2019-2020学年浙江省宁波市余姚市八年级(上)期末数学试卷

合集下载

人教版初中数学八年级上册期末测试题(2019-2020学年山东省临沂市河东区

人教版初中数学八年级上册期末测试题(2019-2020学年山东省临沂市河东区

2019-2020学年山东省临沂市河东区八年级(上)期末数学试卷一.选择题(共14小题)1.(3分)下列轴对称图形中,对称轴的数量小于3的是()A.B.C.D.2.(3分)若分式有意义,则x的取值范围是()A.x>1B.x<1C.x≠1D.x≠03.(3分)下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+14.(3分)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°5.(3分)如图,AB平分∠DAC,要用SAS条件确定△ABC≌△ABD,还需要有条件()A.DB=CB B.AB=AB C.AD=AC D.∠D=∠C 6.(3分)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°7.(3分)多项式12ab3c+8a3b的各项公因式是()A.4ab2B.4abc C.2ab2D.4ab8.(3分)化简的结果是()A.x﹣2B.C.D.x+29.(3分)若4x2+axy+25y2是一个完全平方式,则a=()A.20B.﹣20C.±20D.±1010.(3分)小红同学误将点A的横纵坐标次序颠倒,写成A(a,b),另一学生误将点B的坐标写成关于y轴对称点的坐标,写成B(﹣b,﹣a);则A,B两点原来的位置关系是()A.关于x轴对称B.关于y轴对称C.A和B重合D.以上都不对11.(3分)如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b212.(3分)某商厦进货员预测一种应季衬衫能够畅销市场,就用10000元购进这种衬衫,面市后果然供不应求,商厦又用22000元购进了第二批这种衬衫,所购数量是第一批购进量的2倍.但单价贵了4元,求这两批衬衫的购进单价,若设第一批衬衫购进单价为x元,则所列方程正确的是()A.B.C.D.13.(3分)如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CDC.AD=AE D.AE=CE14.(3分)如图,已知点A(2,3)和点B(4,1),在x轴或y轴上有一点P,且点P到点A和点B的距离相等,则点P的坐标为()A.(1,0)或(0,﹣1)B.(﹣1,0)或(0,1)C.(0,3)或(4,0)D.(2,0)或(0,1)二.填空题(共5小题)15.(3分)计算:()﹣1+(1﹣)0=.16.(3分)分式的计算结果是.17.(3分)小刚在解分式方程﹣2=时,处被污染看不清,小明告诉他这里是一个与x无关的常数,且这道题的正确答案是:此方程无解,请你帮小刚猜测一下处的数应是.18.(3分)如图,△ABC中,∠ACB=90°,∠B=30°,AC=4cm,P为BC边的垂直平分线DE上一个动点,则△ACP的周长最小值为cm.19.(3分)如图,点B是线段AC的中点,过点C的射线CE与AC成60°的角,点P为射线CE上一动点,给出以下四个结论:①当AP⊥CE,垂足为P时,∠APB=30°;②当CP=AC时,∠APB=30°;③在射线CE上,使△APC为直角三角形的点P只有1个;④在射线CE上,使△APC为等腰三角形的点P只有1个;其中正确结论的序号是.三.计算题(共3小题)20.计算:(1)a(a+b)﹣b(a﹣b);(2)(x﹣2y)2﹣(x﹣y)(x+y)﹣2y221.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy3.22.先化简,再求值:﹣,其中x=﹣2.三.解答题(共4小题)23.如图.(1)在网格中画出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(3)在y轴上确定一点P,使P A+PB最短.(只需作图保留作图痕迹)24.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP =CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.25.列方程(组)解应用题:为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?26.如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系,请直接写出结论;②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.2019-2020学年山东省临沂市河东区八年级(上)期末数学试卷参考答案与试题解析一.选择题(共14小题)1.(3分)下列轴对称图形中,对称轴的数量小于3的是()A.B.C.D.【分析】根据轴对称图形的概念分别确定出各选项图形的对称轴的条数,然后选择即可.【解答】解:A、有4条对称轴,故本选项不符合题意;B、有6条对称轴,故本选项不符合题意;C、有4条对称轴,故本选项不符合题意;D、有2条对称轴,故本选项符合题意.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)若分式有意义,则x的取值范围是()A.x>1B.x<1C.x≠1D.x≠0【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意得:x﹣1≠0,解得:x≠1.故选:C.【点评】本题考查的知识点为:分式有意义,分母不为0.3.(3分)下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4C.(﹣a2)2=a4D.(a+1)2=a2+1【分析】根据同底数幂相乘判断A,根据合并同类项法则判断B,根据积的乘方与幂的乘方判断C,根据完全平方公式判断D.【解答】解:A、a2•a2=a4,故此选项错误;B、a2+a2=2a2,故此选项错误;C、(﹣a2)2=a4,故此选项正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.【点评】本题主要考查了幂的运算、合并同类项法则及完全平方公式,熟练掌握其法则是解题的关键.4.(3分)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°【分析】根据三角形外角性质求出∠ACD,根据角平分线定义求出即可.【解答】解:∵∠A=60°,∠B=40°,∴∠ACD=∠A+∠B=100°,∵CE平分∠ACD,∴∠ECD=∠ACD=50°,故选:C.【点评】本题考查了角平分线定义和三角形外角性质,能熟记三角形外角性质的内容是解此题的关键.5.(3分)如图,AB平分∠DAC,要用SAS条件确定△ABC≌△ABD,还需要有条件()A.DB=CB B.AB=AB C.AD=AC D.∠D=∠C【分析】根据角平分线得出∠CAB=∠DAB,隐含条件AB=AB,根据全等三角形的判定定理判断即可.【解答】解:∵AB平分∠DAC,∴∠CAB=∠DAB,A、根据DB=CB,BA=BA,∠CAB=∠DAB不能推出两三角形全等,故本选项错误;B、根据BA=BA,∠CAB=∠DAB不能推出两三角形全等,故本选项错误;C、∵在△CAB和△DAB中,∴△CAB≌△DAB(SAS),故本选项正确;D、根据BA=BA,∠CAB=∠DAB,∠D=∠C,根据AAS可证△CAB≌△DAB,根据本选项错误;故选:C.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.6.(3分)如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为()A.30°B.45°C.50°D.75°【分析】根据三角形的内角和定理,求出∠C,再根据线段垂直平分线的性质,推得∠A =∠ABD=30°,由外角的性质求出∠BDC的度数,从而得出∠CBD=45°.【解答】解:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选:B.【点评】此题主要考查线段的垂直平分线的性质和等腰三角形的性质;利用三角形外角的性质求得求得∠BDC=60°是解答本题的关键.本题的解法很多,用底角75°﹣30°更简单些.7.(3分)多项式12ab3c+8a3b的各项公因式是()A.4ab2B.4abc C.2ab2D.4ab【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.【解答】解:12ab3c+8a3b=4ab(3b2c+2a2),4ab是公因式,故选:D.【点评】此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.8.(3分)化简的结果是()A.x﹣2B.C.D.x+2【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【解答】解:原式=﹣===x+2.故选:D.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.9.(3分)若4x2+axy+25y2是一个完全平方式,则a=()A.20B.﹣20C.±20D.±10【分析】根据这里首末两项是2x和5y这两个数的平方,那么中间一项为加上或减去2x 和5y乘积的2倍,即可得出a的值.【解答】解:∵4x2+axy+25y2是一个完全平方式,∴(2x±5y)2=4x2±20xy+25y2,∴a=±20,故选:C.【点评】此题主要考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.10.(3分)小红同学误将点A的横纵坐标次序颠倒,写成A(a,b),另一学生误将点B的坐标写成关于y轴对称点的坐标,写成B(﹣b,﹣a);则A,B两点原来的位置关系是()A.关于x轴对称B.关于y轴对称C.A和B重合D.以上都不对【分析】根据题意表示出A、B的正确坐标,再根据坐标的关系确定A,B两点原来的位置关系.【解答】解:∵小红同学误将点A的横纵坐标次序颠倒,写成A(a,b),∴A点的正确坐标为(b,a),∵另一学生误将点B的坐标写成关于y轴对称点的坐标,写成B(﹣b,﹣a),∴B点的正确坐标为(b,﹣a),∴A,B两点原来的位置关系是关于x轴对称,故选:A.【点评】此题主要考查了关于x轴、y轴对称的点的坐标,关键是掌握:关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.11.(3分)如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角轴剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2【分析】先求出正方形的边长,继而得出面积,然后根据空白部分的面积=正方形的面积﹣矩形的面积即可得出答案.【解答】解:由题意可得,正方形的边长为(a+b),故正方形的面积为(a+b)2,又∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2﹣4ab=(a﹣b)2.故选:C.【点评】此题考查了完全平方公式的几何背景,求出正方形的边长是解答本题的关键,难度一般.12.(3分)某商厦进货员预测一种应季衬衫能够畅销市场,就用10000元购进这种衬衫,面市后果然供不应求,商厦又用22000元购进了第二批这种衬衫,所购数量是第一批购进量的2倍.但单价贵了4元,求这两批衬衫的购进单价,若设第一批衬衫购进单价为x 元,则所列方程正确的是()A.B.C.D.【分析】设第一批衬衫购进单价为x元,则购进第二批这种衬衫是(x+4)元,根据第二批所购数量是第一批购进数量的2倍,列出方程即可.【解答】解:设第一批衬衫购进单价为x元,则购进第二批这种衬衫是(x+4)元,依题意有:2×=.故选:A.【点评】本题考查了分式方程的应用,弄清题意并找出题中的数量关系并列出方程是解题的关键.13.(3分)如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CDC.AD=AE D.AE=CE【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【解答】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,所以,结论正确的是D选项.故选:D.【点评】本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键.14.(3分)如图,已知点A(2,3)和点B(4,1),在x轴或y轴上有一点P,且点P到点A和点B的距离相等,则点P的坐标为()A.(1,0)或(0,﹣1)B.(﹣1,0)或(0,1)C.(0,3)或(4,0)D.(2,0)或(0,1)【分析】利用两点间的距离公式可得结果.【解答】解:设在x轴有一点P(x,0),则有(x﹣2)2+32=(x﹣4)2+1,解得,x=1,∴P(1,0);设在y轴有一点P(0,y),则有22+(y﹣3)2=42+(y﹣1)2解得,y=﹣1,∴P(0,﹣1)故选:A.【点评】本题主要考查了两点间的距离公式,熟记公式和坐标轴上点的特点是解答此题的关键.二.填空题(共5小题)15.(3分)计算:()﹣1+(1﹣)0=3.【分析】本题涉及负整数指数幂、零指数幂的考点,在计算时,针对每个考点分别计算.【解答】解:原式=2+1=3.故答案为:3.【点评】本题考查了整数指数幂、零指数幂的考点,负整数指数幂:a﹣p=(a≠0,p 为正整数);零指数幂:a0=1(a≠0).16.(3分)分式的计算结果是.【分析】先通分,再把分子相加减即可.【解答】解:原式=+==.故答案为:.【点评】本题考查的是分式的加减法,在解答此类问题时要注意通分及约分的灵活应用.17.(3分)小刚在解分式方程﹣2=时,处被污染看不清,小明告诉他这里是一个与x无关的常数,且这道题的正确答案是:此方程无解,请你帮小刚猜测一下处的数应是1.【分析】先设=y,得出﹣2=,再去分母x﹣2﹣2(x﹣3)=y,最后根据此方程无解时x=3,再代入计算即可.【解答】解:设=y,则原方程可变形为:﹣2=,去分母得:x﹣2﹣2(x﹣3)=y,∵此方程无解,∴x=3,∴3﹣2﹣2×(3﹣3)=y,∴y=1;∴处的数应是1.故答案为:1.【点评】此题考查了分式方程的解,关键是求出分式方程无解时x的值,用到的知识点是解分式方程的步骤,是一道基础题.18.(3分)如图,△ABC中,∠ACB=90°,∠B=30°,AC=4cm,P为BC边的垂直平分线DE上一个动点,则△ACP的周长最小值为12cm.【分析】因为BC的垂直平分线为DE,所以点C和点B关于直线DE对称,所以当点动点P和E重合时则△ACP的周长最小值,再结合题目的已知条件求出AB的长即可.【解答】解:∵P为BC边的垂直平分线DE上一个动点,∴点C和点B关于直线DE对称,∴当点动点P和E重合时则△ACP的周长最小值,∵∠ACB=90°,∠B=30°,AC=4cm,∴AB=2AC=8cm,∵AP+CP=AP+BP=AB=8cm,∴△ACP的周长最小值=AC+AB=12cm,故答案为:12.【点评】本题考查了轴对称﹣最短路线的问题以及垂直平分线的性质,正确确定P点的位置是解题的关键,确定点P的位置这类题在课本中有原题,因此加强课本题目的训练至关重要.19.(3分)如图,点B是线段AC的中点,过点C的射线CE与AC成60°的角,点P为射线CE上一动点,给出以下四个结论:①当AP⊥CE,垂足为P时,∠APB=30°;②当CP=AC时,∠APB=30°;③在射线CE上,使△APC为直角三角形的点P只有1个;④在射线CE上,使△APC为等腰三角形的点P只有1个;其中正确结论的序号是①②④.【分析】根据等腰三角形的性质,等边三角形的性质,直角三角形的性质判断.【解答】解:∵当AP⊥CE,∠C=60°,∴∠P AC=30°,∵B是线段AC的中点,∴AB=PB,∴∠APB=∠P AC=30°,故①正确;当CP=AC时,∠C=60°,∴三角形APC为等边三角形,∵B是线段AC的中点,∴∠APB=∠CPB=30°,故②正确;在射线CE上,使△APC为直角三角形的点P有2个,一个是∠APC=90°,另一个是∠P AC=90°时;故③错误;在射线CE上,使△APC为等腰三角形的点P有1个,使AC=PC=AP,故④正确;故答案为①②④.【点评】本题考查了等腰三角形的性质,等边三角形的性质,直角三角形的性质,解题的关键是熟练掌握它们的性质.三.计算题(共3小题)20.计算:(1)a(a+b)﹣b(a﹣b);(2)(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2【分析】(1)首先计算乘法,然后再合并同类项即可;(2)先算完全平方和乘法,再去括号合并同类项即可.【解答】解:(1)原式=a2+ab﹣ab+b2=a2+b2;(2)原式=x2﹣4xy+4y2﹣(x2﹣y2)﹣2y2,=x2﹣4xy+4y2﹣x2+y2﹣2y2,=﹣4xy+3y2.【点评】此题主要考查了整式的混合运算,关键是掌握计算法则和计算顺序.21.分解因式:(1)9ax2﹣ay2;(2)2x3y+4x2y2+2xy3.【分析】根据因式分解点的方法即可求出答案.【解答】解:(1)原式=a(9x2﹣y2)=a(3x+y)(3x﹣y)(2)原式=2xy(x2+2xy+y2)=2xy(x+y)2【点评】本题考查因式分解,解题的关键是熟练运用因式分解的方法,本题属于基础题型.22.先化简,再求值:﹣,其中x=﹣2.【分析】根据分式的减法可以化简题目中的式子,然后将x的值代入即可解答本题.【解答】解:﹣===,当x=﹣2时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.三.解答题(共4小题)23.如图.(1)在网格中画出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(3)在y轴上确定一点P,使P A+PB最短.(只需作图保留作图痕迹)【分析】(1)分别作出点A、B、C关于y轴对称的点,然后顺次连接即可;(2)根据对称的性质写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(2)作出点C关于y轴的对称点,然后连接AC1,与y轴的交点即为点P.【解答】解:(1)如图所示:(2)A2(﹣3,﹣2),B2(﹣4,3),C2(﹣1,1);(3)连结AB1或BA1交y轴于点P,则点P即为所求.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称图形的作法及性质是解答此题的关键.24.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP =CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.【分析】(1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;(2)根据全等三角形的性质得到AP=AQ,再证∠P AQ=60°,从而得出△APQ是等边三角形.【解答】证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠P AQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证△ABP≌△ACQ是解题的关键.25.列方程(组)解应用题:为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120台,购买笔记本电脑用了7.2万元,购买台式电脑用了24万元,已知笔记本电脑单价是台式电脑单价的1.5倍,那么笔记本电脑和台式电脑的单价各是多少?【分析】设台式电脑的单价是x元,则笔记本电脑的单价为1.5x元,利用购买笔记本电脑和购买台式电脑的台数和列方程+=120,然后解分式方程即可.【解答】解:设台式电脑的单价是x元,则笔记本电脑的单价为1.5x元,根据题意得+=120,解得x=2400,经检验x=2400是原方程的解,当x=2400时,1.5x=3600.答:笔记本电脑和台式电脑的单价分别为3600元和2400元.【点评】本题考查了分式方程的应用:列分式方程解应用题的一般步骤:设、列、解、验、答.26.如图1,在△ABC中,AE⊥BC于E,AE=BE,D是AE上的一点,且DE=CE,连接BD,CD.(1)试判断BD与AC的位置关系和数量关系,并说明理由;(2)如图2,若将△DCE绕点E旋转一定的角度后,试判断BD与AC的位置关系和数量关系是否发生变化,并说明理由;(3)如图3,若将(2)中的等腰直角三角形都换成等边三角形,其他条件不变.①试猜想BD与AC的数量关系,请直接写出结论;②你能求出BD与AC的夹角度数吗?如果能,请直接写出夹角度数;如果不能,请说明理由.【分析】(1)延长BD交AC于F,求出∠AEB=∠AEC=90°,证出△BED≌△AEC,推出BD=AC,∠DBE=∠CAE,根据∠EBD+∠BDE=90°推出∠ADF+∠CAE=90°,求出∠AFD=90°即可;(2)求出∠BED=∠AEC,证出△BED≌△AEC,推出BD=AC,∠BDE=∠ACE,根据∠ACE+∠EOC=90°求出∠BDE+∠DOF=90°,求出∠DFO=90°即可;(3))①如图3中,结论:BD=AC,只要证明△BED≌△AEC即可;②求出∠BED=∠AEC,证出△BED≌△AEC,推出∠BDE=∠ACE,根据三角形内角和定理求出∠DFC即可.【解答】解:(1)BD=AC,BD⊥AC,理由是:延长BD交AC于F.∵AE⊥BC,∴∠AEB=∠AEC=90°,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC,∠DBE=∠CAE,∵∠BED=90°,∴∠EBD+∠BDE=90°,∵∠BDE=∠ADF,∴∠ADF+∠CAE=90°,∴∠AFD=180°﹣90°=90°,∴BD⊥AC;(2)不发生变化.理由:∵∠BEA=∠DEC=90°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC,∠BDE=∠ACE,∵∠DEC=90°,∴∠ACE+∠EOC=90°,∵∠EOC=∠DOF,∴∠BDE+∠DOF=90°,∴∠DFO=180°﹣90°=90°,∴BD⊥AC;(3)①如图3中,结论:BD=AC,理由是:∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴BD=AC.②能.∵△ABE和△DEC是等边三角形,∴AE=BE,DE=EC,∠EDC=∠DCE=60°,∠BEA=∠DEC=60°,∴∠BEA+∠AED=∠DEC+∠AED,∴∠BED=∠AEC,在△BED和△AEC中,,∴△BED≌△AEC,∴∠BDE=∠ACE,∴∠DFC=180°﹣(∠BDE+∠EDC+∠DCF)=180°﹣(∠ACE+∠EDC+∠DCF)=180°﹣(60°+60°)=60°,即BD与AC所成的角的度数为60°.【点评】本题考查了等边三角形性质,等腰直角三角形的性质,全等三角形的性质和判定的应用,主要考查了学生的推理能力.。

2019-2020学年浙江省宁波市奉化区锦屏协作区八年级(下)期中数学试卷-答案及解析

2019-2020学年浙江省宁波市奉化区锦屏协作区八年级(下)期中数学试卷-答案及解析

2019-2020学年浙江省宁波市奉化区锦屏协作区八年级(下)期中数学试卷一.选择题:(本题共12小题,每小题3分,共36分)1.(3分)(2021•武汉模拟)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.(3分)(2019秋•东台市期末)下列方程是一元二次方程的是()A.﹣6x+2=0B.2x2﹣y+1=0C.x2+2x=0D.+x=23.(3分)(2013•黔西南州)已知▱ABCD中,∠A+∠C=200°,则∠B的度数是()A.100°B.160°C.80°D.60°4.(3分)(2020秋•梁园区期末)若n边形的内角和等于外角和的3倍,则边数n为()A.n=6B.n=7C.n=8D.n=95.(3分)(2019•铜仁市)一元二次方程4x2﹣2x﹣1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根6.(3分)(2020春•鄞州区期中)将方程x2﹣6x+1=0配方后,原方程变形为()A.(x﹣3)2=8B.(x﹣3)2=﹣8C.(x﹣3)2=9D.(x﹣3)2=﹣9 7.(3分)(2020秋•晋州市期中)若数据2,x,4,8的平均数是4,则这组数据的中位数和众数是()A.2和3B.3和2C.2和2D.2和48.(3分)(2020春•薛城区期末)已知△ABC中,AB=AC,求证:∠B<90°,下面写出运用反证法证明这个命题的四个步骤:①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾②因此假设不成立.∴∠B<90°③假设在△ABC中,∠B≥90°④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.这四个步骤正确的顺序应是()A.④③①②B.③④②①C.①②③④D.③④①②9.(3分)(2019•新疆)在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.设有x个队参赛,根据题意,可列方程为()A.x(x﹣1)=36B.x(x+1)=36C.x(x﹣1)=36D.x(x+1)=3610.(3分)(2020春•奉化区期中)我们把形如(a,b为有理数,为最简二次根式)的数叫做型无理数,如是型无理数,则是()A.型无理数B.型无理数C.型无理数D.型无理数11.(3分)(2020春•庐江县期末)如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为()A.1B.C.D.12.(3分)(2020春•奉化区期中)如图,▱ABCD的对角线AC、BD交于点O,AE平分BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①AE=CE;②S△ABC=AB•AC;③S△ABE=2S△ACE;④OE=BC,成立的个数有()A.1个B.2个C.3个D.4二.填空题(本题共6小题,每小题3分,共18分)13.(3分)(2019•锦州)在函数y=中,自变量x的取值范围是.14.(3分)(2014秋•清河区校级期末)写出一个有一根为2的一元二次方程是.15.(3分)(2019•郴州)如图是甲、乙两人6次投篮测试(每次投篮10个)成绩的统计图,甲、乙两人测试成绩的方差分别记作s甲2、s乙2,则s甲2s乙2.(填“>”,“=”或“<”)16.(3分)(2019春•天台县期末)如图,E是▱ABCD边BC上一点,连接AE,并延长AE 与DC的延长线交于点F,若AB=AE,∠F=50°,则∠D=°.17.(3分)(2020春•鄞州区期中)如图,某小区规划在一个长34m、宽22m的矩形ABCD 上,修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为100m2,那么通道的宽应设计成m.18.(3分)(2020春•奉化区期中)如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=4,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=.三.解答题(共6题,共66分)19.(8分)(2020春•奉化区期中)(1)(2)20.(8分)(2020春•奉化区期中)选用适当的方法解下列方程.(1)x2﹣4x﹣3=0(2)5x(x+1)=2(x+1)21.(8分)(2016秋•澄海区期末)已知关于的方程x2+2x+m﹣2=0.(1)若该方程有两个不相等的实数根,求实数m的取值范围;(2)当该方程的一个根为1时,求m的值及方程的另一根.22.(10分)(2020•和平区三模)我校九年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(Ⅰ)本次抽取到的学生人数为,图2中m的值为;(Ⅱ)求出本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计我校九年级模拟模拟体测中得12分的学生约有多少人?23.(10分)(2020春•奉化区期中)如图,在△ABC中,点D是BC边的中点,点E,F分别在AC,AB上,且DE∥AB,EF∥BC.(1)求证:CD=EF;(2)已知∠ABC=60°,连接BE,若BE平分∠ABC,CD=6,求四边形BDEF的周长.24.(10分)(2018•盐城)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?25.(12分)(2020春•鄞州区期中)如图,在▱ABCD中,对角线AC,BD相交于点O,AB ⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动,速度为1cm/s,连接PO并延长交BC于点Q.设运动时间为t(s)(0<t<5)(1)当t为何值时,四边形ABQP是平行四边形?(2)当t=3时四边形OQCD的面积为多少?(3)是否存在t的值,使△AQP为等腰三角形?若存在,请直接写出t的值;若不存在,请说明理由.四.填空(每小题5分,共15分)26.(5分)(2020春•奉化区期中)若a4+b4=a2﹣2a2b2+b2+20,则a2+b2=.27.(5分)(2020春•西市区期末)如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有次.28.(5分)(2020秋•金乡县期中)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点O出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B 成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2020的坐标为.五.解答题(15分)29.(15分)(2020春•奉化区期中)在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC边上一点,且DA=DB,O是AB中点,CE是△BCD中线.(1)如图1,连接OC,请直接写出∠OCE与∠OAC的数量关系;(2)M是射线EC上一个动点,在射线OM右侧作∠MON交射线CA于点N,且∠MON =∠ADB.①如图2,猜想并证明线段OM与ON之间的数量关系;②若∠BAC=30°,∠AON=15°,BC=m时,请直接写出线段ME的长度(用含m的代数式表示).2019-2020学年浙江省宁波市奉化区锦屏协作区八年级(下)期中数学试卷参考答案与试题解析一.选择题:(本题共12小题,每小题3分,共36分)1.【解答】解:A.此图案不是轴对称图形,是中心对称图形,不符合题意;B.此图案是轴对称图形,也是中心对称图形,符合题意;C.此图案是轴对称图形,不是中心对称图形,不符合题意;D.此图案是轴对称图形,不是中心对称图形,不符合题意;故选:B.2.【解答】解:A、是一元一次方程,故A不符合题意;B、是二元二次方程,故B不符合题意;C、是一元二次方程,故C符合题意;D、是分式方程,故D不符合题意;故选:C.3.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,∵∠A+∠C=200°,∴∠A=100°,∴∠B=180°﹣∠A=80°.故选:C.4.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.5.【解答】解:∵△=(﹣2)2﹣4×4×(﹣1)=20>0,∴一元二次方程4x2﹣2x﹣1=0有两个不相等的实数根.故选:B.6.【解答】解:x2﹣6x+1=0,x2﹣6x=﹣1,x2﹣6x+9=﹣1+9,(x﹣3)2=8,故选:A.7.【解答】解:∵数据2,x,4,8的平均数是4,∴这组数的平均数为=4,解得:x=2;所以这组数据是:2,2,4,8,则中位数是=3,∵2在这组数据中出现2次,出现的次数最多,∴众数是2;故选:B.8.【解答】解:运用反证法证明这个命题的四个步骤:1、假设在△ABC中,∠B≥90°,2、由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°,3、∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾,4、因此假设不成立.∴∠B<90°,故选:D.9.【解答】解:设有x个队参赛,根据题意,可列方程为:x(x﹣1)=36,故选:A.10.【解答】解:=2+2+6=4+8,所以是型无理数.故选:B.11.【解答】解:∵AD是∠BAC的平分线,∴∠FAG=∠FAC,∵CG⊥AD,∴∠AFG=∠AFC=90°,∵AF=AF,∴△AFG≌△AFC(ASA),∴FG=FC,AG=AC=3,∴F是CG的中点,∵AB=4,AC=3,∴BG=1,∵AE是△ABC中线,∴BE=CE,∴EF为△CBG的中位线,∴EF=BG=,故选:D.12.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∠AEB=60°,∵AB=BC,∴AE=BE=BC,∴AE=CE,故①正确;∴∠EAC=∠ACE=30°∴∠BAC=90°,=AB•AC,故②错误;∴S△ABC∵BE=EC,∴E为BC中点,=S△ACE,故③错误;∴S△ABE∵四边形ABCD是平行四边形,∴AC=CO,∵AE=CE,∴EO⊥AC,∵∠ACE=30°,∴EO=EC,∵EC=AB,∴OE=BC,故④正确;故正确的个数为2个,故选:B.二.填空题(本题共6小题,每小题3分,共18分)13.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.14.【解答】解:设方程的另一根为0,则根据因式分解法可得方程为x(x﹣2)=0,即x2﹣2x=0;本题答案不唯一.故答案为:x2﹣2x=0.15.【解答】解:由图象可知:乙偏离平均数大,甲偏离平均数小,所以乙波动大,不稳定,方差大,即S甲2<S乙2.故答案为:<.16.【解答】解:如图所示,∵四边形ABCD是平行四边形,∴AB∥DC,∴∠F=∠BAE=50°,∵AB=AE,∴∠B=∠AEB=65°,∴∠D=∠B=65°.故答案是:65.17.【解答】解:设通道的宽应设计成xm,则种植花草的部分可合成长(34﹣2x)m,宽(22﹣x)m的矩形,依题意,得:(34﹣2x)(22﹣x)=100×6,整理,得:x2﹣39x+74=0,解得:x1=2,x2=37(不合题意,舍去).故答案为:2.18.【解答】解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴DN=AM=4,∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AP=AM=4.故答案为:.三.解答题(共6题,共66分)19.【解答】解:(1)=2﹣2+4=4;(2)=1﹣(2﹣1)=1﹣1=0.20.【解答】解:(1)∵x2﹣4x﹣3=0,∴x2﹣4x+4=7,∴(x﹣2)2=7,∴x1=2+,x2=2﹣.(2)∵5x(x+1)=2(x+1),∴(5x﹣2)(x+1)=0,∴x1=,x2=﹣1.21.【解答】解:(1)依题意得:△=b2﹣4ac=22﹣4×1×(m﹣2)=12﹣4m>0,解得:m<3.∴若该方程有两个不相等的实数根,实数m的取值范围为m<3.(2)设方程的另一根为x1,由根与系数的关系得:,解得:,∴m的值为﹣1,该方程的另一根为﹣3.22.【解答】解:(Ⅰ)本次抽取到的学生人数为:4÷8%=50,m%=1﹣8%﹣10%﹣22%﹣32%=28%,故答案为:50,28;(Ⅱ)本次调查获取的样本数据的平均数是:=10.66(分),众数是12分,中位数是11分;(Ⅲ)800×32%=256(人),答:我校九年级模拟模拟体测中得12分的学生约有256人.23.【解答】(1)证明:∵DE∥AB,EF∥BC,∴四边形BDEF是平行四边形,∴EF=BD,∵点D是BC边的中点,∴BD=CD,∴CD=EF;(2)解:∵BE平分∠ABC,∴∠FBE=∠DBE,又∵四边形BDEF是平行四边形,∴BD=EF,BF=ED,EF∥BD,∴∠FEB=∠DBE,∴∠FBE=∠BEF,∴BF=EF,∴BD=EF=BF=ED,又∵BD=CD=6,∴BD=EF=BF=ED=6,∴四边形BDEF的周长=6×4=24.24.【解答】解:(1)若降价3元,则平均每天销售数量为20+2×3=26件.故答案为:26;(2)设每件商品应降价x元时,该商店每天销售利润为1200元.根据题意,得(40﹣x)(20+2x)=1200,整理,得x2﹣30x+200=0,解得:x1=10,x2=20.∵要求每件盈利不少于25元,∴x2=20应舍去,∴x=10.答:每件商品应降价10元时,该商店每天销售利润为1200元.25.【解答】解析:(1)当t=2.5s时,四边形ABQP是平行四边形,理由是:∵四边形ABCD是平行四边形,∴AD∥BC,AO=CO,∴∠PAO=∠QCO,∴△APO≌△CQO(ASA),∴AP=CQ=t,∴BQ=5﹣t,若四边形ABQP是平行四边形,则AP=BQ,∴t=5﹣t,∴t=2.5,即当t=2.5s时,四边形ABQP是平行四边形;(2)如图1,过A作AH⊥BC于H,过O作OG⊥BC于G,在Rt△ABC中,∵AB=3,BC=5,∴AC=4,∴CO=AC=2,S△ABC=AB•AC=BC•AH,∴3×4=5AH,解得:AH=,∵AH∥OG,OA=OC,∴GH=CG,∴OG=AH=,∴四边形OQCD的面积=S+S△OCQ=,△OCD∴四边形OQCD的面积=×2×3+×t×=t+3,当t=3时,四边形OQCD的面积为cm2;(3)由(1)知,△APO≌△CQO,∴AP=CQ=t,OP=OQ,①当AP=PQ=t时,△AQP为等腰三角形,如图2,过O作OH⊥BC于H,则OH=,∴CH==,∴HQ=t﹣,OQ=t,在Rt△OQH中,OQ2=OH2+HQ2,∴(t)2=()2+(t﹣)2,∵此方程无实数根,故这种情况不存在;②当AQ=PQ时,△AQP为等腰三角形,如图3,过O作OH⊥AD于H,过A作AG⊥BC于G,∴AH=QG=AP=t,∵BQ=PD=5﹣t,∴BG=BQ﹣GQ=5﹣t﹣t=5﹣t,∵AG=,AB=3,∴32=(5﹣t)2+()2,∴t=(负值舍去);③当AP=AQ=t时,△AQP为等腰三角形,如图4,连接CP,则四边形AQCP是菱形,∴PQ⊥AC,∴OQ∥AB,∴OQ=AB=,∴AQ=t===,综上所述,存在t的值为或时,使△AQP为等腰三角形.四.填空(每小题5分,共15分)26.【解答】解:由已知a4+b4=a2﹣2a2b2+b2+20得:a4+2a2b2+b4﹣a2﹣b2﹣20=0,(a2+b2)2﹣(a2+b2)﹣20=0,∴(a2+b2﹣5)(a2+b2+4)=0,∴a2+b2=5或a2+b2=﹣4;而a2+b2≥0,故a2+b2=﹣4舍去,∴a2+b2=5,故答案为5.27.【解答】解:设经过t秒,以点P、D、Q、B为顶点组成平行四边形,∵以点P、D、Q、B为顶点组成平行四边形,∴DP=BQ,分为以下情况:①点Q的运动路线是C﹣B,方程为12﹣4t=12﹣t,此时方程t=0,此时不符合题意;②点Q的运动路线是C﹣B﹣C,方程为4t﹣12=12﹣t,解得:t=4.8;③点Q的运动路线是C﹣B﹣C﹣B,方程为12﹣(4t﹣24)=12﹣t,解得:t=8;④点Q的运动路线是C﹣B﹣C﹣B﹣C,方程为4t﹣36=12﹣t,解得:t=9.6;⑤点Q的运动路线是C﹣B﹣C﹣B﹣C﹣B,方程为12﹣(4t﹣48)=12﹣t,解得:t=16,此时P点走的路程为16>AD,此时不符合题意.∴共3次.故答案为:3.28.【解答】解:观察,发现规律:P0(0,0),P1(2,0),P2(﹣2,2),P3(0,﹣2),P4(2,2),P5(﹣2,0),P6(0,0),P7(2,0),…,∴P6n(0,0),P6n+1(2,0),P6n+2(﹣2,2),P6n+3(0,﹣2),P6n+4(2,2),P6n+5(﹣2,0)(n为自然数).∵2020=6×336+4,∴P2020(2,2).故答案为:(2,2).五.解答题(15分)29.【解答】解:(1)结论:∠ECO=∠OAC.理由:如图1中,连接OE.∵∠BCD=90°,BE=ED,BO=OA,∵CE=ED=EB=BD,CO=OA=OB,∴∠OCA=∠A,∵BE=ED,BO=OA,∴OE∥AD,OE=AD,∴CE=EO.∴∠EOC=∠OCA=∠ECO,∴∠ECO=∠OAC.故答案为:∠OCE=∠OAC.(2)如图2中,∵OC=OA,DA=DB,∴∠A=∠OCA=∠ABD,∴∠COA=∠ADB,∵∠MON=∠ADB,∴∠AOC=∠MON,∴∠COM=∠AON,∵∠ECO=∠OAC,∴∠MCO=∠NAO,∵OC=OA,∴△COM≌△AON(ASA),∴OM=ON.②如图3﹣1中,当点N在CA的延长线上时,∵∠CAB=30°=∠OAN+∠ANO,∠AON=15°,∴∠AON=∠ANO=15°,∴OA=AN=m,∵△OCM≌△OAN,∴CM=AN=m,在Rt△BCD中,∵BC=m,∠CDB=60°,∴BD=m,∵BE=ED,∴CE=BD=m,∴EM=CM+CE=m+m.如图3﹣2中,当点N在线段AC上时,作OH⊥AC于H.∵∠AON=15°,∠CAB=30°,∴∠ONH=15°+30°=45°,∴OH=HN=m,∵AH=m,∴CM=AN=m﹣m,∵EC=m,∴EM=EC﹣CM=m﹣(m﹣m)=m﹣m,综上所述,满足条件的EM的值为m+m或m﹣m.。

