高中数学:《简单的线性规划问题》(第一课时)说课稿

合集下载

简单线性规划说课稿1北师大版(教案)

简单线性规划说课稿1北师大版(教案)

课题:简单的线性规划北京师范大学第一版社一般高中课程标准实验教科书(必修)第三章不等式第四节第二课时一、教材剖析:、教材的地位与作用:线性规划是运筹学的一个重要分支,在实质生活中有着宽泛的应用。

本节内容是在学习了不等式的基础上,利用不等式的有关知识睁开的,它是对二元一次不等式的深入和再认识、再理解。

经过这一部分的学习,使学生进一步认识数学在解决实质问题中的应用,体验数形联合和转变的思想方法,培育学生学习数学的兴趣、应用数学的意识和解决实质问题的能力。

、教课要点与难点:要点:画可行域;在可行域内, 用图解法正确求得线性规划问题的最优解。

难点:在可行域内 , 用图解法正确求得线性规划问题的最优解。

二、目标剖析:在新课标让学生经历“学数学、做数学、用数学”的理念指导下,本节课的教课目的分设为知识目标、能力目标和感情目标。

知识目标:、认识线性规划的意义,认识线性拘束条件、线性目标函数、可行解、可行域和最优解等看法;、理解线性规划问题的图解法;、会利用图解法求线性目标函数的最优解.能力目标:、在应用图解法解题的过程中培育学生的察看能力、理解能力。

、在变式训练的过程中,培育学生的剖析能力、研究能力。

、在对详细案例的感性认识上涨到对线性规划的理性认识过程中,培育学生运用数形联合思想解题的能力和化归能力。

感情目标:、让学生体验数学根源于生活,服务于生活,体验数学在建设节俭型社会中的作用,品味学习数学的乐趣。

、让学生体验数学活动充满着研究与创建,培育学生勤于思虑、勇于研究的精神;、让学生学会用运动看法察看事物,认识事物之间从一般到特别、从特别到一般的辨证关系,浸透辩证唯心主义认识论的思想。

三、过程剖析:数学教课是数学活动的教课。

所以,我将整个教课过程分为以下六个教课环节:、创建情境,提出问题;、剖析问题,形成看法;、反省过程,提炼方法;、变式操练,深入研究;、运用新知,解决问题;、概括总结,稳固提高。

、创建情境,提出问题:在讲堂教课的开始,我以一组生动的动画(配图片)描绘出在奇特的数学王国里,有一种算法宽泛应用于工农业、军事、交通运输、决议管理与规划等领域,应用它已节俭了亿万财产,还被列为世纪对科学发展和工程实践影响最大的十大算法之一。

《简单的线性规划》说课稿

《简单的线性规划》说课稿

《简单的线性规划》说课稿麟游县中学仇银萍一、内容及其解析本节课是《普通高中课程标准实验教科书数学》北师大版必修5第四章《不等式》中4.2《简单的线性规划问题》的第一课时. 主要内容是线性规划的相关概念和简单的线性规划问题的解法.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,广泛地应用于军事作战、经济分析、经营管理和工程技术等方面.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。

简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用.本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想.二、学生学情分析本节课学生在学习了不等式、直线方程的基础上,通过实例理解了平面区域的意义,并会画出平面区域,还能初步用数学关系表示简单的二元线性规划的限制条件,将实际问题转化成数学问题。

从数学知识上看,问题涉及多个已知数据,多个字母变量、多个不等关系,从数学方法上看,学生对图解法的认识还很少,数形结合的思想方法的掌握还需时日,这成了学生学习的困难。

三、教学目标设计:(1)知识与技能:使学生了解二元一次不等式表示平面区域;了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;理解线性规划问题的图解法,并能应用它解决一些简单的实际问题;(2)过程与方法:在实验探究的过程中,培养学生的数据分析能力、探究能力、合情推理能力;在应用图解法解题的过程中,培养学生运用数形结合思想解题的能力。

(3)情态、态度与价值观:让学生体会数学源于生活,服务于生活;体会数学活动充满着探索与创造,培养学生动手操作、勇于探索的精神。

高二数学 简单线性规划说课

高二数学 简单线性规划说课

y x
x、y满足约束条件:
x
y
1
y 1
求z=2x+y的最大值
高二数学 简单线性规划说课
y x+y=1
线性目标函数的最大(小)值 一般在可行域 的顶点处 取得。
y=-2x
y=x
o A(2,-1)
y x
x
y
1
x y 1
y=1
在点A(2,-1)处z=2x+y最大 高二数学z简m单a线x=性规2划×说课2+(-1)=3
高二数学 简单线性规划说课
(二)教学目标
1、知识目标: (1)了解线性规划的有关概念 (2)会用图解法求线性目标函数的最大值、最小值
2、能力目标: (1)通过特殊到一般,培养学生抽象、概括能力
(2)培养学生数形结合、化归的数学思想的能力
高二数学 简单线性规划说课
3、情感目标: (1)通过体会数学知识的发生发展过程、数学知识在
(3)求:通过解方程组求出最优解 (4)答:作出答案
高二数学 简单线性规划说课
2、有关概念
约束条件 线性约束条件 目标函数 线性目标函数 线性规划问题 可行解 可行域 最优解
高二数学 简单线性规划说课
解决提出问题
深圳某搬运公司经招标承担了每天搬运至少280t水 泥的任务,已知该公司有6辆A型卡车和4辆B型车, 已知A型卡车每天每辆的运载量为30t,成本费为0.9 千元,B型卡车每天每辆的运载量为40t,成本费为1 千元。
2、创新训练 y 已知x、y满足
x 4 y 3
3
x
5
y
25
x 1
如下图所示
如果z=ax+y取到最大
C(1,4.4 )

高中数学说课稿简单线性规划问题

高中数学说课稿简单线性规划问题

高中数学说课稿《简单线性规划问题》一.说教材至此,我们将一个具体的事物"温度计"经过抽象而概括为一个数学概念"数轴",使学生初步体验到一个从实践到理论的认识过程.1.本节课主要内容是线性规划的意义以及线性约束条件、线性目标函数、可行域、可行解、最优解等概念,根据约束条件建立线性目标函数。

应用线性规划的图解法解决一些实际问题。

2.地位作用:线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它可以解决科学研究、工程设计、经济管理等许多方面的实际问题。

简单的线性规划是在学习了直线方程的基础上,介绍直线方程的一个简单应用。

通过这部分内容的学习,使学生进一步了解数学在解决实际问题中的应用,以培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。

3.教学目标圆的方程是学生在初中学习了圆的概念和基本性质后,又掌握了求曲线方程的一般方法的基础上进行研究的.但由于学生学习解析几何的时间还不长、学习程度较浅,且对坐标法的运用还不够熟练,在学习过程中难免会出现困难.另外学生在探究问题的能力,合作交流的意识等方面有待加强.我的理解是,小结归纳不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段,为充分发挥学生的主题作用,从学习的只是、方法、体验是那个方面进行归纳,我设计了这么三个问题:(1)知识与技能:了解线性规划的意义以及线性约束条件、线性目标函数、可行域、可行解、最优解等概念,能根据约束条件建立线性目标函数。

了解并初步应用线性规划的图解法解决一些实际问题。

(2)过程与方法:提高学生数学地提出、分析和解决问题的能力,发展学生数学应用意识,力求对现实世界中蕴含的一些数学模式进行思考和作出判断。

(3)情感、态度与价值观:体会数形结合、等价转化等数学思想,逐步认识数学的应用价值,提高学习数学的兴趣,树立学好数学的自信心。

4.重点与难点重点:理解和用好图解法难点:如何用图解法寻找线性规划的最优解。

高中数学五第三章3.3.2 简单的线性规划问题(第1课时)【教案】

高中数学五第三章3.3.2 简单的线性规划问题(第1课时)【教案】

3.3.2简单线性规划问题(第1课时)一、教学目标及目标分析1.教学目标;(1)了解约束条件、目标函数、可行解、可行域、最优解等基本概念;(2)掌握解决线性规划问题的基本步骤;(3)会用图解法求线性目标函数的最大值、最小值.2.目标解析;(1)了解线性规划模型的特征:约束条件、目标函数、求目标函数的最大值或最小值等.熟悉线性约束条件(不等式组)的几何表征是平面区域(可行域).体会可行域与可行解、可行域与最优解、可行解与最优解的关系.(2)能理解目标函数的几何表征(一组平行直线).能依据目标函数的几何意义,运用数形结合方法求出最优解和线性目标函数的最大(小)值,掌握解题的基本步骤.(3)在线性规划问题的探究过程中,使学生经历观察、分析、操作、确认的认知过程,培养解决运用已有知识解决新问题的能力,体会数学知识形成过程中所蕴涵的数学思想和方法,引发学生对现实世界中的一些数学模式进行思考.二、教学重点与难点:重点:线性规划问题的基本概念及解决问题的步骤。

