅劳斯定理或赛瓦定理证明该定理。
定理的历史背景
早期发现
平行线分线段成比例定理最早由希腊数学 家欧几里得在其著作《几何原本》中提出 并证明。
VS
后续发展
此后,该定理在欧洲文艺复兴时期得到了 重新发现和发展,并被广泛应用在实际问 题解决中。
定理的等价形式
平行线等比中项定理
若三条直线两两平行,则三条直线与第四条直线相交所得的三个交点连成的线段对应成比例,即若AC//BD, BC//AD, 则BD/AC=AD/BC。
谢谢您的观看
在科研方面,平行线分线段成比例定 理可以作为一个基础工具用于解决更 为复杂的问题。
对未来学习和研究者的寄语
对于未来的学习者,应该不断深入学习和研究,进一步探索 这个定理的各种应用和推广。
对于未来的研究者,应该注重研究这个定理与其他数学概念 的关联和拓展应用,为推动数学的发展做出更多贡献。
THANKS
定理的逆命题不成立
定理的逆命题并不总是成立。
例如,如果两条线段被一组平行线所截,截 得的对应线段成比例,但两条线段并不一定
平行。
06
总结
平行线分线段成比例定理的重要性和应用价值
01
02
03
平行线分线段成比例定理是平面几何 中一个基础而重要的定理,它揭示了 平行线与线段比例之间的关系。
《平行线分线段成比例定理》课件(新人教版A选修
通过建立坐标系,利用坐标点的位置关系和距离公式,推导出平行线分线段成比例的结 论。
详细描述
首先,建立坐标系,并设定一些关键点的坐标。然后,利用两点之间的距离公式计算线 段的长度,并根据平行线的性质确定这些线段之间的关系。最后,通过数学推导,我们
可以得出平行线分线段成比例的结论。
平行线分线段成比
证明方法二:利用向量分解
总结词
通过将线段向量的分解与平行线的性质相结合,推导出平行线分线段成比例的 结论。
详细描述
首先,将线段向量的起点设在一条平行线上,并根据平行线的性质将该向量分 解为两个部分。然后,证明这两部分向量与另一条平行线上的向量成比例。由 此,我们可以得出平行线分线段成比例的结论。
证明方法三:利用坐标几何
定理的图形表述
总结词:直观形象
详细描述:通过绘制两条平行线和一条横截线,将对应点连接形成线段,可以清晰地展示线段之间的比例关系。图形中应标 明各点的位置和线段的长度,以帮助理解。
定理的数学公式表述
总结词:严谨准确
详细描述:使用数学符号表示定理,设两平行线为AB和CD,横截线为EF,交点分别为A、B、C、D ,则有AB/BC = AD/CD,或者表示为:AB:BC = AD:CD。
与其他几何定理的交叉
该定理可以与其他几何定理结合使用,例如 与勾股定理、射影定理等结合,解决复杂的
几何问题。
在数学竞赛中的应用
要点一
解决几何证明题
在数学竞赛中,利用平行线分线段成比例定理可以证明一 些复杂的几何命题,例如关于三角形、四边形、多边形的 性质和定理。
要点二
构造特殊图形
利用该定理可以构造一些特殊的图形,例如等腰三角形、 黄金分割线等,这些图形在数学竞赛中常被用来解决一些 难题。
平行线分线段成比例定理教学课件
05
02
步骤2
根据相似三角形的性质,三角形ABC与三角 形EDC相似,所以有AB/BC = DE/EC。
04
步骤4
根据平行的性质,有骤5,得到AB/AD = BC/AC, 即AB/BC = AD/AC。
定理证明的实例应用
实例1
在梯形ABCD中,AB//CD,点E 在AB上,点F在BC上。如果 EF//AD,那么EF/AD = BF/BC。
数学模型初步建立
通过作图和演示,引导学生初步建立 数学模型。
介绍平行线分线段成比例定理的基本 概念和符号表示。
定理的猜想与验证
引导学生根据情境和模型进行猜想。 通过实例和证明,引导学生验证定理的正确性。
CHAPTER 02
平行线分线段成比例定理的证明
定理的陈述与证明思路
定理陈述
如果两条直线平行,那么任何一条直 线被这两条平行线所截得的两条线段 之比等于两条平行线被这条直线所截 得的两条线段之比。
平行线分线段成比例定理的拓展与 延伸
与其他数学定理的关联与结合
比例与等比定理
讲解如何利用平行线分线段成比例定理证明比例和等比定理,以及这些定理在 几何学中的应用。
勾股定理
介绍如何利用平行线分线段成比例定理证明勾股定理,以及该定理在三角函数 和空间几何中的应用。
在不同年级的教学拓展与延伸
初中教学
重点讲解平行线分线段成比例定理的证明和应用,结合实例 引导学生掌握该定理。
THANKS
[ 感谢观看 ]
判定相等
定理还可以用于判定两条 线段相等,通过比较对应 线段是否成比例来判定。
求解角度
在某些几何问题中,可以 使用该定理来求解角度的 大小,从而解决一些角度 问题。
《平行线分线段成比例的推论》PPT课件
精彩一题
解:∵EF∥BC, ∴AAEB=AAGD,AAEB=EBFC,∴EBFC=AADG, ∵AD=10,BC=8,DG=5, ∴E8F=101-0 5,∴EF=4.