宁波市镇海区2019-2020学年八年级上期末数学试卷(含答案)

宁波市镇海区2019-2020学年八年级上期末数学试卷(含答案)

浙江省宁波市八年级(上)期末测试数学试卷一、仔细选一选(本题有12个小题,每小题4分,共48分) 1.下列四组线段中,能组成三角形的是( )A .2cm ,3cm ,4cmB .3cm ,4cm ,7cmC .4cm ,6cm ,2cmD .7cm ,10cm ,2cm 2.下列图案是轴对称图形的是( )A .B .C .D .3.下列各式计算正确的是( ) A .B .C .D .4.若x >y ,则下列式子中错误的是( )A .x ﹣3>y ﹣3B .>C .x+3>y+3D .﹣3x >﹣3y5.在平面直角坐标系中,已知点A (2,3),则点A 关于x 轴的对称点的坐标为( ) A .(3,2) B .(2,﹣3) C .(﹣2,3) D .(﹣2,﹣3)6.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( ) A .∠1=50°,∠2=40°B .∠1=50°,∠2=50°C .∠1=∠2=45°D .∠1=40°,∠2=40°7.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x+n 图象上的两点,则a 与b 的大小关系是( ) A .a ≤bB .a <bC .a ≥bD .a >b8.直角三角形的两条边长分别是5和12,则斜边上的中线长是( ) A .6B .6.5C .6或 6.5D .6或 2.59.直线l 1:y=k 1x+b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x >k 1x+b 的解集为( )A.x<﹣1 B.x<3 C.x>﹣1 D.x>310.关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣B.﹣≤a<﹣C.﹣≤a≤﹣D.﹣<a<﹣11.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.一定成立的结论有()A.①②③B.①②③⑤C.②③④D.③④⑤12.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线一点,当PA=CQ时,连结PQ交AC于D,则DE的长为()A.B.C.D.二、认真填一填(本题有6个小题,每小题4分,共24分)13.若代数式有意义,则a的取值范围为.14.命题“等腰三角形的两个底角相等”的逆命题是.15.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=4,则点D到AB的距离为 .16.如图,在边长为2的等边△ABC 中,D 为BC 的中点,E 是AC 边上一点,则BE+DE 的最小值为 .17.阅读理解:我们把对非负实数x“四舍五入”到个位的值记为《x 》,即当n 为非负整数时,若n ﹣≤x <n+,则《x 》=n .例如:《0.67》=1,《2.49》=2,….给出下列关于《x 》的问题:①《》=2;②《2x 》=2《x 》;③当m 为非负整数时,《m+2x 》=m+《2x 》;④若《2x﹣1》=5,则实数x 的取值范围是≤x <;⑤满足《x 》=x 的非负实数x 有三个.其中正确结论的个数是 个.18.如图,已知A 1、A 2、A 3、…、A n 、A n+1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n A n+1=1,分别过点A 1、A 2、A 3、…、A n 、A n+1作x 轴的垂线交直线y=2x 于点B 1、B 2、B 3、…、B n 、B n+1,连接A 1B 2、B 1A 2、B 2A 3、…、A n B n+1、B n A n+1,依次相交于点P 1、P 2、P 3、…、P n .△A 1B 1P 1、△A 2B 2P 2、△A n B n P n 的面积依次记为S 1、S 2、S 3、…、S n ,则S 2016= .三、解答题(本题有8个小题,共78分,解答需写出必要的文字说明、验算步骤或证明过程)19.计算或化简:(1)(2﹣3)2+(2+)(2﹣)(2)﹣+(﹣2)0+.20.解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.21.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).22.如图,△ABC中,AB=AC,AD⊥BC垂足为点D,CE⊥AB垂足为点E,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.23.2010年6月5日是第38个世界环境日,世界环境日的主题为“多个物种、一颗星球、一个未来”.为了响应节能减排的号召,某品牌汽车4S店准备购进A型(电动汽车)和B型(太阳能汽车)两种不同型号的汽车共16辆,以满足广大支持环保的购车者的需求.市场营销人员经过市场调查得到如下信息:600万元,则有哪几种进车方案?(2)在(1)的前提下,如果你是经营者,并且所进的汽车能全部售出,你会选择哪种进车方案才能使获得的利润最大?最大利润是多少?(3)假设每台电动汽车每公里的用电费用为0.65元,且两种汽车最大行驶里程均为30万公里,那么从节约资金的角度,你做为一名购车者,将会选购哪一种型号的汽车?并说明理由.24.在平面直角坐标系中,已知点A(﹣2,0),B(2,0),若在坐标轴上存在点C,使得AC+BC=m,则称点C为点A,B的“m和点”.如C坐标为(0,0)时,AC+BC=4,则称C(0,0)为点A,B的“4和点”.(1)若点C为点A,B的“m和点”,且△ABC为等边三角形,求m的值;(2)A,B的“5和点”有几个,请分别求出坐标;(3)直接指出点A,B的“m和点”的个数情况和相应的m取值条件.25.方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示.方成思考后发现了如图1的部分正确信息:乙先出发1h;甲出发0.5小时与乙相遇.请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲,乙行驶的路程S甲,S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N地沿同一公路匀速前往M地,若丙经过h与乙相遇,问丙出发后多少时间与甲相遇?26.如图,直线l 1:y 1=﹣x+2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=x+b 过点P . (1)求点P 坐标和b 的值;(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x 轴正方向移动.设点Q 的运动时间为t 秒.①请写出当点Q 在运动过程中,△APQ 的面积S 与t 的函数关系式; ②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.浙江省宁波市八年级(上)期末数学试卷参考答案与试题解析一、仔细选一选(本题有12个小题,每小题4分,共48分)1.下列四组线段中,能组成三角形的是()A.2cm,3cm,4cm B.3cm,4cm,7cm C.4cm,6cm,2cm D.7cm,10cm,2cm【考点】三角形三边关系.【分析】根据三角形的三边关系定理:如果a、b、c是三角形的三边,且同时满足a+b>c,b+c >a,a+c>b,则以a、b、c为边能组成三角形,根据判断即可.【解答】解:A、∵3+2>4,∴2,3,4能组成三角形,故本选项正确;C、∵4+3=7,∴3,4,7不能组成三角形,故本选项错误;D、∵2+4=6,∴2,4,6不能组成三角形,故本选项错误;B、∵7+2<10,∴1,2,3不能组成三角形,故本选项错误;故选A.2.下列图案是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:D图形是轴对称图形,故选:D.3.下列各式计算正确的是()A.B.C.D.【考点】二次根式的混合运算.【分析】根据二次根式的加减运算对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的乘法法则对D进行判断.【解答】解:A、原式=6,所以A选项的计算错误;B、5与5不能合并,所以B选项的计算错误;C、原式=8=8,所以C选项的计算正确;D、原式=2,所以D选项的计算错误.故选C.4.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y【考点】不等式的性质.【分析】根据不等式的基本性质,进行判断即可.【解答】解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A选项正确;B、根据不等式的性质2,可得>,故B选项正确;C、根据不等式的性质1,可得x+3>y+3,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.5.在平面直角坐标系中,已知点A(2,3),则点A关于x轴的对称点的坐标为()A.(3,2) B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解答】解:∵点A(2,3),∴点A关于x轴的对称点的坐标为:(2,﹣3).故选:B.6.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°【考点】命题与定理.【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【解答】解:A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.7.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+n图象上的两点,则a与b的大小关系是()A.a≤b B.a<b C.a≥b D.a>b【考点】一次函数图象上点的坐标特征.【分析】把点M和点N的坐标代入一次函数的解析式,求出a、b的值,比较即可.【解答】解:∵点M(1,a)和点N(2,b)是一次函数y=﹣2x+n图象上的两点,∴a=﹣2+n,b=﹣4+n,∴a﹣b=(﹣2+n)﹣(﹣4+n)=2>0,∴a>b,故选:D.8.直角三角形的两条边长分别是5和12,则斜边上的中线长是()A.6 B.6.5 C.6或6.5 D.6或2.5【考点】勾股定理;直角三角形斜边上的中线.【分析】分①12是直角边时,利用勾股定理列式求出斜边,根据直角三角形斜边上的中线等于斜边的一半解答,②12是斜边,根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:①12是直角边时,斜边==13,第三边上的中线长=×13=6.5,②12是斜边时,第三边上的中线长=12=6,故选:C .9.直线l 1:y=k 1x+b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x >k 1x+b 的解集为( )A .x <﹣1B .x <3C .x >﹣1D .x >3【考点】一次函数与一元一次不等式.【分析】观察函数图象,写出直线l 1在直线l 2上方所对应的自变量的范围即可. 【解答】解:不等式k 2x >k 1x+b 的解集为x <﹣1. 故选A .10.关于x 的不等式组有四个整数解,则a 的取值范围是( )A .﹣<a ≤﹣ B .﹣≤a <﹣ C .﹣≤a ≤﹣ D .﹣<a <﹣【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a 的取值范围即可.【解答】解:由(1)得x >8; 由(2)得x <2﹣4a ; 其解集为8<x <2﹣4a ,因不等式组有四个整数解,为9,10,11,12,则,解得﹣≤a <﹣.故选B.11.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.一定成立的结论有()A.①②③B.①②③⑤C.②③④D.③④⑤【考点】全等三角形的判定与性质;等边三角形的性质.【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE;②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;③同②得:△ACP≌△BCQ,即可得出结论;④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正确.【解答】解:①∵△ABC和△CDE为等边三角形,∴AC=BC,CD=CE,∠BCA=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,①正确;②∠DCP=180°﹣2×60°=60°=∠ECQ,在△CDP和△CEQ中,,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴∠QPC=∠BCA,∴PQ∥AE,②正确;③同②得:△ACP≌△BCQ,∴AP=BQ,③正确;④∵DE>QE,且DP=QE,∴DE>DP,故④错误;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵△DCE是等边三角形,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,∴⑤正确;故选:B.12.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线一点,当PA=CQ时,连结PQ交AC于D,则DE的长为()A.B.C.D.【考点】等边三角形的性质.【分析】过P作PF∥BC交AC于F,得出等边三角形APF,推出AP=PF=QC,根据等腰三角形性质求出EF=AE,证△PFD≌△QCD,推出FD=CD,推出DE=AC即可.【解答】解:过P作PF∥BC交AC于F.如图所示:∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=1,∴DE=.故选:A.二、认真填一填(本题有6个小题,每小题4分,共24分)13.若代数式有意义,则a的取值范围为a≥2016 .【考点】二次根式有意义的条件.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得a﹣2016≥0,解得a≥2016,故答案为:a≥2016.14.命题“等腰三角形的两个底角相等”的逆命题是两个角相等三角形是等腰三角形.【考点】命题与定理.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【解答】解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.15.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=4,则点D到AB 的距离为 4 .【考点】角平分线的性质.【分析】直接根据角平分线的性质可得出结论.【解答】解:∵Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=4,∴点D到AB的距离为4.故答案为:4.16.如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为.【考点】轴对称﹣最短路线问题;等边三角形的性质.【分析】作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,故E 即为所求的点.【解答】解:作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,∵B、B′关于AC的对称,∴AC、BB′互相垂直平分,∴四边形ABCB′是平行四边形,∵三角形ABC是边长为2,∵D为BC的中点,∴AD⊥BC,∴AD=,BD=CD=1,BB′=2AD=2,作B′G⊥BC的延长线于G,∴B′G=AD=,在Rt△B′BG中,BG===3,∴DG=BG﹣BD=3﹣1=2,在Rt △B′DG 中,B′D===.故BE+ED 的最小值为.故答案为:.17.阅读理解:我们把对非负实数x“四舍五入”到个位的值记为《x 》,即当n 为非负整数时,若n ﹣≤x <n+,则《x 》=n .例如:《0.67》=1,《2.49》=2,….给出下列关于《x 》的问题:①《》=2;②《2x 》=2《x 》;③当m 为非负整数时,《m+2x 》=m+《2x 》;④若《2x﹣1》=5,则实数x 的取值范围是≤x <;⑤满足《x 》=x 的非负实数x 有三个.其中正确结论的个数是 2 个.【考点】一元一次不等式组的应用.【分析】根据题意可以判断题目中各个结论是否正确,从而可以解答本题. 【解答】解:由题意可得, 《》=1,故①错误;当x=1.4时,《2x 》=《2×1.8》=3,2《x 》=2《1.4》=2,则《2x 》≠2《x 》,故②错误; 当m 为非负整数时,《m+2x 》=m+《2x 》,故③正确;若《2x ﹣1》=5,则4.5≤2x ﹣1<5.5,解得≤x <,故④正确;满足《x 》=x 的非负实数x 的值是x=0,故⑤错误; 由上可得,题目中正确的结论有2个, 故答案为:2.18.如图,已知A 1、A 2、A 3、…、A n 、A n+1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n A n+1=1,分别过点A 1、A 2、A 3、…、A n 、A n+1作x 轴的垂线交直线y=2x 于点B 1、B 2、B 3、…、B n 、B n+1,连接A 1B 2、B 1A 2、B 2A 3、…、A n B n+1、B n A n+1,依次相交于点P 1、P 2、P 3、…、P n .△A 1B 1P 1、△A 2B 2P 2、△A n B n P n 的面积依次记为S 1、S 2、S 3、…、S n ,则S 2016=.【考点】一次函数图象上点的坐标特征.【分析】根据图象上点的坐标性质得出点B 1、B 2、B 3、…、B n 、B n+1各点坐标,进而利用相似三角形的判定与性质得出S 1、S 2、S 3、…、S n ,进而得出答案.【解答】解:∵A 1、A 2、A 3、…、A n 、A n+1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n A n+1=1,分别过点A 1、A 2、A 3、…、A n 、A n+1作x 轴的垂线交直线y=2x 于点B 1、B 2、B 3、…、B n 、B n+1,∴B 1的横坐标为:1,纵坐标为:2, ∴B 1(1,2),同理可得:B 2的横坐标为:2,纵坐标为:4, 则B 2(2,4), B 3(3,6)… ∵A 1B 1∥A 2B 2,∴△A 1B 1P 1∽△A 2B 2P 1,∴=,∴△A 1B 1C 1与△A 2B 2C 2对应高的比为1:2,∴A 1B 1边上的高为:,∴S △A1B1P1=××2=,同理可得出:S △A2B2P2=,S △A3B3P3=,∴S n =,==,∴S2016故答案为:.三、解答题(本题有8个小题,共78分,解答需写出必要的文字说明、验算步骤或证明过程)19.计算或化简:(1)(2﹣3)2+(2+)(2﹣)(2)﹣+(﹣2)0+.【考点】二次根式的混合运算;零指数幂.【分析】(1)利用完全平方公式和平方差公式计算;(2)先把各二次根式化简为最简二次根式,再利用二次根式的性质和零指数幂的意义化简,然后合并即可.【解答】解:(1)原式=12﹣12+18+4﹣3=31﹣12;(2)原式=2﹣+1+﹣1=.20.解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.【考点】解一元一次不等式组;在数轴上表示不等式的解集;一元一次不等式组的整数解.【分析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可,再找出解集范围内的非负整数即可.【解答】解:,由①得:x≥﹣1,由②得:x<3,不等式组的解集为:﹣1≤x<3.在数轴上表示为:.不等式组的非负整数解为2,1,0.21.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).【考点】作图—应用与设计作图;三角形三边关系.【分析】(1)应用列举法,根据三角形三边关系列举出所有满足条件的三角形.(2)首先判断满足条件的三角形只有一个:a=2,b=3,c=4,再作图:①作射线AB,且取AB=4;②以点A为圆心,3为半径画弧;以点B为圆心,2为半径画弧,两弧交于点C;③连接AC、BC.则△ABC即为满足条件的三角形.【解答】解:(1)共9种:(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4).(2)由(1)可知,只有(2,3,4),即a=2,b=3,c=4时满足a<b<c.如答图的△ABC即为满足条件的三角形.22.如图,△ABC中,AB=AC,AD⊥BC垂足为点D,CE⊥AB垂足为点E,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.【考点】全等三角形的判定与性质.【分析】(1)根据等腰三角形三线合一的性质和已知条件易证△AEF≌△CEB;(2)由(1)可知AF=BC,BC=2CD,所以AF=2CD,问题得证.【解答】解:(1)证明:∵AD⊥BC,∴∠B+∠BAD=90°.∵CE⊥AB,∴∠B+∠BCE=90°.∴∠EAF=∠ECB,在△AEF和△CEB中,,∴△AEF≌△CEB;(2)∵△AEF≌△CEB.∴AF=BC.∵AB=AC,AD⊥BC.∴CD=BD,BC=2CD∴AF=2CD.23.2010年6月5日是第38个世界环境日,世界环境日的主题为“多个物种、一颗星球、一个未来”.为了响应节能减排的号召,某品牌汽车4S店准备购进A型(电动汽车)和B型(太阳能汽车)两种不同型号的汽车共16辆,以满足广大支持环保的购车者的需求.市场营销人员经过市场调查得到如下信息:600万元,则有哪几种进车方案?(2)在(1)的前提下,如果你是经营者,并且所进的汽车能全部售出,你会选择哪种进车方案才能使获得的利润最大?最大利润是多少?(3)假设每台电动汽车每公里的用电费用为0.65元,且两种汽车最大行驶里程均为30万公里,那么从节约资金的角度,你做为一名购车者,将会选购哪一种型号的汽车?并说明理由.【考点】一次函数的应用.【分析】(1)根据已知信息和若经营者的购买资金不少于576万元且不多于600万元,列出不等式组,求解得出进车方案.(2)根据已知列出利润函数式,求最值,选择方案.(3)根据已知通过计算分析得出答案.【解答】解:(1)设A型汽车购进x辆,则B型汽车购进(16﹣x)辆.根据题意得:,解得:6≤x≤8.∵x为整数,∴x取6、7、8.∴有三种购进方案:根据题意得:W=(32﹣30)x+(45﹣42)(16﹣x)W=﹣x+48.∵k=﹣1<0,∴w随x的增大而减小,=﹣6+48=42(万元)∴当x=6时,w有最大值,W最大∴当购进A型车6辆,B型车10辆时,可获得最大利润,最大利润是42万元.(3)设电动汽车行驶的里程为a万公里.当32+0.65a=45时,解得:a=20<30.∴选购太阳能汽车比较合算.24.在平面直角坐标系中,已知点A(﹣2,0),B(2,0),若在坐标轴上存在点C,使得AC+BC=m,则称点C为点A,B的“m和点”.如C坐标为(0,0)时,AC+BC=4,则称C(0,0)为点A,B的“4和点”.(1)若点C为点A,B的“m和点”,且△ABC为等边三角形,求m的值;(2)A,B的“5和点”有几个,请分别求出坐标;(3)直接指出点A,B的“m和点”的个数情况和相应的m取值条件.【考点】勾股定理;坐标与图形性质.【分析】(1)先由A、B两点的坐标求出AB=4,再根据等边三角形的定义得到AC=BC=AB=4,然后根据“m和点”的定义即可求出m=8;(2)设点C为点A,B的“5和点”.根据“m和点”的定义可知点C在坐标轴上,再分两种情况进行讨论:①如果点C在x轴上,设C点坐标为(x,0),根据AC+BC=5列出方程|x+2|+|x ﹣2|=5,解方程求出x的值,即可得到C点坐标;②如果点C在y轴上,设C点坐标为(0,y),根据AC+BC=5列出方程+=5,解方程求出y的值,即可得到C点坐标;(3)由AB=4,可知点A,B的“m和点”的个数情况分三种情况进行讨论:①当m<4时,根据两点之间线段最短可知A,B的“m和点”没有;②当m=4时,x轴上﹣2与2之间的任意一个数所对应的点都是A,B的“m和点”,所以有无数个;③当m>4时,A,B的“m和点”x轴上有2个,y轴上也有2个,一共有4个.【解答】解:(1)∵A(﹣2,0),B(2,0),∴AB=2﹣(﹣2)=4.∵△ABC为等边三角形,∴AC=BC=AB=4,∴AC+BC=4+4=8,即m=8;(2)设点C为点A,B的“5和点”.分两种情况:①如果点C在x轴上,设C点坐标为(x,0).∵AC+BC=5,∴|x+2|+|x﹣2|=5,当x≤﹣2时,﹣(x+2)﹣(x﹣2)=5,解得x=﹣2.5,所以C点坐标为(﹣2.5,0);当﹣2<x≤2时,(x+2)﹣(x﹣2)=5,x无解;当x>2时,(x+2)+(x﹣2)=5,解得x=2.5,所以C点坐标为(2.5,0);②如果点C在y轴上,设C点坐标为(0,y).∵AC+BC=5,∴+=5,∴=2.5,两边平方,得4+y2=6.25,解得y=±1.5.经经验,y=±1.5都是原方程的根,所以C点坐标为(0,1.5),(0,﹣1.5);综上所述,A,B的“5和点”有4个,坐标为(﹣2.5,0),(2.5,0),(0,1.5),(0,﹣1.5);(3)∵AB=4,∴点A,B的“m和点”的个数情况分三种情况:①当m<4时,A,B的“m和点”没有;②当m=4时,A ,B 的“m 和点”有无数个; ③当m >4时,A ,B 的“m 和点”有4个.25.方成同学看到一则材料:甲开汽车,乙骑自行车从M 地出发沿一条公路匀速前往N 地.设乙行驶的时间为t (h ),甲乙两人之间的距离为y (km ),y 与t 的函数关系如图1所示. 方成思考后发现了如图1的部分正确信息:乙先出发1h ;甲出发0.5小时与乙相遇. 请你帮助方成同学解决以下问题:(1)分别求出线段BC ,CD 所在直线的函数表达式; (2)当20<y <30时,求t 的取值范围;(3)分别求出甲,乙行驶的路程S 甲,S 乙与时间t 的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N 地沿同一公路匀速前往M 地,若丙经过h 与乙相遇,问丙出发后多少时间与甲相遇?【考点】一次函数的应用.【分析】(1)利用待定系数法求函数解析式,即可解答;(2)先求出甲、乙的速度、所以OA 的函数解析式为:y=20t (0≤t ≤1),所以点A 的纵坐标为20,根据当20<y <30时,得到20<40t ﹣60<30,或20<﹣20t+80<30,解不等式组即可;(3)得到S 甲=60t ﹣60(),S 乙=20t (0≤t ≤4),画出函数图象即可;(4)确定丙距M 地的路程S 丙与时间t 的函数表达式为:S 丙=﹣40t+80(0≤t ≤2),根据S 丙=﹣40t+80与S 甲=60t ﹣60的图象交点的横坐标为,所以丙出发h 与甲相遇. 【解答】解:(1)直线BC 的函数解析式为y=kt+b ,把(1.5,0),()代入得:解得:,∴直线BC 的解析式为:y=40t ﹣60; 设直线CD 的函数解析式为y 1=k 1t+b 1,把(),(4,0)代入得:,解得:,∴直线CD 的函数解析式为:y=﹣20t+80.(2)设甲的速度为akm/h ,乙的速度为bkm/h ,根据题意得;,解得:,∴甲的速度为60km/h ,乙的速度为20km/h ,∴OA 的函数解析式为:y=20t (0≤t ≤1),所以点A 的纵坐标为20, 当20<y <30时,即20<40t ﹣60<30,或20<﹣20t+80<30,解得:或.(3)根据题意得:S 甲=60t ﹣60()S 乙=20t (0≤t ≤4), 所画图象如图2所示:(4)当t=时,,丙距M 地的路程S 丙与时间t 的函数表达式为:S 丙=﹣40t+80(0≤t ≤2), 如图3,S 丙=﹣40t+80与S 甲=60t ﹣60的图象交点的横坐标为,所以丙出发h 与甲相遇.26.如图,直线l 1:y 1=﹣x+2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=x+b 过点P . (1)求点P 坐标和b 的值;(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x 轴正方向移动.设点Q 的运动时间为t 秒.①请写出当点Q 在运动过程中,△APQ 的面积S 与t 的函数关系式; ②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)把P (m ,3)的坐标代入直线l 1上的解析式即可求得P 的坐标,然后根据待定系数法即可求得b ;(2)根据直线l 2的解析式得出C 的坐标,①根据题意得出AQ=9﹣t ,然后根据S=AQ•|y P |即可求得△APQ 的面积S 与t 的函数关系式;②通过解不等式﹣t+<3,即可求得t >7时,△APQ 的面积小于3;③分三种情况:当PQ=PA 时,则(t ﹣7+1)2+(0﹣3)2=(2+1)2+(0﹣3)2,当AQ=PA 时,则(t ﹣7﹣2)2=(2+1)2+(0﹣3)2,当PQ=AQ 时,则(t ﹣7+1)2+(0﹣3)2=(t ﹣7﹣2)2,即可求得.【解答】解;(1)∵点P (m ,3)为直线l 1上一点, ∴3=﹣m+2,解得m=﹣1, ∴点P 的坐标为(﹣1,3),把点P 的坐标代入y 2=x+b 得,3=×(﹣1)+b , 解得b=;(2)∵b=,∴直线l 2的解析式为y=x+, ∴C 点的坐标为(﹣7,0),①由直线l 1:y 1=﹣x+2可知A (2,0), ∴当Q 在A 、C 之间时,AQ=2+7﹣t=9﹣t ,∴S=AQ•|y P |=×(9﹣t )×3=﹣t ;当Q 在A 的右边时,AQ=t ﹣9,|=×(t﹣9)×3=t﹣;∴S=AQ•|yP即△APQ的面积S与t的函数关系式为S=﹣t+或S=t﹣;②∵S<3,∴﹣t+<3或t﹣<3解得7<t<9或9<t<11.③存在;设Q(t﹣7,0),当PQ=PA时,则(t﹣7+1)2+(0﹣3)2=(2+1)2+(0﹣3)2∴(t﹣6)2=32,解得t=3或t=9(舍去),当AQ=PA时,则(t﹣7﹣2)2=(2+1)2+(0﹣3)2∴(t﹣9)2=18,解得t=9+3或t=9﹣3;当PQ=AQ时,则(t﹣7+1)2+(0﹣3)2=(t﹣7﹣2)2,∴(t﹣6)2+9=(t﹣9)2,解得t=6.故当t的值为3或9+3或9﹣3或6时,△APQ为等腰三角形.。

浙江省宁波市余姚市第四中学2021-2022学年八年级上学期期中数学试题

浙江省宁波市余姚市第四中学2021-2022学年八年级上学期期中数学试题

浙江省宁波市余姚市第四中学2021-2022学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中是轴对称图形的是( ) A . B . C . D . 2.如图,工人师傅砌门时,为使长方形门框ABCD 不变形,常用木条EF 将其固定,这种做法的依据是( )A .两点之间线段最短B .长方形的对称性C .四边形具有不稳定性D .三角形具有稳定性3.下列长度的三条线段,能组成三角形的是( )A .3,4,8B .5,6,10C .5,5,11D .5,6,11 4.对于命题“如果1290∠+∠=︒,那么12∠≠∠”,能说明它是假命题的反例是( ) A .160∠=︒,240∠=︒B .150∠=︒,240∠=︒C .1240∠=∠=︒D .1245∠=∠=°5.下列说法正确的是( )A .形状相同的两个三角形全等B .面积相等的两个三角形全等C .完全重合的两个三角形全等D .所有的等边三角形全等 6.如图,将一副三角尺按如图所示的方式摆放,则∠AED 的大小为( )A .30°B .45°C .60°D .75°7.如图,用尺规作'''A O B AOB ∠=∠的依据是( )A .SASB .ASAC .AASD .SSS8.如图,在4×4方格中,以AB 为一边,第三个顶点也在格点上的等腰三角形可以作出( )A .7个B .6个C .4个D .3个9.如图,ABC V 是等边三角形,AD 是BC 边上的高,点E 是AC 边的中点,点P 是AD 上的一个动点,当PC PE +最小时,CPE ∠的度数是( )A .30︒B .45︒C .60︒D .90︒10.我国汉代数学家赵爽为了证明勾股定理,创造了一幅“弦图”,后人称其为“赵爽弦图”由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别记为1S ,2S ,3S ,若4EF =,则123S S S ++的值是( )A .32B .38C .48D .64二、填空题11.Rt △ABC 中,锐角25A ∠=︒,则另一个锐角B ∠=_____.三、解答题V的一个角等于50︒,求它顶角的度数.17.已知等腰ABC18.如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.19.如图,在△ABC中,DE是AC的中垂线,分别交AC、AB于点D、E,若△BCE的周长为8,BC=3,求AB的长.20.如图,在8×6的网格中,每个小正方形的边长均为一个单位.(1)在图1中画出以BC为一边,面积为12的等腰三角形.(2)在图2中画出△ABC的角平分线BE.(△ABC的三个顶点都在格点上,请按要求完成下列作图:①仅用无刻度的直尺,且不能用直尺中的直角;②保留作图痕迹;③标注相关字母.)21.如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=42°,∠C=72°,求∠AEC 和∠DAE的度数.22.如图,△ACB与△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D是边AB上一点,DE与AC相交,AB=17.(1)求证:∠EAC =∠B .(2)若BD =5,求DE 的长.23.阅读理解:从三角形(不是等腰三角形)一个顶点引出的一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形有两角对应相等,我们把这条线段叫做这个三角形的“优美分割线”.(1)如图,在△ABC 中,CD 为角平分线,∠A =40°,∠B =60°,求证:CD 为△ABC 的“优美分割线”.(2)在△ABC 中,∠A =46°,CD 为△ABC 的“优美分割线”且△ACD 为等腰三角形,求∠ACB 的度数.24.如图1,ABC ∆中,CD AB ⊥于D ,且::2:3:4BD AD CD =;(1)试说明ABC ∆是等腰三角形;(2)已知Δ40ABC S =cm 2,如图2,动点M 从点B 出发以每秒1cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.设点M 运动的时间为t (秒).①若DMN ∆的边与BC 平行,求t 的值;②在点N 运动的过程中,ADN ∆能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.。

八年级数学东城区2019-2020学年度第一学期期末教学统一检测 (含答案)

八年级数学东城区2019-2020学年度第一学期期末教学统一检测 (含答案)