难点: 把目标函数转化为斜截式方程时,对含“z”的项的几何意义与“z”最值之间关系的理解三、教学模式与教法、学法教学模式:采用探究教学法,通过“猜想,验证,证明”来探究二元一次不等式(组)表示的平面区域,并通过讲练结合巩固所学的知识。

使用多媒体辅助教学.教师的教法:利用多媒体辅助教学,突出活动的组织设计与方法的引导.“抓三线”,即(一)知识技能线(二)过程与方法线(三)能力线.“抓两点”,即一抓学生情感和思维的兴奋点,二抓知识的切入点.学法:突出探究、发现与交流.学法设计:引导学生通过主动参与、合作探讨学习知。

来源:学_科_网Z_X_X_K]四、教学过程设计二、知识探究:问题1. 在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题。

例如,某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A产品耗时1小时,每生产一件乙产品使用4个B产品耗时2小时,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8小时计算,该厂所有可能的日生产安排是什么?设甲、乙两种产品分别生产x 、y 件,应如何列式?生 由已知条件可得二元一次不等式组:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤≤≤+.0,0,124,164,82y x y x y x 师 如何将上述不等式组表示成平面上的区域?生 (板演)师 对照课本98页图3。

《简单的线性规划问题》教案

《简单的线性规划问题》教案

《简单的线性规划问题》教学设计(人教A版高中课标教材数学必修5第三章第3.3.2节)祁东二中谭雪峰一、内容与内容解析本节课是《普通高中课程标准实验教科书数学》人教A版必修5第三章《不等式》中第3.3.2《简单的线性规划问题》的第一课时. 本课内容是线性规划的相关概念和简单的线性规划问题的解法.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.本节内容是在学习了不等式和直线方程的基础上,利用不等式和直线方程的有关知识展开的.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出.简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想.通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力.二、教学目标一)、知识目标1.了解线性规划的意义、了解线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念.2.理解线性规划问题的图解法3. 会用图解法求线性目标函数的最优解.二)、能力目标1.在应用图解法解题的过程中培养学生的观察能力、理解能力.2.在变式训练的过程中,培养学生的分析能力、探索能力.3.培养学生观察、联想、作图和理解实际问题的能力,渗透化归、数形结合的数学思想.三)、情感目标1.让学生体验数学来源于生活,服务于生活,品尝学习数学的乐趣.2.让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神.三、教学重点、难点重点:线性规划问题的图解法;寻求有实际背景的线性规划问题的最优解.难点:借助线性目标函数的几何含义准确理解线性目标函数在y 轴上的截距与z最值之间的关系.四、学习者特征分析1. 已经掌握用平面区域表示二元一次不等式(组)2. 初步学会分析简单的实际应用问题3. 能根据实际数据假设变量,并从中抽象出不等的线性约束条件并用相应的平面区域进行表示本节课学生在学习过程中可能遇到以下疑虑和困难:1.将实际问题抽象成线性规划问题;2.用图解法解线性规划问题中,为什么要将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题?如何想到要这样转化?3.数形结合思想的深入理解.五、教学与学法分析本节课以学生为中心,以问题为载体,采用启发、引导、探索相结合的教学方法.课堂中应注重创设师生互动、生生互动的和谐氛围,通过学生动手实践、动脑思考等方法探究数学知识获取直接经验,进而培养学生的思维能力和应用意识等.1.设置“问题”情境,激发学生解决问题的欲望;2.提供“观察、探索、交流”的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取直接经验.3.在教学中体现“重过程、重情感、重生活”的理念;让学生经历“学数学、做数学、用数学”的过程.指导学生做到“四会”:会疑、会议、会思、会变.4.在教学中重视学生的探索经历和发现新知的体验,使学生形成自己对数学知识的理解和有效的学习策略.六、文本教学与信息技术整合点分析根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,调动学生的学习兴趣,利用多媒体辅助教学,借助信息技术工具,以“几何画板”软件为平台,将目标函数与直线方程进行转化,通过直线的平行移动的演示,观察纵坐标的变化,直观生动地呈现图解法求最优解的过程,既加大课堂信息量,提高教学效率,同时让学生学会用“数形结合”思想方法建立起代数问题和几何问题间的密切联系.七、教学过程分析数学教学是数学活动的教学,我将整个教学过程分为五个环节:1.复习回顾:[幻灯片第2-4张]1)提问:如何作二元一次不等式表示的平面区域?直线定界;特殊点定域.2)巩固练习:画出下面不等式组所表示的平面区域.【设计意图】复习旧知,为本课的图解法解题热身准备. 2. 分析引例,形成概念,规范解答在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题……1) 将实际生活问题转化为数学问题(数学建模) [幻灯片第5-8张]教师组织学生学习引例.[引例]:某工厂有A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件耗时1h ,每生产一件乙产品使用4个B 配件耗时2h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天8h 计算,该厂所有可能的日生产安排是什么?师生活动:通过教师引导,让学生正确理解题意,用不等式组表示问题中的5003x y x y x -+⎧⎪+⎨⎪⎩≥≥≤限制条件及作出相应的平面区域,将实际问题转化为数学问题.(1)、教师提问:同学们,你们能用不等式组表示问题中的限制条件吗?引导学生设定未知数(设甲、乙两种产品分别生产x 、y 件), 分析已知条件得到二元一次方程组:(2)、让学生画出不等式组所表示的平面区域.【设计意图】数学是现实世界的反映.通过引入学生感兴趣的实际生活问题,激发学生兴趣,使学生产生急于解决问题的内驱力,引发了学生的思考,同时师生之间通过互动复习旧知,培养学生从实际问题抽象出数学模型的能力.(3)、教师进一步提出新问题:若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?引导学生若设定工厂获得的利润为z ,则易得z = 2x + 3y ,此时问题转化为即求z 的最大值的问题了.【设计意图】添加优化问题,定义目标函数,引出新问题.2)分析问题,形成概念[幻灯片第9-17张]师生活动:教师根据引题得出线性规划问题相关概念.(1)、就在学生兴趣顿起的时候,教师就此给出了相关概念:① 上述问题中,不等式组是一组对变量 x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,所以又叫线性约束条件. 线性约束条件除了用一次不等式表示外,有时也用一次方程表示.② 欲求最大值或最小值的函数z=2x+3y 叫做目标函数. 由于 z=2x+y 又是x 、y 的一次解析式,所以又叫线性目标函数.③ 一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.④ 满足线性约束条件的解(x,y)叫做可行解.2841641200x y x y x y +≤⎧⎪≤⎪⎪≤⎨⎪≥⎪≥⎪⎩⑤ 由所有可行解组成的集合叫做可行域.⑥ 使目标函数取得最大值或最小值的可行解,它们都叫做这个问题的最优解.(2)、 引导学生理解,引题的问题就是一个线性规划问题. 图中阴影部分(即可行域)的整点(坐标为整数的点)就代表所有可能的日生产安排. 于是问题就转化为当点(x,y )在可行域运动时如何求z=2x+3y 的最大值问题.3)探究交流,解决问题[幻灯片第18-20张](1)、教师提问:如何求z=2x+3y 的最大值问题?先让学生自主探究,再分组讨论交流,然后试着这样引导学生:由于已经将x ,y 所满足的条件几何化了,你能否将式子z=2x+3y 作某种几何解释?学生自然地想到它在几何上表示直线2x+3y-z=0. 当z 取不同的值时可得到一族平行直线.于是问题又转化为当这族直线与可行域有公共交点时,如何求z=2x+3y 的最大值.(2)、这一问题对于部分学生仍有一定难度,教师再次提问:在直线2x+3y-z=0中,z 是否与这直线的某种几何意义有关?学生讨论交流后得出:将直线2x+3y-z=0改写成斜截式233z y x =-+,学生此时会明白直线2,33z y x =-+它表示为斜率为2,3k =-截距3z b =的直线,当z 变化时,可以得到一组互相平行的直线,而且当截距3z 最大时,z 取最大值. 于是问题又转化为当2x+3y-z=0这族直线与可行域有公共交点时,在可行域内找一个点,使直线经过此点时在y 轴上的截距最大. 接着让学生动手实践,用作图法找到点E 并求出点E 的坐标(4,2),而求出z 的最大值为14,所以每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元 .师生活动:教师引发学生思考变形目标函数,将z=2x+3y 化成233z y x =-+的形式,挖掘几何含义,作过原点直线23y x =-并进行平移,观察纵截距的最大值,教师利用多媒体辅助教学工具作动态演示平移确定最值,并有意强调解题步骤:画、作、移、求.【设计意图】:让学生自主探究,体验数学知识的发生、发展过程,体验转化和数形结合的思想方法,通过目标函数的不同变式,让学生熟悉求最值的方法,从而让学生更好地理解数学概念和方法,突出了重点,化解了难点.3.反思过程,提练方法[幻灯片第21张]教师引导学生归纳、提炼求解步骤:第一步:画——根据约束条件画出可行域;第二步:作——过原点作目标函数直线的平行直线0l ;第三步: 移——平移直线0l 找出与可行域有公共点且纵截距最大或最小的直线,确定可行域内最优解的位置;第四步:求——解有关方程组求出最优解,将最优解代入目标函数求最值.4.模仿练习,强化方法,拓展题型[幻灯片第22-26张]为了更好地理解图解法解线性规划问题的内在规律,同时让学生掌握解决简单线性规划问题的基本步骤,让学生做下面这个练习:练习(教材例5)、营养学家指出,成人良好的日常饮食应该至少提供0.075kg的碳水化合物,0.06kg 的蛋白质,0.06kg 的脂肪,1kg 食物A 含有0.105kg 碳水化合物,0.07kg 蛋白质,0.14kg 脂肪,花费28元;而1食物B 含有0.105kg 碳水化合物,0.14kg 蛋白质,0.07kg 脂肪,花费21元.为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 和食物B 多少kg ?师生活动:教师引领学生理解题意,让学生领会用表格形式描述数据的直观性.让学生独立建立线性规划的数学模型,并正确设出变量,找好目标函数及约束条件后自行完成此题. 由一位同学生展示自己的解题过程和结果. 教师规范解题步骤和格式.1.分析:将已知数据列成表格解:设每天食用x (kg )食物A ,y (kg )食物B ,总成本为z ,那么 0.1050.1050.075,0.070.140.06,0.140.070.06,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩①目标函数为2821z x y =+.二元一次不等式组①等价于775,7146,1476,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩ ②二元一次不等式组所表示的平面区域(图1),即可行域.考虑2821z x y =+,将它变形为4321z y x =-+.这里4321z y x =-+是斜率为43-,随z 变化的一组平行直线,21z 是直线在y 轴上的截距,当21z 取最小值时,z 的值最小.当然直线要与可行域相交,即在满足约束条件时目标函数2821z x y =+取得最小值.由图1可见,当直线2821z x y =+经过可行域上的点M 时,截距21z 最小,即z 最小. 解方程组775,147 6.x y x y +=⎧⎨+=⎩ 得M 的坐标为17x =,47y =. 所以282116z x y =+=.答:每天食用食物A 为17kg ,食物B 为47kg ,能够满足日常饮食要求,又使花费最低,最低成本为16元.【设计意图】1). 通过一道完整的简单线性规划问题,让学生掌握解决简单线性规划问题的基本步骤,培养学生的数学建模意识.同时进一步加深对图解法的认识.2).通过此题检测学生对已学知识的掌握情况,进一步培养学生的运算能力和准确作图的能力.3).展现线性规划的另一类型题(可行域不封闭、最优解为最小值),并与引例相比较,对比可行域封闭与不封闭、最优解为最大值与最小值两种情况的线性规划问题.师生活动:由教师帮助学生分析错解的原因,并提出问题.学生意识到可以把所有可能的解都求出来,进行比较即可.师生一起反思练习的求解过程.教师通过巡视发现错解的学生,帮助学生找到错误的原因.并提出问题:有时若由于不可避免的误差带来错解,你如何解决?【设计意图】通过反思及寻求问题答案,让学生深入思考,培养学生科学严谨的学习态度和解决问题的能力.5.变式演练,深入探究,开阔视野[幻灯片第27张]师生活动:让学生自己动手解决问题,教师可用几何画板演示。