精彩一题 14.(教材改编题)如图,D,E,F 分别是△ABC 的边 BC,AB,
AC 上的点,EF∥BC,AD 与 EF 相交于点 G, AD=10,BC=8. (2)在上述线段 EF 的平移过程中,设 DG=x, EF=y,试求 y 与 x 之间的函数关系式.
冀教版 九年级上
第二十五章 图形的相似
25.2 平行线分线段成比例 第2课时
平行线分线段成比例的推论
习题链接
提示:点击 进入习题
答案显示
1 成比例 2 C 3 C 4 B 5 对应边成比例
6A
7D
8C
9C
10 A
11 2∶3 12 见习题 13 见习题 14 见习题
课堂导练
1.平行于三角形一边的直线截其他两边(或两边的延长线),所得 的对应线段__成__比__例____.
课后训练 12.如图,D 是△ABC 的边 AB 上的点,DB=3AD,过点 D 作
DE∥BC 交 AC 于点 E.BE,CD 相交于点 F. (1)若 AE=2,则 EC=____6______;
【点拨】(1)∵DB=3AD,∴BADD=13. ∵DE∥BC,∴AEEC=BADD=13,即E2C=13. ∴EC=6.
1. 你虽然没有完整地回答问题,但你能大胆发言就是好样的!
此页为防盗标记页(下载后可删)
1、你的眼睛真亮,发现这么多问题! 2、能提出这么有价值的问题来,真了不起! 3、会提问的孩子,就是聪明的孩子! 4、这个问题很有价值,我们可以共同研究一下! 5、这种想法别具一格,令人耳目一新,请再说一遍好吗? 6、多么好的想法啊,你真是一个会想的孩子! 7、猜测是科学发现的前奏,你们已经迈出了精彩的一步! 8、没关系,大声地把自己的想法说出来,我知道你能行! 9、你真聪明!想出了这么妙的方法,真是个爱动脑筋的小朋友! 10、你又想出新方法了,真会动脑筋,能不能讲给大家听一听? 11、你的想法很独特,老师都佩服你! 12、你特别爱动脑筋,常常一鸣惊人,让大家禁不住要为你鼓掌喝彩! 13、你的发言给了我很大的启发,真谢谢你! 14、瞧瞧,谁是火眼金睛,发现得最多、最快? 15、你发现了这么重要的方法,老师为你感到骄傲! 16、你真爱动脑筋,老师就喜欢你思考的样子! 17、你的回答真是与众不同啊,很有创造性,老师特欣赏你这点! 18、××同学真聪明!想出了这么妙的方法,真是个爱动脑筋的同学! 19、你的思维很独特,你能具体说说自己的想法吗? 20、这么好的想法,为什么不大声地、自信地表达出来呢? 21、你有自己独特想法,真了不起! 22、你的办法真好!考虑的真全面! 23、你很会思考,真像一个小科学家! 24、老师很欣赏你实事求是的态度! 25、你的记录很有特色,可以获得“牛津奖”!