东城区2019-2020学年度第一学期期末教学统一检测初二数学 2020.1一、选择题(本题共20分,每小题2分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.在国庆70周年的庆典活动中,使用了大量的电子显示屏,0.0009m 微间距显示屏就是其中之一.数字0.0009用科学记数法表示应为A.4910-⨯B. 3910-⨯C. 30.910-⨯D. 40.910-⨯ 2. 下列等式中,从左到右的变形是因式分解的是A .()m a b ma mb +=+B .23313(1)1x x x x -+=-+ C .()()23212x x x x ++=++ D .22(2)+4+4a a a +=3.如图是3×3的正方形网格,其中已有2个小方格涂成了黑色.现在要从编号为①‒④的小方格中选出1个也涂成黑色,使黑色部分依然是轴对称图形,不能选择的是A.①B.②C.③D.④4. 下列各式计算正确的是 A.2133a aa -⋅= B.236()ab ab = C.22(2)4x x -=- D.824623x x x ÷=5. 对于任意的实数x ,总有意义的分式是A.152--x x B.231x x -+ C.x x 812+ D.21x -6.如图,△ABC 中,∠A =40°,AB 的垂直平分线分别交AB ,AC 于点D ,E ,连接BE ,则∠BEC 的大小为A.40°B.50°C.80°D.100°7.若分式2213x x -+的值为正数,则x 需满足的条件是 A. x 为任意实数 B. 12x < C. 12x >D. 12x >- 8. 已知△ABC ,两个完全一样的三角板如图摆放,它们的一组对应直角边分别在AB ,AC 上,且这组对应边所对的顶点重合于点M ,点M 一定在A.∠A 的平分线上B.AC 边的高上C.BC 边的垂直平分线上D.AB 边的中线上9.如图,已知∠MON 及其边上一点A .以点A 为圆心,AO 长为半径画弧,分别交OM ,ON于点B 和C .再以点C 为圆心,AC 长为半径画弧,恰好经过点B .错误的结论是 A. AOC ABC S S =△△ B. ∠OCB =90° C. ∠MON =30° D. OC =2BC10. 已知OP 平分∠AOB ,点Q 在OP 上,点M 在OA 上,且点Q ,M 均不与点O 重合.在OB 上确定点N ,使QN =QM ,则满足条件的点N 的个数为A.1 个B.2个C.1或2个D.无数个二、填空题(本题共16分,每小题2分) 11. 因式分解:39a a -= _ . 12. 已知 -2是关于x 的分式方程23x kx x -=+的根,则实数k 的值为________ . 13. 如图,BE 与CD 交于点A ,且∠C =∠D .添加一个条件: ,使得△ABC ≌△AED .BA CM第8题图 第9题图14. 如图,将长方形纸片ABCD 折叠,使顶点A ,C 重合,折痕为EF .若∠BAE =28°,则∠AEF 的大小为 °.15. 如图,等边△ABC 中,AD 是BC 边上的中线,且AD =4,E ,P 分别是AC ,AD 上的动点,则C P +EP 的最小值等于 .16. 我国古代数学曾有许多重要的成就,其中“杨辉三角” (如图)就是一例. 这个三角形给出了()na b +(n =1,2,3,4,5,6)的展开式(按a 的次数由大到小顺序排列)的系数规律.例如,第三行的三个数1,2,1,恰好对应()2222a b a ab b +=++展开式中各项的系数;第五行的五个数1,4,6,4,1,恰好对应着()4432234464a b a a b a b ab b +=++++展开式中各项的系数.(1)()5a b +展开式中4a b 的系数为 ;(2)()7a b +展开式中各项系数的和为 .三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:3+23x x x +-. 18.下面是小明设计的“已知两线段及一角作三角形”的尺规作图过程. 已知:线段m ,n 及∠O .求作:△ABC ,使得线段m ,n 及∠O 分别是它的两边和一角. 作法:如图,① 以点O 为圆心,m 长为半径画弧,分别交∠O 的两边于点M ,N ; ② 画一条射线AP ,以点A 为圆心,m 长为半径画弧,交AP 于点B ; ③ 以点B 为圆心,MN 长为半径画弧,与第②步中所画的弧相交于点D ; ④ 画射线AD ;⑤ 以点A 为圆心,n 长为半径画弧,交AD 于点C ; ⑥ 连接BC ,则△ABC 即为所求作的三角形. 请回答:(1)步骤③得到两条线段相等,即 = ; (2)∠A =∠O 的作图依据是 ; (3)小红说小明的作图不全面,原因是 .19.计算:()201π533-⎛⎫- ⎪⎝⎭.20.如图,在△ABC 和△ADE 中,∠BAC =∠DAE ,AD =AE .连接BD ,CE,∠ABD =∠ACE . 求证:AB =AC .21. 计算:2()()()4()2m n m n m n m m n m ⎡⎤+-+---÷⎣⎦.B22. 解方程:2151=24xx x +--- . 23.在三角形纸片ABC 中,∠B =90°,∠A =30°,AC =4,点E 在AC 上,AE =3.将三角形纸片按图1方式折叠,使点A 的对应点A '落在AB 的延长线上,折痕为ED ,A E '交BC 于点F .(1)求∠CFE 的度数;(2)如图2,,继续将纸片沿BF 折叠,点A '的对应点为A '',A F ''交DE 于点G .求线段DG 的长.图1 图224. 如图,△ABC .(1)尺规作图:过点C 作AB 的垂线交AB 于点O .不写作法,保留作图痕迹;(2)分别以直线AB ,OC 为x 轴,y 轴建立平面直角坐标系,使点B ,C 均在正半轴上.若AB=7.5,OC =4.5,∠A =45°,写出点B 关于y 轴的对称点D 的坐标; (3)在(2)的条件下,求△ACD 的面积.25. 先化简,再求值:22214()2442a a a a a a a a ----÷++++,其中a 是满足|3|3a a -=-的最大整数.26. 列方程,解应用题:第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行.与首届相比,第二届进博会的展览面积更大,企业展设置科技生活、汽车、装备等七个展区,展览面积由的270 000平方米增加到330 000平方米.参展企业比首届多了约300家,参展企业平均展览面积增加了12.8%,求首届进博会企业平均展览面积. (1) 在解应用题时,我们常借助表格、线段图等分析题目中的数量关系.A'F E C A GA'F E C设首届进博会企业平均展览面积为x 平方米,把下表补充完整: 届别总面积(平方米)企业平均展览面积(平方米)首 届 270 000x第二届 330 000(2)根据以上分析,列出方程(不解..方程).27. 在ABC 中,AB >BC ,直线l 垂直平分AC .(1)如图1,作∠ABC 的平分线交直线l 于点D ,连接AD ,CD . ①补全图形;②判断∠BAD 和∠BCD 的数量关系,并证明.(2) 如图2,直线l 与ABC 的外角∠ABE 的平分线交于点D ,连接AD ,CD . 求证:∠BAD =∠BCD .28.对于△ABC 及其边上的点P ,给出如下定义:如果点1M ,2M ,3M ,……,n M 都在 △ABC 的边上,且 123n PM PM PM PM ====L L ,那么称点1M ,2M ,3M ,……,n M 为△ABC 关于点P 的等距点,线段1PM ,2PM ,3PM ,……,n PM 为△ABC 关于点P 的等距线段.(1)如图1,△ABC 中,∠A <90°,AB =AC ,点P 是BC 的中点.①点B ,C △ABC 关于点P 的等距点,线段P A ,PB △ABC 关于点P 的等距线段;(填“是”或“不是”)②△ABC 关于点P 的两个等距点1M ,2M 分别在边AB ,AC 上,当相应的等距线段最短时,在图1中画出线段1PM ,2PM ;(2)△ABC 是边长为4的等边三角形,点P 在BC 上,点C ,D 是△ABC 关于点P 的等距lE D A C B lA B 图1 图2点,且PC =1,求线段DC 的长;(3)如图2,在Rt △ABC 中,∠C =90°,∠B =30°.点P 在BC 上,△ABC 关于点P 的等距点恰好有四个,且其中一个是点C . 若BC a =,直接写出PC 长的取值范围.(用含a 的式子表示)图1 图2东城区2019-2020学年度第一学期期末教学统一检测初二数学参考答案及评分标准 2020.1一、选择题(本题共20分,每小题2分)题号 1 2 3 4 5 6 7 8 9 10 答案ACDABCCADC二、填空题(本题共16分,每小题2分)11.()()33a a a +- 12. 2 13.答案不唯一,但必须是一组对应边,如:AC =AD 14. 59 15. 4 16. 5 ;128三.解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7分)17. 解: 原式()()()()332=223x x x x x -+++-L L L L 分()()2336423x x x x x -++=+-L L L L 分 ()()26523x x x +=+-L L L L 分 18.(1)BD ,MN ;……………………1分(2)三边对应相等的两个三角形全等;全等三角形的对应角相等;……………………3分 (3)小明没有对已知中的边和角的位置关系分类讨论. ……………………5分19.解:()-201π53⎛⎫- ⎪⎝⎭94=-+……………………4分=……………………5分20.证明:∵∠BAC =∠DAE,∴∠BAC -∠CAD =∠DAE -∠CAD.即∠BAD =∠CAE. ……………………2分 在△BAD 和△CAE 中,,BAD CAE ABD ACE AD AE ∠∠∠∠⎧⎪⎨⎪⎩=,=,=∴△BAD ≌△CAE (AAS ). …………………… 4分 ∴ AB =AC. …………………… 5分2222222()()()4()2(243454)2m (22)2m n m n m n m m n mm n m mn n m mn m mn m m n ⎡⎤+-+---÷⎣⎦=-+-+-+÷=-+⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯÷=-+⋯⋯⋯⋯⋯⋯⋯21.解:分分分B()()()222124532453112343x x x x x x x x ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯++--=++-+==-=-⋯⋯⋯⋯⋯⋯⋯⋯⋯22.解:分分分经检验:13x =-是原方程的解. ∴13x =-.……………………5分23.解:(1)∵∠A =30°,∴∠A '=30°. ……………………1分 ∵∠A BF '=90°, ∴∠A FB '=60°. ……………………2分∵∠CFE =∠A FB ',∴∠CFE =60°. ……………………3分(2)∵点A 与点A '关于直线DE 对称,∴DE ⊥AA '.∵∠A =30°,AE =3, ∴1322DE AE == . ……………………4分 由(1)知,∠CFE =60°,∠C =60°,∴△CFE 是等边三角形.∴EF =CE =AC -AE =1. ……………………5分 同理,△EFG 也是等边三角形, ∴12DG DE EG =-=DG =DE -EG =.……………………6分 24.解:(1)……………………………………………………………………………………2分GA''DA'FECAB图2A'FECA图1(2)D (-3,0); ……………………4分 (3)13927==2228ACD S ⨯⨯△.……………………6分22222221225.[](2)(2)44(1)2[](2)(2)442(2124)4231a a a a a a a a a a a a a a a a a a a a a a a--+=-⋅++---+=-⋅++--+=⋅+-⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=+解:原式分分分分∵a 是满足|3|3a a -=-的最大整数, ∴30a -≥. ∴3a ≤.∴=3a . ……………………5分 ∴1=15原式.……………………6分……………………………………………………………………………………4分(2)270 000330000+300=(1+12.8%)x x.……………………6分 27. 解:(1)①补全图形;……………………1分② 结论:∠BAD +∠BCD =180°. ……………………2分证明:过点D 作DE ⊥AB 于E ,作DF ⊥BC 交BC 的延长线于F , 则∠AED =∠CFD =90°.∵BD 平分∠ABC ,∴DE =DF . ∵直线l 垂直平分AC ,∴DA =DC. ……………………3分在Rt ADE 和Rt CDF 中, DA DC DE DF =⎧⎨=⎩,,∴Rt ADE ≌Rt CDF . ∴∠BAD =∠FCD.∵∠FCD +∠BCD =180°,∴Rt ADN ≌Rt CDM.∴∠BAD =∠BCD. ……………………7分28.解:(1)①是,不是;……………………2分②……………………3分(2)如图,DC =2,或DC =1; ……………………5分B(3)32a a PC <<.……………………7分。

浙江省绍兴市越城区五校联考2019-2020学年八年级(上)期末数学试卷 解析版

浙江省绍兴市越城区五校联考2019-2020学年八年级(上)期末数学试卷  解析版

2019-2020学年八年级(上)期末数学试卷一.选择题(共10小题)1.以下列各组数为边长,能组成一个三角形的是()A.3,4,5 B.2,2,5 C.1,2,3 D.10,20,40 2.若等腰三角形的两边长分别为4和6,则它的周长是()A.14 B.15 C.16 D.14或163.对一个假命题举反例时,应使所举反例()A.满足命题的条件,并满足命题的结论B.满足命题的条件,但不满足命题的结论C.不满足命题的条件,但满足命题的结论D.不满足命题的条件,也不满足命题的结论4.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y 5.点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是()A.关于直线x=2对称B.关于直线y=2对称C.关于x轴对称D.关于y轴对称6.如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.AB=AC B.∠BAC=90°C.BD=AC D.∠B=45°7.如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6﹣b,a﹣10)落在第几象限?()A.一B.二C.三D.四8.已知不等式x﹣1≥0,此不等式的解集在数轴上表示为()A.B.C.D.9.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.10.如图,直线y=x+m与y=nx﹣5n(n≠0)的交点的横坐标为3,则关于x的不等式x+m >nx﹣5n>0的整数解为()A.3 B.4 C.5 D.6二.填空题(共6小题)11.下列图形中全等图形是(填标号).12.如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x y(用“>”或“<”填空).13.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是°.14.如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E为垂足,连接CD,若BD=1,则AC的长是.15.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.16.如图,直线l1:y=﹣2x+2交x轴于点A,交y轴于点B,直线l2:y=x+1交x轴于点D,交y轴于点C,直线l1、l2交于点M.(1)点M坐标为;(2)若点E在y轴上,且△BME是以BM为一腰的等腰三角形,则E点坐标为.三.解答题(共7小题)17.解不等式组18.如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操作:先将格点△ABC向右平移4个单位得到△A1B1C1,再将△A1B1C1绕点C1点旋转180°得到△A2B2C2.19.在△ABC中,∠ABC=45°,F是高AD与高BE的交点.(1)求证:△ADC≌△BDF.(2)连接CF,若CD=4,求CF的长.20.在平面直角坐标系中,已知直线l:y=﹣x+2交x轴于点A,交y轴于点B,直线l 上的点P(m,n)在第一象限内,设△AOP的面积是S.(1)写出S与m之间的函数表达式,并写出m的取值范围.(2)当S=3时,求点P的坐标.(3)若直线OP平分△AOB的面积,求点P的坐标.21.如图,已知在△ABC中,AB=AC,D是BC边上任意一点,E在AC边上,且AD=AE.(1)若∠BAD=40°,求∠EDC的度数;(2)若∠EDC=15°,求∠BAD的度数;(3)根据上述两小题的答案,试探索∠EDC与∠BAD的关系.22.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A 型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.23.如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共10小题)1.以下列各组数为边长,能组成一个三角形的是()A.3,4,5 B.2,2,5 C.1,2,3 D.10,20,40 【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【解答】解:A、3+4>5,能组成三角形;B、2+2<5,不能组成三角形;C、1+2=3,不能组成三角形;D、10+20<40,不能组成三角形.故选:A.2.若等腰三角形的两边长分别为4和6,则它的周长是()A.14 B.15 C.16 D.14或16【分析】根据等腰三角形的性质,分两种情况:①当腰长为6时,②当腰长为4时,解答出即可.【解答】解:根据题意,①当腰长为6时,符合三角形三边关系,周长=6+6+4=16;②当腰长为4时,符合三角形三边关系,周长=4+4+6=14.故选:D.3.对一个假命题举反例时,应使所举反例()A.满足命题的条件,并满足命题的结论B.满足命题的条件,但不满足命题的结论C.不满足命题的条件,但满足命题的结论D.不满足命题的条件,也不满足命题的结论【分析】利用反例判断命题为假命题的方法对各选项进行判断.【解答】解:对一个假命题举反例时,应使所举反例满足命题的条件,但不满足命题的结论.故选:B.4.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y 【分析】根据不等式的基本性质,进行判断即可.【解答】解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A选项正确;B、根据不等式的性质2,可得>,故B选项正确;C、根据不等式的性质1,可得x+3>y+3,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.5.点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是()A.关于直线x=2对称B.关于直线y=2对称C.关于x轴对称D.关于y轴对称【分析】根据轴对称的性质解决问题即可.【解答】解:点P(﹣2,﹣4)与点Q(6,﹣4)的位置关系是关于直线x=2对称,故选:A.6.如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.AB=AC B.∠BAC=90°C.BD=AC D.∠B=45°【分析】此题是开放型题型,根据题目现有条件,AD=AD,∠ADB=∠ADC=90°,可以用HL判断确定,也可以用SAS,AAS,SSS判断两个三角形全等.【解答】解:添加AB=AC,符合判定定理HL;添加BD=DC,符合判定定理SAS;添加∠B=∠C,符合判定定理AAS;添加∠BAD=∠CAD,符合判定定理ASA;选其中任何一个均可.故选:A.7.如图的坐标平面上有P、Q两点,其坐标分别为(5,a)、(b,7).根据图中P、Q两点的位置,判断点(6﹣b,a﹣10)落在第几象限?()A.一B.二C.三D.四【分析】由平面直角坐标系判断出a<7,b<5,然后求出6﹣b,a﹣10的正负情况,再根据各象限内点的坐标特征解答.【解答】解:∵(5,a)、(b,7),∴a<7,b<5,∴6﹣b>0,a﹣10<0,∴点(6﹣b,a﹣10)在第四象限.故选:D.8.已知不等式x﹣1≥0,此不等式的解集在数轴上表示为()A.B.C.D.【分析】根据不等式的性质求出不等式的解集,再在数轴上表示出不等式的解集即可.【解答】解:∵x﹣1≥0,∴x≥1,在数轴上表示不等式的解集为:,故选:C.9.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.B.C.D.【分析】根据题意画出相应的图形,如图所示,在直角三角形ABC中,由AC及BC的长,利用勾股定理求出AB的长,然后过C作CD垂直于AB,由直角三角形的面积可以由两直角边乘积的一半来求,也可以由斜边AB乘以斜边上的高CD除以2来求,两者相等,将AC,AB及BC的长代入求出CD的长,即为C到AB的距离.【解答】解:根据题意画出相应的图形,如图所示:在Rt△ABC中,AC=9,BC=12,根据勾股定理得:AB==15,过C作CD⊥AB,交AB于点D,又S△ABC=AC•BC=AB•CD,∴CD===,则点C到AB的距离是.故选:A.10.如图,直线y=x+m与y=nx﹣5n(n≠0)的交点的横坐标为3,则关于x的不等式x+m >nx﹣5n>0的整数解为()A.3 B.4 C.5 D.6【分析】令y=0可求出直线y=nx﹣5n与x轴的交点坐标,根据两函数图象与x轴的上下位置关系结合交点横坐标即可得出不等式x+m>nx﹣5n>0的解,找出其内的整数即可.【解答】解:当y=0时,nx﹣5n=0,解得:x=5,∴直线y=nx﹣5n与x轴的交点坐标为(5,0).观察函数图象可知:当3<x<5时,直线y=x+m在直线y=nx﹣5n的上方,且两直线均在x轴上方,∴不等式x+m>nx﹣5n>0的解为3<x<5,∴不等式x+m>nx﹣5n>0的整数解为4.故选:B.二.填空题(共6小题)11.下列图形中全等图形是⑤和⑦(填标号).【分析】要认真观察图形,从①开始找寻,看后面的谁与之全等,然后是②,看后面的哪一个与它全等,如此找寻,可得答案.【解答】解:由全等形的概念可知:共有1对图形全等,即⑤和⑦能够重合.故答案为:⑤和⑦.12.如图,身高为xcm的1号同学与身高为ycm的2号同学站在一起时,如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x<y(用“>”或“<”填空).【分析】由图知1号同学比2号同学矮,据此可解答.【解答】解:如果用一个不等式来表示他们的身高关系,则这个式子可以表示成x<y,故答案为:<.13.△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是140 °.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠A=60°,∠B=80°,∴∠C的外角=∠A+∠B=60°+80°=140°.故答案为:140.14.如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E为垂足,连接CD,若BD=1,则AC的长是2.【分析】求出∠ACB,根据线段垂直平分线求出AD=CD,求出∠ACD、∠DCB,求出CD、AD、AB,由勾股定理求出BC,再求出AC即可.【解答】解:∵∠A=30°,∠B=90°,∴∠ACB=180°﹣30°﹣90°=60°,∵DE垂直平分斜边AC,∴AD=CD,∴∠A=∠ACD=30°,∴∠DCB=60°﹣30°=30°,∵BD=1,∴CD=AD=2,∴AB=1+2=3,在Rt△BCD中,由勾股定理得:CB=,在Rt△ABC中,由勾股定理得:AC==2,故答案为:2.15.甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶千米.【分析】根据函数的图形可以得到甲用了30分钟行驶了12千米,乙用12分钟行驶了12千米,分别算出速度即可求得结果.【解答】解:∵据函数图形知:甲用了30分钟行驶了12千米,乙用(18﹣6)分钟行驶了12千米,∴甲每分钟行驶12÷30=千米,乙每分钟行驶12÷12=1千米,∴每分钟乙比甲多行驶1﹣=千米,故答案为:.16.如图,直线l1:y=﹣2x+2交x轴于点A,交y轴于点B,直线l2:y=x+1交x轴于点D,交y轴于点C,直线l1、l2交于点M.(1)点M坐标为(,);(2)若点E在y轴上,且△BME是以BM为一腰的等腰三角形,则E点坐标为(0,)或(0,)或(0,).【分析】(1)解析式联立,解方程即可求得;(2)求得BM的长,分两种情况讨论即可.【解答】解:(1)解得,∴点M坐标为(,),故答案为(,);(2)∵直线l1:y=﹣2x+2交x轴于点A,交y轴于点B,∴B(0,2),∴BM==,当B为顶点,则E(0,)或(0,);当M为顶点点,则MB=ME,E(0,),综上,E点的坐标为(0,)或(0,)或(0,),故答案为(0,)或(0,)或(0,).三.解答题(共7小题)17.解不等式组【分析】首先分别计算出两个不等式的解集,再根据解集的规律确定不等式组的解集.【解答】解:,解①得:x<10,解②得:1≤x,故不等式组的解为:1≤x<10.18.如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操作:先将格点△ABC向右平移4个单位得到△A1B1C1,再将△A1B1C1绕点C1点旋转180°得到△A2B2C2.【分析】将△ABC向右平移4个单位后,横坐标变为x+4,而纵坐标不变,所以点A1、B1、C1的坐标可知,确定坐标点连线即可画出图形,将△ABC中的各点A、B、C旋转180°后,得到相应的对应点A2、B2、C2,连接各对应点即得△A2B2C2.【解答】解:如图所示:.19.在△ABC中,∠ABC=45°,F是高AD与高BE的交点.(1)求证:△ADC≌△BDF.(2)连接CF,若CD=4,求CF的长.【分析】(1)先证明AD=BD,再证明∠FBD=∠DAC,从而利用ASA证明△BDF≌△ADC;(2)利用全等三角形对应边相等得出DF=CD=4,根据勾股定理求出CF即可.【解答】(1)证明:∵AD⊥BC,∴∠FDB=∠ADC=90°,∵∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,∵BE⊥AC,∴∠AEF=∠FDB=90°,∵∠AFE=∠BFD,∴由三角形内角和定理得:∠CAD=∠FBD,在△ADC和△BDE中∴△ADC≌△BDE(ASA);(2)解:∵△ADC≌△BDE,CD=4,∴DF=CD=4,在Rt△FDC中,由勾股定理得:CF===4.20.在平面直角坐标系中,已知直线l:y=﹣x+2交x轴于点A,交y轴于点B,直线l 上的点P(m,n)在第一象限内,设△AOP的面积是S.(1)写出S与m之间的函数表达式,并写出m的取值范围.(2)当S=3时,求点P的坐标.(3)若直线OP平分△AOB的面积,求点P的坐标.【分析】(1)根据点A、P的坐标求得△AOP的底边与高线的长度;然后根据三角形的面积公式即可求得S与m的函数关系式;(2)将S=3代入(1)中所求的式子,即可求出点P的坐标;(3)由直线OP平分△AOB的面积,可知OP为△AOB的中线,点P为AB的中点,根据中点坐标公式即可求解.【解答】解:∵直线l:y=﹣x+2交x轴于点A,交y轴于点B,∴A(4,0),B(0,2),∵P(m,n)∴S=×4×(4﹣m)=4﹣m,即S=4﹣m.∵点P(m,n)在第一象限内,∴m+2n=4,∴,解得0<m<4;(2)当S=3时,4﹣m=3,解得m=1,此时y=(4﹣1)=,故点P的坐标为(1,);(3)若直线OP平分△AOB的面积,则点P为AB的中点.∵A(4,0),B(0,2),∴点P的坐标为(2,1).21.如图,已知在△ABC中,AB=AC,D是BC边上任意一点,E在AC边上,且AD=AE.(1)若∠BAD=40°,求∠EDC的度数;(2)若∠EDC=15°,求∠BAD的度数;(3)根据上述两小题的答案,试探索∠EDC与∠BAD的关系.【分析】(1)根据等腰三角形性质求出∠B的度数,根据三角形的外角性质求出∠ADC,求出∠DAC,根据等腰三角形性质求出∠ADE即可;(2)根据三角形的一个外角等于和它不相邻的两个内角的和,∠AED=∠EDC+∠C,∠ADC =∠B+∠BAD,再根据等边对等角的性质∠B=∠C,∠ADE=∠AED,代入数据计算即可求出∠BAD的度数;(3)根据(1)(2)的结论猜出即可.【解答】解:(1)∵AB=AC,∴∠B=∠C=(180°﹣∠BAC)=90°﹣∠BAC,∴∠ADC=∠B+∠BAD=90°﹣∠BAC+40°=130°﹣∠BAC,∵∠DAC=∠BAC﹣∠BAD=∠BAC﹣40°,∴∠ADE=∠AED=(180°﹣∠DAC)=110°﹣∠BAC,∴∠EDC=∠ADC﹣∠ADE=(130°﹣∠BAC)﹣(110°﹣∠BAC)=20°,故∠EDC的度数是20°.(2)∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,∵AD=AE,∴∠AED=∠ADE,∵AB=AC,∴∠B=∠C,∴∠B+∠BAD=∠EDC+∠C+∠EDC,即∠BAD=2∠EDC,∵∠EDC=15°,∴∠BAD=30°.(3)∠EDC与∠BAD的数量关系是∠EDC=∠BAD.22.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A 型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【分析】(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意列出方程组求解,(2)①据题意得,y=﹣50x+15000,②利用不等式求出x的范围,又因为y=﹣50x+15000是减函数,所以x取34,y取最大值,(3)据题意得,y=(100+m)x﹣150(100﹣x),即y=(m﹣50)x+15000,分三种情况讨论,①当0<m<50时,y随x的增大而减小,②m=50时,m﹣50=0,y=15000,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.【解答】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.23.如图①,已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,以OA、OC为边在第一象限内作长方形OABC.(1)求点A、C的坐标;(2)将△ABC对折,使得点A的与点C重合,折痕交AB于点D,求直线CD的解析式(图②);(3)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)已知直线y=﹣2x+4与x轴、y轴分别交于点A、C,即可求得A和C的坐标;(2)根据题意可知△ACD是等腰三角形,算出AD长即可求得D点坐标,最后即可求出CD的解析式;(3)将点P在不同象限进行分类,根据全等三角形的判定方法找出所有全等三角形,找出符合题意的点P的坐标.【解答】解:(1)A(2,0);C(0,4)(2分)(2)由折叠知:CD=AD.设AD=x,则CD=x,BD=4﹣x,根据题意得:(4﹣x)2+22=x2解得:此时,AD=,(2分)设直线CD为y=kx+4,把代入得(1分)解得:∴直线CD解析式为(1分)(3)①当点P与点O重合时,△APC≌△CBA,此时P(0,0)②当点P在第一象限时,如图,由△APC≌△CBA得∠ACP=∠CAB,则点P在直线CD上.过P作PQ⊥AD于点Q,在Rt△ADP中,AD=,PD=BD==,AP=BC=2由AD×PQ=DP×AP得:∴∴,把代入得此时(也可通过Rt△APQ勾股定理求AQ长得到点P的纵坐标)③当点P在第二象限时,如图同理可求得:∴此时综合得,满足条件的点P有三个,分别为:P1(0,0);;.。

最新版2019-2020年冀教版八年级数学上学期期末模拟综合测评题及答案解析-精编试题

最新版2019-2020年冀教版八年级数学上学期期末模拟综合测评题及答案解析-精编试题

八年级(上)期末数学模拟试卷一、仔细选一选(本大题共12小题,每小题2分,满分24分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确选项的代码填在题后的括号内)1.4的算术平方根是()A.±2 B.2 C.4 D.﹣22.下列四个图案中,是轴对称图形的是()A. B. C. D.3.若使分式有意义,则x的取值范围是()A.x≠2 B.x≠﹣2 C.x≠﹣1 D.x=24.下列结论正确的是()A.形状相同的两个图形是全等图形B.全等图形的面积相等C.对应角相等的两个三角形全等D.两个等边三角形全等5.下列属于最简二次根式的是()A.B. C.D.6.某市2016年的地方公共财政收入用四舍五入取近似值后为21.39亿元,则这个数值精确到()A.百分位B.亿位C.千万位D.百万位7.一个等腰三角形的两边长分别是3和7,则它的周长为()A.13 B.15 C.17 D.13或178.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°9.下列运算正确的是()A.2÷=B.=﹣2 C.(﹣)2=﹣2 D.×=10.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC11.如图,数轴上点A,B所对应的实数分别是1和,点B与点C关于点A对称,则点C所对应的实数是()A. B.2﹣C.2﹣2 D.﹣112.如图,在6×6的正方形网格中,点A,B均在正方形格点上,若在网格中的格点上找一点C,使△ABC为等腰三角形,这样的点C一共有()A.7个B.8个C.10个D.12个二、认真填一填(本大题共6个小题,每小题3分,满分18分.请把答案写在题中横线上)13.0.008的立方根是.14.命题“有一条边和一个锐角分别相等的两个直角三角形全等”是命题.(填“真”或“假”)15.如图,公路AC和BC互相垂直,垂足为点C,公路AB的中点M与点C 被湖隔开.已知公路AB=3.2km,则点M,C之间的距离为km.16.规定符号“[m]”表示一个实数m的整数部分,例如:[]=0,[π]=3.则按此规定[﹣1]= .17.如图,长方形纸片ABCD中,已知AD=8,AB=6,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,则CE的长为.18.如图,等边△ABC中,AB=4,AD⊥BC于点D,点F在线段AD上运动,点E在AC上,且AE=2,当EF+CF取最小值时,∠ECF= °.三、细心解答(本大题共8个小题,共58分,解答应写出相应的文字说明或解题步骤)19.计算:(1)2+﹣;(2)(b2﹣ab)•.20.解方程:2﹣=.21.当x=时,求(﹣)÷的值.22.如图,在Rt△ABC中,已知∠ABC=90°,∠ACB=60°,DE是斜边AC 的中垂线,分别交AB,AC于点D,E,连接DC,若BD=2,求线段AC的长.23.如图,已知∠MON,点A,B分别在OM,ON边上,且OA=OB.(1)求作:过点A,B分别作OM,ON的垂线,两条垂线的交点记作点D(保留作图痕迹,不写作法);(2)连接OD,若∠MON=50°,则∠ODB= °.24.在数学活动课上,小明将一块等腰直角三角形纸板ABC的直角顶点C放置在直线l上,位置如图所示,∠ACB=90°,过点A,B分别作直线l的垂线,垂足分别为D,E.(1)通过观察,小明猜想△ACD与△CBE全等,请你证明这个猜想;(2)小明把三角形纸板ABC绕点C任意旋转(点C始终在直线l上,直角边不与l重合),借助(1)中的结论,发现线段AD,BE和DE之间存在某种数量关系,请你写出所有用BE,DE表示AD的式子:.25.在我市地铁1号线的建设中,某路段需要有甲、乙两个工程队进行施工,已知甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的,经测算,若由甲队先做15天,剩下的工程再由甲、乙两队合作30天完成.(1)甲、乙两队单独完成这项工程各需多少天?(2)已知甲队的施工费用为6.5万元/天,乙队的施工费用为8.5万元/天,这项工程预算的施工费用为500万元.若甲、乙两队合作完成这项工程,则预算的施工费用是否够用?若不够用,需要追加多少万元?请通过计算说明.26.已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.【发现】(1)如图1,若∠ABC=∠ADC=90°,则∠BCD= °,△CBD是三角形;【探索】(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;【应用】(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH为等边三角形,则满足上述条件的△PGH的个数一共有.(只填序号)①2个②3个③4个④4个以上参考答案与试题解析一、仔细选一选(本大题共12小题,每小题2分,满分24分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确选项的代码填在题后的括号内)1.4的算术平方根是()A.±2 B.2 C.4 D.﹣2【考点】算术平方根.【分析】根据算术平方根的概念即可求出答案.【解答】解:∵22=4,∴4的算术平方根是2,故选(B)2.下列四个图案中,是轴对称图形的是()A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、是轴对称图形,故本选项正确;D、不是轴对称图形,故本选项错误.故选:C.3.若使分式有意义,则x的取值范围是()A.x≠2 B.x≠﹣2 C.x≠﹣1 D.x=2【考点】分式有意义的条件.【分析】直接利用分式有意义则其分母不为零,进而得出答案.【解答】解:∵分式有意义,∴x的取值范围是:x﹣2≠0,解得:x≠2.故选:A.4.下列结论正确的是()A.形状相同的两个图形是全等图形B.全等图形的面积相等C.对应角相等的两个三角形全等D.两个等边三角形全等【考点】全等图形.【分析】能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形,根据全等图形的性质以及全等三角形的性质进行判断即可.【解答】解:A.形状相同的两个图形不一定是全等图形,是相似形,故A错误;B.根据全等图形的性质,可得全等图形的面积相等,故B正确;C.对应角相等且对应边相等的两个三角形全等,故C错误;D.两个边长相等的等边三角形全等,故D错误,故选:B.5.下列属于最简二次根式的是()A.B. C.D.【考点】最简二次根式.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故A正确;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数含分母,故D错误;故选:A.6.某市2016年的地方公共财政收入用四舍五入取近似值后为21.39亿元,则这个数值精确到()A.百分位B.亿位C.千万位D.百万位【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:21.39亿精确到0.01亿位,即精确到百万位.故选D.7.一个等腰三角形的两边长分别是3和7,则它的周长为()A.13 B.15 C.17 D.13或17【考点】等腰三角形的性质;三角形三边关系.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选C.8.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设()A.有一个锐角小于45°B.每一个锐角都小于45°C.有一个锐角大于45°D.每一个锐角都大于45°【考点】反证法.【分析】用反证法证明命题的真假,应先按符合题设的条件,假设题设成立,再判断得出的结论是否成立即可.【解答】解:用反证法证明命题“在直角三角形中,至少有一个锐角不大于45°”时,应先假设每一个锐角都大于45°.故选D.9.下列运算正确的是()A.2÷=B.=﹣2 C.(﹣)2=﹣2 D.×=【考点】二次根式的乘除法.【分析】根据=(a≥0,b>0),=|a|,=(a≥0,b≥0),分别进行计算即可.【解答】解:A、2=,故原题计算错误;B、=2,故原题计算错误;C、(﹣)2=2,故原题计算错误;D、=,故原题计算正确;故选:D.10.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC【考点】全等三角形的判定.【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用SAS定理证明△EAC≌△FDB即可.【解答】解:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(SAS),故选:A.11.如图,数轴上点A,B所对应的实数分别是1和,点B与点C关于点A对称,则点C所对应的实数是()A. B.2﹣C.2﹣2 D.﹣1【考点】实数与数轴.【分析】根据点A、B表示的数求出AB,再根据对称可得AC=AB,然后根据数轴上左边的数比右边的小列式计算即可得解.【解答】解:∵点A ,B 所对应的实数分别是1和,∴AB=﹣1,∵点B 与点C 关于点A 对称,∴AC=AB ,∴点C 所对应的实数是1﹣(﹣1)=1﹣+1=2﹣.故选B .12.如图,在6×6的正方形网格中,点A ,B 均在正方形格点上,若在网格中的格点上找一点C ,使△ABC 为等腰三角形,这样的点C 一共有( )A .7个B .8个C .10个D .12个【考点】等腰三角形的判定.【分析】首先由勾股定理可求得AB 的长,然后分别从BA=BC ,AB=AC ,CA=CB 去分析求解即可求得答案.【解答】解:∵AB==2,如图所示:∴①若BA=BC ,则符合要求的有:C 1,C 2共2个点;②若AB=AC ,则符合要求的有:C 3,C 4共2个点;③若CA=CB ,则符合要求的有:C 5,C 6,C 7,C 8,C 9,C 10共6个点. ∴这样的C 点有10个.故选:C.二、认真填一填(本大题共6个小题,每小题3分,满分18分.请把答案写在题中横线上)13.0.008的立方根是0.2 .【考点】立方根.【分析】根据立方根的概念即可求出答案【解答】解:0.23=0.008∴0.008的立方根是0.2故答案为:0.214.命题“有一条边和一个锐角分别相等的两个直角三角形全等”是假命题.(填“真”或“假”)【考点】命题与定理.【分析】根据直角三角形全等的判定方法判断即可.【解答】解:一条边和一个锐角分别相等的两个直角三角形,边与角不一定是对应边和对应角,例如:两个直角三角形中相等的∠α的邻边与对边相等,两个三角形不全等,所以,这两个直角三角形不一定全等,所以,“有一条边和一个锐角分别相等的两个直角三角形全等”是假命题.故答案为:假.15.如图,公路AC和BC互相垂直,垂足为点C,公路AB的中点M与点C 被湖隔开.已知公路AB=3.2km,则点M,C之间的距离为 1.6 km.【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半,可得MC=AB=1.6km.【解答】解:∵在Rt△ABC中,∠ACB=90°,M为AB的中点,∴MC=AB=1.6km.故答案为:1.6.16.规定符号“[m]”表示一个实数m的整数部分,例如:[]=0,[π]=3.则按此规定[﹣1]= 2 .【考点】估算无理数的大小.【分析】直接利用的取值范围得出2<﹣1<3,进而得出答案.【解答】解:∵3<<4,∴2<﹣1<3,∴[﹣1]=2.故答案为:2.17.如图,长方形纸片ABCD中,已知AD=8,AB=6,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,则CE的长为 5 .【考点】翻折变换(折叠问题).【分析】如图,求出AC的长度;证明EF=EB(设为λ),得到CE=8﹣λ;列出关于λ的方程,求出λ即可解决问题.【解答】解:如图,∵四边形ABCD为矩形,∴∠D=90°,DC=AB=6;由勾股定理得:AC2=AD2+DC2,而AD=8,∴AC=10;由题意得:∠AFE=∠B=90°,AF=AB=6;EF=EB(设为λ),∴CF=10﹣6=4,CE=8﹣λ;由勾股定理得:(8﹣λ)2=λ2+42,解得:λ=3,∴CE=5,故答案为5.18.如图,等边△ABC中,AB=4,AD⊥BC于点D,点F在线段AD上运动,点E在AC上,且AE=2,当EF+CF取最小值时,∠ECF= 30 °.【考点】轴对称-最短路线问题;等边三角形的性质.【分析】如图,作点E关于直线AD的对称点E′,连接CE′交AD于F′.由EF+FC=FE′+FC,所以当C、E′、F共线时,EF+CF最小,由△ABC是等边三角形,AB=BC=AC=4,AE=AE′=2,推出AE′=E′B,∠ACB=60°,推出∠ACE′=∠BCE′=30°,即可解决问题.【解答】解:如图,作点E关于直线AD的对称点E′,连接CE′交AD于F′.∵EF+FC=FE′+FC,∴当C、E′、F共线时,EF+CF最小,∵△ABC是等边三角形,AB=BC=AC=4,AE=AE′=2,∴AE′=E′B,∠ACB=60°∴∠ACE′=∠BCE′=30°,∴此时∠ECF=30°,故答案为30.三、细心解答(本大题共8个小题,共58分,解答应写出相应的文字说明或解题步骤)19.计算:(1)2+﹣;(2)(b2﹣ab)•.【考点】二次根式的加减法;分式的乘除法.【分析】根据二次根式的性质以及分式运算的性质即可求出答案.【解答】解:(1)原式=4+6﹣4=6,(2)原式=b(b﹣a)•=﹣ab2,20.解方程:2﹣=.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣6﹣x=﹣3,解得:x=3,经检验x=3是增根,分式方程无解.21.当x=时,求(﹣)÷的值.【考点】分式的化简求值.【分析】先将(﹣)÷进行化简,然后将x=代入求解即可.【解答】解:(﹣)÷=×=﹣×=﹣.当x=时,原式=﹣=﹣6.22.如图,在Rt△ABC中,已知∠ABC=90°,∠ACB=60°,DE是斜边AC 的中垂线,分别交AB,AC于点D,E,连接DC,若BD=2,求线段AC的长.【考点】线段垂直平分线的性质.【分析】根据直角三角形的性质求出∠A的度数,根据线段垂直平分线的性质得到DA=DC,求出∠DCB=30°,根据直角三角形的性质求出BC的长,得到答案.【解答】解:∵∠ACB=60°,∠B=90°,∴∠A=30°,∵DE是斜边AC的中垂线,∴DA=DC,∴∠ACD=∠A=30°,∴∠D CB=30°,∴BC=BD=2,∴AC=2BC=4.23.如图,已知∠MON,点A,B分别在OM,ON边上,且OA=OB.(1)求作:过点A,B分别作OM,ON的垂线,两条垂线的交点记作点D(保留作图痕迹,不写作法);(2)连接OD,若∠MON=50°,则∠ODB= 65 °.【考点】作图—基本作图;等腰三角形的性质.【分析】(1)根据过直线上一点作直线垂线的方法作出垂线即可;(2)利用全等三角形的判定与性质结合四边形内角和定理得出答案.【解答】解:(1)如图,DA,DB即为所求垂线;(2)连接OD,∵DB⊥ON,DA⊥OM,∴∠OBD=∠OAD=90°,∠MON=50°,∴∠ADB=180°﹣50°=130°.在Rt△OBD与Rt△OAD中,∵,∴Rt△OBD≌Rt△OAD(HL),∴∠ODB=∠ADB=65°.故答案为:65.24.在数学活动课上,小明将一块等腰直角三角形纸板ABC的直角顶点C放置在直线l上,位置如图所示,∠ACB=90°,过点A,B分别作直线l的垂线,垂足分别为D,E.(1)通过观察,小明猜想△ACD与△CBE全等,请你证明这个猜想;(2)小明把三角形纸板ABC绕点C任意旋转(点C始终在直线l上,直角边不与l重合),借助(1)中的结论,发现线段AD,BE和DE之间存在某种数量关系,请你写出所有用BE,DE表示AD的式子:AD=BE﹣DE,或AD=DE ﹣BE,或AD=DE+BE..【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1)观察图形,结合已知条件,可知全等三角形为:△ACD与△CBE.根据AAS即可证明;(2)根据全等三角形的性质即可得到结论.【解答】(1)证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,又∵∠ACB=90°,∴∠ACD=90°﹣∠ECB=∠CBE.在△ACD与△CBE中,,∴△ACD≌△CBE(AAS);(2)AD=BE﹣DE,或AD=DE﹣BE,或AD=DE+BE.故答案为:AD=BE﹣DE,或AD=DE﹣BE,或AD=DE+BE.25.在我市地铁1号线的建设中,某路段需要有甲、乙两个工程队进行施工,已知甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的,经测算,若由甲队先做15天,剩下的工程再由甲、乙两队合作30天完成.(1)甲、乙两队单独完成这项工程各需多少天?(2)已知甲队的施工费用为6.5万元/天,乙队的施工费用为8.5万元/天,这项工程预算的施工费用为500万元.若甲、乙两队合作完成这项工程,则预算的施工费用是否够用?若不够用,需要追加多少万元?请通过计算说明.【考点】分式方程的应用.【分析】(1)设乙队单独完成这项工程需x天,则甲队单独完成这项工程需x 天,根据“甲先做15天的工作量+甲、乙合作30天的工作量=1”列分式方程求解可得;(2)把这项工程的总工作量设为1,先求出甲、乙两队合作一天的工作量,再求得甲、乙两队合作完成这项工程需要的时间,根据“合作每天的费用×合作时间”可得所需总费用,从而得出答案.【解答】解:(1)设乙队单独完成这项工程需x天,则甲队单独完成这项工程需x天,根据题意,得:+30×(+)=1,解得:x=60,经检验x=60是原分式方程的解,当x=60时,x=90,答:甲队单独完成这项工程需90天,乙队单独完成这项工程需60天;(2)把这项工程的总工作量设为1,则甲、乙两队合作一天的工作量为(+)=,甲、乙两队合作完成这项工程需要的时间为1÷=36天,∴合作需要的施工费用为36×(6.5+8.5)=540(万元),∵540>500,540﹣500=40(万元),∴预算的施工费用不够用,需要追加40万元.26.已知∠MAN=120°,点C是∠MAN的平分线AQ上的一个定点,点B,D分别在AN,AM上,连接BD.(1)如图1,若∠ABC=∠ADC=90°,则∠BCD= 60 °,△CBD是等边三角形;【探索】(2)如图2,若∠ABC+∠ADC=180°,请判断△CBD的形状,并证明你的结论;【应用】(3)如图3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若点G,H分别在射线OE,OF上,且△PGH为等边三角形,则满足上述条件的△PGH的个数一共有④.(只填序号)①2个②3个③4个④4个以上【考点】三角形综合题.【分析】(1)利用四边形的内角和即可得出∠BCD的度数,再利用角平分线的性质定理即可得出CB,即可得出结论;(2)先判断出∠CDE=∠ABC,进而得出△CDE≌△CFB(AAS),得出CD=CB,再利用四边形的内角和即可得出∠BCD=60°即可得出结论;(3)先判断出∠POE=∠POF=60°,先构造出等边三角形,找出特点,即可得【解答】解:(1)如图1,连接BD,∵∠ABC=∠ADC=90°,∠MAN=120°,根据四边形的内角和得,∠BCD=360°﹣(∠ABC+∠ADC+∠MAN)=60°,∵AC是∠MAN的平分线,CD⊥AM.CB⊥AN,∴CD=CB,(角平分线的性质定理),∴△BCD是等边三角形;故答案为:60,等边;(2)如图2,同(1)得出,∠BCD=60°(根据三角形的内角和定理),过点C作CE⊥AM于E,CF⊥AN于F,∵AC是∠MAN的平分线,∴CE=CF,∵∠ABC+∠ADC=180°,∠ADC+∠CDE=180°,∴∠CDE=∠ABC,在△CDE和△CFB中,,∴△CDE≌△CFB(AAS),∴CD=CB,∵∠BCD=60°,∴△CBD是等边三角形;(3)如图3,∵OP平分∠EOF,∠EOF=120°,∴∠POE=∠POF=60°,在OE上截取OG'=OP=1,连接PG',∴△G'OP是等边三角形,此时点H'和点O重合,同理:△OPH是等边三角形,此时点G和点O重合,将等边△PHG绕点P逆时针旋转到等边△PG'H',在旋转的过程中,边PG,PH分别和OE,OF相交(如图中G'',H'')和点P围成的三角形全部是等边三角形,(旋转角的范围为(0°到60°包括0°和60°),所以有无数个;理由:同(2)的方法.故答案为④.2017年2月21日。