简单的线性规划问题说课稿

简单的线性规划问题说课稿

简单的线性规划问题说课稿简单的线性规划张雪丽一.说教材1.地位与重要性本节课是人教a版必修5第三章的第三节的内容,是继上一节二元一次不等式(组)表示平面区域的后续内容,也是在学习了直线方程的基础上,介绍直线方程的一个简单应用。

本节课的主要内容是线性规划的意义以及线性约束条件、线性目标函式、可行域、可行解、最优解等概念。

通过本节的学习,使学生进一步了解数学在解决实际问题中的应用,以培养学生学习数学的兴趣,应用数学的意识和解决实际问题的能力。

2.重点,难点根据本节课的教学内容,以及在学生掌握了二元一次不等式(组)表示的平面区域的基础上,我确立本课的重点、难点如下:教学重点:线性规划的**法教学难点:利用**法求最优解。

解决难点的方法是精确作图,利用数形结合的思想将代数问题几何化。

二.说教学目标(1)知识目标:了解线性规划的意义,了解线性约束条件、线性目标函式、可行解、可行域、最优解等概念;理解线性规划的**法;会利用**法求线性目标函式的最优解。

(2)能力目标:在应用**法解题的过程中培养学生的观察能力、理解能力 ;在变式训练的过程中,培养学生的分析能力、探索能力;在对具体事例的感性认识上升到对线性规划的理性认识过程中,培养学生运用数形结合思想解题的能力和化归能力。

(3)情感目标:让学生体验数学**于生活又服务于生活,体验数学在建设节约型社会中的作用,品嚐学习数学的乐趣;让学生体验数学活动充满着探索与创造,培养学生勤于思考、勇于探索的精神.三.说教学过程(一)情景教学提出问题通过展示几幅幻灯片,以景激情,以情激思,点燃学生的求知慾,引领学生进入学习情境。

引例:某工厂用a、b两种配件生产甲、乙两种产品,每生产一件甲产品使用4个a配件并耗时1 h,每生产一件乙产品使用4个b配件并耗时2 h,该厂每天最多可从配件厂获得16个a配件和12个b配件,按每天工作8 h计算,该厂所有可能的日生产安排是什幺?让学生分析题目,根据题意列出满足条件的不等式组。

《简单线性规划》说课稿.

《简单线性规划》说课稿.