平行线分线段成比例定理课件
证明方法二:利用向量运算
总结词
通过向量运算,证明平行线分线段成 比例。
详细描述
首先,根据向量的加法性质,将线段 分解为与平行线平行的向量分量。然 后,利用向量的模长关系和向量平行 的性质,证明这些向量分量之间存在 比例关系。
证明方法三:利用坐标几何
总结词
通过坐标几何的方法,证明平行线分线段成比例。
2023
PART 04
平行线分线段成比例定理 的应用实例
REPORTING
实例一:解析几何中的应用
总结词
解析几何中的线段比例关系
详细描述
在解析几何中,平行线常常用于确定线段的比例关系。例如 ,在直线的平行移动过程中,线段的比例保持不变,这为解 决几何问题提供了重要的理论依据。
实例二:三角形中的比例关系
总结词
平行线间的面积比值关系是指,如果两条平行线被一条横截线所截,那么它们之间的面 积比值是相等的。
详细描述
假设有两条平行线$l_1$和$l_2$,它们被一条横截线$m$所截,形成了两个三角形 $triangle ABC$和$triangle CDE$。根据平行线分线段成比例定理,我们有
$frac{triangle ABC}{triangle CDE} = frac{AB}{CD}$。这意味着,如果$triangle ABC > triangle CDE$,则$AB > CD$,反之亦然。
总结词
三角形中的边长比例关系
VS
详细描述
在三角形中,通过平行线可以推导出边长 的比例关系。例如,在等腰三角形中,通 过底边上的平行线可以证明两腰之间的比 例关系,这对于证明某些三角形的性质和 定理非常有用。
实例三:建筑设计中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
55、人的一生没有一帆风顺的坦途。 当你面 对失败 而优柔 寡断, 当动摇 自信而 怨天尤 人,当 你错失 机遇而 自暴自 弃的时 候你是 否会思 考:我 的自信 心呢? 其实, 自信心 就在我 们的心 中。 56、失去金钱的人损失甚少,失去健 康的人 损失极 多,失 去勇气 的人损 失一切 。 57、暗自伤心,不如立即行动。
25.2 平行线分线段成比例
1.两条直线被一组平行线所截,截得的对应线段_成__比__例___.
2.平行于三角形一边的直线截其他两边(或两边的延长线),所 得的对应线段__成__比__例__.
3.平行于三角形的一边,并且和其他两边相交的直线,所截 得的三角形与原三角形的对应边_成__比__例_.
1.(4 分)如图,AB∥CD∥EF,那么下列结论正确的是( A )
A.7 B.7.5 C.8 D.8.5
4.(8 分)如图,在▱ABCD 中,AE=EB,AF=2,求 FC 的长.
在▱ABCD 中,AB=CD,AB∥CD,所以CADE=ACFF. 因为 AE=EB,所以 AE=12CD,所以 CF=2AF=4
5.(4 分)如图,在△ABC 中,点 D,E 分别在 AB,AC 边上,DE∥BC,
46、活在昨天的人失去过去,活在明 天的人 失去未 来,活 在今天 的人拥 有过去 和未来 。 47、你可以一无所有,但绝不能一无 是处。
48、通过辛勤工作获得财富才是人生 的大快 事。— —巴尔 扎克 49、相信自己能力的人,任何事情都 能够做 到。
50、有了坚定的意志,就等于给双脚 添了一 对翅膀 。—— 乔·贝利 51、每一种挫折或不利的突变,是带 着同样 或较大 的有利 的种子 。—— 爱默生 52、如果你还认为自己还年轻,还可 以蹉跎 岁月的 话,你 终将一 事无成 ,老来 叹息。
求证:EA2=EF·EG.
12.由 AB∥GD,得 EAGE=EBDE,由 AD∥BF, 得EBDE=AEEF,∴EAGE=AEEF, ∴AE2=EF·EG
13.(12 分)如图,△ABC 中,DE∥BC,EF∥AB. (1)试判断四边形 BDEF 的形状; (2)求证:BADB=BCCF.