2019-2020学年度北师大版八年级数学上册期末测试卷(含答案)

2019-2020学年度北师大版八年级数学上册期末测试卷(含答案)

2019-2020学年度上学期期末考试试卷八年级 数学本试卷满分100分,考试时间100分钟一、选择题(本大题共8小题,每小题3分,共24分,每小题只有一个正确选项,请将这个正确的选项填在下面表格中.)1.下列各数是无理数的是( ) A.2 B.38 C.722D.0π 2.点P 的坐标是(-3,4),则点P 在( )A.第一象限B.第二象限C.第三象限D.第四象限 3.下列各组数中,能作为直角三角形边长的是( ) A.4,5,6 B.12,16,20 C.5,10,13 D.8,40,414.下列命题是真命题的有( ) ①等边三角形的三个内角都相等; ②如果3325xx -=-,那么x=4; ③两个锐角之和一定是钝角; ④如果x 2>0,那么x>0;A.1个B.2个C.3个D.4个 5.有一组数据:2,5,5,6,7,这组数据的平均数为( ) A.3 B.4 C.5 D.66一个两位数,十位上的数字比个位上的数字大1,若将个位与十位上的数字对调,得到的新数比原数小9,设个位上的数字为x,十位上的数字为y,根据题意,可列方程为( )A.⎩⎨⎧++=+=-910101x y y x y xB.⎩⎨⎧++=+=-910101y x x y y xC.⎩⎨⎧++=+=-910101x y y x x yD.⎩⎨⎧++=+=-910101y x x y x y7.如图在△ABC 中,D 是AB 上一点,E 是AC 上一点,BE,CD 相交于点F,∠A=70°,∠ACD=20°,∠ABE=32°,则∠CFE 的度数为( )。

A.680B.580C.520D.4808. 两条直线y=kx+b 与y=bx+k(k,b 为常数,且k b≠0)在同一坐标系中的图像可能是( )。

二、填空题(本大题共8小题,每小题3分,共24分) 9绝对值最小的实数是 。

10.若一个正数的两个平方根是x-5和x+1,则x= 。

浙江省宁波市奉化区2018-2019学年八年级(上)期末数学试卷-解析版

浙江省宁波市奉化区2018-2019学年八年级(上)期末数学试卷-解析版

2018-2019学年浙江省宁波市奉化区八年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.下面四个汽车标志图标中,不是轴对称图形的为()A.B.C.D.2.下列长度的三条线段能组成三角形的是()A. 1,2,3B. 3,4,5C. 5,6,11D. 4,5,103.已知a>b,则下列不等式变形正确的是()A. B. C. D.4.下面给出的四个三角形都有一部分被遮挡,其中不能确定三角形类型的是()A.B.C.D.5.对于命题“如果∠1+∠2=90°,那么∠1≠∠2.”能说明它是假命题的是()A. ,B. ,C. ,D.6.如图,已知∠1=∠2,欲得到△ABD≌△ACD,则从下列条件中补选一个,错误的选法是()A. B. C. D.7.如图为一次函数y=kx+b(k≠0)的图象,则下列正确的是()A. ,B. ,C. ,D. ,8.将一个有45°角的三角板的直角顶点C放在一张宽为5cm的纸带边沿上,另一个顶点B在纸带的另一边沿上,测得∠DBC=30°,则三角板的最大边的长为()A. 5cmB. 10cmC.D.9.有下列说法:①有一个角为60°的等腰三角形是等边三角形;②三边分别是1,,3的三角形是直角三角形;③直角三角形斜边上的中线等于斜边的一半;④三个角之比为3:4:5的三角形是直角三角形,其中正确的有()A. 1个B. 2个C. 3个D. 4个10.某次知识竞赛试卷有20道题,评分办法是答对一道记5分,不答记0分,答错一道扣2分,小明有3道题没答,但成绩超过60分,则小明至少答对了()道题.A. 13B. 14C. 15D. 1611.直角三角形纸片的两直角边长分别为6,8,现将△ABC按如图那样折叠,使点A与点B重合,折痕为DE,则DE的长为()A. B. 5 C. D.12.在等腰三角形△ABC(AB=AC,∠BAC=120°)所在平面上有一点P,使得△PAB,△PBC,△PAC都是等腰三角形,则满足此条件的点P有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)13.已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是______.14.若点A(2,n)在x轴上,则点B(n+2,n-5)位于第______象限.15.如图,已知Rt△ABC,∠C=90°,BD是角平分线,BD=5,BC=4,则D点到AB的距离是______.16.已知一次函数y=kx+b的图象如图所示,则不等式kx+b≥4的解是______.17.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.18.如图,在平面直角坐标系中,点A(0,),B(,0),C是线段AB的中点,D是x轴上的一个动点,以AD为直角边作等腰直角△ADE,其中∠DAE=90°,连结CE.当CE为最小值时,此时△ACE的面积是______.三、解答题(本大题共7小题,共66.0分)19.解不等式组><,并把不等式组的解在数轴上表示出来.20.如图所示,在△ABC中,AB=AC,∠1=∠2,AD⊥CD于点D,AE⊥BE于点E,BE,CD交于点O.求证:(1)△ABE≌△ACD;(2)OD=OE.21.某两个城中村A,B与两条公路l1,l2位置如图所示,因城市拆迁安置需要,在C处新建安置小区,要求小区与两个村A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在图中,用尺规作图,找出所有符合条件的C点.(不写已知,求作,作法,只保留作图痕迹)22.如图,一次函数y=-x+2的图象分别与x轴、y轴交于点A、B,以线段AB为边在第一象限内作等腰Rt△ABC,∠BAC=90°.(1)求点A、B的坐标;(2)求过B、C两点的直线的解析式.23.浙江实施“五水共治“以来,越来越重视节约用水,某地对居民用水按阶梯水价方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元),请根据图象信息,回答下列问题.(1)请写出y与x的函数关系式;(2)若某个家庭有5人,响应节水号召,计划控制1月份的生活用水费不超过76元,则该家庭这个月最多可以用多少吨水?24.如图,已知AC∥BD,AE,BE分别平分∠CAB和∠DBA,点E在线段CD上.(1)求∠AEB的度数;(2)求证:CE=DE.25.定义:若以三条线段a,b,c为边能构成一个直角三角形,则称线段a,b,c是勾股线段组.(1)如图①,已知点M,N是线段AB上的点,线段AM,MN,NB是勾股线段组,若AB=12,AM=3,求MN的长;(2)如图②,△ABC中,∠A=18°,∠B=27°,边AC,BC的垂直平分线分别交AB于点M,N,求证:线段AM,MN,NB是勾股线段组;(3)如图③,在等边△ABC中,P为△ABC内一点,线段AP,BP,CP构成勾股线段组,CP为此线段组的最长线段,求∠APB的度数.答案和解析1.【答案】A【解析】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,符合题意.故选:A.直接根据轴对称图形的概念分别解答得出答案.本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【答案】B【解析】解:A.∵1+2=3,∴1,2,3不能组成三角形;B.∵3+4>5,∴3,4,5能组成三角形;C.∵5+6=11,∴5,6,11不能组成三角形;D.∵4+5<10,∴4,5,10不能组成三角形;故选:B.在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.本题主要考查了三角形的三边关系,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.3.【答案】D【解析】解:A、不等式的两边都乘以不为0的数,不等号的方向不变,故A错误;B、不等式的两边都乘以-2,不等号的方向改变,故B错误;C、不等式的两边都乘以-1,不等号的方向改变,故C错误;D、不等式的两边都减去2,不等号的方向不改变,故D正确;故选:D.根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.本题考查了不等式的基本性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.4.【答案】A【解析】解:观察图象可知:选项B,D的三角形是钝角三角形,选项C中的三角形是锐角三角形,选项A中的三角形无法判定三角形的类型,故选:A.根据三角形按角分类的方法一一判断即可.本题考查三角形的分类,解题的关键是熟练掌握基本知识,属于中考常考题型.5.【答案】D【解析】解:“如果∠1+∠2=90°,那么∠1≠∠2.”能说明它是假命题为∠1=∠2=45°.故选:D.写反例时,满足条件但不能得到结论.本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.【答案】B【解析】解:A正确;理由:在△ABD和△ACD中,,∴△ABD≌△ACD(ASA);B不正确,由这些条件不能判定三角形全等;C正确;理由:在△ABD和△ACD中,,∴△ABD≌△ACD(AAS);D正确;理由:在△ABD和△ACD中,,∴△ABD≌△ACD(SAS);故选:B.由全等三角形的判定方法ASA证出△ABD≌△ACD,得出A正确;由全等三角形的判定方法得出B不正确;由全等三角形的判定方法AAS证出△ABD≌△ACD,得出C正确;由全等三角形的判定方法SAS证出△ABD≌△ACD,得出D正确.本题考查了全等三角形的判定方法;三角形全等的判定是中考的热点,熟练掌握全等三角形的判定方法是解决问题的关键.7.【答案】C【解析】解:∵一次函数经过二、四象限,∴k<0,∵一次函数与y轴的交于正半轴,∴b>0.故选:C.根据一次函数经过的象限可得k和b的取值.考查一次函数的图象与系数的关系的知识;用到的知识点为:一次函数经过一三象限或二四象限,k>0或<0;与y轴交于正半轴,b>0,交于负半轴,b<0.8.【答案】C【解析】解:如图:作BE⊥CE与E点,BE=5cm,∵DB∥CE,∴∠2=∠1=30°,BC=2BE=2×5=10cm,在等腰直角三角形ABC中,由勾股定理得AB=,故选:C.根据平行线的性质,可得∠1与∠2的关系,根据30°的角所对的直角边是斜边的一半,可得BC 与CE的关系,根据等腰直角三角形的性质,可得AC与BC的关系,根据勾股定理,可得答案.本题考查了等腰直角三角形的性质,先求出BC的长,再求出AB的长.9.【答案】C【解析】解:①正确,符合等边三角形的判定定理;②正确,因为12+32=()2,所以三边分别是1,,3的三角形是直角三角形;③正确,根据矩形对角线的性质的逆命题;④错误,三边之比为3:4:5的三角形是直角三角形.故选:C.分别根据等边三角形及直角三角形的判定定理解答.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.10.【答案】B【解析】解:设小明答对x道题,则打错20-3-x=17-x道题.根据题意得:5x-2(17-x)>60即7x>94∴x>13.∴13<x≤17.成绩超过60分,则小明至少答对了14道题.故选:B.根据成绩超过了60分,即可得到一个关于答对题目数的不等式,从而求得答对题数x的范围,即可判断.本题考查一元一次不等式的应用,解题的关键是明确题意,列出相应的不等式.11.【答案】A【解析】解:∵∠C=90°,AC=8,BC=6,∴AB==10,∵折叠∴BE=AE,AD=BD=5,DE⊥AB,在Rt△BEC中,BE2=BC2+CE2,∴BE2=36+(8-BE)2,∴BE=在Rt△BDE中,DE==故选:A.根据勾股定理可求AB=10,由折叠的性质可得BE=AE,AD=BD=5,DE⊥AB,根据勾股定理可求BE的长,DE的长.本题考查了翻折变换,勾股定理熟练运用折叠的性质是本题的关键.12.【答案】B【解析】解:如图,满足条件的所有点P的个数为2,故选:B.根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”解答即可.本题考查了等腰三角形的判定与性质,熟练掌握等腰三角形的判定和性质定理是解题的关键.13.【答案】y=-2x【解析】解:设该正比例函数的解析式为y=kx,根据题意,得-2k=4,k=-2.则这个正比例函数的表达式是y=-2x.故答案为y=-2x.本题可设该正比例函数的解析式为y=kx,然后根据该函数图象过点(-2,4),由此可利用方程求出k的值,进而解决问题.此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.14.【答案】四【解析】解:∵点A(2,n)在x轴上,∴n=0,则点B(n+2,n-5)的坐标为:(2,-5)位于第四象限.故答案为:四.直接利用x轴上点的坐标特点得出n的值,进而得出答案.此题主要考查了点的坐标,正确得出n的值是解题关键.15.【答案】3【解析】解:如图,过D作DE⊥AB于E,∵∠C=90°,BD=5,BC=4,∴由勾股定理得:CD=3,又∵BD是∠ABC的平分线,∴DE=DC=3,即点D到AB的距离是3.故答案为:3.依据角平线的性质可得点D到AB和BC的距离相等,求出CD的长度即可得到D点到AB的距离.本题主要考查了角平分线的性质,解题时注意:角平分线上点到角两边距离相等.16.【答案】x≤0【解析】解:∵从图象可知:k<0,直线与y轴交点的坐标为(0,4),∴不等式kx+b≥4的解集是x≤0,故答案为x≤0.根据图形得出k<0和直线与y轴交点的坐标为(0,4),即可得出不等式的解集.本题考查了一次函数与一元一次不等式,能根据图形读出正确信息是解此题的关键.17.【答案】5【解析】解:如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值.∵AD是∠BAC的平分线,∴M′H=MN,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=5,∠BAC=45°,∴BH=AB•sin45°=5×=5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为:5.作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由锐角三角函数的定义即可得出结论.本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.18.【答案】【解析】解:如图,把线段AC绕点A顺时针旋转90°,得到AC′,连接C′D,则C′为定点(-,)在△ACE和△AC′D中∴△ACE≌△AC′D(SAS)∴C′D=CE.当C′D⊥OD时,C′D最小,CE最小值为,此时△ACE面积等于△AC′D=××=.故答案为.把线段AC绕点A顺时针旋转90°,得到AC′,连接C′D,则C′为定点求出坐标,证明△ACE≌△AC′D,把CE转化为C′D,当C′D⊥OD时,C′D最小,即CE最小,求△AC′D面积即可.本题主要考查旋转的性质、全等三角形的判定和性质,正确作出辅助线是解题的关键.19.【答案】解:>①<②,解①得x>-;解②得x<4,把不等式的解集表示在数轴上:,所以不等式组的解集为-<x<4.【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20.【答案】证明:(1)∵AD⊥DC,AE⊥BE ,∴∠ADC=∠AEB=90°,∵∠DAC=∠DAE+∠2,∠EAB=∠EAD+∠1,∵∠1=∠2,∴∠DAC=∠EAB,在△ADC与△AEB中,∴△ADC≌△AEB(AAS);(2)连接AO,∵△ADC≌△AEB,∴AE=AD,在Rt△ADO和Rt△AEO中,∴Rt△ADO≌Rt△AEO(HL),∴OD=OE.【解析】(1)根据垂直的定义和全等三角形的判定证明即可;(2)根据全等三角形的性质和判定解答即可.考查了全等三角形的判定与性质;熟练掌握全等三角形的判定和性质是解答本题的关键.21.【答案】解:如图所示,点C1和点C2即为所求.【解析】分别作直线l1,l2夹角的平分线和线段AB的中垂线,交点即为所求.本题主要考查作图-应用与设计作图,解题的关键是掌握角平分线和线段中垂线的尺规作图及其性质.22.【答案】解:(1)∵一次函数y=-x+2中,令x=0得:y=2;令y=0,解得x=3,∴B的坐标是(0,2),A的坐标是(3,0);(2)如图,作CD⊥x轴于点D.∵∠BAC=90°,∴∠OAB+∠CAD=90°,又∵∠CAD+∠ACD=90°,∴∠ACD=∠BAO.在△ABO与△CAD中,,∴△ABO≌△CAD(AAS),∴OB=AD=2,OA=CD=3,OD=OA+AD=5,则C的坐标是(5,3),设直线BC的解析式是y=kx+b,根据题意得:,解得:k=,b=2,∴直线BC的解析式是y=x+2.【解析】(1)先根据一次函数的解析式把x=0或y=0代入,即可求出A、B两点的坐标;(2)作CD⊥x轴于点D,由全等三角形的判定定理可得出△ABO≌△CAD,由全等三角形的性质可知OA=CD,故可得出C点坐标,再用待定系数法即可求出直线BC的解析式.本题考查的是一次函数综合题,涉及到用待定系数法求一次函数的解析式、全等三角形的判定与性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.23.【答案】解:(1)当0≤x≤5时,设y=kx,5k=8,得k=1.6,即当0≤x≤5时,y=1.6x,当x>5时,设y=ax+b,,得,即当x>5时,y=2.4x-4,由上可得,y=>;(2)令2.4x-4≤,解得,x≤8,5×8=40,答:该家庭这个月最多可以用40吨.【解析】(1)根据函数图象中的数据可以求得y与x的函数关系式;(2)根据(1)中的函数解析式和题意,可以得到关于x的不等式,从而可以求得该家庭这个月最多可以用多少吨水,注意(1)求得的是人均月生活用水费,本题中家庭有5人.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.24.【答案】解:(1)∵AC∥BD,∴∠CAB+∠ABD=180°.∵AE平分∠CAB,∴∠EAB=∠CAB.同理可得∠EBA=∠ABD.∴∠EAB+∠EBA=90°,∴∠AEB=90°;(2)如图,在AB上截取AF=AC,连接EF,在△ACE和△AFE中,∴△ACE≌△AFE(SAS).∴CE=FE,∠CEA=∠FEA.∵∠CEA+∠DEB=90°,∠FEA+∠FEB=90°,∴∠DEB=∠FEB.在△DEB和△FEB中∴△DEB≌△FEB(ASA).∴ED=EF.∴ED=CE.【解析】(1)由平行线得到∠CAB+∠ABD=180°,根据角平分线定义表示出∠EAB、∠EBA,计算这两个的和,便可求∠AEB度数;(2)在AB上截取AF=AC,连接EF,分别证明△ACE≌△AFE,△DEB≌△FEB,借助CE=EF,DE=EF,可证CE=DE.本题主要考查了角平分线的定义以及全等三角形的判定和性质.25.【答案】解:(1)由AB=12,AM=3,根据三角形三边关系可得AM不可能为最大边,设MN=x,则BN=9-x,①当MN为最大线段时,依题意得MN2=BN2+AM2,即x2=(9-x)2+32,解得x=5;②当BN为最大线段时,依题意得BN2=MN2+AM2,即(9-x)2=x2+32,解得x=4;∴MN的长为5或4;(2)如图②,连接CM,CN,∵边AC,BC的垂直平分线分别交AB于点M,N,∴CM=AM,BN=CN,∴∠1=∠A=18°,∠2=∠B=27°,∵∠ACB=180°-18°-27°=135°,∴∠MCN=135°-18°-27°=90°,∴MN2=MC2+CN2,∴MN2=MA2+BN2,∴线段AM,MN,NB是勾股线段组;(3)如图③,以BP为边向下作等边三角形BDP,连接CD,∵△ABC是等边三角形,∴∠ABC=60°,AB=BC,由作法可知∠PBD=60°,BP=BD=PD,∵∠ABP=∠ABC-∠PBC,∠CBD=∠BPD-∠PBC,∴∠ABP=∠CBD,∴△ABP≌△CBD(SAS),∴AP=CD,∵线段AP,BP,CP构成勾股线段组,CP为此线段组的最长线段,∴△PCD是直角三角形,∠PDC=90°,∵∠PDB=60°,∴∠BDC=60°+90°=150°,∵△ABP≌△CBD,∴∠APB=∠CDB=150°.【解析】(1)设MN=x,则BN=9-x,分两种情况讨论,即可得到MN的长;(2)连接CM,CN,依据边AC,BC的垂直平分线分别交AB于点M,N,即可得到∠MCN=90°,进而得出MN2=MC2+CN2,根据MN2=MA2+BN2,可得线段AM,MN,NB是勾股线段组;(3)以BP为边向下作等边三角形BDP,连接CD,判定△ABP≌△CBD(SAS),可得AP=CD,再根据线段AP,BP,CP构成勾股线段组,CP为此线段组的最长线段,即可得出△PCD是直角三角形,进而得到∠BDC=150°,依据△ABP≌△CBD,可得∠APB=∠CDB=150°.本题属于三角形综合题,主要考查了全等三角形的判定与性质,等边三角形、等腰三角形的性质以及勾股定理等的综合运用,解题的关键是学会利用旋转变换添加辅助线,构造全等三角形来解决问题.。

浙江省温州市乐清市六校理科班2019-2020学年八年级上学期期末考试数学试卷(含答案)

浙江省温州市乐清市六校理科班2019-2020学年八年级上学期期末考试数学试卷(含答案)