《简单线性规划》说课稿蔡绵绵一.说教材1.本节课主要内容是线性规划的意义以及线性约束条件、线性目标函数、可行域、可行解、最优解等概念,根据约束条件建立线性目标函数。

应用线性规划的图解法解决一些实际问题。

2.地位作用:线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它可以解决科学研究、工程设计、经济管理等许多方面的实际问题。

简单的线性规划是在学习了直线方程的基础上,介绍直线方程的一个简单应用。

通过这部分内容的学习,使学生进一步了解数学在解决实际问题中的应用,以培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。

3.教学目标(1)知识与技能:了解线性规划的意义以及线性约束条件、线性目标函数、可行域、可行解、最优解等概念,能根据约束条件建立线性目标函数。

了解并初步应用线性规划的图解法解决一些实际问题。

(2)过程与方法:提高学生数学地提出、分析和解决问题的能力,发展学生数学应用意识,力求对现实世界中蕴含的一些数学模式进行思考和作出判断。

(3)情感、态度与价值观:体会数形结合、等价转化等数学思想,逐步认识数学的应用价值,提高学习数学的兴趣,树立学好数学的自信心。

4.重点与难点重点:理解和用好图解法难点:如何用图解法寻找线性规划的最优解。

二.说教学方法教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。

根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:(1)启发引导学生思考、分析、实验、探索、归纳。

这能充分调动学生的主动性和积极性。

(2)采用“从特殊到一般”、“化抽象为具体”、“化静为动”的方法。

这有利于学生对知识进行主动建构;有利于突出重点、解决难点;也有利于发挥学生的创造性。

(3)体现“等价转化”、“数形结合”的思想方法。

这样可发挥学生的主观能动性,有利于提高学生的各种能力。

高中数学课件归纳必修5第三章不等式3.3.2简单线性规划(第1课时)课件

高中数学课件归纳必修5第三章不等式3.3.2简单线性规划(第1课时)课件
3.3.2 简单线性规划问题
(1课时)
y
o
x
一、问题引入
问题1:
某工厂用A,B两种配件生产甲,乙两种产品,每生产 一件甲种产品使用4个A配件耗时1h,每生产一件乙种产 品使用4个B配件耗时2h,该厂每天最多可从配件厂获得 16个A配件和12个B配件,按每天工作8小时计算,该厂所 有可能的日生产安排是什么?
3.线性规划
在线性约束下求线性目标函数的最值问题, 统称为线性规划.
4.可行解 5.可行域 6.最优解
满足线性约束的解(x,y)叫做可行解. 所有可行解组成的集合叫做可行域.
使目标函数取得最值的可行解叫做这个问 题的最优解.
变式:若生产一件甲产品获利1万元,生产一件乙 产品获利3万元,采用哪种生产安排利润最大?
B组 3
把z=2x+3y变形为y=-
2 3
x+
z 3
,这是斜率为-
2 3
,
在y轴上的截距为
z 3
的直线,
当点P在可允 许的取值范 围内

z 的最值 3

z的最值.
ቤተ መጻሕፍቲ ባይዱ 问题:求利润z=2x+3y的最大值.
y
x 2 y 8,
4
44
x y

16, 12,
3

x

0,
0
y 0.
Zmax 4 2 2 3 14.
(2)移:在线性目标函数所表示的一组平行线 中,利用平移的方法找出与可行域有公共点且纵 截距最大或最小的直线;
(3)求:通过解方程组求出最优解;
(4)答:作出答案。
体 验:
一、先定可行域和平移方向,再找最优解. 二、最优解一般在可行域的顶点处取得.

(简单的线性规划问题)说课稿

(简单的线性规划问题)说课稿

(简单的线性规划问题)说课稿说课稿课题:简单的线性规划问题第一课时选自:普通高中课程标准实验教科书数学(必修五)学校:西吉中学蒙彦强课题:简单的线性规划问题尊敬的各位专家、各位评委下午好:我是来自西吉中学的数学老师蒙彦强,今天我说课的课题是《简单的线性规划问题》第1课时。

我本节课尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正!一、教材分析:1、教材的地位与作用:线性规划是运筹学的一个重要分支,在实际生活中有着广泛的应用。

本节内容是在学习了不等式、直线方程的基础上,利用不等式和直线方程的有关知识展开的,它是对二元一次不等式的深化和再认识、再理解。

通过这一部分的学习,使学生进一步了解数学在解决实际问题中的应用,体验数形结合和转化的思想方法,培养学生学习数学的兴趣、应用数学的意识和解决实际问题的能力。

2、学情分析在本节课之前学生已经有了直线的方程和用不等式(组)表示平面区域的理论基础,并掌握了“直线定界,特殊点定域”的方法画平面区域,具备了将二元一次方程和二元一次不等式转化为直线和平面区域的意识,但学生初次接触线性规划问题,缺乏数形转化的意识和数学建模的能力。

因此在教材处理上有一定难度,老师必须通过得当的诱导,学生才能突破将实际问题转化为数学问题的“瓶颈”,让学生体会到探究的快乐,培养学生的实际应用能力。

3、教学重点与难点:依据新课程标准和本课内容学生的学情以及知识构成的特点,我确定了以下的教学重点和难点:教学重点:1、用二元一次不等式组表示平面区域,建立数学模型,用图解法确定最优解;2、只有掌握了目标函数的几何意义,才能正确掌握用图解法求解最优化问题;教学难点:如何建模和如何定最优解;数学建模思想较为抽象;学生没有这方面的基础知识。

高中数学 同步教学 简单的线性规划问题

高中数学 同步教学 简单的线性规划问题

x (1)
2
率的 2 倍,
因为 kQA= 7 ,kQB= 3 ,所以 z 的取值范围是[ 3 , 7 ].
48
42
方法技巧 与二元一次不等式(组)表示的平面区域有关的非线性目标函数 的最值问题的求解,一般要结合给定代数式的几何意义来完成.
常 见 代 数 式 的 几 何 意 义 :(1) x2 y2 表 示 点 (x,y) 与 原 点 (0,0) 的 距
4.给定下列命题:在线性规划中,
①最优解指的是使目标函数取得最大值的变量x或y的值;
②最优解指的是目标函数的最大值或最小值;
③最优解指的是使目标函数取得最大值或最小值的可行域;
④最优解指的是使目标函数取得最大值或最小值的可行解.
其中正确命题的序号是
.
解析:因为最优解是使目标函数取得最大值或最小值的可行解,即满足 线性约束条件的解(x,y),它是一个有序实数对,所以①②③均错,④正确. 故填④. 答案:④
变式探究:在本例的约束条件下,求z=x2+y2+2x的最大值与最小值.
解:z=x2+y2+2x=(x+1)2+y2-1 表示可行域内任意一点(x,y)与点 D(-1,0)距离的平方减去 1,
如图所示,过 D 作 AB 的垂线 DP,垂足为 P,所以|DP|= | 1 0 4 | = 5 = 5 2 ,
(2)简单线性规划问题的解法 在确定线性约束条件和线性目标函数的前提下,用图解法求最优解的步骤 可概括为“画、移、求、答”,即: ① 画 : 在 平 面 直 角 坐 标 系 中 , 画 出 可 行 域 和 直 线 ax+by=0( 目 标 函 数 为 z=ax+by); ②移:平行移动直线ax+by=0,确定使z=ax+by取得最大值或最小值的点; ③求:求出使z取得最大值或最小值的点的坐标(解方程组)及z的最大值或 最小值; ④答:给出正确答案.