▱ 13.(1)四边形 BDEF 为
若 AD∶AB=3∶4,AE=6,则 AC 等于( D )
A.3
B.4
C.6
D.8
6.(4 分)如图,点 F 是▱ABCD 的边 CD 上一点,直线 BF 交 AD 的
延长线于点 E,则下列结论错误的是( C )
A.EEAD=ADBF
B.DBCE=FEBF
C.BDCE=BBEF
D.BBEF=BACE
7.(4 分)如图,AB∥CD,AD 与 BC 相交于点 O,那么在下
列比例式中,正确的是( C )
A.ACDB=OAAD B.OOAD=OBCB C.ACDB=OOBC D.ABCD=OODB
8.(8 分)如图,在△ABC 中,已知 DE∥BC,AD=4,DB=8, DE=3.
(1)求AADB的值;(2)求 BC 的长
A.12 m
B.10 m
C.8 m
D.7 m
11.(6分)如图,上体育课时,甲、乙两名同学分别站在C,D的 位置时,乙的影子恰好在甲的影子里边,已知甲、乙同学相距1 米.甲身高1.8米,乙身高1.5米,则甲的 影长是____6____米.
12.(10 分)如图,过平行四边形 ABCD 的一个顶点 A 作一直线 分别交对角线 BD、边 BC、边 DC 的延长线于点 E,F,G.
1 (1)3 (2)9
9.如图,直线 l1∥l2,AF∶FB=2∶3,BC∶CD=2∶1,
则 AE∶EBiblioteka 为( C )A.5∶2 C.2∶1
B.4∶1 D.3∶2
10.如图,小东用长 3.2 m 的竹竿做测量工具测量学校旗杆的高度,
移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,
竹竿与这一点相距 8 m,与旗杆相距 22 m,则旗杆的高为( A )
(2)∵EF∥AC,∴AECF=ABFB,又 EF∥BD, ∴BEDF =AABF,∴AECF +BEDF =BFA+BAF=1, ∴A1C+B1D=E1F
(3)由(2)可得 BD=6
3、后悔是崇高的理想就像生长在高山 上的鲜 花。如 果要搞 下它, 勤奋才 能是攀 登的绳 索。 44、幸运之神的降临,往往只是因为 你多看 了一眼 ,多想 了一下 ,多走 了一步 。 45、对待生活中的每一天若都像生命 中的最 后一天 去对待 ,人生 定会更 精彩。
58、当你快乐时,你要想,这快乐不 是永恒 的。当 你痛苦 时,你 要想, 这痛苦 也不是 永恒的 。 59、抱最大的希望,为最大的努力, 做最坏 的打算 。 60、成功的关键在于相信自己有成功 的能力 。
61、你既然期望辉煌伟大的一生,那 么就应 该从今 天起, 以毫不 动摇的 决心和 坚定不 移的信 念,凭 自己的 智慧和 毅力, 去创造 你和人 类的快 乐。 62、能够岿然不动,坚持正见,度过 难关的 人是不 多的。 ——雨 果一种 耗费精 神的情 绪,后 悔造物 之前, 必先造 人。 43、富人靠资本赚钱,穷人靠知识致 富。 44、顾客后还有顾客,服务的开始才 是销售 的开始 。
A.ADDF =BCCE
B.BCCE=ADDF
C.CEDF =BBCE
D.CEDF =AADF
2.(4 分)在△ABC 中,D,E 分别是 AB,AC 上的点,且
DE∥BC,则下列结论不正确的是( D)
A.ADDB=AECE
B.ADBB=AECC
C.AADB=AACE
D.ADDB=ABCC
3.(4分)如图,已知直线a∥b∥c,直线m,n与a,b,c分别交 于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF=( )B
(2)∵EF∥AB,∴BCCF=ACCE,又∵DE∥BC, ∴ACCE=BADB,∴BADB=BCCF
【综合运用】 14.(20 分)如图,AC∥EF∥BD. (1)求证:AADE+BBCE=1;
(2)求证:A1C+B1D=E1F; (3)若 AC=3,EF=2.求 BD 的值.
14.(1)∵EF∥BD,∴AADE=AABF,又∵EF∥AC, ∴BBCE=ABFB,∴AADE+BBCE=AABF+ABFB=AABB=1