2019-2020学年浙江省温州市乐清市六校理科班八年级(上)期末数学试卷一、选择题(本大题有8小题,每小题6分,共48分)1.5个相异自然数的平均数为12,中位数为17,这5个自然数中最大一个的可能值的最大值是()A.21B.22C.23D.242.已知四边形的四条边的长分别是m、n、p、q,且满足m2+n2+p2+q2=2mn+2pq.则这个四边形是()A.平行四边形B.对角线互相垂直的四边形C.平行四边形或一条对角线被另一条对角线垂直平分的四边形D.对角线相等的四边形3.如果x和y是非零实数,使得|x|+y=3和|x|y+x3=0,那么x+y的值是()A.3B.C.D.4﹣4.平面直角坐标系中,如果把横坐标、纵坐标都是整数的点叫做整点,那么函数的图象上整点的个数是()A.2个B.4个C.6个D.8个5.已知关于x的方程(x+1)2+(x﹣b)2=2有唯一实数解,且反比例函数y=的图象,在每个象限内y随x的增大而增大,那么反比例函数的关系式为()A.y=B.y=C.y=D.y=6.如图,△ABC为等边三角形,以AB为边向形外作△ABD,使∠ADB=120°,再以点C 为旋转中心把△CBD旋转到△CAE,则下列结论:①D、A、E三点共线;②DC平分∠BDA;③∠E=∠BAC;④DC=DB+DA.其中正确的有()A.4个B.3个C.2个D.1个7.设P是高为h的正三角形内的一点,P到三边的距离分别为x,y,z(x≤y≤z).若以x,y,z为边可以组成三角形,则z应满足的条件为()A.h≤z h B.h≤z h C.h≤z h D.8.如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离3,试在直线a上找一点C,直线b上找一点D,满足CD⊥a,AC+CD+DB 的长度和最短,且AC+DB=8.则AB长()A.3B.3C.2D.2二、填空题(本大题有7小题,每小题6分,共42分)9.把两块含有30°的相同的直角三角尺按如图所示摆放,使点C、B、E在同一直线上,连接CD,若AC=6cm,则△BCD的面积是cm2.10.设a、b、c都是实数,且满足,ax2+bx+c=0;则代数式x2+2x+1的值为.11.如图,P是函数y=(x>0)图象上一点,直线y=﹣x+1交x轴于点A,交y轴于点B,PM⊥x轴于M,交AB于E,PN⊥y轴于N,交AB于F,则AF•BE的值为.12.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=.13.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM 的最大值是.14.在平面直角坐标系中,已知点A(3,0),B(0,4),将△BOA绕点A按顺时针方向旋转得△CDA,使点B在直线CD上,连接OD交AB于点M,直线CD的解析式为.15.规定:[x]表示不超过x的最大整数,若实数x满足[x]+[2x]+[3x]=2019,则[5x]的值为.三、解答题(本大题有4小题,共60分,解答题应写出文字说明、证明过程或演算步骤)16.(12分)已知:x>0,y>0且.(1)用含x的代数式来表示y;(2)设t=2x+y,求t的最小值.17.(15分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?18.(15分)如图所示,已知双曲线y=(k>0,x>0)上有两点P1(x1,y1),P2(x2,y2),且x1<x2,分别过P1,P2向x轴作垂线,垂足为B,D,过P1,P2向y轴作垂线,垂足分别为A,C.(1)若记四边形AP1BO和四边形CP2DO的面积分别为S1,S2,试比较S1和S2的大小.(2)若记四边形AP1BO和四边形CP2DO的周长分别为C1和C2,试比较C1,C2的大小.(3)若P是双曲线y=(k>0,x>0)上一点,分别过P向x轴、y轴作垂线,垂足分别为M,N.试问当P在何处时四边形PMON的周长最小,最小值为多少?19.(18分)如图,在平面直角坐标系中,直线l1:y=﹣x+4分别交x、y轴于B、A两点,将△AOB沿直线l2:y=2x折叠,点B落在y轴的点C处.(1)点C的坐标为;(2)若点D沿射线BA运动,连接OD,当△CDB与△CDO面积相等时,求直线OD的解析式;(3)在(2)的条件下,当点D在第一象限时,沿x轴平移直线OD,分别交x,y轴于点E,F,在平面直角坐标系中,是否存在点M(m,3)和点P,使四边形EFMP为正方形?若存在,求出点P的坐标;若不存在,说明理由.2019-2020学年浙江省温州市乐清市六校理科班八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题有8小题,每小题6分,共48分)1.5个相异自然数的平均数为12,中位数为17,这5个自然数中最大一个的可能值的最大值是()A.21B.22C.23D.24【分析】根据5个相异自然数的平均数为12,得到5个自然数的和,又因为中位数为17,求数据中的最大数,所以可得出这组数据,即可求得这5个自然数中最大一个的值.【解答】解:∵5个相异自然数的平均数为12∴5个相异自然数的和为60;∵中位数为17,∴这5个数中有2个数比17小,有两个数比17大;又∵求这5个数中的最大一个的可能值的最大值,∴设这5个数中两个最小的数为0和1,而比17大的最小的自然数是18,∴剩下的第5个数是:60﹣0﹣1﹣17﹣18=24,即第5个数是24,∴这5个数为0,1,17,18,24.∴这5个自然数中最大一个的可能值的最大值是24;故选:D.2.已知四边形的四条边的长分别是m、n、p、q,且满足m2+n2+p2+q2=2mn+2pq.则这个四边形是()A.平行四边形B.对角线互相垂直的四边形C.平行四边形或一条对角线被另一条对角线垂直平分的四边形D.对角线相等的四边形【分析】对于所给等式m2+n2+p2+q2=2mn+2pq,先移项,配成两个完全平方式的和为0的形式,即(m﹣n)2+(p﹣q)2=0,进而可得m=n,p=q,分m、n为对边与m,n 为邻边进行讨论,故可判定是平行四边形或对角线互相垂直的四边形.【解答】解:m2+n2+p2+q2=2mn+2pq,可化简为(m﹣n)2+(p﹣q)2=0,∴m=n,p=q,∵m,n,p,q分别为四边形的四边,当m、n为对边,p、q为对边,∴可确定其为平行四边形,当m,n为邻边时,可以证明有两个顶点在一条对角线的垂直平分线上,∴这个四边形的对角线互相垂直.故选:C.3.如果x和y是非零实数,使得|x|+y=3和|x|y+x3=0,那么x+y的值是()A.3B.C.D.4﹣【分析】根据题意,结合2个式子可得|x|(3﹣|x|)+x3=0,分x>0与x<0两种情况讨论,求出x的值,由y=3﹣|x|,求出y的值,相加即可得答案.【解答】解:根据题意,|x|+y=3则y=3﹣|x|,又由|x|y+x3=0,则有|x|(3﹣|x|)+x3=0,分2种情况讨论:①当x>0时,由|x|(3﹣|x|)+x3=0得到:x(3﹣x)+x3=0,变形可得:x2﹣x+3=0,无解;②当x<0时,由|x|(3﹣|x|)+x3=0得到(﹣x)[3﹣(﹣x)]+x3=0,变形可得:x2﹣x﹣3=0,解可得:x=或x=,(舍)综合可得:x=,则y=3﹣|x|=3+x,x+y=3+2x=4﹣;故选:D.4.平面直角坐标系中,如果把横坐标、纵坐标都是整数的点叫做整点,那么函数的图象上整点的个数是()A.2个B.4个C.6个D.8个【分析】把所给函数解析式化为整式,进而整理为两数积的形式,根据整点的定义判断积的可能的形式,找到整点的个数即可.【解答】解:将函数表达式变形,得2xy﹣y=x+12,4xy﹣2y﹣2x=24,2y(2x﹣1)﹣(2x﹣1)=24+1,(2y﹣1)(2x﹣1)=25.∵x,y都是整数,∴(2y﹣1),(2x﹣1)也是整数.∴或或或或或.解得:或或或或或.∴解得的整点为:(13,1),(﹣12,0),(1,13),(0,﹣12),(3,3),(﹣2,﹣2)共6个.故选:C.5.已知关于x的方程(x+1)2+(x﹣b)2=2有唯一实数解,且反比例函数y=的图象,在每个象限内y随x的增大而增大,那么反比例函数的关系式为()A.y=B.y=C.y=D.y=【分析】关于x的方程(x+1)2+(x﹣b)2=2有唯一的实数解,则判别式等于0,据此即可求得b的值,然后根据反比例函数y=的图象,在每个象限内y随x的增大而增大,则比例系数1+b<0,则b的值可以确定,从而确定函数的解析式.【解答】解:关于x的方程(x+1)2+(x﹣b)2=2化成一般形式是:2x2+(2﹣2b)x+(b2﹣1)=0,△=(2﹣2b)2﹣8(b2﹣1)=﹣4(b+3)(b﹣1)=0,解得:b=﹣3或1.∵反比例函数y=的图象,在每个象限内y随x的增大而增大,∴1+b<0∴b<﹣1,∴b=﹣3.则反比例函数的解析式是:y=﹣.故选:B.6.如图,△ABC为等边三角形,以AB为边向形外作△ABD,使∠ADB=120°,再以点C 为旋转中心把△CBD旋转到△CAE,则下列结论:①D、A、E三点共线;②DC平分∠BDA;③∠E=∠BAC;④DC=DB+DA.其中正确的有()A.4个B.3个C.2个D.1个【分析】(1)设∠1=x度,把∠2=(60﹣x)度,∠DBC=(x+60)度,∠4=(x+60)度,∠3=60°加起来等于180度,即可证明D、A、E三点共线;(2)根据△BCD绕着点C按顺时针方向旋转60°得到△ACE,判断出△CDE为等边三角形,求出∠BDC=∠E=60°,∠CDA=120°﹣60°=60°,可知DC平分∠BDA;(3)由②可知,∠BAC=60°,∠E=60°,从而得到∠E=∠BAC.(4)由旋转可知AE=BD,又∠DAE=180°,DE=AE+AD.而△CDE为等边三角形,DC=DE=DB+BA.【解答】解:如图,①设∠1=x度,则∠2=(60﹣x)度,∠DBC=(x+60)度,故∠4=(x+60)度,∴∠2+∠3+∠4=60﹣x+60+x+60=180度,∴D、A、E三点共线;故①正确;②∵△BCD绕着点C按顺时针方向旋转60°得到△ACE,∴CD=CE,∠DCE=60°,∴△CDE为等边三角形,∴∠E=60°,∴∠BDC=∠E=60°,∴∠CDA=120°﹣60°=60°,∴DC平分∠BDA;故②正确;③∵∠BAC=60°,∠E=60°,∴∠E=∠BAC.故③正确;④由旋转可知AE=BD,又∵∠DAE=180°,∴DE=AE+AD.∵△CDE为等边三角形,∴DC=DB+BA.故④正确;故选:A.7.设P是高为h的正三角形内的一点,P到三边的距离分别为x,y,z(x≤y≤z).若以x,y,z为边可以组成三角形,则z应满足的条件为()A.h≤z h B.h≤z h C.h≤z h D.【分析】如图,连接AP,BP,CP,先利用S△ABC=S△APC+S△BPC+S△APB,找出x,y,z 与h的关系,再运用三角形三边关系可得z<h,由x≤y≤z可得z≥h,即可求出z 应满足的条件.【解答】解:如图,PE=x,PF=y,Pq=Q=z,连接AP,BP,CP,∵S△ABC=S△APC+S△BPC+S△APB,∴BC•h=AC•x+BC•y+AB•z,∵△ABC为等边三角形,∴AB=BC=AC,∴BC•h=BC(x+y+z),即x+y+z=h,∵以x,y,z为边可以组成三角形,∴x+y>z,∴2z<h,即z<h,又∵x≤y≤z,∴z≥(x+y+z),即z≥h,∴h≤z h.故选:B.8.如图,已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离3,试在直线a上找一点C,直线b上找一点D,满足CD⊥a,AC+CD+DB 的长度和最短,且AC+DB=8.则AB长()A.3B.3C.2D.2【分析】如图,作AE⊥a,使得线段AE=4,连接EB交直线b于点D,作DC⊥b交直线a于点C,连接AC,作BF⊥AE交AE的延长线于点F.证明四边形AEDC是平行四边形,推出AC=ED,推出AC+CD+BD=ED+BD+CD,此时AC+CD+DB的值最小.【解答】解:如图,作AE⊥a,使得线段AE=4,连接EB交直线b于点D,作DC⊥b 交直线a于点C,连接AC,作BF⊥AE交AE的延长线于点F.∵CD=AE=4,CD∥AE,∴四边形AEDC是平行四边形,∴AC=ED,∴AC+CD+BD=ED+BD+CD,此时AC+CD+DB的值最小,由题意EF=2+4+3﹣4=5,BE=AC+BD=8,∴BF===,∴AB===2,故选:D.二、填空题(本大题有7小题,每小题6分,共42分)9.把两块含有30°的相同的直角三角尺按如图所示摆放,使点C、B、E在同一直线上,连接CD,若AC=6cm,则△BCD的面积是27cm2.【分析】本题考查直角三角形的性质和勾股定理,利用直角三角形的性质和勾股定理解答.【解答】解:∵两块三角尺是有30°的相同的直角三角尺,∠ABC=∠EBD=30°,∴=,cos∠ABC=cos30°==,∴AB=BE=2AC=2DE=2×6=12,BC=×AB=×12=6,∴BD=6,过D作DF⊥BE,在Rt△BDF中,∠DBE=30°,∴==,DF=3,∴S△BCD=BC•DF=×6×3=27cm2.故答案为:27.10.设a、b、c都是实数,且满足,ax2+bx+c=0;则代数式x2+2x+1的值为5.【分析】根据非负数的性质列式求出a、b、c的值,然后代入ax2+bx+c=0并求出x2+2x 的值,再代入代数式进行计算即可求解.【解答】解:根据题意得,2﹣a=0,a2+b+c=0,c+8=0,解得a=2,b=4,c=﹣8,∴ax2+bx+c=2x2+4x﹣8=0,即x2+2x﹣4=0,解得x2+2x=4,∴x2+2x+1=4+1=5.故答案为:5.11.如图,P是函数y=(x>0)图象上一点,直线y=﹣x+1交x轴于点A,交y轴于点B,PM⊥x轴于M,交AB于E,PN⊥y轴于N,交AB于F,则AF•BE的值为1.【分析】由于P的坐标为(a,),且PN⊥OB,PM⊥OA,那么N的坐标和M点的坐标都可以a表示,那么BN、NF的长度也可以用a表示,接着F点、E点的坐标也可以a表示,然后利用勾股定理可以分别用a表示AF,BE,最后即可求出AF•BE.【解答】解:∵P是函数y=(x>0)图象上一点,∴P的坐标为(a,),且PN⊥OB,PM⊥OA,∴N的坐标为(0,),M点的坐标为(a,0),∴BN=1﹣,∵直线y=﹣x+1交x轴于点A,交y轴于点B,∴A(1,0),B(0,1),∴OA=OB,∴∠OAB=OBA=45°,∴在直角三角形BNF中,∠NBF=45°,∴NF=BN=1﹣,∴F点的坐标为(1﹣,),同理可得出E点的坐标为(a,1﹣a),∴AF2=(﹣)2+()2=,BE2=(a)2+(﹣a)2=2a2,∴AF2•BE2=•2a2=1,即AF•BE=1,故答案为1.12.折叠矩形纸片ABCD时,发现可以进行如下操作:①把△ADE翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把△CDG翻折,点C落在线段AE上的点H处,折痕为DG,点G在BC边上,若AB=AD+2,EH=1,则AD=3+2.【分析】设AD=x,则AB=x+2,利用折叠的性质得DF=AD,EA=EF,∠DFE=∠A =90°,则可判断四边形AEFD为正方形,所以AE=AD=x,再根据折叠的性质得DH =DC=x+2,当AH=AE﹣HE=x﹣1,然后根据勾股定理得到x2+(x﹣1)2=(x+2)2,再解方程求出x即可.【解答】解:设AD=x,则AB=x+2,∵把△ADE翻折,点A落在DC边上的点F处,∴DF=AD,EA=EF,∠DFE=∠A=90°,∴四边形AEFD为正方形,∴AE=AD=x,∵把△CDG翻折,点C落在直线AE上的点H处,折痕为DG,点G在BC边上,∴DH=DC=x+2,∵HE=1,当AH=AE﹣HE=x﹣1,在Rt△ADH中,∵AD2+AH2=DH2,∴x2+(x﹣1)2=(x+2)2,整理得x2﹣6x﹣3=0,解得x1=3+2,x2=3﹣2(舍去),即AD的长为3+2.故答案为:3+2.13.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM 的最大值是3.【分析】连接PC.首先依据直角三角形斜边上中线的性质求出PC=2,然后再依据三角形的三边关系可得到PM≤PC+CM,故此可得到PM的最大值为PC+CM.【解答】解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故答案为:3.14.在平面直角坐标系中,已知点A(3,0),B(0,4),将△BOA绕点A按顺时针方向旋转得△CDA,使点B在直线CD上,连接OD交AB于点M,直线CD的解析式为y=﹣x+4.【分析】首先证明OD⊥AB,求出直线OD解析式,与直线AB解析式联立求出M坐标,确定出D坐标,设直线CD解析式为y=mx+n,把B与D坐标代入求出m与n的值,即可确定出解析式.【解答】解:∵△BOA绕点A按顺时针方向旋转得△CDA,∴△BOA≌△CDA,∴AB=AC,OA=AD,∵B、D、C共线,AD⊥BC,∴BD=CD=OB,∵OA=AD,BO=CD=BD,∴OD⊥AB,设直线AB解析式为y=kx+b,把A与B坐标代入得:,解得:,∴直线AB解析式为y=﹣x+4,∴直线OD解析式为y=x,联立得:,解得:,即M(,),∵M为线段OD的中点,∴D(,),设直线CD解析式为y=mx+n,把B与D坐标代入得:,解得:m=﹣,n=4,则直线CD解析式为y=﹣x+4.故答案为:y=﹣.15.规定:[x]表示不超过x的最大整数,若实数x满足[x]+[2x]+[3x]=2019,则[5x]的值为1713或1714.【分析】设x的整数部分为m,小数部分为n,则x=m+n,[x]=m,分情况求出m的值,再分情况,即可得出结论.【解答】解:设x的整数部分为m,小数部分为n,则x=m+n,[x]=m,2x=2(m+n)=2m+2n,3x=3(m+n)=3m+3n,①当n<时,2n<1,3n<1,∴[2x]=2m,[3x]=3m,∵[x]+[2x]+[3x]=2019,∴m+2m+3m=2019,∴m=,不是整数,不符合题意;②当≤n<时,2n<1,3n≥1,∴[2x]=2m,[3x]=3m+1,∴m+2m+3m+1=2019,∴m=,不是整数,不符合题意,③当≤n<时,2n≥1,1<3n<2,∴[2x]=2m+1,[3x]=3m+1,∴m+2m+1+3m+1=2019,∴m=,不是整数,不符合题意,④当n≥时,2n>1,3n≥2,∴[2x]=2m+1,[3x]=3m+2,∴m+2m+1+3m+2=2019,∴m=336,符合题意,Ⅰ、当≤n<时,[5x]=5m+3=5×336+3=1713,Ⅱ、当n>时,[5x]=5m+4=5×336+4=1714,即满足条件的[5x]的值为1713或1714,故答案为1713或1714.三、解答题(本大题有4小题,共60分,解答题应写出文字说明、证明过程或演算步骤)16.(12分)已知:x>0,y>0且.(1)用含x的代数式来表示y;(2)设t=2x+y,求t的最小值.【分析】(1)将变形为用含x的代数式来表示y即可求解;(2)可得t=2x+y≥3+2,得到=时t有最小值.【解答】解:(1),=1﹣=,y=.故用含x的代数式来表示y为y=;(2)t=2x+y=(2x+y)(+)=3++≥3+2=3+2,故=时,t的最小值是3+2.17.(15分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=2,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?【分析】(1)利用求根公式即可求出方程的两根;(2)仿照(1)找准关于x的一元二次方程,由根的判别式△=﹣7<0,可得出方程无解,即不存在满足要求的矩形B;(3)仿照(1)找准关于x的一元二次方程,由根的判别式△≥0,可找出m、n之间的关系.【解答】解:(1)利用求根公式可知:x1==,x2==2.故答案为:;2.(2)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×2×2=﹣7<0,∴该方程无解,∴不存在满足要求的矩形B.(3)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣(m+n)x+mn=0.∵矩形B存在,∴b2﹣4ac=[﹣(m+n)]2﹣4×2mn≥0,∴(m﹣n)2≥4mn.故当m、n满足(m﹣n)2≥4mn时,矩形B存在.18.(15分)如图所示,已知双曲线y=(k>0,x>0)上有两点P1(x1,y1),P2(x2,y2),且x1<x2,分别过P1,P2向x轴作垂线,垂足为B,D,过P1,P2向y轴作垂线,垂足分别为A,C.(1)若记四边形AP1BO和四边形CP2DO的面积分别为S1,S2,试比较S1和S2的大小.(2)若记四边形AP1BO和四边形CP2DO的周长分别为C1和C2,试比较C1,C2的大小.(3)若P是双曲线y=(k>0,x>0)上一点,分别过P向x轴、y轴作垂线,垂足分别为M,N.试问当P在何处时四边形PMON的周长最小,最小值为多少?【分析】(1)根据反比例函数中系数k的几何意义可直接得到S1=S2;(2)由于AC、BD的值不能确定,所以应分AC=BD、AC<BD、AC>BD三种情况讨论.(3)根据题意画出图形,设出P点坐标,根据k为定值,则当x=y时四边形的周长最小.【解答】解:(1)根据反比例函数系数k的几何意义可知S1=S2=k;(2)∵C1=2OB+2AO=2BO+2CO+2AC,C2=2CO+2OD=2CO+2OB+2BD,∴当y1﹣y2=x2﹣x1,即AC=BD时,C1=C2;当y1﹣y2<x2﹣x1,即AC<BD时,C1<C2;当y1﹣y2>x2﹣x1,即AC>BD时,C1>C2.(3)设P(x,y),即(x,),四边形PMON的周长=2(x+y)=2(x+),因为面积相等的四边形中正方形的周长最小,所以x=,即x2=k,解得x=,故P点坐标为(,).∴最小值为4.19.(18分)如图,在平面直角坐标系中,直线l1:y=﹣x+4分别交x、y轴于B、A两点,将△AOB沿直线l2:y=2x折叠,点B落在y轴的点C处.(1)点C的坐标为(0,3);(2)若点D沿射线BA运动,连接OD,当△CDB与△CDO面积相等时,求直线OD的解析式;(3)在(2)的条件下,当点D在第一象限时,沿x轴平移直线OD,分别交x,y轴于点E,F,在平面直角坐标系中,是否存在点M(m,3)和点P,使四边形EFMP为正方形?若存在,求出点P的坐标;若不存在,说明理由.【分析】(1)设直线l2与y轴交于点H(0,﹣),则BH==,则CH =BH=,即可求解;(2)分两种情况进行讨论:①点D在第一象限时,由△CDB与△CDO面积相等,得出CD∥OB,即可求解;②点D在第二象限时,由S△CDB=S△CDA+S△CAB,以及△CDB与△CDO面积相等,得出点D的横坐标,即可求解;(3)过点M作MN⊥y轴于N,过点P作PQ⊥x轴于Q,证明△MNF≌FOE≌△EQP,根据全等三角形的性质可得点M(m,3)和点P的坐标,即可求解.【解答】解:(1)直线l1:y=﹣x+4分别交x、y轴于B、A两点,则点A、B的坐标分别为:(0,4)、(6,0),设直线l2与y轴交于点H(0,﹣),则BH==,则CH=BH=,则OC=HC﹣OH=﹣=3,故答案为:(0,3);(2)①点D在第一象限时,∵△CDB与△CDO面积相等,∴CD∥OB,∴点D的纵坐标为3,当y=3时,﹣x+4=3,解得:x=,∴点D的坐标为(,3),∴直线OD的解析式为:y=2x;②点D在第二象限时,AC=4﹣3=1.设点D到y轴的距离为a,则S△CDB=S△CDA+S△CAB=×1•a+×1×6=a+3,∵△CDB与△CDO面积相等,∴a+3=×3a,解得a=3,∴点D的横坐标为﹣3,当x=﹣3时,y=﹣×(﹣3)+4=6,∴点D的坐标为(﹣3,6),∴直线OD的解析式为:y=﹣2x;(3)存在,理由:设直线OD平移后的解析式为y=2x+b,令y=0,则2x+b=0,解得x=﹣b,令x=0,则y=b,所以OE=﹣b,OF=b,过点M作MN⊥y轴于N,过点P作PQ⊥x轴于Q,∵四边形EFMP为正方形,∴△MNF≌FOE≌△EQP,∴MN=OF=EQ,NF=OE=PQ,M(m,3),∴ON=b+b=3,解得b=2∴OE=1,OF=2,∴OQ=OE+QE=1+2=3,∴M(﹣2,3),P(﹣3,1).故存在点M(﹣2,3)和点P(﹣3,1),使四边形EFMP为正方形.当直线在EF经过一,二,三象限时,如图3﹣1中,同法可得M(6,3),P(3,﹣3).综上所述,满足条件的点P的坐标为(﹣3,1)或(3,﹣3).。

2019-2020学年浙江省宁波市海曙区九年级上册期末数学试卷

2019-2020学年浙江省宁波市海曙区九年级上册期末数学试卷

2019-2020学年浙江省宁波市海曙区九年级上册期末数学试卷2019-2020学年浙江省宁波市海曙区九年级上册期末数学试卷题号⼀⼆三四总分得分第I卷(选择题)⼀、选择题(本⼤题共12⼩题,共48.0分)1.下列图形中,中⼼对称图形有()A. 1个B. 2个C. 3个D. 4个2.如果ab =23,那么aa+b等于()A. 32B. 25C. 53D. 353.对于⼆次函数y=2(x+1)(x?3),下列说法正确的是()A. 图像的开⼝向下B. 当x>1时,y随x的增⼤⽽减⼩C. 当x<1时,y随x的增⼤⽽减⼩D. 图像的对称轴是直线x=?14.如图所⽰,已知AB//CD//EF,那么下列结论正确的是()CEB. BCCE =DFADC. CDEF =BCBED. CDEF =ADAF5.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A. 100°B. 110°C. 115°D. 120°6.如果直线上⼀点到⊙O的圆⼼O的距离⼤于⊙O的半径,那么这条直线与⊙O的位置关系是()A. 相交B. 相切C. 相离D. 相交、相切、相离都有可能7.如图,要在宽为22⽶的九洲⼤道AB两边安装路灯,路灯的灯臂CD长2⽶,且与灯柱BC成120°⾓,路灯采⽤圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直.当灯罩的轴线DO通过公路路⾯的中⼼线时照明效果最佳.此时,路灯的灯柱BC⾼度应该设计为()A. (11?2√2)⽶B. (11√3?2√2)⽶C. (11?2√3)⽶D. (11√3?4)⽶8.若⼀直⾓三⾓形的斜边长为c,内切圆半径是r,则内切圆的⾯积与三⾓形⾯积之c+2r B. πrc+rC. πr2c+rD. πrc2+r29.在平⾯直⾓坐标系中,直线y=?√33x+1分别与x轴、y轴交于B、C点,点A沿着某条路径运动,以点A为旋转中⼼,将点C逆时针⽅向旋转90°后,刚好落在线段OB上,则点A的运动路径长为()A. √62B. √6 C. √22π D. 2√210.如图,在扇形AOB中,∠AOB=90°,半径OA=6,将扇形AOB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交OA于点C,则整个阴影部分的⾯积为()A. 9π?9B. 9π?6√3C. 9π?18D. 9π?12√311.已知抛物线y=x2?4x+3与x轴相交于点A、B(点A在点B的左侧),顶点为M.平移该抛物线,使平移后点M的对应点M′落在x轴上,平移后点B的对应点B′落在y 轴上,则平移后的抛物线对应的函数表达式为()A. y=x2+2x+1B. y=x2+2x?1C. y=x2?2x+1D. y=x2?2x?112.如图,边长为正整数的正⽅形ABCD被分成了四个⼩长⽅形且点E,F,G,H在同⼀直线上(点F在线段EG上),点E,N,H,M在正⽅形ABCD的边上,长⽅形AEFM,GNCH的周长分别为6和10.则正⽅形ABCD的边长的最⼩值为()A. 3B. 4D. 不能确定第II卷(⾮选择题)⼆、填空题(本⼤题共6⼩题,共24.0分)13.正⼗边形⼀个内⾓度数为______.14.如图,矩形ABCD的宽AB=5,若沿其长边对折后得到的矩形与原矩形相似,则长边BC的长为__________.15.如图,⼆次函数y=ax2+bx+c的图象开⼝向上,图象经过点(?1,2)和(1,0),且与y轴相交于负半轴(1)给出四个结论:①a>0;②b>0;③c>0;④a+b+c=0,其中正确结论的序号是;(2)给出四个结论:①abc<0;②2a+b>0;③a+c=1;④a>1.其中正确结论的序号是.16.在⼀个不透明的袋⼦⾥装有除颜⾊外其它均相同的红、蓝⼩球各⼀个,每次从袋中摸出⼀个⼩球记下颜⾊后再放回,摸球三次,“仅有⼀次摸到红球”的概率是______.17.在等腰△ABC中,AB=AC,如果cosC=1,那么tanA=______.418.(1)如图,∠AOE=∠BOE=15°,EF//OB,EC⊥OB,若EC=2,则S△OFE=______.(2)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(?2,0),抛物线的对称轴为直线x=2,则线段AB的长为______.(3)如图,在△ABC中,∠ACB=90°,AC=BC=3,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=2,则sin∠BFD的值为.(4)已知点A(4,y1),B(√2,y2),C(?2,y3)都在⼆次函数y=(x?2)2?1的图象上,则y1、y2、y3的⼤⼩关系是.(5)如图,P为△ABC边BC上的⼀点,且PC=2PB,已知∠ABC=45°,∠APC=60°,则∠ACB的度数是。

浙江省宁波市余姚市六校联考2023-2024学年八年级上学期期中考试数学试卷(含答案)

浙江省宁波市余姚市六校联考2023-2024学年八年级上学期期中考试数学试卷(含答案)

2023学年第一学期八年级期中试数学试题一、选择题(每小题3分,共30分)1.在下列交通标志中,是轴对称图形的为()A. B. C. D.2.下列长度的三条线段,能组成三角形的是()A.1,2,3B.3,5,6C.4,5,10D.5,5,123.若b a >,则下列不等式正确的是()A.22->-b aB.33ba<C.ba 33->- D.4343+<+b a 4.能说明命题“对于任意实数a ,都有02>a ”是假命题的反例为()A.2-=aB.1-=aC.0=aD.1=a 5.下列各图中,正确画出AC 边上的高的是()A. B. C. D.6.如图,CD 是Rt △ABC 的中线,∠ACB=90°,∠ABC=25°,则∠ADC 的度数为()A.60°B.50°C.65°D.55°7.如图,在△ABC 和△DBE 中,BE=BC ,添加一个条件,不能证明△ABC ≌△DBE 的是()A.AB=DBB.∠A=∠DC.AC=DED.∠ACB=∠DEB8.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是()A.20°B.35°C.40°D.50°9.如图,AB ,BC ,CD ,DE 是四根长度均为5cm 的火柴棒,点A ,C ,E 共线.若AC=6,CD ⊥BC ,则线段CE 的长度是()A.6cmB.7cmC.26cmD.8cm10.如图,在Rt △ABC 中,∠ACB=90°,分别以AB 、AC 、BC 为边在AB 的同侧作正方形第6题图第7题图第8题图ABEF 、ACPQ 、BDMC ,记四块阴影部分的面积分别为1S 、2S 、3S 、4S .若已知S S ABC =∆,则下列结论:①S S =4;②S S =2;③231S S S =+;④S S S S S 5.24321=+++,其中正确的结论是()A.①②③ B.①②④ C.①③④ D.②③④二、填空题(每小题4分,共24分)11.在△ABC 中,∠A=45°,∠B=75°,则∠C 的度数为.12.“x 与5的差大于x 的4倍”用不等式表示为.13.若等腰三角形的一个内角为50°,则其顶角为.14.如图,在△ABC 中,CD 是AB 边上的高,BE 平分∠ABC 交CD 于点E ,BC=5.若△BCE的面积为5,则ED 的长为.15.如图,在长方形ABCD 中,AB=8,BC=10,在边CD 上取一点E ,将△ADE 折叠使点D恰好落在BC 边上的点F ,则CE 的长为.16.如图,在边长为2的等边三角形中,点D ,E 分别是BC ,AB 的中点,点P 是AD 上一动点,则△PBE 的周长最小值为.三、解答题(共66分)17.(6分)已知:如图,点E ,F 在BC 边上,BE=CF ,∠AFE=∠DEC ,∠B=∠C ,AF 与DE 交于点O.求证:AB=DC.18.(6分)如图,在方格纸中,每一个小正方形的边长为1,按要求画一个三角形,使它的顶点都在小正方形的顶点上.(1)在图甲中画一个以AB 为边且面积为3的直角三角形;(2)在图乙中画一个使AC 为腰的等腰三角形.第14题图第15题图第16题图19.(8分)如图,在Rt △ABC 中,∠ACB=90°(1)用直尺和圆规作∠BAC 的平分线交BC 于点D (保留作图痕迹);(2)若AD=DB ,求∠B 的度数.20.(8分)如图所示的一块草坪,∠ADC=90°,AD=4m ,CD=3m ,AB=13m ,BC=12m.求这块草坪的面积.21.(8分)如图,在△ABC 中,∠ACB=90°,D ,E 分别是AB ,BC 的中点,CF//AB 交DE 的延长线于点F.(1)求证:FC=DB ;(2)若AC=8,CF=5.求BC 的长.22.(8分)如图,∠A=∠B ,AE=BE ,点D 在AC 边上,∠DEC=∠ADB ,AE 和BD 相交于点O.(1)求证:△AEC ≌△BED ;(2)若∠DEC=38°,求∠BDE 度数.23.(10分)如图,在Rt △ABC 中,∠ACB=90°,AC=CB ,D 在BC 边上,P ,Q 是射线AD 上两点,且CP=CQ ,∠PCQ=90°.(1)求证:AP=BQ ;(2)若CP=1,BP=6.图甲图乙①求AP的长;②求△ABC的面积.24.(12分)定义:若以三条线段a,b,c为边能构成一个直角三角形,则称线段a,b,c是勾股线段组.(1)如图①,已知点M,N是线段AB上的点,线段AM,MN,NB是勾股线段组.若AB=12,AM=3,求MN的长;(2)如图②,△ABC中,∠A=17°,∠B=28°,边AC,BC的垂直平分线分别交AB于点M,N,求证:线段AM,MN,NB是勾股线段组;(3)如图③,在等边△ABC,P为△ABC内一点,线段AP,BP,CP构成勾股线段组,CP为此线段组的最长线段,求∠APB的度数.图①图②图③数学学科参考答案一、选择题(每题3分,共30分)6.D 2.B 3.A 4.C5.D6.B7.C8.B9.D 10.A 二、填空题(每题4分,共24分)11.60°12.x x 45>-13.50°或80°14.215.316.1+3三、解答题12.证明:∵BE=CF ,∴BF=CE ,(2分)又∵∠AFB=∠DEC ,∠B=∠C ,∴△ABF ≌△DCE (ASA )(4分)∴AB=DC (6分)13.(答案不唯一)(1)(2)(3分)(6)14.(1)作图,略.(4分)(2)解:∵AD=BD ,∴∠DAB=∠B ,又∵∠CAD=∠DAB ,∴∠CAD=∠DAB=∠B ,∴3∠B=90°,∴∠B=30°(8分)15.解:连结AC ,∵∠ADC=90°,AD=4,CD=3∴AC=5(3分)又∵AB=13,BC=12,∴AC 2+BC 2=AB 2∴∠ACB=90°,(6分)∴S=30-6=24(8分)16.解:(1)∵CF//AB ,∴∠F=∠FDB ,∠FCB=∠B ,又∵E 是BC 中点,∴CE=BE ,∴△CFE ≌△BDE (AAS )∴FC=DB.(4分)(2)由(1)得,BD=CF=5,∵D 是AB 中点,∴AB=10,∵AC=8,∠ACB=90°,∴BC=6.(8分)17.证明:(1)∵∠A=∠B ,∠BOE=∠DOA∴∠BEA=∠BDA ,∵∠BDA=∠DEC ,∴∠BEA=∠CED ,∴∠BED=∠AEC ,又∵BE=AE ,∴△AEC ≌△BED (ASA )(4分)(2)∵DE=CE ,∠DEC=38°,∴∠C=71°,∴∠BDE=∠C=71°(8分)23.证明:(1)∵∠QCP=∠BCA=90°,∴∠QCB=∠PCA ,又∵CQ=CP ,CB=CA ,∴△QCB ≌△PCA (SAS )∴AP=BQ (3分)(2)①∵CP=1,∴CQ=1,∵∠QCP=90°,∴QP=2,∠CQP=∠CPQ=45°,∴∠CPA=∠CQB=135°,∴∠BPQ=90°,∴AP=2(6分)②△ABC 的面积为△BQA 与△QCP 面积之和S=225 (10分)24.(1)∵AB=12,AM=3,∴MB=9,设MN=x①若MN 为直角边,32+x 2=(9-x )2X=4②若MN 为斜边32+(9-x )2=x 2X=5∴MN=4或5(4分)(2)连结CM ,CN ,由题意得,AM=CM ,BN=CN ,∴∠A=∠ACM=17°,∠B=∠NCB=28°,∴∠A+∠ACM+∠B+∠BCN=90°,∴∠MCN=90°,∴CM ,CN ,MN 为勾股线段组,∴AM ,MN ,NB 为勾股线段组(8分)(3)将△ABP 绕点A 逆时针旋转60°得到△ACH ,∵AP=AH ,∠PAH=60°,∴∠AHP=60°,又∵AP ,BP ,CP 为勾股线段组,BP=CH ,PH=AP ,∴PH 2+CH 2=PC 2,∴∠PHC=90°∴∠APB=∠AHC=150°(12分)。

2019-2020学年浙江省宁波市北仑区八年级下学期期末数学试卷 (解析版)

2019-2020学年浙江省宁波市北仑区八年级下学期期末数学试卷 (解析版)