简单的线性规划问题说课稿

简单的线性规划问题说课稿

《简单的线性规划问题》说课稿红安县大赵家高中郑炜本考点复习总体设想(一)考纲解读:2016年湖北省将不再自主命题,而是采用全国统一卷,2015年高考全国卷对本考点考试要求为:1.会从实际情境中抽象出二元一次不等式组;2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;3.会从实际情境中抽象出一些简单的二元一次线性规划问题. (二)近三年湖北卷和新课标全国卷Ⅰ出现的线性规划问题统计:线性规划是高中数学不等式部分的基本内容,它将数与形有机结合,是一种重要的优化模型,在生产实际中有广泛应用,因此线性规划问题是高考常考考点.主要考查学生分析问题和解决问题的能力.高考中对线性规划的考查常以选择、填空题的形式出现,具有小巧、灵活的特点.对于线性规划问题,应强调应用数形结合的思想方法解题,画出可行域和理解目标函数的几何意义是解题关键.通过对近三年湖北卷和全国卷中线性规划考题分析,高考文科卷对线性规划问题的考试要求相对较低,更注重基础,主要以求目标函数的最优解(截距型)为主,而理科卷则主要以综合题型为主,与其他内容交汇命题,展现数学的应用价值,故在复习中应该注重基础,加强常规题型的训练.简单的线性规划复习导学案1.【2015高考天津】设变量,x y 满足约束条件2020280x x y x y -≤⎧⎪-≤⎨⎪+-≤⎩,则目标函数3y z x =+的最大值为( )A . 7 B. 8 C. 9 D.142.【2015高考湖南】若变量x y ,满足约束条件111x y y x x +≥⎧⎪-≤⎨⎪≤⎩,则2z x y =- 的最小值为( )A.1-B.0C.1D.23.【2015高考北京】如图,C ∆AB 及其内部的点组成的集合记为D ,(),x y P 为D 中任意一点,则23z x y =+的最大值为 .4.【2015高考上海】若y x ,满足⎪⎩⎪⎨⎧≥≤+≥-020y y x y x ,则目标函数y x z 2+=的最大 值为 .5. 【2015高考江西】某农户计划种植黄瓜和韭菜,种植面积不超过 50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、那么黄瓜和韭菜的种植面积(单位:亩)分别为( )A .50,0B .30,20C .20,30D .0,50《简单的线性规划问题》说课稿红安三中汪凤英一、教材的地位和作用《简单的线性规划》是高考必考内容,易得分题.通过本节的学习,使学生进一步了解数学在解决实际问题中的应用,以培养学生学习数学的兴趣以及应用数学的意识和解决实际问题的能力.这部分内容,也渗透了化归、数形结合的数学思想,为学生今后解决实际问题提供了一种重要的解题方法——数学建模法.二、目标分析根据课程标准的要求并结合学生的实际学习水平制定本节课教学目标如下:知识目标:会从实际情境中抽象出一些简单的二元一次线性规划问题;技能目标:使学生了解线性规划的图解法,并能应用线性规划的方法解决一些简单的实际问题;过程与方法目标:培养学生数形结合,化归的数学思想,培养学生主动应用数学的意识及创新能力;情感态度与价值观目标:构造和谐的教学氛围,增加互动,促进师生情感交流.三、教学重点、难点重点:线性规划问题的图解法难点:线性规划的实际应用,掌握线性规划问题的几何意义,利用数形结合的思想将代数问题几何化.四、教法与学法由于本节知识的抽象性以及作图的复杂性,本节采用讲练结合的方法,同时借助多媒体辅助教学.在应用题的处理中,充分发挥学生的主动性,以学生为中心,让学生主动地观察、分析、探索、交流,然后再讲解,从而达到提高学生各方面能力的教学目的.五、教学过程(一)知识回顾1、线性规划的基本概念约束条件:由变量x,y组成的一次不等式线性约束条件:由x,y组成的一次不等式(或方程)组成的不等式组目标函数:欲求最大值或最小值的函数线性目标函数:关于x,y的二元一次解析式可行解:满足线性约束条件的解可行域:所有可行解组成的集合最优解:使目标函数取得最大值或最小值的可行解线性规划问题:在线性约束条件下求线性目标函数取得最大值或最小值问题2、简单线性规划问题的求解步骤:(1)作图——①画出约束条件所确定的平面区域;②画出目标函数所表示的平行直线系中的任意一条直线;(2)平移——将直线平行移动,以确定最优解所对应的点的位置;(3)求值——解有关方程组确定最优解的坐标,再代入目标函数,求出目标函数的最值【设计意图】要求学生课前自主复习,培养学生观察、分析、归纳、总结的能力.(二)学案解析展示评讲导学案【设计意图】课前独立完成导学案,能培养学生主动研究教材、归纳总结的数学学习习惯,还可以发现学生存在的不足并及时矫正,改善学习态度提高复习效率,形成在参与中复习,在复习中参与的氛围.(三)例题解析题型一:求线性目标函数的最值问题例1【2015高考新课标1】若x,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪++≥⎩,则z=3x+y 的最大值为 .【答案】4试题分析:作出可行域如图中阴影部分所示,作出直线0l :30x y +=,平移直线0l ,当直线l :z=3x+y过点A 时,z 取最大值,由20210x y x y +-=⎧⎨-+=⎩解得A (1,1),∴z=3x+y 的最大值为4.【设计意图】安排简单的问题可增强学生的自信心,提高他们学习数学的兴趣.本题考查了简单线性规划的应用,属于基础题,是简单线性规划问题中最为简单的一种求最值问题.在考查相关基础知识的同时,较好地考查了考生的作图能力、运算能力及数形结合思想.确定目标函数的几何意义是解决最优化问题的关键,目标函数常有距离型、直线型和斜率型.题型二、求非线性目标函数的最值例2.(15年新课标1)若x,y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩则y x 的最大值为 .(斜率型)【答案】3试题分析:作出可行域如图中阴影部分所示,由斜率的意义知,y x是可行域内一点与原点连线的斜率,由图可知,点A (1,3)与原点连线的斜率最大,故y x 的最大值为3. 例3.(2015湖南四月调研)已知实数,x y 满足不等式组310300x y x y x -+≤⎧⎪+-≥⎨⎪≥⎩,则22x y +的最小值是( )(距离型) A .B .92C .5D .9 【答案】B试题分析:不等式组310300x y x y x -+≤⎧⎪+-≥⎨⎪≥⎩表示的平面区域如图所示:目标函数22x y +表示可行域内任一点(,)A x y 到原点O 的距离的平方由图可知当OA 垂直于直线:30l x y +-=时,目标函数22x y +有最小值,又点O 与直线l=,所以目标函数22x y +的最小值为92,故选B . 常见的非线性目标函数有两种:斜率模型和距离模型.一般地,形如y b x a--,的目标函数,可以视为可行域中的点(x ,y)与定点(a ,b)连线的斜率;形如(x -a)2+(y -b) 2的目标函数,可视为可行域中的点(x ,y)与定点(a ,b)之间的距离的平方.变式:已知x ,y 满足条件:7523071104100.x y x y x y --≤⎧⎪+-≤⎨⎪++≥⎩求:(1) 74y x ++的取值范围;(2)22x y +的最大值和最小值.非线性目标函数的最值或范围的求解,基本方法同线性目标函数的解法一样,根据目标函数的几何意义,利用数形结合的思想方法进行求解.【设计意图】当目标函数为非线性函数时,一般要借助目标函数的几何意义,然后根据其几何意义,数形结合来求其最优解,否则很容易出现错误.还需注意并不是所有的可行域都是三角形.近年来,在高考中出现了求目标函数是非线性函数的范围问题.这些问题主要考查的是等价转化思想和数形结合思想,出题形式越来越灵活,对考生的能力要求越来越高.题型三、线性规划的实际应用例4. 【2015高考陕西】某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A17万元 D .18万元试题分析:设该企业每天生产甲、乙两种产品分别为x 、y 吨,则利润Z=3x+4y由题意可列32122800x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,其表示如图阴影部分区域:当直线340x y z +-=过点(2,3)A 时,取得最大值,所以max 324318Z =⨯+⨯=,故选D .【设计意图】选择应用型问题,体现数学与实际生活紧密联系.数学来源于实际又应用于实际,数学是现实世界的反映.通过学生关注的热点问题引入,激发学生的兴趣,引发学生的思考,培养学生从实际问题抽象出数学模型的能力.题型四、线性规划的逆向问题1.当参数在线性规划问题的约束条件中时,画出可行域,要注意应用“过定点的直线系”知识,使直线“初步稳定”,再结合题中的条件进行全方面分析才能准确获得答案.例5. 【2015高考福建】变量,x y 满足约束条件02200x y x y mx y +≥⎧⎪-+≥⎨⎪-≤⎩,若2z x y =-的最大值为2,则实数m 等于( )A .2-B .1-C .1D .2【答案】C试题分析:将目标函数变形为2y x z =-,当z 取最大值,则直线纵截距最小,故当0m ≤时,不满足题意;当0m >时,画出可行域,如图所示, 其中22(,)2121m B m m --.显然(0,0)O 不是最优解,故只能22(,)2121m B m m --是最优解,代入目标函数得4222121m m m -=--,解得1m =,故选C . 2.当参数在线性规划问题的目标函数中时,要根据问题的意义,转化成“直线的斜率”、“点到直线的距离”等模型进行讨论与研究.变式:若x ,y 满足约束条件1122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,目标函数2z ax y =+仅在点(1,0)处取得最小值,则a 的取值范围是( )A .(-1,2)B .(-4,2)C .(4,0]-D .(-2,4)【答案】B试题分析:如图,阴影部分△ABC 为题设约束条件所对应的可行域,其中(1,0),A (3,4),(0,1)B C法一:目标函数2z ax y =+对应直线l ,直线l 的斜率为2a-,在y轴上的截距为2z . ∵目标函数恰好在点(1,0)处取得最小值∴直线l 落在的直线x +y =1按逆时针方向旋转到直线2x -y =2的位置所扫过的区域,根据直线倾斜角与直线斜率的关系,可得122a -<-<,解得4-2a <<,选B.法二:根据题意,目标函数(,)2z x y ax y =+仅在点(1,0)处取得最小值,则有(0,1)(1,0)z z >且(0,1)(3,4)z z >,解之得a 的取值范围是(4,2)-,故答案选B.本题是以截距为背景,求满足题意的目标函数中所含的未知参数,对于这类问题,关键是要抓住可行域的顶点就是取到最值的点.【设计意图】线性规划的逆向性问题,就是已知目标函数的最值,求约束条件或目标函数中所含参数的取值范围问题,解题时需要从正反两方面考虑,此类题具有一定的灵活性和深度,意在考察学生的转化与化归能力.题型五、 线性规划的综合性问题例6 .设x ,y 满足约束条件360200,0x y x y x y --≤⎧⎪-+≥⎨⎪≥≥⎩,若目标函数(0,0)z ax by a b =+>>的值是最大值为12,则23a b+的最小值为( ) A. 256 B.83 C.113 D. 4 【答案】A试题分析:如图,阴影部分为约束条件表示的平面区域,其中(2,0),(4,6),(0,2)A B C ,当直线ax by z +=过点(4,6)B 时,目标函数(0,0)z ax by a b =+>>取得最大值12,即4612a b +=,232323131325()()26666a b b a a b a b a b ++=+=++≥+=,选A. 本题综合地考查了线性规划问题和由基本不等式求函数的最值问题.要求能准确地画出不等式表示的平面区域,并根据图形建立关于参数,a b 的等式;求23a b+的最小值时,常先用乘积进行等价变形,进而用基本不等式解.【设计意图】本题主要考查线性规划与基本不等式的基础知识,考查知识的整合与运用,考查学生综合运用知识解决问题的能力. 变式:【2015高考浙江】已知实数x ,y 满足221x y +≤,则|24||63|x y x y +-+--的最大值是 .【答案】15【解析】22,22|24||63|1034,22x y y x z x y x y x y y x +-≥-⎧=+-+--=⎨--<-⎩由图可知当22y x ≥-时,满足的是如图的AB 劣弧,则22z x y =+-在点(1,0)A 处取得最大值5;当22y x <-时,满足的是如图的AB 优弧,则1034z x y =--与该优弧相切时取得最大值,故|10|15z d -==,所以15z =,故该目标函数的最大值为15.【设计意图】本题主要考查简单的线性规划.根据条件,利用分类讨论,确定目标函数的情况,画出可行域,根据线性规划的特点,确定取得最值的最优解,代入计算.本题属于中等题,主要考查学生数形结合的能力以及分类讨论思想.(四)课堂巩固:1.【2015高考湖北】若变量,x y 满足约束条件4230x y x y x y +≤⎧⎪-≤⎨⎪-≥⎩,则3x y +的最大值是_________.2.【2015高考山东】 若,x y 满足约束条件131y x x y y -≤⎧⎪+≤⎨⎪≥⎩,则3z x y =+的最大值为 .3.【2015高考重庆】若不等式组2022020x y x y x y m +-≤⎧⎪+-≥⎨⎪-+≥⎩,表示的平面区域为三角形,且其面积等于43,则m 的值为( ) (A)-3 (B) 1 (C) 43(D)3 4.【2015高考四川】设实数x ,y 满足2102146x y x y x y +≤⎧⎪+≤⎨⎪+≥⎩,则xy 的最大值为( )A .252B. 492C.12D.14 5.【2015高考安徽】设,x y 满足约束条件2208400,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数=+>>的最大值为8,则a bz abx y a b(0,0)+的最小值为________.【设计意图】及时检验学生利用图解法解线性规划问题的掌握情况,让学生巩固所学内容并进行自我检测.(五)课堂小结:学生整理课堂笔记,通过这部分的设计让学生对所学的知识和方法做总结.【设计意图】让学生参与小结,引导学生对所学知识进行反思,有利于加强学生记忆和形成良好的数学思维习惯.板书设计:线性规划中的有关概念:例题讲解小结:解线性规划的一般步骤: 例1 例4例2 例5例 3 例6板书说明:本节课作图比较复杂,应用题阅读量较大,不易在黑板上出现,因此,作图及应用题都是通过多媒体课件演示,这样既可以增加课堂容量,又可以提高授课进度,同时也有利于提高课堂效率.【设计意图】板书简明清楚,重点突出,加深学生对重点知识的理解和掌握,便于记忆,有利于提高教学效果.。