2019-2020学年浙江省宁波市北仑区八年级第二学期期末数学试卷一、选择题1.五边形的内角和是()A.180°B.360°C.540°D.720°2.下列计算正确的为()A.+=B.×=C.=4D.﹣=3.下列各图中,不是中心对称图形的为()A.B.C.D.4.用反证法证明“a≥b”时应先假设()A.a≤b B.a>b C.a<b D.a≠b5.在某次考试后,组办方对应聘者进行了“听、说、读、写”四项技能测试,若人才要求是具有强的“听”力.较强的“说”与“写”能力及基本的“读”能力,根据这个要求,“听、说、读、写”四项技能测试比较合适的权重设计为()A.3:3:2:2B.5:2:1:2C.1:2:2:5D.2:3:3:2 6.一元二次方程x2﹣3x+6=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根7.在平面直角坐标系中,菱形ABCD的顶点的坐标A、B、C分别为(﹣2,0),(0,1),(2,0),则顶点D的坐标为()A.(0,﹣1)B.(﹣2,1)C.(2,1)D.(0,﹣2)8.为了美化校园环境,某区第一季度用于绿化的投资为18万元,前三个季度用于绿化的总投资为90万元,设前三个季度用于绿化投资的平均增长率为x.那么x满足的方程为()A.18 (1+2x)=90B.18 (1+x)2=90C.18+18 (1+x)+18 (1+2x)=90D.18+18 (1+x)+18 (1+x)2=909.如图,四边形ABCD中.AC⊥BC,AD∥BC,BD为∠ABC的平分线,BC=3,AC=4.E,F分别是BD,AC的中点,则EF的长为()A.1B.1.5C.2D.2.510.定义新运算:a※b=,则函数y=4※x的图象可能为()A.B.C.D.二、填空题(每小题5分,共30分)11.二次根式中字母a的取值范围是.12.已知一组数据为:3,x,6,5,4,若这组数据的众数是4,则x的值为.13.若x=4是二次方程x2+ax﹣4b=0的解,则代数式a﹣b的值为.14.在平面直角坐标系中,正比例函数y=3x与反比例函数y=的图象交于点A(a,﹣6),则k=.15.如图,菱形ABCD中,O是两条对角线的交点,过点O的三条直线将菱形分成阴影部分和空白部分,当菱形的边长为10,一条对角线为12时,则阴影部分的面积为.16.如图,平行四边形ABCD中,点O是对角线AC的中点,点M为BC上一点,连接AM,且AB=AM,点E为BM中点,AF⊥AB,连接EF,延长FO交AB于点N,∠ACB=45°,AN=1,AF=3,则EF=.三、解答题(第17-19题6分,第20.21题各8分,第22.21题10分,第24题12分,第25题14分,共80分)17.计算:(1)(+)×;(2)()2﹣+.18.解方程:(1)(x﹣4)2﹣3=0;(2)4(x﹣3)=2x(x﹣3).19.某射击队伍正在进行射击训练,现有两位选手的5次射击成绩如下所示:甲:7环,8环,9环,8环,10环乙:6环,9环,10环,8环,10环(1)分别求甲、乙两位选手的射击成绩的中位数和众数;(2)经过计算甲的方差为1.04环2,乙的方差为2.24环2.所以选手更加稳定.20.如图,已知点A(2,m)是反比例函数y=的图象上一点,过点A作x轴的垂线,垂足为B,连结OA,△ABO的面积为6.(1)求k和m的值;(2)直线y=2x+a(a≤0)与直线AB交于点C与反比例函数图象交于点E,F;①若a=0,已知E(p,q),则F的坐标为(用含p,q的坐标表示);②若a=﹣2.求AC的长.21.已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.(1)求证:BE=DF;(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM,FM,判断四边形AEMF是什么特殊四边形?并证明你的结论.22.疫情结束后,某广场推出促销活动,已知商品每件的进货价为30元,经市场调研发现,当该商品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.【销售利润=销售总额﹣进货成本】.(1)若该商品的的件单价为43元时,则当天的售商品是件,当天销售利润是元;(2)当该商品的销售单价为多少元时,该商品的当天销售利润是3450元.23.小王为探究函数y=(x>3)的图象经历了如下过程.(1)列表,根据表中x的取值,求出对应的y值,将空白处填写完整;x… 3.54 4.55 5.56…y…321…(2)以表中各组对应值为点的坐标,在平面直角坐标系中描点并画出函数图象;(3)结合由y=(x>0)图象到y=图象的变化,猜想由y=的图象经过向的平移变化可以得到y=(x≠﹣3)图象.y=(x≠﹣3)的对称轴是.24.(1)如图1,四边形ACDE中,△ABC与△BDE均为直角三角形,且AB⊥BE,∠BEA=45°,求证:△ABC≌△BED.(2)如图2,点A(1,2),连结OA,将射线OA绕点O按逆时针方方向旋转45°.得到射线OB,AC⊥OA交OB于点C,分别过点A,点C作x轴,AD的垂线,垂足分别为D,E,由(1)得(填写两个三角形全等),所以CE=,AE=,C的坐标为,则直线OB的解析式为.(3)如图3,点A(3,3)在反比例函数y=的图象上,B(0,2)作射线AB,将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象的另一支于点C,求点C的坐标.25.如图1,在平面直角坐标系xOy中,直线AB:y=kx+b(b≠0)分别与y轴,x轴交于A,B两点,点E,点G分别为AB,OE中点,点A,B关于点G的对称点分别为C,D,则称四边形ABCD为直线AB的伴随四边形,直线CD为直线AB的伴随直线.(1)若伴随四边形为矩形,则k=;(2)已知伴随直线为y=﹣4x,四边形ABCD的面积为25,求直线AB的解析式;(3)如图2,连结CG,与x轴交于点H,若△BHC为等腰三角形且k>0,求k的值.参考答案一、选择题(每小题4分,共40分,下面每小题给出的四个选项中,只有一个是正确的)1.五边形的内角和是()A.180°B.360°C.540°D.720°【分析】根据n边形的内角和为:(n﹣2)•180°(n≥3,且n为整数),求出五边形的内角和是多少度即可.解:五边形的内角和是:(5﹣2)×180°=3×180°=540°故选:C.2.下列计算正确的为()A.+=B.×=C.=4D.﹣=【分析】根据二次根式的加减法对A、D进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的性质对C进行判断.解:A、与不能合并,所以A选项错误;B、原式==,所以B选项正确;C、原式=2,所以C选项错误;D、与﹣不能合并,所以D选项错误.故选:B.3.下列各图中,不是中心对称图形的为()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A.正五边形是轴对称图形,不是中心对称图形,故本选项符合题意;B.矩形既是轴对称图形又是中心对称图形,故本选项不合题意;C.平行四边形不是轴对称图形,是中心对称图形形,故本选项不合题意;D.圆既是轴对称图形又是中心对称图形,故本选项不合题意;故选:A.4.用反证法证明“a≥b”时应先假设()A.a≤b B.a>b C.a<b D.a≠b【分析】熟记反证法的步骤,直接填空即可.解:用反证法证明“a≥b”时,应先假设a<b.故选:C.5.在某次考试后,组办方对应聘者进行了“听、说、读、写”四项技能测试,若人才要求是具有强的“听”力.较强的“说”与“写”能力及基本的“读”能力,根据这个要求,“听、说、读、写”四项技能测试比较合适的权重设计为()A.3:3:2:2B.5:2:1:2C.1:2:2:5D.2:3:3:2【分析】根据加权平均数的定义可得答案.解:根据“具有强的“听”力.较强的“说”与“写”能力及基本的“读”能力”的要求,∴符合这一要求的权重是B选项5:2:1:2,故选:B.6.一元二次方程x2﹣3x+6=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】根据根的判别式判断即可.解:∵x2﹣3x+6=0,△=(﹣3)2﹣4×1×6=﹣6<0,∴方程没有实数根,即一元二次方程x2﹣3x+6=0的根的情况为没有实数根,故选:D.7.在平面直角坐标系中,菱形ABCD的顶点的坐标A、B、C分别为(﹣2,0),(0,1),(2,0),则顶点D的坐标为()A.(0,﹣1)B.(﹣2,1)C.(2,1)D.(0,﹣2)【分析】根据题意画出图形,根据菱形的性质即可得出结论.解:如图所示,∵菱形ABCD的对角线互相垂直平分,A、B、C分别为(﹣2,0),(0,1),(2,0),∴D(0,﹣1).故选:A.8.为了美化校园环境,某区第一季度用于绿化的投资为18万元,前三个季度用于绿化的总投资为90万元,设前三个季度用于绿化投资的平均增长率为x.那么x满足的方程为()A.18 (1+2x)=90B.18 (1+x)2=90C.18+18 (1+x)+18 (1+2x)=90D.18+18 (1+x)+18 (1+x)2=90【分析】主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),设这两年绿化投资的年平均增长率为x,根据“第一季度用于绿化的投资为18万元,前三个季度用于绿化的总投资为90万元”,可得出方程.解:设前三个季度用于绿化投资的平均增长率为x,那么依题意得18+18 (1+x)+18 (1+x)2=90.故选:D.9.如图,四边形ABCD中.AC⊥BC,AD∥BC,BD为∠ABC的平分线,BC=3,AC=4.E,F分别是BD,AC的中点,则EF的长为()A.1B.1.5C.2D.2.5【分析】根据勾股定理得到AB=5,根据平行线的性质和角平分线的定义得到∠ABD=∠ADB,求得AB=AD=5,连接BF并延长交AD于G,根据全等三角形的性质得到BF=FG,AG=BC=3,求得DG=5﹣3=2,根据三角形中位线定理即可得到结论.解:∵AC⊥BC,∴∠ACB=90°,∵BC=3,AC=4,∴AB=5,∵AD∥BC,∴∠ADB=∠DBC,∵BD为∠ABC的平分线,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD=5,连接BF并延长交AD于G,∵AD∥BC,∴∠GAC=∠BCA,∵F是AC的中点,∴AF=CF,∵∠AFG=∠CFB,∴△AFG≌△CFB(AAS),∴BF=FG,AG=BC=3,∴DG=5﹣3=2,∵E是BD的中点,∴EF=DG=1.故选:A.10.定义新运算:a※b=,则函数y=4※x的图象可能为()A.B.C.D.【分析】根据题目中的新运算,可以得到函数y=4※x的图象对应的函数解析式,从而可以解答本题.解:根据新定义运算可知,y=4※x=,(1)当x≥4时,此函数解析式为y≥11,函数图象在第一象限,以(4,1)为端点且在第一象限的射线,故可排除A、B、C;(2)当x<4时,此函数是反比例函数,图象在一、三象限.故选:D.二、填空题(每小题5分,共30分)11.二次根式中字母a的取值范围是a≥2.【分析】由二次根式中的被开方数是非负数,可得出a﹣2≥0,解之即可得出结论.解:根据题意得:a﹣2≥0,解得:a≥2.故答案为:a≥2.12.已知一组数据为:3,x,6,5,4,若这组数据的众数是4,则x的值为4.【分析】根据众数的定义:一组数据中出现次数最多的数据即可得出答案.解:这组数据中的众数是4,即出现次数最多的数据为4.故x=4.故答案为:4.13.若x=4是二次方程x2+ax﹣4b=0的解,则代数式a﹣b的值为﹣4.【分析】将x=4代入到x2+ax﹣4b=0中即可求得a﹣b的值.解:∵x=4是一元二次方程x2+ax﹣4b=0的一个根,∴42+4a﹣4b=0,∴a﹣b=﹣4.故答案为:﹣4.14.在平面直角坐标系中,正比例函数y=3x与反比例函数y=的图象交于点A(a,﹣6),则k=12.【分析】先根据y=3x求得A的坐标,再把点A的坐标代入反比例函数的解析式即可求出k的值.解:∵点A(a,﹣6)在正比例函数y=3x的图象上,∴﹣6=3a,解得a=﹣2,∴A(﹣2,﹣6)∵点A(﹣2,﹣6)在反比例函数y=的图象上,∴k=﹣2×(﹣6)=12,故答案为12.15.如图,菱形ABCD中,O是两条对角线的交点,过点O的三条直线将菱形分成阴影部分和空白部分,当菱形的边长为10,一条对角线为12时,则阴影部分的面积为48.【分析】根据菱形的面积等于对角线乘积的一半求出面积,再根据中心对称的性质判断出阴影部分的面积等于菱形的面积的一半解答.解:连接AC、BD,如图所示:∵四边形ABCD是菱形,∴AB=10,OB=OD=BD=6,OA=OC,AC⊥BD,∴OA===8,∴AC=2OA=16,∴菱形ABCD的面积=AC×BD=×16×12=96,∵O是菱形两条对角线的交点,∴阴影部分的面积=×96=48;故答案为:48.16.如图,平行四边形ABCD中,点O是对角线AC的中点,点M为BC上一点,连接AM,且AB=AM,点E为BM中点,AF⊥AB,连接EF,延长FO交AB于点N,∠ACB=45°,AN=1,AF=3,则EF=2.【分析】连接AE,作EH⊥AF于F,EG⊥DC交DC的延长线于E.由Rt△EHA≌Rt △EGC(HL),推出AH=CG,由Rt△EHF≌Rt△EGF(HL),推出FH=FG,由△AON≌△COF(ASA),推出AN=CF,推出AN+AF=FC+AF=FG﹣CG+FH+AH=2FH,由EF=FH,即可解决问题.解:连接AE,作EH⊥AF于F,EG⊥DC交DC的延长线于E.∵∠AEC=∠AFC=90°,∴∠AEC+∠AFC=180°,∴A,E,C,F四点共圆,∴∠AFE=∠ACE=45°,∴∠EFA=∠EFG=45°,∵EH⊥FA,EG⊥FG,∴EH=EG,∵∠ACE=∠EAC=45°,∴AE=EC,∴Rt△EHA≌Rt△EGC(HL),∴AH=CG,∵EF=EF,EH=EG,∴Rt△EHF≌Rt△EGF(HL),∴FH=FG,∵AB∥CD,∴∠OAN=∠OCF,∵∠AON=∠COF,OA=OC,∴△AON≌△COF(ASA),∴AN=CF,∴AN+AF=FC+AF=FG﹣CG+FH+AH=2FH,∵EF=FH,∴AN+AF=EF.∵AN=1,AF=3,∴EF=2,故答案为:2.三、解答题(第17-19题6分,第20.21题各8分,第22.21题10分,第24题12分,第25题14分,共80分)17.计算:(1)(+)×;(2)()2﹣+.【分析】(1)根据乘法分配律可以解答本题;(2)根据二次根式的加减法可以解答本题.解:(1)(+)×=1+=1+3;(2)()2﹣+=3﹣2+2=3.18.解方程:(1)(x﹣4)2﹣3=0;(2)4(x﹣3)=2x(x﹣3).【分析】(1)根据解一元二次方程的方法﹣直接开平方法解答即可;(2)根据解一元二次方程的方法﹣因式分解法解答即可.解:(1)(x﹣4)2﹣3=0,(x﹣4)2=3,∴x1=+4,x2=﹣+4;(2)4(x﹣3)=2x(x﹣3),(4﹣2x)(x﹣3)=0,∴x1=2,x2=3.19.某射击队伍正在进行射击训练,现有两位选手的5次射击成绩如下所示:甲:7环,8环,9环,8环,10环乙:6环,9环,10环,8环,10环(1)分别求甲、乙两位选手的射击成绩的中位数和众数;(2)经过计算甲的方差为1.04环2,乙的方差为2.24环2.所以甲选手更加稳定.【分析】(1)根据中位数、众数的计算方法进行计算即可;(2)通过比较方差,得出成绩的稳定,较好的选手即可.解:(1)甲:7,8,8,9,10,乙:6,8,9,10,10,因此甲成绩从小到大排列处在中间位置的数是8,因此中位数是8,乙成绩从小到大排列处在中间位置的数是9,因此中位数是9,甲成绩出现次数最多的是8,因此众数是8,乙成绩出现次数最多的是10,因此众数是10,(2)∵1.04<2.24.即甲的方差小于乙的方差,∴甲的成绩比较稳定,较好,故答案为:甲.20.如图,已知点A(2,m)是反比例函数y=的图象上一点,过点A作x轴的垂线,垂足为B,连结OA,△ABO的面积为6.(1)求k和m的值;(2)直线y=2x+a(a≤0)与直线AB交于点C与反比例函数图象交于点E,F;①若a=0,已知E(p,q),则F的坐标为(﹣p,﹣q)(用含p,q的坐标表示);②若a=﹣2.求AC的长.【分析】(1)根据反比例系数k的几何意义求得k,得到反比例函数的解析式,代入A (2,m),即可求得m的值.(2)①根据中心对称即可求得C点的坐标;②求得C的坐标,即可求得AC的长.解:(1)∵点A(2,m)是反比例函数y=的图象上一点,过点A作AB⊥x轴于点B,∴S△AOB=|k|=6,∴|k|=2×6=12,∵图象在第一象限,∴k=12,∴反比例函数y=(x>0),∴2m=12,解得m=6;(2)①若a=0,则y=2x是正比例函数,∵直线y=2x+a(a≤0)与反比例函数图象交于点E,F,且E(p,q),∴F(﹣p,﹣q),故答案为(﹣p,﹣q);②若a=﹣2,则函数为y=2x﹣2,把x=2代入得,y=2,∴C(2,2),∵A(2,6),∴AC=6﹣2=4.21.已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.(1)求证:BE=DF;(2)连接AC交EF于点O,延长OC至点M,使OM=OA,连接EM,FM,判断四边形AEMF是什么特殊四边形?并证明你的结论.【分析】(1)求简单的线段相等,可证线段所在的三角形全等,即证△ABE≌△ADF;(2)由于四边形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;联立(1)的结论,可证得EC=CF,根据等腰三角形三线合一的性质可证得OC(即AM)垂直平分EF;已知OA=OM,则EF、AM互相平分,再根据一组邻边相等的平行四边形是菱形,即可判定四边形AEMF是菱形.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∵,∴Rt△ADF≌Rt△ABE(HL)∴BE=DF;(2)解:四边形AEMF是菱形,理由为:证明:∵四边形ABCD是正方形,∴∠BCA=∠DCA=45°(正方形的对角线平分一组对角),BC=DC(正方形四条边相等),∵BE=DF(已证),∴BC﹣BE=DC﹣DF(等式的性质),即CE=CF,在△COE和△COF中,,∴△COE≌△COF(SAS),∴OE=OF,又OM=OA,∴四边形AEMF是平行四边形(对角线互相平分的四边形是平行四边形),∵AE=AF,∴平行四边形AEMF是菱形.22.疫情结束后,某广场推出促销活动,已知商品每件的进货价为30元,经市场调研发现,当该商品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.【销售利润=销售总额﹣进货成本】.(1)若该商品的的件单价为43元时,则当天的售商品是250件,当天销售利润是3250元;(2)当该商品的销售单价为多少元时,该商品的当天销售利润是3450元.【分析】(1)根据当天销售量=280﹣10×增加的销售单价,即可求出结论;(2)设该纪念品的销售单价为x元(x>40),则当天的销售量为[280﹣(x﹣40)×10]件,根据当天的销售利润=每件的利润×当天销售量,即可得出关于x的一元二次方程,解之取其较大值即可得出结论;解:(1)280﹣(43﹣40)×10=250(件),当天销售利润是250×(43﹣30)=3250(元).故答案为:250,3250;(2)设该纪念品的销售单价为x元(x>40),则当天的销售量为[280﹣(x﹣40)×10]件,依题意,得:(x﹣30)[280﹣(x﹣40)×10]=3450,整理,得:x2﹣98x+2385=0,整理,得:x1=53,x2=45.答:当该商品的销售单价为45元或53元时,该商品的当天销售利润是3450元.23.小王为探究函数y=(x>3)的图象经历了如下过程.(1)列表,根据表中x的取值,求出对应的y值,将空白处填写完整;x… 3.54 4.55 5.56…y…6321…(2)以表中各组对应值为点的坐标,在平面直角坐标系中描点并画出函数图象;(3)结合由y=(x>0)图象到y=图象的变化,猜想由y=的图象经过向x轴的负方向平移3个单位的平移变化可以得到y=(x≠﹣3)图象.y=(x≠﹣3)的对称轴是直线y=x﹣3与直线y=﹣x+3.【分析】(1)当x=3.5时,y==6,同理当x=5.5时,y=;(2)描点描绘出以下图象,(3)结合由y=(x>0)图象到y=图象的变化和函数的图象即可得到结论.解:(1)当x=3.5时,y==6,同理当x=5.5时,y=,故答案为6,;(2)描点描绘出以下图象,(3)猜想由y=的图象经过向x轴的负方向的平移3个单位可以得到y=(x ≠﹣3)图象.y=(x≠﹣3)的对称轴是直线y=x+3与直线y=﹣x﹣3.故答案为平移3个单位,直线y=x+3与直线y=﹣x﹣3.24.(1)如图1,四边形ACDE中,△ABC与△BDE均为直角三角形,且AB⊥BE,∠BEA=45°,求证:△ABC≌△BED.(2)如图2,点A(1,2),连结OA,将射线OA绕点O按逆时针方方向旋转45°.得到射线OB,AC⊥OA交OB于点C,分别过点A,点C作x轴,AD的垂线,垂足分别为D,E,由(1)得△AEC≌△ODA(填写两个三角形全等),所以CE=2(或AD),AE=1(或OD),C的坐标为(﹣1,3),则直线OB的解析式为y=﹣3x.(3)如图3,点A(3,3)在反比例函数y=的图象上,B(0,2)作射线AB,将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象的另一支于点C,求点C的坐标.【分析】(1)在△ABC和△BED中,∠BED=∠ABC,∠EDB=∠ACB,BE=AB,即可求解;(2)由(1)同理可得:△AEC≌△ODA(AAS),则CE=AD=2,AE=OD=1,C 的坐标为(﹣1,3),即可求解;(3)利用△AEF≌△FDB求出a=1,则F(2,1),再求出直线AF的解析式,进而求解.解:(1)∵AB⊥BE,∠AEB=45°,∴AB=BE,∵∠BED+∠EBD=90°,∠ABC+∠EBD=90°,∴∠BED=∠ABC,在△ABC和△BED中,∠BED=∠ABC,∠EDB=∠ACB,BE=AB,∴△ABC≌△BDE(AAS);(2)由(1)同理可得:△AEC≌△ODA(AAS),∴CE=AD=2,AE=OD=1,C的坐标为(﹣1,3),则直线OB的解析式为t=﹣3x;故答案为:△AEC≌△ODA;2(或AD);1(或OD);(﹣1,3);y=﹣3x;(3)如图,过B作BF⊥AC于F,过F作FD⊥y轴于D,过A作AE⊥DF于E,则△ABF为等腰直角三角形,根据(1)同理可得△AEF≌△FDB,设BD=a,则EF=a,∵点A(3,3)和点B(0,2),∴DF=3﹣a=AE,OD=OB﹣BD=2﹣a,∵AE+OD=3,∴3﹣a+2﹣a=3,解得a=1,则OD=2﹣1=1,DF=3﹣a=3﹣1=2,∴F(2,1),设直线AF的解析式为y=kx+b,则,解得,∴y=2x﹣3①,把点A点坐标代入y=并解得:k=9,故反比例函数的表达式为:y=②,联立①②并解得:(舍去)或,∴C(﹣,﹣6),故点C的坐标为:(﹣,﹣6).25.如图1,在平面直角坐标系xOy中,直线AB:y=kx+b(b≠0)分别与y轴,x轴交于A,B两点,点E,点G分别为AB,OE中点,点A,B关于点G的对称点分别为C,D,则称四边形ABCD为直线AB的伴随四边形,直线CD为直线AB的伴随直线.(1)若伴随四边形为矩形,则k=±1;(2)已知伴随直线为y=﹣4x,四边形ABCD的面积为25,求直线AB的解析式;(3)如图2,连结CG,与x轴交于点H,若△BHC为等腰三角形且k>0,求k的值.【分析】(1)连接GB,GC,GA,GD,先求出OA=|b|,OB=|﹣|,由矩形的性质可得∠DAB=90°,由三角形中位线定理可证∠GEB=∠DAB=90°,由线段垂直平分线的性质可得OA=OB,即可求解;(2)由中心对称的性质可证四边形ABCD是平行四边形,可得AB∥CD,S△ABO=S平,可得k=﹣4,×|b|•|﹣|=×25,即可求解;行四边形ABCD(3)分三种情况讨论,由等腰三角形的性质和两点距离公式可求解.解:(1)如图1,连接GB,GC,GA,GD,∵直线AB:y=kx+b(b≠0)分别与y轴,x轴交于A,B两点,∴点A(0,b),点B(﹣,0),∴OA=|b|,OB=|﹣|,∵点A,B关于点G的对称点分别为C,D,∴BG=DG,CG=AG,∵四边形ABCD是矩形,∴∠DAB=90°,∵BG=DG,AE=BE,∴GE∥AD,∴∠GEB=∠DAB=90°,∵AE=BE,OE⊥AB,∴OA=OB,∴|b|=|﹣|,∴k=±1,故答案为:±1;(2)如图,连接BG,DG,CG,AG,∵直线AB:y=kx+b(b≠0)分别与y轴,x轴交于A,B两点,∴点A(0,b),点B(﹣,0),∴OA=|b|,OB=|﹣|,∵点A,B关于点G的对称点分别为C,D,∴BG=DG,CG=AG,∴四边形ABCD是平行四边形,∴AB∥CD,S△ABO=S平行四边形ABCD,∴k=﹣4,×|b|•|﹣|=×25,∴b=±10,∴直线AB的解析式为y=﹣4x+10或y=﹣4x﹣10;(3)∵点E,点G分别为AB,OE中点,点A(0,b),点B(﹣,0),点O(0,0),∴点E(﹣,),点G(﹣,),当HC=HB时,∵HC=HB,∴∠HBC=∠HCB,又BC∥OE,∴∠HOG=∠HGO,∴OH=HG,∴OB=GC=AG,∴(﹣)2+()2=(﹣)2,∴k=当BH=BC时,∵BH=BC,∴∠BCH=∠BHC,∵OG∥BC,∴∠BCH=∠HGO,∴∠BHC=∠HGO,∴OH=OG,∴OB=BH+OH=BC+OG=3OG,∴9[(﹣)2+()2]=(﹣)2,∴k=,当CH=CB时,∵CH=CB,∴∠CHB=∠CBH,∵∠AOB=90°,AE=BE,∴OE=AE=BE,∴OE∥BC,BE∥OC,∴四边形OCEB是平行四边形,∴OC=BE=BC=OE,∴∠CBH=∠COH,∴∠COH=∠CHB,与图形不符合,故CH=CB不成立,综上所述:k=或k=.。

2019-2020学年浙江省杭州市余杭区九年级(上)期末数学试卷 (解析版)

2019-2020学年浙江省杭州市余杭区九年级(上)期末数学试卷 (解析版)

2019-2020学年浙江省杭州市余杭区九年级(上)期末数学试卷一、选择题(共10小题). 1.(3分)cos60︒的值等于( ) A .12B .22C .32D .332.(3分)若23a b =,则下列比列式正确的是( ) A .23a b= B .23a b= C .23b a = D .23a b= 3.(3分)下列图形中,是相似形的是( ) A .所有平行四边形 B .所有矩形C .所有菱形D .所有正方形4.(3分)如图,正五边形ABCDE 内接于O ,则ABD ∠的度数为( )A .60︒B .72︒C .78︒D .144︒5.(3分)对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下: 抽取件数(件) 50 100 150 200 500 800 1000 合格频数4288141176445724901若出售1500件衬衣,则其中的次品最接近( )件. A .100B .150C .200D .2406.(3分)如图,AB 是半圆O 的直径,40BAC ∠=︒,则D ∠的度数是( )A .140︒B .135︒C .130︒D .125︒7.(3分)已知点(3,)A m -,(3,)B m ,2(1,1)C m n -++在同一个函数的图象上,这个函数可能是( )A.2y x=+B.2yx=-C.22y x=+D.22y x=--8.(3分)如图,AB与CD相交于点E,点F在线段BC上,且////AC EF DB.若5BE=,3BF=,AE BC=,则DECE的值为()A.23B.12C.35D.259.(3分)二位同学在研究函数2(3)()(y a x x aa=+-为实数,且0)a≠时,甲发现当01a<<时,函数图象的顶点在第四象限;乙发现方程2(3)()50a x xa+-+=必有两个不相等的实数根.则()A.甲、乙的结论都错误B.甲的结论正确,乙的结论错误C.甲、乙的结论都正确D.甲的结论错误,乙的结论正确10.(3分)如图,在ABC∆中,90C∠=︒,5AB=,4BC=.点D为边AC上的动点,作菱形DEFG,使点E、F在边AB上,点G在边BC上.若这样的菱形能作出2个,则AD 的取值范围是()A.369378AD<B.1575837AD<C.575337AD<D.51538AD二、填空题:本题有6个小题,每小题4分,共24分.11.(4分)一个布袋里放有5个红球,3个球黄球和2个黑球,它们除颜色外其余都相同,则任意摸出一个球是黑球的概率是.12.(4分)如图,点A,B,C都在O上130AOC∠=︒,40ACB∠=︒,AOB∠=,弧BC=.13.(4分)已知二次函数2246y x x =-++,用配方法化为2()y a x m k =-+的形式为 ,这个二次函数图象的顶点坐标为 .14.(4分)在Rt ABC ∆中,:1:2AC BC =,则sin B = .15.(4分)如图,在ABC ∆中,90ACB ∠=︒,点D ,E 分别在边AC ,BC 上,且CDE B ∠=∠,将CDE ∆沿DE 折叠,点C 恰好落在AB 边上的点F 处.若2AC BC =,则DECF的值为 .16.(4分)如图,AB 为O 的直径,弦CD AB ⊥于点E ,点F 在圆上,且DF CD =,2BE =,8CD =,CF 交AB 于点G ,则弦CF 的长为 ,AG 的长为 .三、解答题;本大题有7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.(6分)如图,为测量一条河的宽度,某学习小组在河南岸的点A 测得河北岸的树C 在点A 的北偏东60︒方向,然后向东走10米到达B 点,测得树C 在点B 的北偏东30︒方向,试根据学习小组的测量数据计算河宽.18.(8分)如图,某科技馆展大厅有A,B两个入口,C,D,E三个出口,小钧的任选一个入口进入展宽大厅,参观结束后任选一个出口离开.(1)若小钧已进入展览大厅,求他选择从出口C离开的概率.(2)求小购选择从入口A进入,从出口E离开的概率,(请用列表或画树状图求解)19.(8分)如图为一座桥的示意图,已知桥洞的拱形是抛物线.当水面宽为12m时,桥洞顶部离水面4m.(1)建立平面直角坐标系,并求该抛物线的函数表达式.(2)若水面上升1m,水面宽度将减少多少?20.(10分)如图,在ABC=,以AB为直径作半圆O,交BC于点D,交AC∆中,AB AC于点E.(1)求证:BD CD=.(2)若弧50∠的度数.DE=︒,求C(3)过点D作DF AB⊥于点F,若8=,求弧BD的长.AF BFBC=,321.(10分)如图,在ABC=,连结∆中,点D,E分别在边AC,AB上且AE AB AD ACDE,BD.(1)求证:ADE ABC∽.∆∆(2)若点E为AB中点,:6:5∆的面积.AD AE=,ABC∆的面积为50,求BCD22.(12分)已知二次函数24(y ax bx a =+-,b 是常数,且0)a ≠的图象过点(3,1)-. (1)试判断点(2,22)a -是否也在该函数的图象上,并说明理由. (2)若该二次函数的图象与x 轴只有一个交点,求该函数的表达式. (3)已知二次函数的图象过1(x ,1)y 和2(x ,2)y 两点,且当1223xx 时,始终都有12y y >,求a 的取值范围.23.(12分)如图,在正方形ABCD 中,点E 在边CD 上(不与点C ,D 重合),连结AE ,BD 交于点F .(1)若点E 为CD 中点,25AB =,求AF 的长. (2)若tan 2AFB ∠=,求DFBF的值. (3)若点G 在线段BF 上,且2GF BG =,连结AG ,CG ,DEx DC=,四边形AGCE 的面积为1S ,ABG ∆的面积为2S ,求12S S 的最大值.参考答案一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中.只有一个选项是符合题目要求的. 1.(3分)cos60︒的值等于( ) A .12B .22C .32D .33解:1cos602︒=. 故选:A .2.(3分)若23a b =,则下列比列式正确的是( ) A .23a b= B .23a b= C .23b a = D .23a b= 解:23a b =, ∴23b a =, 故选:C .3.(3分)下列图形中,是相似形的是( ) A .所有平行四边形 B .所有矩形C .所有菱形D .所有正方形解:A 、所有平行四边形,属于形状不唯一确定的图形,不一定相似,故错误; B 、所有矩形,属于形状不唯一确定的图形,不一定相似,故错误; C 、所有菱形,属于形状不唯一确定的图形,不一定相似,故错误;D 、所有正方形,形状相同,但大小不一定相同,符合相似定义,故正确.故选:D .4.(3分)如图,正五边形ABCDE 内接于O ,则ABD ∠的度数为( )A .60︒B .72︒C .78︒D .144︒解:五边形ABCDE 为正五边形, (52)1801085ABC C -⨯︒∴∠=∠==︒,CD CB =,180108362CBD ︒-︒∴∠==︒, 72ABD ABC CBD ∴∠=∠-∠=︒,故选:B .5.(3分)对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下: 抽取件数(件) 50 100 150 200 500 800 1000 合格频数4288141176445724901若出售1500件衬衣,则其中的次品最接近( )件. A .100 B .150C .200D .240解:42881411764457249011500(1)151.6501001502005008001000++++++⨯-=++++++件故选:B .6.(3分)如图,AB 是半圆O 的直径,40BAC ∠=︒,则D ∠的度数是( )A .140︒B .135︒C .130︒D .125︒解:AB 是半圆O 的直径,90ACB ∴∠=︒,90904050B BAC ∴∠=︒-∠=︒-︒=︒, 180B D ∠+∠=︒, 18050130D ∴∠=︒-︒=︒.故选:C .7.(3分)已知点(3,)A m -,(3,)B m ,2(1,1)C m n -++在同一个函数的图象上,这个函数可能是( ) A .2y x =+ B .2y x=-C .22y x =+D .22y x =--解:(3,)A m -,(3,)B m ,∴点A 与点B 关于y 轴对称;由于2y x =+不关于y 轴对称,2y x=-的图象关于原点对称,因此选项A 、B 错误; 20n >, 21m n m ∴++>;由(3,)A m -,2(1,1)C m n -++可知,在对称轴的右侧,y 随x 的增大而减小, 对于二次函数只有0a <时,在对称轴的右侧,y 随x 的增大而减小, D ∴选项正确故选:D .8.(3分)如图,AB 与CD 相交于点E ,点F 在线段BC 上,且////AC EF DB .若5BE =,3BF =,AE BC =,则DECE的值为( )A .23B .12 C .35D .25解:设CF x =, //EF AC , ∴BF BECF AE =, ∴353x x =+, 解得92x =, 92CF ∴=, //EF DB ,32932DE BF CE CF ===. 故选:A .9.(3分)二位同学在研究函数2(3)()(y a x x a a=+-为实数,且0)a ≠时,甲发现当01a <<时,函数图象的顶点在第四象限;乙发现方程2(3)()50a x x a+-+=必有两个不相等的实数根.则( )A .甲、乙的结论都错误B .甲的结论正确,乙的结论错误C .甲、乙的结论都正确D .甲的结论错误,乙的结论正确解:由函数2(3)()y a x x a =+-可知,函数与x 轴的两个交点的横坐标分别是3-和2a,∴函数顶点的横坐标为232a -+,01a <<,∴23122a -+>-, ∴函数的顶点不一定在第四象限,故甲的结论错误;2(3)()50a x x a +-+=可以化为2(32)10ax a x +--=,△222420(32)49849()099a a a a a =-+=-+=-+>,2(3)()50a x x a∴+-+=必有两个不相等的实数根,故乙的结论正确; 故选:D .10.(3分)如图,在ABC ∆中,90C ∠=︒,5AB =,4BC =.点D 为边AC 上的动点,作菱形DEFG ,使点E 、F 在边AB 上,点G 在边BC 上.若这样的菱形能作出2个,则AD 的取值范围是( )A .369378AD< B .1575837AD <C .575337AD <D .51538AD解:如图1中,当四边形DEFG 是正方形时,设正方形的边长为x .在Rt ABC ∆中,90C ∠=︒,5AB =,4BC =,2222543AC AB BC ∴=-=-=,则35CD x =,54AD x =, AD CD AC +=, ∴35354x x +=, 6037x ∴=, 336537CD x ∴==, 观察图象可知:36037CD <时,菱形的个数为0.如图2中,当四边形DAEG 是菱形时,设菱形的边长为m .//DG AB , ∴CD DGAC AB =, ∴335m m-=, 解得158m =, 159388CD ∴=-=,如图3中,当四边形DEBG 是菱形时,设菱形的边长为n .//DG AB , ∴CG DG CB AB =, ∴445n n -=, 209n ∴=, 2016499CG ∴=-=, 2220164()()993CD ∴=-=, 观察图象可知:当36037CD <或433CD <时,菱形的个数为0,当3637CD =或9483CD <时,菱形的个数为1,当369378CD <时,菱形的个数为2.此时1575837AD < 故选:B . 二、填空题:本题有6个小题,每小题4分,共24分.11.(4分)一个布袋里放有5个红球,3个球黄球和2个黑球,它们除颜色外其余都相同,则任意摸出一个球是黑球的概率是 5. 解:在一个布袋里放有5个红球,3个球黄球和2个黑球,它们除了颜色外其余都相同, ∴从布袋中任意摸出一个球是黑球的概率为:215325=++. 故答案为:15. 12.(4分)如图,点A ,B ,C 都在O 上130AOC ∠=︒,40ACB ∠=︒,AOB ∠= 80︒ ,弧BC = .解:224080AOB ACB ∠=∠=⨯︒=︒,1308050BOC AOC AOB ∴∠=∠-∠=︒-︒=︒,∴BC 的度数为50︒.故答案为80︒,50︒.13.(4分)已知二次函数2246y x x =-++,用配方法化为2()y a x m k =-+的形式为 22(1)8y x =--+ ,这个二次函数图象的顶点坐标为 .解:2222462(2)62(1)8y x x x x x =-++=--+=--+,∴顶点(1,8).故答案为:22(1)8y x =--+,(1,8).14.(4分)在Rt ABC ∆中,:1:2AC BC =,则sin B 55或12. 解:①当90C ∠=︒时,设AC x =,2BC x =,由勾股定理,得22(2)5AB x x =+=.由三角函数的正弦等于对边比斜边,得5sin 5AC B AB x=== ②当90A ∠=︒时,1sin 2AC B BC ==. 综上所述,sin B 5或12. 512. 15.(4分)如图,在ABC ∆中,90ACB ∠=︒,点D ,E 分别在边AC ,BC 上,且CDE B ∠=∠,将CDE ∆沿DE 折叠,点C 恰好落在AB 边上的点F 处.若2AC BC =,则DE CF 的值为 4.解:如图,设DE 交CF 于O .设OD a =.由翻折可知:DC DF =,EC EF =,DE ∴垂直平分线段CF ,90DOC ∴∠=︒,OC OF =,CDE B ∠=∠,tan tan CDO B ∴∠=∠, ∴2OC AC OD BC ==, 2OC OF a ∴==,4CF a =,90ECO DCO ∠+∠=︒,90DCO CDO ∠+∠=︒,ECO CDO ∴∠=∠,tan 2OE ECO OC∴∠==, 4OE a ∴=,5DE a =,∴5544DE a CF a ==, 故答案为54. 16.(4分)如图,AB 为O 的直径,弦CD AB ⊥于点E ,点F 在圆上,且DF CD =,2BE =,8CD =,CF 交AB 于点G ,则弦CF 的长为 485,AG 的长为 .解:连结BC ,DF ,OC ,连结DO 并延长交CF 于点H ,弦CD AB ⊥于点E ,8CD =,142CE CD ∴==, 设OC x =,则2OE x =-,222OE CE OC +=,222(2)4x x ∴-+=,解得5x =,5OC ∴=,523OE ∴=-=,DF CD =,DF CD ∴=,CFD COB ∠=∠,DH CF ⊥,90FHD OEC ∴∠=∠=︒,DHF CEO ∴∆∆∽, ∴DF DH FH OC CE OE ==, ∴8543DH FH ==, 245FH ∴=,325DH =, 4825CF FH ∴==, 327555OH DH OD =-=-=, CFD COB BOD ∠=∠=∠,BOD GOH ∠=∠,GOH DFH ∴∠=∠,90GHO OEC ∠=∠=︒,GHO CEO ∴∆∆∽,∴OG OH OC OE =, ∴7553OG =, 73OG ∴=, 78533AG OA OG ∴=-=-=. 故答案为:485,83. 三、解答题;本大题有7个小题,共66分,解答应写出文字说明、证明过程或演算步骤.17.(6分)如图,为测量一条河的宽度,某学习小组在河南岸的点A 测得河北岸的树C 在点A 的北偏东60︒方向,然后向东走10米到达B 点,测得树C 在点B 的北偏东30︒方向,试根据学习小组的测量数据计算河宽.解:由题意得,30CAB ∠=︒,60CBD ∠=︒,30ACB CBD CAB ∴∠=∠-∠=︒,CAB ACB ∴∠=∠,10BC AB ∴==,CD BD ⊥,353CD BC ∴== 答:河宽为5318.(8分)如图,某科技馆展大厅有A ,B 两个入口,C ,D ,E 三个出口,小钧的任选一个入口进入展宽大厅,参观结束后任选一个出口离开.(1)若小钧已进入展览大厅,求他选择从出口C 离开的概率.(2)求小购选择从入口A 进入,从出口E 离开的概率,(请用列表或画树状图求解)解:(1)他选择从出口C 离开的概率为13;(2)画树形图如图得:由树形图可知所有可能的结果有6种,其中选择从入口A 进入,从出口E 离开的只有1种结果,∴选择从入口A 进入,从出口E 离开的概率为16. 19.(8分)如图为一座桥的示意图,已知桥洞的拱形是抛物线.当水面宽为12m 时,桥洞顶部离水面4m . (1)建立平面直角坐标系,并求该抛物线的函数表达式.(2)若水面上升1m ,水面宽度将减少多少?解:以C 为坐标原点建立坐标系,则(6,4)A --,(6B ,4)(0C -,0) 设2y ax =,把(6,4)B -代入上式,3640a +=,解得:19a =-, 219y x ∴=-;令3y =-得:2139x -=-, 解得:33x =±,∴若水面上升1m ,水面宽度将减少1263-.20.(10分)如图,在ABC ∆中,AB AC =,以AB 为直径作半圆O ,交BC 于点D ,交AC 于点E .(1)求证:BD CD =.(2)若弧50DE =︒,求C ∠的度数.(3)过点D 作DF AB ⊥于点F ,若8BC =,3AF BF =,求弧BD 的长.【解答】(1)证明:如图,连接AD .AB 是圆O 的直径,AD BD ∴⊥.又AB AC =,BD CD ∴=.(2)解:弧50DE =︒,50EOD ∴∠=︒.1252DAE DOE ∴∠=∠=︒. 由(1)知,AD BD ⊥,则90ADB ∠=︒,902565ABD ∴∠=︒-︒=︒.AB AC =,65C ABD ∴∠=∠=︒.(3)8BC =,BD CD =,4BD ∴=.设半径OD x =.则2AB x =.由3AF BF =可得3342AF AB x ==,1142BF AB x ==, AD BD ⊥,DF AB ⊥,2BD BF AB ∴=,即21422x x =. 解得4x =.4OB OD BD ∴===,OBD ∴∆是等边三角形,60BOD ∴∠=︒.∴弧BD 的长是:60441803ππ⨯=.21.(10分)如图,在ABC ∆中,点D ,E 分别在边AC ,AB 上且AE AB AD AC =,连结DE ,BD .(1)求证:ADE ABC ∆∆∽.(2)若点E 为AB 中点,:6:5AD AE =,ABC ∆的面积为50,求BCD ∆的面积.【解答】(1)证明:AE AB AD AC =,::AE AC AD AB ∴=,A A ∠=∠,ADE ABC ∴∆∆∽.(2)解:点E 为AB 中点,AE BE ∴=,:6:5AD AE =,∴设6AD x =,则5AE x =,10AB x =,AE AB AD AC =, 5102563AE AB x x AC x AD x ∴===, 73CD AC AD x ∴=-=, ∴725CD AC =, ABC ∆的面积为50,BCD ∴∆的面积7501425=⨯=. 22.(12分)已知二次函数24(y ax bx a =+-,b 是常数,且0)a ≠的图象过点(3,1)-.(1)试判断点(2,22)a -是否也在该函数的图象上,并说明理由.(2)若该二次函数的图象与x 轴只有一个交点,求该函数的表达式.(3)已知二次函数的图象过1(x ,1)y 和2(x ,2)y 两点,且当1223x x 时,始终都有12y y >,求a 的取值范围.解:(1)将点(3,1)-代入解析式,得31a b +=, 2(13)4y ax a x ∴=+--,将点(2,22)a -代入24y ax bx =+-,得42(13)42222a a a a +--=--≠-, ∴点(2,22)a -不在抛物线图象上;(2)二次函数的图象与x 轴只有一个交点,∴△2(13)160a a =-+=,1a ∴=-或19a =-, 244y x x ∴=-+-或214493y x x =-+-; (3)抛物线对称轴312a x a -=, 当0a >,31223a a -时,35a ; 当0a <,31223a a -时,35a (舍去); ∴当35a 满足所求; 23.(12分)如图,在正方形ABCD 中,点E 在边CD 上(不与点C ,D 重合),连结AE ,BD 交于点F .(1)若点E 为CD 中点,25AB =,求AF 的长. (2)若tan 2AFB ∠=,求DF BF的值. (3)若点G 在线段BF 上,且2GF BG =,连结AG ,CG ,DE x DC =,四边形AGCE 的面积为1S ,ABG ∆的面积为2S ,求12S S 的最大值.解:(1)点E 为CD 中点,25AB AD CD ===, 5DE ∴=,222055AE AD DE ∴=+=+=, //AB CD ,ABF EDF ∴∆∆∽,∴12DE EF AB AF ==, 2AF EF ∴=,且5AF EF +=, 103AF ∴=; (2)如图1,连接AC ,四边形ABCD 是正方形,AB BC CD AD ∴===,2BD =,AO BD ⊥,AO BO CO DO ===,22AO DO BO AB ∴===, tan 2AO AFB OF∠==, 1224OF AO AB ∴==, 24DF OD OF AB ∴=-=,324BF OB OF AB =+=, ∴13DF BF =; (3)如图2,设AB CD AD a ===,则2BD a =,DE x DC=, DE xa ∴=,21122ADE S AD DE xa ∆∴=⨯⨯=, ABF EDF ∆∆∽, ∴DE DF x AB BF==, DF x BF ∴=,21112ABF S a x ∆∴=+, 2GF BG =,22136(1)ABG ABF a S S S x ∆∆∴===+, AB CB =,ABG CBG ∠=∠,BG BG =, ()ABG CBG SAS ∴∆≅∆ABG CBG S S ∆∆∴=,1S ∴=四边形AGCE 的面积2221226(1)a a xa x =--⨯+∴22121193343()24S x x x S =-++=--+ ∴当12x =时,12S S 的最大值为194.。