简单线性规划说课稿

简单线性规划说课稿

7.4《简单线性规划》第一课时说课稿一、课题介绍本节课是人民教育出版社全日制普通高级中学(必修)第二册(上)第七章第四节第一课时的二元一次不等式表示平面区域.二、教材分析1、本节在教材中的地位与作用二元一次不等式表示平面区域既是学习了直线方程,不等式知识后的应用,也是解决简单线性规划问题的基础。

还渗透了“数形结合”的思想。

体现了数学改革倡导的,数学教育应当培养学生的数学意识和应用意识,密切联系生活,反映数学发展的新内容、新思想。

2、教学目标根据本节在教材中的地位与作用,我确定了如下教学目标:(1)知识与技能目标会用二元一次不等式表示平面区域。

(2)过程与方法目标培养学生观察分析问题、动手解决探究问题的能力。

(3)情感、态度、价值观目标培养学生用图形的直观性来解决某些数学问题。

体会“数少形时缺直观,形少数时难入微”。

3、教学重点、难点根据前面的教材分析,我确定了本节课的教学重、难点:重点:是准确画出二元一次不等式表示的平面区域难点:是准确画出二元一次不等式表示的平面区域。

三、教法分析:采用创设学生熟悉的问题情境,运用探究式、启发式等方法进行教学。

让一个个有梯度的问题充满课堂教学,时时启发学生的思维。

突出以学生为主体的探索性学习活动,创设一个轻松高效的教学氛围。

数学教学不仅要教给学生数学知识,更要向学生展示获取知识的思维过程,以培养学生去发现探索生活中的数学。

因此遵循教师为主导,学生为主体的教学原则,应用几何图形的直观性。

引导学生探究、发现规律,让学生做学习的主人。

四、学法分析给学生展示自我的空间,引导学生参与整个教学过程。

促成学生之间的相互讨论,师生之间的相互探讨。

形成一个师生互动、生生互动的学习氛围。

积极启发诱导,使学生学会善于观察问题,学会自己探究问题,让学生去归纳总结。

运用逻辑思维得出规律。

五、教学过程根据以上分析,为有序进行教学,我设置了“实例引入,创设情境——提出问题,作出猜想——师生互动,解决问题——归纳总结,展示新知——范例教学——反馈练习,布置作业“6个教学环节。

《简单线性规划》说课稿全面版

《简单线性规划》说课稿全面版

《简单的线性规划》说课稿一、教材的地位和作用:《简单线性规划》这节课属于高中数学新课标必修5中的内容,是继上一节《二元一次不等式(组)表示平面区域》的后续内容,也是在必修2直线方程的基础上,介绍直线方程的一个简单应用,它可以帮助学生进一步体验数学的应用价值,有助于激发学生学习的兴趣,增强学生的数学应用意识与解决实际问题的能力。

线性规划是利用数学为工具,来研究在一定的人、财、物、时、空等资源条件下,如何安排,达到用最少的资源取得最大的效益。

它在工程设计、经济管理、科学研究等方面的应用非常广泛。

这部分内容,能体现数学的工具性、应用性,同时也渗透了化归、数形结合的数学思想,为学生今后解决实际问题提供了一种重要的解题方法——数学建模法二、教学目标分析根据课程标准的要求及上述教材内容地位分析,结合学生实际学习水平制定本节课教学目标如下:1、知识与技能目标:(1)使学生了解线性规划的意义,了解线性约束条件、线性目标函数、可行解、可行域、最优解等概念;(2)使学生了解线性规划问题的图解法,并能应用线性规划的方法解决一些简单的实际问题。

2、过程与方法目标:通过应用线性规划的图解法解决一些简单的实际问题,以提高学生解决实际问题的能力。

培养学生数形结合、化归的数学思想;培养学生主动“应用数学”的意识及创新能力;3、情感态度与价值观目标:通过实例,让学生体验数学与日常生活的联系,感受数学的实用价值,从而增强应用意识,提高解决实际问题的能力。

三、教学重难点重点:线性规划问题的图解法难点:线性规划的实际应用四、教法与学法由于本节知识的抽象性以及作图的复杂性,按照学生的心理特点和思考规律,本节采用讲练结合的方法,同时借助多媒体辅助教学,直观、生动地揭示二元一次不等式组所表示的平面区域以及图形的变化情况,以引导思考为核心,展示课件,启发引导学生观察思考、分析,并沿着积极的思维方向,逐步达到即定的教学目标。

对应用题如何处理,应该充分发挥学生的主动性,由学生自己阅读、审题、分析、提炼,再由教师讲解题目的含义,教学生如何正确阅读分析,如何设元,如何把实际问题转化为线性规划问题以及如何解决问题。

最新人教A版必修5高中数学 3.3.2《简单的线性规划问题》(1)教案(精品)

最新人教A版必修5高中数学 3.3.2《简单的线性规划问题》(1)教案(精品)

高一数学人教A版必修5:3.3.2《简单的线性规划问题》(1)教案一、教学内容分析本节课是《普通高中课程标准实验教科书·数学5》(人教版)第三章不等式第三节简单的线性规划问题第一课时。

简单的线性规划问题是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。

一方面,简单的线性规划问题与直线方程密不可分;另一方面,学习简单的线性规划问题也为进一步学习解析几何等内容做好准备。

二、学生学习情况分析本节课学生很容易在以下一个地方产生困惑:1. 线性约束条件的几何意义三、教学目标(1)知识和技能:了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念;了解线性规划的图解法,并会用图解法求线性目标函数的最大(小)值(2)过程与方法:本节课是以二元一次不等式表示的平面区域的知识为基础,将实际生活问题通过数学中的线性规划问题来解决。

考虑到学生的知识水平和消化能力,教师可通过激励学生探究入手,讲练结合,真正体现数学的工具性。

同时,可借助计算机的直观演示可使教学更富趣味性和生动性(3)情感与价值:渗透集合、数形结合、化归的数学思想,培养学生“数形结合”的应用数学的意识;激发学生的学习兴趣四、教学重点与难点教学重点:线性规划的图解法教学难点:寻求线性规划问题的最优解五、教学过程(一).创设情境例 1.甲、乙、丙三种食物的维生素A、B的含量及成本如下表:营养师想购这三种食物共10千克,使之所含维生素A不少于4400单位,维生素B不少于4800单位,问三种食物各购多少时成本最低,最低成本是多少?问题1:如何将此实际问题转化为数学问题呢?解:设所购甲、乙两种食物分别为千克,则丙食物为千克.又设成本为元.由题意可知应满足条件:即①.问题转化为:当满足①求成本的最小值问题.(二).分析问题问题2:如何解决这个求最值的问题呢?学生基于上一课时的学习,一般都能意识到要将不等式组①表示成平面区域(教师动画演示画不等式组①表示的平面区域).问题3:当点(x,y)在此平面区域运动时,如何求z=2x+y+50的最小值.(第一次转化)引导学生:由于已将x,y所满足的条件几何化了,你能否也给式子z=2x+y+50作某种几何解释呢?将等式z=2x+y+50视为x,y的一次方程,它在几何上表示直线,当z取不同的值时可得到一族平行直线,于是问题又转化为当这族直线与不等式组①所表示的平面区域有公共点时,求z的最小值.(第二次转化)问题4:如何更好地把握直线y+2x+50=z的几何特征呢?将其改写成斜截式y=-2x+z-50,让学生明白原来z-50就是直线在y轴上的截距,当截距z-50最小时z也最小,于是问题又转化为当直线y=-2x+z-50与平面区域有公共点时,在区域内找一个点P,使直线经过P时在y轴上的截距最小.(第三次转化)让学生动手实践,用作图法找到点P(3,2),求出z的最小值为58,即最低成本为58元)(三).形成概念1. 不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称为线性约束条件.z=2x+y+50是欲达到最大值或最小值所涉及的变量x、y的解析式,叫做目标函数.由于z=2x+y+50又是x、y的一次解析式,所以又叫做线性目标函数.2.一般的,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域.其中使目标函数取得最大值或最小值的可行解它们都叫做这个问题的最优解.(四).反思过程求解步骤:(1)画可行域---画出线性约束条件所确定的平面区域;(2)过原点作目标函数直线的平行直线;(3)平移直线,观察确定可行域内最优解的位置;(4)求最值---解有关方程组求出最优解,将最优解代入目标函数求最值. 简记为画作移求四步.(五).例题讲解例1、设2z x y =+,式中变量x 、y 满足下列条件4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,求z 的最大值和最小值。