八年级数学上册 2019-2020学年八年级(上)期末名校校考试卷及答案

八年级数学上册 2019-2020学年八年级(上)期末名校校考试卷及答案

八年级数学上册2019-2020学年八年级(上)期末名校校考试卷及答案一、选择题(本题共10个小题)每小题均给出标号为A、B、C、D的四个备选答案,其中只有一个是正确的,请将正确答案的标号涂在答题卡上.1.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.2.如图,▱ABCD的对角线交于点O,已知△OCD的面积等于3,则▱ABCD的面积等于()A.6B.12C.15D.243.正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°4.在某校“班级篮球联赛”中,全年级共有11个班级参加比赛,它们决赛的最终成绩各不相同,小芳向知道自己班能否进入前6名,不仅要了解自己班的成绩,还要了解这11个班级成绩的()A.众数B.方差C.平均数D.中位数5.对于一组统计数据:1,6,2,3,3,下列说法错误的是()A.平均数是3B.中位数是3C.众数是3D.方差是2.56.将多项式4x2+1再加上一项,使它能分解因式成(a+b)2的形式,以下是四位学生所加的项,其中错误的是()A.2x B.﹣4x C.4x4D.4x7.点M的坐标为(﹣2,3),点N的坐标为(3,b),若将线段MN平移至M'N'的位置,点M'的坐标为(a,﹣2),点N'的坐标为(4,﹣4),则a﹣b的值为()A.0B.﹣4C.﹣2D.68.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE9.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是()A.40×1.25x﹣40x=800B.﹣=40C.﹣=40D.﹣=4010.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.B.2C.D.3二、填空题(本题共10个小题)11.某校规定学期综合成绩按照平日成绩20%、期中成绩30%、期末成绩50%计算,由此看出,期中成绩的权是.12.如图中的5个数据的标准差是.13.若无意义,且分式的值等于零,那么=.14.在平行四边形ABCD中,若∠A:∠B=2:3,则∠C=.15.如图,在四边形ABCD中,AB∥CD,E,F分别是AC,BD的中点,已知AB=12,CD=6,则EF=.16.依次连接任意四边形各边的中点,得到一个特殊图形,则这个图形一定是.17.如果,那么.18.已知关于的分式的解是非负数,则k的取值范围是.19.若,则K=.20.如图,小亮从A点出发,沿直线前进15米后向左转30°,再沿直线前进15米,又向左转30°,…照这样走下去,他第一次回到出发地A点时,一共走了米.三、解答题(本大题共9个小题)21.分解因式(1)3a2(x+y)3﹣27a4(x+y)(2)(x2﹣9)2﹣14(x2﹣9)+4922.解方程:.23.先化简,再求值:÷(x﹣),其中x为0,﹣1,﹣3,1,2的极差.24.已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.25.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;(2)平移△ABC:若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(3)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.26.近年来“哈罗单车”和“哈啰助力车”在街头流行.随着市民对这两种车的使用率的提升,经营“哈罗单车”和“哈啰助力车”的两家公司也有了越来越高的收人.初三某班的实践小组对两家公司近10个周的收入进行了调查,就收入(单位:千元)情况制作了如下的统计图:根据以上信息,整理分析数据如下:(1)完成表格填空;(2)“哈罗单车”和“哈啰助力车”在该地各有500辆和300辆.从收入的情况看,上个周这2家公司都达到了近10个周的最高收人.已知每骑用一次“哈罗单车”和“哈啰助力车”,公司就分别收人1元和2元,通过计算在上周每辆车的周平均骑用次数,说明哪种车比较抢手?27.列方程解应用题:在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式,若一次性付款4200元购买这种篮球,则在B超市购买的数量比在A 超市购买的数量多5个.请求出这种篮球的标价.28.如图,O在等边△ABC内,∠BOC=150°,将△BOC绕点C顺时针旋转后,得△ADC,连接OD.(1)△COD是三角形.(2)若OB=5,OC=3,求OA的长.29.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.参考答案一、选择题(本题共10个小题)每小题均给出标号为A、B、C、D的四个备选答案,其中只有一个是正确的,请将正确答案的标号涂在答题卡上.1.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A.B.C.D.【考点】R5:中心对称图形.【专题】1:常规题型.【分析】直接利用中心对称图形的性质得出答案.【解答】解:A、新图形不是中心对称图形,故此选项错误;B、新图形是中心对称图形,故此选项正确;C、新图形不是中心对称图形,故此选项错误;D、新图形不是中心对称图形,故此选项错误;故选:B.2.如图,▱ABCD的对角线交于点O,已知△OCD的面积等于3,则▱ABCD的面积等于()A.6B.12C.15D.24【考点】K3:三角形的面积;L5:平行四边形的性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】由▱ABCD的对角线相交于点O,可得OA=OC,OB=OD,然后根据三角形中线的性质,求得S△COD=S△AOD=S△AOB=3,继而求得答案.【解答】解:如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴S△BOC=S△COD=3,同理:S△COD=S△AOD=S△AOB=3,∴S▱ABCD=4S△COD=12.故选:B.3.正十边形的每一个内角的度数为()A.120°B.135°C.140°D.144°【考点】L3:多边形内角与外角.【专题】55:几何图形.【分析】利用正十边形的外角和是360度,并且每个外角都相等,即可求出每个外角的度数;再根据内角与外角的关系可求出正十边形的每个内角的度数.【解答】解:∵一个十边形的每个外角都相等,∴十边形的一个外角为360÷10=36°.∴每个内角的度数为180°﹣36°=144°;故选:D.4.在某校“班级篮球联赛”中,全年级共有11个班级参加比赛,它们决赛的最终成绩各不相同,小芳向知道自己班能否进入前6名,不仅要了解自己班的成绩,还要了解这11个班级成绩的()A.众数B.方差C.平均数D.中位数【考点】W A:统计量的选择.【专题】1:常规题型.【分析】11人成绩的中位数是第6名的成绩,要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有11个人,且他们的分数互不相同,第6名的成绩是中位数,要判断是否进入前6名,故应知道中位数的多少.故选:D.5.对于一组统计数据:1,6,2,3,3,下列说法错误的是()A.平均数是3B.中位数是3C.众数是3D.方差是2.5【考点】W1:算术平均数;W4:中位数;W5:众数;W7:方差.【专题】1:常规题型;542:统计的应用.【分析】根据平均数、中位数、众数和方差的定义逐一求解可得.【解答】解:A、平均数为=3,正确;B、重新排列为1、2、3、3、6,则中位数为3,正确;C、众数为3,正确;D、方差为×[(1﹣3)2+(6﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2]=2.8,错误;故选:D.6.将多项式4x2+1再加上一项,使它能分解因式成(a+b)2的形式,以下是四位学生所加的项,其中错误的是()A.2x B.﹣4x C.4x4D.4x【考点】44:整式的加减;54:因式分解﹣运用公式法.【专题】1:常规题型.【分析】分①4x2是平方项,②4x2是乘积二倍项,③1是乘积二倍项,然后根据完全平方公式的结构解答.【解答】解:A、4x2+1+2x,无法运用完全平方公式分解因式,故此选项符合题意;B、4x2+1﹣4x=(2x﹣1)2,能运用完全平方公式分解因式,故此选项不符合题意;C、4x4+4x2+1=(2x2+1)2,能运用完全平方公式分解因式,故此选项不符合题意;D、4x2+1+4x=(2x+1)2,能运用完全平方公式分解因式,故此选项不符合题意;故选:A.7.点M的坐标为(﹣2,3),点N的坐标为(3,b),若将线段MN平移至M'N'的位置,点M'的坐标为(a,﹣2),点N'的坐标为(4,﹣4),则a﹣b的值为()A.0B.﹣4C.﹣2D.6【考点】Q3:坐标与图形变化﹣平移.【专题】558:平移、旋转与对称;69:应用意识.【分析】由题意可知平移后横坐标加1,纵坐标减5,由此求出a,b即可解决问题.【解答】解:由题意可知平移后横坐标加1,纵坐标减5,∴a=﹣1,b=1,∴a﹣b=﹣1﹣1=﹣2,故选:C.8.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E给好落在AB的延长线上,连接AD,下列结论不一定正确的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE 【考点】JB:平行线的判定与性质;R2:旋转的性质.【专题】1:常规题型.【分析】利用旋转的性质得BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,再通过判断△ABD为等边三角形得到AD=AB,∠BAD=60°,则根据平行线的性质可判断AD∥BC,从而得到∠DAC=∠C,于是可判断∠DAC=∠E,接着利用AD=AB,BE =BC可判断AD+BC=AE,利用∠CBE=60°,由于∠E的度数不确定,所以不能判定BC⊥DE.【解答】解:∵△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB 的延长线上,∴BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,∴△ABD为等边三角形,∴AD=AB,∠BAD=60°,∵∠BAD=∠EBC,∴AD∥BC,∴∠DAC=∠C,∴∠DAC=∠E,∵AE=AB+BE,而AD=AB,BE=BC,∴AD+BC=AE,∵∠CBE=60°,∴只有当∠E=30°时,BC⊥DE.故选:C.9.体育测试中,小进和小俊进行800米跑测试,小进的速度是小俊的1.25倍,小进比小俊少用了40秒,设小俊的速度是x米/秒,则所列方程正确的是()A.40×1.25x﹣40x=800B.﹣=40C.﹣=40D.﹣=40【考点】B6:由实际问题抽象出分式方程.【专题】1:常规题型.【分析】先分别表示出小进和小俊跑800米的时间,再根据小进比小俊少用了40秒列出方程即可.【解答】解:小进跑800米用的时间为秒,小俊跑800米用的时间为秒,∵小进比小俊少用了40秒,方程是﹣=40,故选:C.10.如图,△ABC的周长为19,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.B.2C.D.3【考点】KJ:等腰三角形的判定与性质;KX:三角形中位线定理.【专题】17:推理填空题.【分析】证明△BNA≌△BNE,得到BA=BE,即△BAE是等腰三角形,同理△CAD是等腰三角形,根据题意求出DE,根据三角形中位线定理计算即可.【解答】解:∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE,在△BNA和△BNE中,∴△BNA≌△BNE,∴BA=BE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点N是AE中点,点M是AD中点(三线合一),∴MN是△ADE的中位线,∵BE+CD=AB+AC=19﹣BC=19﹣7=12,∴DE=BE+CD﹣BC=5,∴MN=DE=.故选:C.二、填空题(本题共10个小题)11.某校规定学期综合成绩按照平日成绩20%、期中成绩30%、期末成绩50%计算,由此看出,期中成绩的权是30%.【考点】W2:加权平均数.【专题】542:统计的应用;61:数感.【分析】根据权的表现形式,一种是比的形式,如4:3:2,另一种是百分比的形式,如平日成绩占20%,期中成绩占30%,期末成绩占50%等.【解答】解:根据加权平均数的定义可知:期中成绩的权为30%.故答案为30%.12.如图中的5个数据的标准差是0.【考点】W8:标准差.【专题】543:概率及其应用;65:数据分析观念.【分析】由图知5个数据均为3,从而得出这组数据没有波动,即可得出答案.【解答】解:由图知这5个数据均为3,∴这组数据的标准差为0,故答案为:0.13.若无意义,且分式的值等于零,那么=2.【考点】62:分式有意义的条件;63:分式的值为零的条件.【专题】513:分式;66:运算能力.【分析】直接利用分式的值为零的条件“分子为0且分母不为0”分析得出答案.【解答】解:∵无意义∴a+2=0,a=﹣2∵分式的值等于零,∴|b|﹣1=0,b﹣1≠0,∴b=﹣1,∴==2,故答案为2.14.在平行四边形ABCD中,若∠A:∠B=2:3,则∠C=72°.【考点】L5:平行四边形的性质.【分析】根据已知比例设∠A=2x,∠B=3x,再由两直线平行,同旁内角线补,可求角的度数.【解答】解:依题意设∠A=2x,∠B=3x,由平行四边形的性质,得∠A+∠B=180°,∴2x+3x=180°,解得x=36°,∴∠A=2x=72°,又∵∠A=∠C,∴∠C=72°.故答案为72°.15.如图,在四边形ABCD中,AB∥CD,E,F分别是AC,BD的中点,已知AB=12,CD=6,则EF=3.【考点】KX:三角形中位线定理.【专题】557:梯形;67:推理能力.【分析】连接CF并延长交AB于G,证明△FDC≌△FBG,根据全等三角形的性质得到BG=DC=6,CF=FG,求出AG,根据三角形中位线定理计算,得到答案.【解答】解:连接CF并延长交AB于G,∵AB∥CD,∴∠FDC=∠FBG,在△FDC和△FBG中,,∴△FDC≌△FBG(ASA)∴BG=DC=6,CF=FG,∴AG=AB﹣BG=12﹣6=6,∵CE=EA,CF=FG,∴EF=AG=3,故答案为:3.16.依次连接任意四边形各边的中点,得到一个特殊图形,则这个图形一定是平行四边形.【考点】LN:中点四边形.【专题】555:多边形与平行四边形;67:推理能力.【分析】首先根据题意画出图形,再连接AC,根据三角形的中位线得到HG∥AC,HG =AC,EF∥AC,EF=AC,可以推出EF=GH,EF∥GH,根据平行四边形的判定:一组对边平行且相等的四边形是平行四边形求出即可.【解答】解:这个图形一定是平行四边形,理由是:根据题意画出图形,如右图所示:连接AC,∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=AC,EF∥AC,EF=AC,∴EF=GH,EF∥GH,∴四边形EFGH是平行四边形.故答案为:平行四边形.17.如果,那么.【考点】RA:几何变换的类型.【专题】13:作图题;558:平移、旋转与对称;69:应用意识.【分析】观察图象的变化,根据旋转变换的性质轴对称的性质即可解决问题.【解答】解:由题意性质180,可得图形:18.已知关于的分式的解是非负数,则k的取值范围是k≤3且k≠1.【考点】B2:分式方程的解.【专题】522:分式方程及应用;66:运算能力.【分析】求出分式方程的解,根据解是非负数求出k的取值范围.【解答】解:去分母得:1+2(x﹣2)=x﹣k,解得:x=3﹣k,由题意得:3﹣k≥0,且3﹣k≠2,解得:k≤3且k≠1,∴k的取值范围是k≤3且k≠1,故答案为:k≤3且k≠1.19.若,则K=1.【考点】6B:分式的加减法.【专题】17:推理填空题;513:分式;66:运算能力.【分析】根据分式的加减和恒等关系即可求解.【解答】解:原式变形,得=∴3K=3,4K=4,解得K=1.故答案为1.20.如图,小亮从A点出发,沿直线前进15米后向左转30°,再沿直线前进15米,又向左转30°,…照这样走下去,他第一次回到出发地A点时,一共走了180米.【考点】L3:多边形内角与外角.【分析】由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了15×12=180(米).故答案为:180.三、解答题(本大题共9个小题)21.分解因式(1)3a2(x+y)3﹣27a4(x+y)(2)(x2﹣9)2﹣14(x2﹣9)+49【考点】55:提公因式法与公式法的综合运用.【专题】512:整式;66:运算能力.【分析】(1)先提公因式,然后根据平方差公式分解即可;(2)根据完全平方公式和平方差公式分解即可.【解答】解:(1)3a2(x+y)3﹣27a4(x+y)=3a2(x+y)[(x+y)2﹣9a2]=3a2(x+y)(x+y﹣3a)(x+y+3a);(2)(x2﹣9)2﹣14(x2﹣9)+49=(x2﹣9﹣7)2=(x2﹣16)2=(x+4)2(x﹣4)2.22.解方程:.【考点】B3:解分式方程.【专题】11:计算题;16:压轴题.【分析】观察可得最简公分母是(x﹣1)(x+2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边都同乘以(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3,化简,得x+2=3,解得:x=1.检验:把x=1代入(x﹣1)(x+2)=0.∴x=1不是原方程的解,原分式方程无解.23.先化简,再求值:÷(x﹣),其中x为0,﹣1,﹣3,1,2的极差.【考点】6D:分式的化简求值;W6:极差.【专题】1:常规题型.【分析】先算括号内的减法,再把除法变成乘法,最后算乘法,再代入求出即可.【解答】解:原式=÷=•=,当x=2﹣(﹣3)=5时,原式==.24.已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.【考点】KD:全等三角形的判定与性质;L6:平行四边形的判定.【专题】16:压轴题.【分析】首先根据条件证明△AFD≌△CEB,可得到AD=CB,∠DAF=∠BCE,可证出AD∥CB,根据一条对边平行且相等的四边形是平行四边形可证出结论.【解答】解:结论:四边形ABCD是平行四边形,证明:∵DF∥BE,∴∠AFD=∠CEB,又∵AF=CE DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形.25.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣3,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;(2)平移△ABC:若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(3)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为(,﹣1).【考点】Q4:作图﹣平移变换;R8:作图﹣旋转变换.【专题】13:作图题;558:平移、旋转与对称.【分析】(1)分别作出点A、B关于点C的对称点,再顺次连接可得;(2)由点A的对称点A2的位置得出平移方向和距离,据此作出另外两个点的对称点,顺次连接可得;(3)连接A1A2、B1B2,交点即为所求.【解答】解:(1)如图所示,△A1B1C即为所求;(2)如图所示,△A2B2C2即为所求;(3)如图所示,点P即为对称中心,其坐标为(,﹣1),故答案为:(,﹣1).26.近年来“哈罗单车”和“哈啰助力车”在街头流行.随着市民对这两种车的使用率的提升,经营“哈罗单车”和“哈啰助力车”的两家公司也有了越来越高的收人.初三某班的实践小组对两家公司近10个周的收入进行了调查,就收入(单位:千元)情况制作了如下的统计图:根据以上信息,整理分析数据如下:(1)完成表格填空;(2)“哈罗单车”和“哈啰助力车”在该地各有500辆和300辆.从收入的情况看,上个周这2家公司都达到了近10个周的最高收人.已知每骑用一次“哈罗单车”和“哈啰助力车”,公司就分别收人1元和2元,通过计算在上周每辆车的周平均骑用次数,说明哪种车比较抢手?【考点】W2:加权平均数;W4:中位数;W5:众数;W7:方差.【专题】542:统计的应用;66:运算能力.【分析】(1)根据加权平均数、中位数、众数、方差的定义即可求解;(2)根据方差的结果进行判断即可.【解答】解:(1)7×20%+8×10%+4×10%+5×20%+6×(1﹣20%﹣10%﹣10%﹣20%)=6(千克);(4+5)÷2=4.5(千克);×[5×(6﹣4)2+2(6﹣5)2+2×(9﹣6)2+(12﹣6)2]=7.6(千克).故答案为6、4.5、7.6.(2)因为两家的平均周收入相同,周收入中位数和众数“哈罗单车”都大于“哈罗助力车”,而方差“哈罗单车”小于“哈罗助力车”,比较稳定.答:“哈罗单车”比较抢手.27.列方程解应用题:在“双十二”期间,A,B两个超市开展促销活动,活动方式如下:A超市:购物金额打9折后,若超过2000元再优惠300元;B超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市的标价相同,根据商场的活动方式,若一次性付款4200元购买这种篮球,则在B超市购买的数量比在A 超市购买的数量多5个.请求出这种篮球的标价.【考点】B7:分式方程的应用.【专题】34:方程思想;522:分式方程及应用;69:应用意识.【分析】设这种篮球的标价为x元,根据数量=总价÷单价结合在B超市购买的数量比在A超市购买的数量多5个,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设这种篮球的标价为x元,依题意,得:﹣=5,解得:x=50,经检验,x=50是原方程的解,且符合题意.答:这种篮球的标价为50元.28.如图,O在等边△ABC内,∠BOC=150°,将△BOC绕点C顺时针旋转后,得△ADC,连接OD.(1)△COD是等边三角形.(2)若OB=5,OC=3,求OA的长.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质;KQ:勾股定理;R2:旋转的性质.【专题】553:图形的全等;554:等腰三角形与直角三角形;558:平移、旋转与对称;67:推理能力.【分析】(1)由旋转的性质可得CO=CD,AD=BO,∠ACB=∠DCO=60°,可证△COD是等边三角形;(2)由等边三角形的性质可得OD=OC=3,∠CDO=60°,可得∠ADO=90°,由勾股定理可求OA的长.【解答】解:(1)∵将△BOC绕点C顺时针旋转后,得△ADC,∴△BOC≌△ADC,∴CO=CD,AD=BO=5,∠ACB=∠DCO=60°,∠BOC=∠ADC=150°,∴△COD是等边三角形,故答案为:等边;(2)∵△COD是等边三角形,∴OD=OC=3,∠CDO=60°,∴∠ADO=ADC﹣∠ODC=90°,∴AO2=AD2+OD2=9+25=34,∴AO=.29.如图,在▱ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.(1)求证:CD=BE;(2)若点F为DC的中点,DG⊥AE于G,且DG=1,AB=4,求AE的长.【考点】KJ:等腰三角形的判定与性质;L5:平行四边形的性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】(1)由平行四边形的性质和角平分线证出∠BAE=∠E.得出AB=BE,即可得出结论;(2)同(1)证出DA=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】(1)证明:∵AE为∠ADB的平分线,∴∠DAE=∠BAE.∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB.∴∠DAE=∠E.∴∠BAE=∠E.∴AB=BE.∴CD=BE.(2)解:∵四边形ABCD是平行四边形,∴CD∥AB,∴∠BAF=∠DF A.∴∠DAF=∠DF A.∴DA=DF.∵F为DC的中点,AB=4,∴DF=CF=DA=2.∵DG⊥AE,DG=1,∴AG=GF.∴AG=.∴AF=2AG=2.在△ADF和△ECF中,,∴△ADF≌△ECF(AAS).∴AF=EF,∴AE=2AF=4.。

人教版2019-2020学年度第一学期期末测试八年级数学试卷及答案

人教版2019-2020学年度第一学期期末测试八年级数学试卷及答案

13.如图,在△ABC 中,∠B=63º,∠C=45º,DE⊥AC 于 E,DF⊥AB 于 F,那么
∠EDF=___________.
A
B
B
F
E
C
P

M P
B
D
CO
第13题图
D 第14题图
AO
N
A
第16题图
14.如图,OP 平分∠AOB,∠AOP=15º,PC∥OA,PD⊥OA 于 D,PC=10,则 PD=_________.
24. (9 分) 已知:△ABC 是边长为 3 的等边三角形,以 BC 为底边作一个顶角为 120º 等腰△BDC.点 M、点 N 分别是 AB 边与 AC 边上的点,并且满足∠MDN=60º. (1)如图 1,当点 D 在△ABC 外部时,求证:BM+CN=MN; (2)在(1)的条件下求△AMN 的周长; (3)当点 D 在△ABC 内部时,其它条件不变,请在图 2 中补全图形,
同理 ∠ABD=90º
∴∠DCE=180º-∠ACD=180º-90º=90º
∴∠DBM=∠DCE
……………………………………1 分
∴在△DBM 和△DCE 中
DB DC DBM DCE BM CE
∴△DBM≌△DCE
……………………………………2 分
∴DM=DE,∠BDM=∠CDE
∵∠BDC=∠BDM+∠MDN+∠DNC=120º
∴OH=AH= 1 OA 1 8 4 ,∠HCO= 1 ACO 1 90 45
111
(2)将△A B C 沿 x 轴方向向左平移 3 个单位后得到△A B C ,画出图形,并写出 A ,B ,C 的坐标.
111

2019-2020学年浙江省宁波市鄞州区八年级(上)期中考数学试卷 (解析版)

2019-2020学年浙江省宁波市鄞州区八年级(上)期中考数学试卷 (解析版)

2019-2020学年浙江省宁波市鄞州区八年级(上)期中考数学试卷一、选择题(共10小题).1.(3分)国家宝藏节目立足于中华文化宝库资源,通过对文物的梳理与总结,演绎文物背后的故事与历史,让更多观众走进博物馆,让一个个馆藏文物鲜活起来下面四幅图是我国一些博物馆的标志,其中是轴对称图形的是()A.B.C.D.2.(3分)若三角形的两条边长分别为6cm和10cm,则它的第三边长不可能为() A.5cm B.8cm C.10cm D.17cm3.(3分)如果a b>,那么下列不等式中正确的是()A.33a b->+B.22ab<C.ac bc>D.22a b-+<-+4.(3分)下列命题是真命题的是()A.三角形的三条高线相交于三角形内一点B.等腰三角形的中线与高线重合C.三边长为3,4,5的三角形为直角三角形D.到线段两端距离相等的点在这条线段的垂直平分线上5.(3分)某实验室有一块三角形玻璃,被摔成如图所示的四块,胡老师想去店里买一块形状、大小与原来一样的玻璃,胡老师要带的玻璃编号是()A.1B.2C.3D.46.(3分)若等腰三角形的一个内角为80︒,则底角的度数为()A .20︒B .20︒或50︒C .80︒D .50︒或80︒7.(3分)如图,ABC ∆中,10AB AC ==,8BC =,AD 平分BAC ∠交BC 于点D ,点E 为AC 的中点,连接DE ,则CDE ∆的周长为( )A .20B .12C .14D .138.(3分)现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排( )A .4辆B .5辆C .6辆D .7辆9.(3分)如图,折叠长方形纸片ABCD 的一边AD ,使点D 落在BC 边上的点F 处,已知8AB cm =,10BC cm =,则折痕AE 的长为( )A 125cmB 75cmC .12cmD .13 cm10.(3分)关于x 的不等式组23824x x x a <-⎧⎨->⎩有四个整数解,则a 的取值范围是( ) A .11542a -<- B .11542a -<- C .11542a -- D .11542a -<<- 二.填空题:(每小题3分,共30分)11.(3分)在Rt ABC ∆中,90C ∠=︒,65A ∠=︒,则B ∠= .12.(3分)用不等式表示:x 的两倍与3的差不小于5,则这个不等式是 .13.(3分)如图,在ABC ∆中,AB AC =,外角110ACD ∠=︒,则A ∠= ︒.14.(3分)如图,点P 在AOB ∠的平分线上,若使AOP BOP ∆≅∆,则需添加的一个条件是 (只写一个即可,不添加辅助线).15.(3分)已知关于x 的不等式组221x a b x a b -⎧⎨-<+⎩的解集为35x <,则b 的值为 16.(3分)小颖准备用10元钱买笔记本和作业本,已知每本笔记本1.8元,每本作业本0.6元,她买了3本笔记本,你帮她算一算,她最多还可以买 本作业本.17.(3分)如图,小巷左右两侧是竖直的墙,已知小巷的宽度是2.2米,一架梯子斜靠在左墙时,梯子底端到坐墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端距离地面 米.18.(3分)如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点G ,过点G 作//EF BC 交AB 于E ,交AC 于F ,过点G 作GD AC ⊥于D ,下列三个结论:①EF BE CF =+;②1902BGC A ∠=︒+∠;③点G 到ABC ∆各边的距离相等;其中正确的结论有 (填序号)19.(3分)如图,ABC ∆中,D 为AB 的中点,BE AC ⊥,垂足为E .若4DE =,6AE =,则BE的长度是.20.(3分)如图,30AOB ∠=︒,AOB ∠内有一定点P ,且12OP =,在OA 上有一点Q ,OB 上有一点R ,若PQR ∆周长最小, 则最小周长是三、解答题(本题有6小题,共40分)21.(6分)解不等式组:21512x x x x +>⎧⎪⎨+-⎪⎩,并把解集在数轴上表示出来.22.(6分)如图,在ABC ∆中,AB AC =,CD 是ACB ∠的平分线,//DE BC ,交AC 于点E .(1)求证:DE CE =.(2)若25CDE ∠=︒,求A ∠的度数.23.(6分)对于任意实数a ,b ,定义关于@的一种运算如下:@2a b a b =-,例如:5@31037=-=,(3)@56511-=--=-.(1)若@35x <,求x 的取值范围;(2)已知关于x 的方程2(21)1x x -=+的解满足@5x a <,求a 的取值范围.24.(6分)如图,ABC ∆中,45C ∠=︒,若MP 和NQ 分别垂直平分AB 和AC ,4CQ =,3PQ=,求BC的长.25.(8分)如图,在ABC∆中,AB AC=,点D,E,F分别在AB,BC,AC边上,且=,BD CE=.BE CF(1)求证:DEF∆是等腰三角形;(2)当50∠的度数;A∠=︒时,求DEF(3)若A DEF∆是否为等边三角形.∠=∠,判断DEF26.(8分)如图,已知ABCBC cm=,P、Q是ABC∆边上=,6AB cm∆中,90B∠=︒,8的两个动点,其中点P从点A开始沿A B→方向运动,且速度为每秒1cm,点Q从点B开始沿B C A→→方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,PQB∆第一次能形成等腰三角形?(3)当点Q在边CA上运动时,求能使BCQ∆成为等腰三角形的运动时间.参考答案一、单项选择题(每小题3分,共30分)1.(3分)国家宝藏节目立足于中华文化宝库资源,通过对文物的梳理与总结,演绎文物背后的故事与历史,让更多观众走进博物馆,让一个个馆藏文物鲜活起来下面四幅图是我国一些博物馆的标志,其中是轴对称图形的是( )A .B .C .D .解:A 、是轴心对称图形,故选项符合题意;B 、不是轴心对称图形,故本选项不符合题意;C 、不是轴心对称图形,故选项不符合题意;D 、不是轴心对称图形,故本选项不符合题意.故选:A .2.(3分)若三角形的两条边长分别为6cm 和10cm ,则它的第三边长不可能为( )A .5cmB .8cmC .10cmD .17cm 解:三角形的两条边长分别为6cm 和10cm ,∴第三边长的取值范围是:416x <<,∴它的第三边长不可能为:17cm .故选:D .3.(3分)如果a b >,那么下列不等式中正确的是( )A .33a b ->+B .22a b <C .ac bc >D .22a b -+<-+ 解:由a b >,得到22a b -+<-+,故选:D .4.(3分)下列命题是真命题的是( )A .三角形的三条高线相交于三角形内一点B .等腰三角形的中线与高线重合C .三边长为3,4,5的三角形为直角三角形D .到线段两端距离相等的点在这条线段的垂直平分线上解:A 、锐角三角形的三条高线相交于三角形内一点,直角三角形三条高线相交于直角顶点,所以A 选项错误;B 、等腰三角形的底边上的中线与与底边上的高重合,所以B 选项错误;C 、因为222(3)(4)(5)+≠,所以三边长为3,4,5不为为直角三角形,所以B 选项错误;D 、到线段两端距离相等的点在这条线段的垂直平分线上,所以D 选项正确.故选:D .5.(3分)某实验室有一块三角形玻璃,被摔成如图所示的四块,胡老师想去店里买一块形状、大小与原来一样的玻璃,胡老师要带的玻璃编号是( )A .1B .2C .3D .4解:因为第2块中有完整的两个角以及他们的夹边,利用ASA 易证三角形全等,故应带第2块.故选:B .6.(3分)若等腰三角形的一个内角为80︒,则底角的度数为( )A .20︒B .20︒或50︒C .80︒D .50︒或80︒解:当80︒是等腰三角形的顶角时,则顶角就是80︒,底角为1(18080)502︒-︒=︒ 当80︒是等腰三角形的底角时,则顶角是18080220︒-︒⨯=︒.∴等腰三角形的底角为50︒或80︒故选:D .7.(3分)如图,ABC ∆中,10AB AC ==,8BC =,AD 平分BAC ∠交BC 于点D ,点E 为AC 的中点,连接DE ,则CDE ∆的周长为( )A .20B .12C .14D .13 解:AB AC =,AD 平分BAC ∠,8BC =,AD BC ∴⊥,142CD BD BC ===, 点E 为AC 的中点,152DE CE AC ∴===, CDE ∴∆的周长45514CD DE CE =++=++=.故选:C .8.(3分)现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排( )A .4辆B .5辆C .6辆D .7辆解:设甲种运输车安排x 辆,根据题意得(465)410x x +-÷,解得:6x ,故至少甲要6辆车.故选:C .9.(3分)如图,折叠长方形纸片ABCD 的一边AD ,使点D 落在BC 边上的点F 处,已知8AB cm =,10BC cm =,则折痕AE 的长为( )A 125cmB 75cmC .12cmD .13 cm解:由题意得:AF AD =,EF DE =(设为)x , 四边形ABCD 为矩形,10AF AD BC ∴===,8DC AB ==;90ABF ∠=︒;由勾股定理得:22210836BF =-=,6BF ∴=,1064CF =-=;在直角三角形EFC 中,由勾股定理得:2224(8)x x =+-,解得:5x =,222105125AE ∴=+=,)AE cm ∴=.故选:A .10.(3分)关于x 的不等式组23824x x x a <-⎧⎨->⎩有四个整数解,则a 的取值范围是( ) A .11542a -<- B .11542a -<- C .11542a -- D .11542a -<<- 解:23824x x x a <-⎧⎨->⎩①②, 解不等式①得:8x >,解不等式②得:24x a <-,∴不等式组的解集是824x a <<-,关于x 的不等式组23824x x x a <-⎧⎨->⎩有四个整数解,是9、10、11、12, 122413a ∴<-,解得:11542a -<-, 故选:B .二.填空题:(每小题3分,共30分)11.(3分)在Rt ABC ∆中,90C ∠=︒,65A ∠=︒,则B ∠= 25︒ . 解:90C ∠=︒,65A ∠=︒,906525B ∴∠=︒-︒=︒.故答案为:25︒.x-.12.(3分)用不等式表示:x的两倍与3的差不小于5,则这个不等式是235解:x的两倍表示为2x,与3的差表示为23x-,x-,由题意得:235x-.故答案为:23513.(3分)如图,在ABC∠=40︒.∠=︒,则A∆中,AB ACACD=,外角110解:AB AC=,ABC ACB∴∠=∠.而110∠=︒,ACD18011070∴∠=∠=︒-︒=︒,ACB ABCA∴∠=︒-︒-︒=︒.180707040故答案为:40.14.(3分)如图,点P在AOB∠的平分线上,若使AOP BOP∆≅∆,则需添加的一个条件是∠=∠(答案不唯一)(只写一个即可,不添加辅助线).APO BPO解:APO BPO∠=∠等.理由:点P在AOB∠的平分线上,∴∠=∠,AOP BOP在AOP∆中∆和BOPAOP BOP OP OPOPA OPB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()AOP BOP ASA ∴∆≅∆,故答案为:APO BPO ∠=∠(答案不唯一).15.(3分)已知关于x 的不等式组221x a b x a b -⎧⎨-<+⎩的解集为35x <,则b 的值为 6 解:221x a b x a b -⎧⎨-<+⎩①②, 解不等式①得:x a b +,解不等式②得:212a b x ++<, ∴不等式组的解集是:212a b a b x +++<, 关于x 的不等式组221x a b x a b -⎧⎨-<+⎩的解集为35x <, ∴32152a b a b +=⎧⎪⎨++=⎪⎩, 解得:3a =-,6b =,16.(3分)小颖准备用10元钱买笔记本和作业本,已知每本笔记本1.8元,每本作业本0.6元,她买了3本笔记本,你帮她算一算,她最多还可以买 7 本作业本. 解:设她还可以买x 本作业本,根据题意得出:10 1.830.6x -⨯,解得:273x , 故最多还可以买7本作业本.故答案为:7.17.(3分)如图,小巷左右两侧是竖直的墙,已知小巷的宽度是2.2米,一架梯子斜靠在左墙时,梯子底端到坐墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端距离地面 2 米.解:如图.在Rt ACB ∆中,90ACB ∠=︒,0.7BC =米, 2.4AC =米,2220.7 2.4 6.25AB ∴=+=.在Rt △A BD '中,90A DB ∠'=︒, 2.20.7 1.5BD =-=(米),222BD A D A B +'=', 221.5 6.25A D ∴'+=,24A D ∴'=,0A D '>,2A D ∴'=米,故答案是:2.18.(3分)如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点G ,过点G 作//EF BC 交AB 于E ,交AC 于F ,过点G 作GD AC ⊥于D ,下列三个结论:①EF BE CF =+;②1902BGC A ∠=︒+∠;③点G 到ABC ∆各边的距离相等;其中正确的结论有 ①②③ (填序号)解:在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点G ,EBG CBG ∴∠=∠,FCG BCG ∠=∠,//EF BC ,EGB GBC ∴∠=∠,FGC BCG ∠=∠,EGB EBG ∴∠=∠,FCG FGC ∠=∠,BE EG ∴=,FG CF =,EF EG FG BE CF ∴=+=+,故①正确;180A ABC ACB ∠+∠+∠=︒,180ABC ACB A ∴∠+∠=︒-∠,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点G , 12CBG ABC ∴∠=∠,12BCG ACB ∠=∠, 111(180)222GBC GCB ABC ACB A ∴∠+∠=∠+∠=︒-∠ 1902A =︒-∠, 180()BGC GBC GCB ∴∠=︒-∠+∠1180(90)2A =︒-︒-∠ 1902A =︒+∠,故②正确;过G 作GQ AB ⊥于Q ,GW BC ⊥于W ,ABC ∠和ACB ∠的平分线相交于点G ,GD AC ⊥,GQ GW ∴=,GW GD =,GQ GW GD ∴==,即点G 到ABC ∆各边的距离相等,故③正确;故答案为:①②③.19.(3分)如图,ABC ∆中,D 为AB 的中点,BE AC ⊥,垂足为E .若4DE =,6AE =,则BE 的长度是 27 .解:BE AC ⊥,D 为AB 中点,2248AB DE ∴==⨯=,在Rt ABE ∆中,2227BE AB AE =-=,故答案为:27.20.(3分)如图,30AOB ∠=︒,AOB ∠内有一定点P ,且12OP =,在OA 上有一点Q ,OB 上有一点R ,若PQR ∆周长最小, 则最小周长是 12解: 设POA θ∠=,则30POB θ∠=︒-,作PM OA ⊥与OA 相交于M ,并将PM 延长一倍到E ,即ME PM =.作PN OB ⊥与OB 相交于N ,并将PN 延长一倍到F ,即NF PN =.连接EF 与OA 相交于Q ,与OB 相交于R ,再连接PQ ,PR ,则PQR ∆即为周长最短的三角形 .OA 是PE 的垂直平分线,EQ QP ∴=;同理,OB 是PF 的垂直平分线,FR RP ∴=, PQR ∴∆的周长EF =.12OE OF OP ===,且22(30)60EOF EOP POF θθ∠=∠+∠=+︒-=︒, EOF ∴∆是正三角形,12EF ∴=,即在保持12OP =的条件下PQR ∆的最小周长为 12 .故答案为: 12三、解答题(本题有6小题,共40分)21.(6分)解不等式组:21512x x x x +>⎧⎪⎨+-⎪⎩,并把解集在数轴上表示出来.解:21512x x x x +>⎧⎪⎨+-⎪⎩①② 解不等式①得:1x >-,解不等式②得:3x ,则不等式组的解集是:13x -<,不等式组的解集在数轴上表示为:22.(6分)如图,在ABC ∆中,AB AC =,CD 是ACB ∠的平分线,//DE BC ,交AC 于点E .(1)求证:DE CE =. (2)若25CDE ∠=︒,求A ∠的度数.【解答】(1)证明:CD 是ACB ∠ 的平分线,BCD ECD ∴∠=∠,//DE BC ,EDC BCD ∴∠=∠,EDC ECD ∴∠=∠,DE CE ∴=.(2)解:25ECD EDC ∠=∠=︒,250ACB ECD ∴∠=∠=︒,AB AC =,50ABC ACB ∴∠=∠=︒,∴∠=︒-︒-︒=︒.A18050508023.(6分)对于任意实数a,b,定义关于@的一种运算如下:@2a b a b=-,例如:-=--=-.=-=,(3)@565115@31037(1)若@35x<,求x的取值范围;(2)已知关于x的方程2(21)1x a<,求a的取值范围.-=+的解满足@5x x解:(1)@35x<,235∴-<,x解得:4x<;(2)解方程2(21)1-=+,得:1x xx=,x a a a∴==-<,@1@25解得:3a>-.24.(6分)如图,ABCCQ=,∠=︒,若MP和NQ分别垂直平分AB和AC,4∆中,45CPQ=,求BC的长.3解:MP和NQ分别垂直平分AB和AC,∴=,AQ CQAP BP=,又45∠=︒,C∴∠=︒,90AQCPQ=,由勾股定理得53BP=,∴=++=.BC BP PQ CQ1225.(8分)如图,在ABC∆中,AB AC=,点D,E,F分别在AB,BC,AC边上,且=,BD CE=.BE CF(1)求证:DEF∆是等腰三角形;(2)当50∠的度数;A∠=︒时,求DEF(3)若A DEF∆是否为等边三角形.∠=∠,判断DEF解:(1)AB AC =,B C ∴∠=∠,在BDE ∆和CEF ∆中,BE CF B C BD CE =⎧⎪∠=∠⎨⎪=⎩,()BDE CEF SAS ∴∆≅∆,DE EF ∴=,DEF ∴∆是等腰三角形;(2)DEC B BDE ∠=∠+∠,即DEF CEF B BDE ∠+∠=∠+∠,BDE CEF ∆≅∆,CEF BDE ∴∠=∠,DEF B ∴∠=∠, 又在ABC ∆中,AB AC =,50A ∠=︒,65B ∴∠=︒,65DEF ∴∠=︒;(3)由(1)知:DEF ∆是等腰三角形,即DE EF =, 由(2)知,DEF B ∠=∠,A DEF ∠=∠,A B ∴∠=∠,AB AC =,B C ∴∠=∠,A B C∴∠=∠=∠,ABC∴∆的等边三角形,60B DEF∴∠=∠=︒,DEF∴∆的等边三角形.26.(8分)如图,已知ABC∆中,90B∠=︒,8AB cm=,6BC cm=,P、Q是ABC∆边上的两个动点,其中点P从点A开始沿A B→方向运动,且速度为每秒1cm,点Q从点B开始沿B C A→→方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,PQB∆第一次能形成等腰三角形?(3)当点Q在边CA上运动时,求能使BCQ∆成为等腰三角形的运动时间.解:(1)224BQ cm=⨯=,8216BP AB AP cm=-=-⨯=,90B∠=︒,22224652213PQ BQ BP=+=+==;(2)2BQ t=,8BP t=-1⋯'28t t=-,解得:823t=⋯';(3)①当CQ BQ=时(图1),则C CBQ∠=∠,90ABC∠=︒,90CBQ ABQ∴∠+∠=︒,90A C∠+∠=︒,A ABQ∴∠=∠,BQ AQ∴=,5CQ AQ∴==,11BC CQ∴+=,112 5.5t∴=÷=秒.1⋯'②当CQ BC=时(如图2),则12BC CQ+=1226t∴=÷=秒.1⋯'③当BC BQ=时(如图3),过B点作BE AC⊥于点E,则6824105AB BCBEAC⨯===,所以185 CE===,故27.2CQ CE==,所以13.2BC CQ+=,13.22 6.6t∴=÷=秒.2⋯'由上可知,当t为5.5秒或6秒或6.6秒时,BCQ∆为等腰三角形.。

2018-2019学年浙江省宁波市余姚市八年级(下)第一次月考数学试卷(解析版)

2018-2019学年浙江省宁波市余姚市八年级(下)第一次月考数学试卷(解析版)

2018-2019学年浙江省宁波市余姚市八年级(下)第一次月考数学试卷一、选择题(本大题共12小题,共36.0分)1.若二次根式有意义,则x的取值范围是()A. B. C. D.2.在下列方程中,是一元二次方程的是()A. B. C. D.3.下列计算中正确的是()A. B.C. D.4.用配方法解一元二次方程x2-4x+3=0时可配方得()A. B. C. D.5.一元二次方程x2+2x+4=0的根的情况是()A. 有一个实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 没有实数根6.如果关于x的一元二次方程k2x2-(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A. B. 且 C. D. 且7.如果一个三角形的三边长分别为1,k,3,则化简的结果是()A. B. 1 C. 13 D.8.化简(-2)2017(+2)2018的结果是()A. B. C. D.9.已知一元二次方程x2-8x+12=0的两个解恰好是等腰△ABC的底边长和腰长,则△ABC的周长为()A. 14B. 10C. 11D. 14或1010.阅读材料:对于任何实数,我们规定符号的意义是=ad-bc.按照这个规定,若=0,则x的值是()A. B. 1 C. 或1 D. 不存在11.已知,则x等于()A. 4B.C. 2D.12.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,若设计一种砌法,使矩形花园的面积为300m2.则AB长度为()A. 10B. 15C. 10或15D.二、填空题(本大题共6小题,共18.0分)13.化简的结果是______.14.若关于x的一元二次方程(m-1)x2+2x+m2-1=0的常数项为0,则m的值是______.15.是整数,则正整数n的最小值是______.16.写出一个以3,-1为根的一元二次方程为______.17.我们知道若关于x的一元二次方程ax2+bx+c=0(a≠0)有一根是1,则a+b+c=0,那么如果9a+c=3b,则方程ax2+bx+c=0有一根为______.18.如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是______.三、解答题(本大题共8小题,共66.0分)19.计算:(1)(-)2-+;(2)(-)2+|3-|-.20.解下列方程:(1)2x2-x=0;(2)3x2-11x+2=0.21.我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.运用上述知识,解决下列问题:(1)如果,其中a、b为有理数,那么a=______,b=______;(2)如果,其中a、b为有理数,求a+2b的值.22.已知关于x的一元二次方程x2-4x+12+m=0.(1)若方程的一个根是,求m的值及方程的另一根;(2)若方程的两根恰为等腰三角形的两腰,而这个三角形的底边为m,求m的值及这个等腰三角形的周长.23.(1)若x,y都是实数,且y=++8,求5x+13y+6的值;(2)已知△ABC的三边长分别为a,b,c,且满足|a-1|+(b-3)2=0,求c的取值范围.24.水果批发市场有一种高档水果,如果每千克盈利(毛利润)10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销量将减少20千克.(1)若以每千克能盈利18元的单价出售,问每天的总毛利润为多少元?(2)现市场要保证每天总毛利润6000元,同时又要使顾客得到实惠,则每千克应涨价多少元?(3)现需按毛利润的10%交纳各种税费,人工费每日按销售量每千克支出0.9元,水电房租费每日102元,若剩下的每天总纯利润要达到5100元,则每千克涨价应为多少?25.如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1•x2=q,请根据以上结论,解决下列问题:(1)若p=-4,q=3,求方程x2+px+q=0的两根.(2)已知实数a、b满足a2-15a-5=0,b2-15b-5=0,求+的值;(3)已知关于x的方程x2+mx+n=0,(n≠0),求出一个一元二次方程,使它的两个根分别是已知方程两根的倒数.向点B以每秒钟1cm的速度移动,点Q从点B开始沿BC边向点C以每秒钟2cm的速度移动.若P、Q分别从A、B同时出发,其中任意一点到达目的地后,两点同时停止运动,求:(1)经过6秒后,BP=______ cm,BQ=______cm;(2)经过几秒后,△BPQ是直角三角形?(3)经过几秒△BPQ的面积等于cm2?答案和解析1.【答案】B【解析】解:∵二次根式有意义,∴x-1≥0,∴x≥1.故选:B.根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.本题考查的是二次根式有意义的条件,根据题意列出关于x的不等式是解答此题的关键.2.【答案】C【解析】解:A、最高次数是1次,是一次方程,故选项错误;B、是分式方程,故选项错误;C、正确;D、最高次数是3次,是一次方程,故选项错误.故选:C.本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.3.【答案】D【解析】解:A、=13,错误;B、===2,错误;C、2-=,错误;D、=|2-|=-2,正确;故选:D.根据二次根式的性质、合并同类二次根式法则、二次根式的运算法则逐一计算即可得.本题主要考查二次根式的加减法,解题的关键是掌握二次根式的性质与运算法则.4.【答案】B【解析】解:∵x2-4x+3=0,∴x2-4x=-3,∴x2-4x+4=-3+4,∴(x-2)2=1.故选B.此题考查了配方法解一元二次方程,解题时要先把常数项移项、二次项系数化1,然后左右两边加上一次项系数一半的平方.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5.【答案】D【解析】解:∵a=1,b=2,c=4,∴△=b2-4ac=22-4×1×4=-12<0,∴方程没有实数根.故选:D.判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.【答案】B【解析】解:由题意知,k≠0,方程有两个不相等的实数根,所以△>0,△=b2-4ac=(2k+1)2-4k2=4k+1>0.又∵方程是一元二次方程,∴k≠0,∴k >且k≠0.故选:B.若一元二次方程有两不等根,则根的判别式△=b2-4ac>0,建立关于k的不等式,求出k的取值范围.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.注意方程若为一元二次方程,则k≠0.7.【答案】B【解析】解:∵一个三角形的三边长分别为1,k,3,∴2<k<4,又∵4k2-36k+81=(2k-9)2,∴2k-9<0,2k-3>0,∴原式=7-(9-2k)-(2k-3)=1.故选:B.首先根据三角形的三边关系确定k的取值范围,由此即可求出二次根式的值与绝对值的值,再计算即可解答.本题主要考查二次根式的化简、绝对值的化简,熟练掌握化简的方法是解答本题的关键.8.【答案】D【解析】解:原式=[(-2)(+2)]2017•(+2)=(3-4)2017•(+2)=-(+2)=--2.故选:D.利用积的乘方得到原式=[(-2)(+2)]2017•(+2),然后利用平方差公式计算.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.9.【答案】A【解析】解:方程x2-8x+12=0,因式分解得:(x-2)(x-6)=0,解得:x=2或x=6,若2为腰,6为底,2+2<6,不能构成三角形;若2为底,6为腰,周长为2+6+6=14.故选:A.求出方程的解得到腰与底,利用三角形三边关系检验即可求出三角形ABC的周长.此题考查了解一元二次方程-因式分解法,三角形的三边关系,以及等腰三角形的性质,求出方程的解是解本题的关键.10.【答案】C【解析】解:根据题中的新定义化简得:(x-2)2-x(2x-1)=0,整理得:x2+3x-4=0,即(x-1)(x+4)=0,解得:x=1或x=-4,故选:C.已知等式利用题中的新定义化简,整理后求出x的值即可.此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.11.【答案】C【解析】解:已知,∴x>0,∴原式可化简为:++3=10,∴=2,两边平方得:2x=4,∴x=2,故选:C.已知,先化简再求值即可得出答案.本题考查了解无理方程,属于基础题,关键是先化简后再根据平方法求无理方程.12.【答案】B【解析】解:设AB=x米,则BC=(50-2x)米.根据题意可得,x(50-2x)=300,解得:x1=10,x2=15,当x=10,BC=50-10-10=30>25,故x1=10(不合题意舍去),故选:B.根据可以砌50m长的墙的材料,即总长度是50米,AB=x米,则BC=(50-2x)米,再根据矩形的面积公式列方程,解一元二次方程即可.本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系求解,注意围墙MN最长可利用25m,舍掉不符合题意的数据.13.【答案】3【解析】解:==3.故答案为:3.根据二次根式的性质解答.解答此题利用如下性质:=|a|.14.【答案】-1【解析】解:根据题意得:m2-1=0,解得:m=1或m=-1,当m=1时,方程为2x=0,不合题意,则m的值为-1,故答案为:-1根据一元二次方程的定义判断即可确定出m的值.此题考查了一元二次方程的一般形式,以及一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.15.【答案】6【解析】解:∵=2,是整数,∴正整数n的最小值是6.故答案为:6.先化简为2,使6n 成平方的形式,才能使是整数,据此解答.此题主要考查二次根式的性质和化简,灵活性较大.16.【答案】(x-3)(x+1)=0【解析】解:如(x-3)(x+1)=0等.此题为开放性试题,根据一元二次方程的解的定义,只要保证3和-1适合所求的方程即可.此题为开放性试题,根据根的定义即可写出对应的一元二次方程.17.【答案】x=-3【解析】解:根据题意知,当x=-3时,9a-3b+c=0,∴9a+c=3b,∴x=-3满足方程ax2+bx+c=0,∴方程ax2+bx+c=0的另一根是x=-3.故答案是:x=-3.根据一元二次方程的解的定义知,方程的根一定满足该方程式,或满足该方程式的x的值即为该方程的根.本题考查的是一元二次方程的根即方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.18.【答案】2或5【解析】解:∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,∴AB=10,∵以AD为折痕△ABD折叠得到△AB′D,∴BD=DB′,AB′=AB=10.如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.设BD=DB′=x,则AF=6+x,FB′=8-x.在Rt△AFB′中,由勾股定理得:AB′2=AF2+FB′2,即(6+x)2+(8-x)2=102.解得:x1=2,x2=0(舍去).∴BD=2.如图2所示:当∠B′ED=90°时,C与点E重合.∵AB′=10,AC=6,∴B′E=4.设BD=DB′=x,则CD=8-x.在Rt△′BDE中,DB′2=DE2+B′E2,即x2=(8-x)2+42.解得:x=5.∴BD=5.综上所述,BD的长为2或5.故答案为:2或5.先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=10,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可.本题主要考查的是翻折的性质、勾股定理的应用,根据勾股定理列出关于x的方程是解题的关键.19.【答案】解:(1)解:原式=6-5+3=4;(2))原式=3+2-3-2=0.【解析】(1)利用二次根式的性质化简,然后进行有理数的加减运算;(2)利用二次根式的性质、绝对值的意义和二次根式的除法法则运算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.【答案】解:(1)x(2x-1)=0,x=0或2x-1=0,所以x1=0,x2=;(2)△=(-11)2-4×3×2=97,x==,所以x1=,x2=.【解析】(1)利用因式分解法解方程;(2)先计算判别式的值,然后利用求根公式解方程.本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.也考查了公式法解一元二次方程.21.【答案】2 -3 【解析】解:(1)2,-3;(2)整理,得(a+b)+(2a-b-5)=0.∵a、b为有理数,∴解得∴a+2b=-.(1)a,b是有理数,则a-2,b+3都是有理数,根据如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.即可确定;(2)首先把已知的式子化成ax+b=0,(其中a、b为有理数,x为无理数)的形式,根据a=0,b=0即可求解.本题考查了实数的运算,正确理解题意是关键.22.【答案】解:(1)∵x=是方程x2-4x+12+m=0的一个根,∴()2-4×+12+m=0,解得:m=3,则方程为:x2-4x+15=0,解得:x1=,x2=3.∴方程的另一根为3;(2)若方程的两根恰为等腰三角形的两腰,则△=b2-4ac=0,所以△=(-4)2-4(12+m)=0,解得m=8,则方程为:x2-4x+20=0,解得x=2,三角形的周长:4+8.【解析】(1)可将该方程的已知根代入方程,求出m的值,即可求出方程的另一根;(2)根据方程的两根恰为等腰三角形的两腰可得△=b2-4ac=0,列出式子,即可求实数m的值,再解方程求出方程的根,然后求出这个等腰三角形的周长.此题考查了一元二次方程的解和根的判别式,解决此类题目时要认真审题,根据根的判别式列出式子.23.【答案】解:(1)要使且y=++8,中的二次根式有意义,须x-3≥0且3-x≤0,∴x≥3且x≤3,∴x=3.∴y=0+0+8=8,∴5x+13y+6=15+104+6=125.(2)∵|a-1|+(b-3)2=0,且|a-1|≥0,(b-3)2≥0,∴a-1=0,b-3=0,∴a=1,b=3,∴b-a<c<b+a,∴2<c<4.【解析】(1)根据二次根式有意义的条件求得x的值,进而得到y的值,代入求值即可.(2)由非负数的性质求得a、b的值,然后根据三角形三边关系解答.考查了三角形三边关系,非负数的性质以及二次根式有意义的条件.要注意三角形形成的条件:任意两边之和>第三边,任意两边之差<第三边.24.【答案】解:(1)设每千克盈利x元,可售y千克,则当x=10时,y=500,当x=11时,y=500-20=480,由题意得,,解得.因此y=-20x+700,当x=18时,y=340,则每天的毛利润为18×340=6120元;(2)由题意得x(-20x+700)=6000,解得:x1=20,x2=15,∵要使得顾客得到实惠,应选x=15,∴每千克应涨价15-10=5元;(3)由题意得x(-20x+700)-10%x(-20x+700)-0.9(-20x+700)-102=5100,解得:x1=x2=18,则每千克应涨价18-10=8元.【解析】(1)设每千克盈利x元,可售y千克,由此求得关于y与x的函数解析式,进一步代入求得答案即可;(2)利用每千克的盈利×销售的千克数=总利润,列出方程解答即可;(3)利用每天总毛利润-税费-人工费-水电房租费=每天总纯利润,列出方程解答即可.此题主要一元二次方程的实际运用,找出题目蕴含的数量关系,理解销售问题中的基本关系是解决问题的关键.25.【答案】解:(1)当p=-4,q=3,则方程为x2-4x+3=0,解得:x1=3,x2=1.(2)∵a、b满足a2-15a-5=0,b2-15b-5=0,∴a、b是x2-15x-5=0的解,当a≠b时,a+b=15,ab=-5,+====-47;当a=b时,原式=2.(3)设方程x2+mx+n=0,(n≠0),的两个根分别是x1,x2,则+==-,•==,则方程x2+x+=0的两个根分别是已知方程两根的倒数.【解析】(1)根据p=-4,q=3,得出方程x2-4x+3=0,再求解即可;(2)根据a、b满足a2-15a-5=0,b2-15b-5=0,得出a,b是x2-15x-5=0的解,求出a+b和ab的值,即可求出+的值;(3)先设方程x2+mx+n=0,(n≠0)的两个根分别是x1,x2,得出+=-,•=,再根据这个一元二次方程的两个根分别是已知方程两根的倒数,即可求出答案.本题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.26.【答案】6 12【解析】解:(1)由题意,得AP=6cm,BQ=12cm.∵△ABC是等边三角形,∴AB=BC=12cm,∴BP=12-6=6cm.故答案为:6、12.(2)∵△ABC是等边三角形,∴AB=BC=12cm,∠A=∠B=∠C=60°,当∠PQB=90°时,∴∠BPQ=30°,∴BP=2BQ.∵BP=12-x,BQ=2x,∴12-x=2×2x,∴x=,当∠QPB=90°时,∴∠PQB=30°,∴BQ=2PB,∴2x=2(12-x),x=6答6秒或秒时,△BPQ是直角三角形;(3)作QD⊥AB于D,∴∠QDB=90°,∴∠DQB=30°,∴DB=BQ=x,在Rt△DBQ中,由勾股定理,得DQ=x,∴,解得;x1=10,x2=2,∵x=10时,2x>12,故舍去∴x=2.答:经过2秒△BPQ的面积等于cm2.(1)根据路程=速度×时间,求出BQ,AP的值就可以得出结论;(2)先分别表示出BP,BQ的值,当∠BQP和∠BPQ分别为直角时,由等边三角形的性质就可以求出结论;(3)作QD⊥AB于D,由勾股定理可以表示出DQ,然后根据面积公式建立方程求出其解即可.本题考查了动点问题的运用,等边三角形的性质的运用,30°的直角三角形的性质的运用,勾股定理的运用,三角形的面积公式的运用,解答时建立根据三角形的面积公式建立一元二次方程求解是关键.。

2021-2022学年浙江省宁波市余姚市八年级(上)期末数学试题及答案解析

2021-2022学年浙江省宁波市余姚市八年级(上)期末数学试题及答案解析

2021-2022学年浙江省宁波市余姚市八年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1.在下列交通标志中,是轴对称图形的是( )A. B. C. D.2.已知三角形的两边长为2,4,则第三边长可能为( )A. 6B. 5C. 2D. 13.下列各点在一次函数y=2x−3的图象上的是( )A. (2,1)B. (1,1)C. (3,2)D. (−1,−4)4.若a>b,则下列式子中一定成立的是( )A. −2a>−2bB. a2>b2C. 1−a<1−bD. 1a >1b5.如图,为测量池塘两端AB的距离,学校课外实践小组在池塘旁的开阔地上选了一点C,测得∠ACB的度数,在AC的另一侧测得∠ACD=∠ACB,CD=CB,再测得AD的长,就是AB的长.其依据是( )A. SSSB. SASC. ASAD. AAS6.下列命题是假命题的是( )A. 对顶角相等B. 线段垂直平分线上的点到线段两端的距离相等C. 同位角相等D. 等腰三角形两腰上的高线相等7.如图,已知点A(2,3),B(5,1),若将线段AB平移至A1B1,A1在y轴正半轴上,B1在x轴上,则A1的纵坐标、B1的横坐标分别为( )A. 2,3B. 1,4C. 2,2D. 1,38.已知不等式ax+b<0的解是x>−2,下列有可能是函数y=ax+b的图象的是( )A. B.C. D.9.某大型超市购进一批特种水果,运输过程中质量损失20%,假设不计超市其它费用,如果超市要想至少获得28%的利润,那么这种水果的售价在进价的基础上应至少提高( )A. 30%B. 40%C. 50%D. 60%10.如图,点A,B分别为x轴、y轴上的动点,AB=2,点M是AB的中点,点C(0,3),D(8,0),过C作CE//x轴.点P为直线CE上一动点,则PD+PM的最小值为( )A. √85B. 9C. √89D. 3√2+5二、填空题(本大题共6小题,共24.0分)11.能说明命题:“若x2=x,则x=0”是假命题的反例是______.12.已知y与x成正比例,当x=3时,y=6,则当x=−1时,y=______.413.已知点P(m+2,1−m)在第二象限,则m的取值范围是______.14.等腰三角形的一个内角是80°,则顶角的度数是______.15.如图,∠AOB=30°,点P为∠AOB的角平分线上一点,OP的垂直平分线交OA,OB分别于点M,N,点E为OA上异于点M的一点,且PE=ON=2,则△POE的面积为______.16.如图,在平面直角坐标系xOy中,已知点A在直线l1:y=−x+2上,点B在直线l2:y=−12x+2上,若△ABO是以点B为直角顶点的等腰直角三角形,则点A的坐标为______.三、解答题(本大题共8小题,共66.0分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年浙江省宁波市余姚市八年级(上)期末数学试卷
一、选择题(本题有12小题,每小题3分,共36分)
1.(3分)下面四个图是“余姚阳明故里LOGO 征集大赛”的四件作品,其中是轴对称图形的是( )
A .
B .
C .
D .
2.(3分)在平面直角坐标系中,点(1,2)-在( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
3.(3分)已知一个等腰三角形的底角为50︒,则这个三角形的顶角为( )
A .40︒
B .50︒
C .80︒
D .100︒
4.(3分)下列选项错误的是( )
A .若a b >,b c >,则a c >
B .若a b >,则33a b ->-
C .若a b >,则22a b ->-
D .若a b >,则2323a b -+<-+
5.(3分)下列平面直角坐标系中的图象,不能表示y 是x 的函数是( )
A .
B.
C.
D.
6.(3分)下列尺规作图分别表示:①作一个角的平分线,②作一个角等于已知角.③作一条线段的垂直平分线.其中作法正确的是()
A.①②B.①③C.②③D.①②③
7.(3分)能说明命题“对于任意正整数n,则2
2n n”是假命题的一个反例可以是() A.1
n=
n=D.3 n=-B.1
n=C.2
8.(3分)若a,b,c为ABC
∆是直角三角形的
∆的三边长,则下列条件中不能判定ABC
是()
A. 1.5
a=,2
b=, 2.5
c=B.::3:4:5
a b c=
C.A B C
∠+∠=∠D.::3:4:5
A B C
∠∠∠=
9.(3分)如图,有一张直角三角形纸片,90
ACB
∠=︒,5
AB cm
=,3
AC cm
=,现将ABC

折叠,使边AC与AB重合,折痕为AE,则CE的长为()
A.1cm B.2cm C.3
2
cm D.
5
2
cm
10.(3分)如图,ABC
∆是等边三角形,D是边BC上一点,且ADC
∠的度数为(520)
x-︒,则x的值可能是()
A.10B.20C.30D.40
11.(3分)某天,某同学早上8点坐车从余姚图书馆出发去宁波大学,汽车离开余姚图书馆的距离S(千米)与所用时间t(分)之间的函数关系如图所示.已知汽车在途中停车加油一次,则下列描述不正确的是()
A.汽车在途中加油用了10分钟
B.若//
OA BC,则加满油以后的速度为80千米/小时
C.若汽车加油后的速度是90千米/小时,则25
a=
D.该同学8:55到达宁波大学
12.(3分)如图,点A,B,C,D顺次在直线l上,以AC为底边向下作等腰直角三角。

相关文档
最新文档