高中数学 3.3.3 简单的线性规划问题(第1课时)教案 苏

高中数学 3.3.3 简单的线性规划问题(第1课时)教案 苏

3.3.3 简单的线性规划问题第1课时简单的线性规划问题(教师用书独具)●三维目标1.知识与技能(1)从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决;(2)了解线性规划的意义以及线性约束条件、线性目标函数、可行解、可行域、最优解等概念,会根据条件建立线性目标函数;(3)了解线性规划的图解法,并会用图解法求线性目标函数的最大(小)值;(4)培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合、等价转化的数学思想.2.过程与方法(1)本节课是以二元一次不等式(组)表示的平面区域的知识为基础,将实际生活问题通过数学中的线性规划问题来解决;(2)考虑到学生的知识水平和消化能力,教师可通过激励学生探究入手,讲练结合,真正体现数学的工具性,同时,借助计算机的直观演示可使教学更富趣味性和生动性.3.情感、态度与价值观(1)结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新;(2)渗透集合、数形结合、化归的数学思想,培养学生“数形结合”的应用数学的意识,激发学生的学习兴趣.●重点、难点重点:线性规划问题的图解法,寻求线性规划问题的最优解.难点:利用图解法求最优解.为突出重点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法,将实际问题数学化,代数问题几何化.解决难点的方法是精确作图,利用数形结合的思想将代数问题几何化.(教师用书独具)●教学建议从内容上看,简单的线性规划问题是在学习了不等式、直线方程的基础上展开的,它是对二元一次不等式的深化和再认识、再理解.它是用数学知识解决实际问题,属于数学建模,是初等数学中较抽象的,对学生要求较高,又是必须予以掌握的内容.考虑到学生的认知水平和理解能力,建议教师可以通过激励学生探究入手,讲练结合,培养学生对本节内容的学习兴趣,培养学生数形结合的意识,让学生体味数学的工具性作用.另外,教师还可借助计算机直观演示利用图解法求最优解的过程,增强教学的趣味性和生动性.●教学流程创设问题情境,引导学生了解线性约束条件、线性目标函数、可行域、线性规划问题等概念.⇒结合教材让学生掌握线性规划问题的图解法.⇒通过例1及其变式训练使学生巩固掌握利用图解法求最优解的步骤.⇒通过例2及其变式训练使学生掌握利用线性规划研究字母参数的方法.⇒通过例3及其变式训练使学生掌握求非线性目标函数的最值的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双达达标,巩固所学知识,并进行反馈矫正.(对应学生用书第56页)课标解读 1.了解目标函数、约束条件、可行域、最优解等基本概念.2.掌握线性规划问题的求解过程,特别是确定最优解的方法.(重点、难点)可行域约束条件所表示的平面区域,称为可行域.线性规划求线性目标函数在线性约束条件下的最大值或最小值问题,通常称为线性规划问题,上述只含两个变量的简单线性规划问题可用图解法解决.(对应学生用书第56页)线性规划问题设z=3x+5y,式中变量x、y满足条件⎩⎪⎨⎪⎧x+2y≥3,7x+10y≥17,x≥0,y≥0.求z的最小值.【思路探究】【自主解答】画出约束条件表示的点(x,y)的可行域,如图所示的阴影部分(包括边界直线).把z =3x +5y 变形为y =-35x +z 5,得到斜率为-35,在y 轴上的截距为z5,随z 变化的一族平行直线.作直线l :3x +5y =0,把直线向右上方平行移至l 1的位置时,直线经过可行域上的点M ,此时l 1:3x +5y -z =0的纵截距最小,同时z =3x +5y 取最小值.解方程组⎩⎪⎨⎪⎧x +2y =3,7x +10y =17,得M (1,1).故当x =1,y =1时,z min =8.1.由本例可以看出,解线性规划问题时,一定要注意最优解的对应点是最大值点,还是最小值点.对于目标函数z =ax +by ,当b >0时,直线截距最大时,z 有最大值,截距最小时,z 有最小值;当b <0时,则相反.2.图解法是解决线性规划问题的有效方法,其关键是利用z 的几何意义求解.平移直线ax +by =0时,看它经过哪个点(哪些点)时最先接触可行域和最后离开可行域,则这样的点即为最优解,最优解一般是在可行域的边界取得.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为多少.【解】 作可行域如图所示,解⎩⎪⎨⎪⎧x -y +2=0,x +y -8=0得⎩⎪⎨⎪⎧x =3,y =5,∴A (3,5).解⎩⎪⎨⎪⎧x +y -8=0,x -5y +10=0得⎩⎪⎨⎪⎧x =5,y =3,∴B (5,3).平移直线3x -4y =z 可知,直线过A 点时,z 取最小值,过B 点时,z 取最大值. ∴z min =3×3-4×5=-11,z max =3×5-4×3=3.利用线性规划求字母参数的值(或范围)已知x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y ≤25,x ≥1,设z =ax +y (a >0),若当z 取最大值时,对应的点有无数多个,求a 的值.【思路探究】【自主解答】 作出可行域如图所示.由⎩⎪⎨⎪⎧3x +5y =25,x -4y +3=0,得⎩⎪⎨⎪⎧x =5,y =2,∴点A 的坐标为(5,2). 由⎩⎪⎨⎪⎧x =1,3x +5y =25,得⎩⎪⎨⎪⎧x =1,y =4.4,∴点C 的坐标为C (1,4.4).当直线z =ax +y (a >0)平行于直线AC ,且直线经过线段AC 上任意一点时,z 均取得最大值,此时有无数多点使z 取得最大值,而k AC =-35,∴-a =-35,即a =35.1.本题中,z 取最值时对应的点有无数多个,故这无数多个对应点构成平面区域的一段边界.2.解线性规划问题时一般要结合图形(平面区域)及目标函数的几何意义解题.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是________.【解析】 作出可行域,让目标函数所表示的直线过定点,观察斜率的范围,构建不等式求参数范围.如图所示,约束条件所表示的平面区域为三角形,目标函数z =ax +2y ,即y =-a 2x +z 2仅在点(1,0)处取得最小值,故其斜率应满足-1<-a2<2,即-4<a <2.故填(-4,2).【答案】 (-4,2)求非线性目标函数的最值已知x ,y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.(1)求u =x 2+y 2的最大值和最小值; (2)求z =yx +5的最大值和最小值. 【思路探究】【自主解答】 画出不等式组所表示的平面区域,如图所示.(1)∵u =x 2+y 2,∴u 为点(x ,y )到原点(0,0)的距离,结合不等式组所表示的平面区域可知,点B 到原点的距离最大,而当(x ,y )在原点时,距离为0.由⎩⎪⎨⎪⎧7x -5y -23=0,4x +y +10=0得点B 的坐标为(-1,-6),∴(x 2+y 2)max =(-1)2+(-6)2=37,(x 2+y 2)min =0.(2)z =yx +5=y -0x --5,所以求z 的最大值和最小值,即是求可行域内的点(x ,y )与点(-5,0)连线斜率的最大值和最小值.设点M 的坐标为(-5,0),由⎩⎪⎨⎪⎧x +7y -11=0,4x +y +10=0得点C 的坐标为(-3,2),由(1)知点B 的坐标为(-1,-6),∴k max =k MC =2-0-3--5=1,k min =k MB =-6-0-1--5=-32,∴yx +5的最大值是1,最小值是-32.1.本题中,(1)x 2+y 2是平面区域内的点(x ,y )到原点的距离的平方;(2)y x +5=y -0x --5可看成平面区域内的点(x ,y )与点(-5,0)连线的斜率.2.解决此类问题,应先准确作出线性约束条件表示的平面区域,然后弄清非线性目标函数的几何意义.已知x ,y 满足⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0.(1)求z =x 2+y 2+2x -2y +2的最小值; (2)求z =|x +2y -4|的最大值. 【解】 (1)作出可行域,如图所示,∵z =(x +12+y -12)2,∴z 可看作是可行域内任意一点(x ,y )到点M (-1,1)的距离的平方. 由图可知z min 等于原点到直线x +y -4=0的距离的平方, ∴z min =(|-4|2)2=8.(2)∵z =|x +2y -4|=5·|x +2y -4|5, ∴z 可看作是可行域内任意一点(x ,y )到直线x +2y -4=0的距离的5倍. 由图可知点C 到直线x +2y -4=0的距离最大.由⎩⎪⎨⎪⎧x -y +2=0,2x -y -5=0得点C (7,9),∴z max =|7+2×9-4|5×5=21.(对应学生用书第58页)直线的倾斜程度判断不准致误已知⎩⎪⎨⎪⎧11x +4y ≤44,7x +5y ≤35,6x +7y ≤42,x ≥0,y ≥0,求z =x +y 的最大值.【错解】 作出可行域,如图所示.作出直线l 0:x +y =0,将它移至点B ,则点B 的坐标是可行域中的最优解,它使z 达到最大值.解方程组⎩⎪⎨⎪⎧11x +4y =44,7x +5y =35,得点B 的坐标为(8027,7727).所以z max =8027+7727=15727.【错因分析】 将直线l 0向上移动时,最后离开可行域的点不是点B 而是点A ,这是由于直线倾斜程度不准确引起的,由于三条边界直线的斜率依次是-67,-75,-114,而目标函数z =x +y 的斜率为-1,它夹在-67与-75之间,故经过点B 时,直线x +y =z 必在点A 的下方,即点B 不是向上平移直线时最后离开可行域的点,而是点A .【防范措施】 解决线性规划问题时,可行域一定要准确,关键点的位置不能画错,若数据比较大,不易画图,也可用斜率分析法确定关键点或取得最值点.【正解】 作出二元一次不等式组所表示的平面区域如上图.作出直线l ′0:x +y =0,将它向上平移,当它经过点A 时,z 取得最大值.解方程组⎩⎪⎨⎪⎧7x +5y =35,6x +7y =42,得⎩⎪⎨⎪⎧x =3519,y =8419,故z max =3519+8419=119191.基础知识: (1)可行域; (2)线性规划. 2.基本技能: (1)解线性规划问题;(2)利用线性规划求字母参数的值(或范围); (3)求非线性目标函数的最值. 3.思想方法: (1)数形结合思想; (2)函数思想; (3)转化思想.(对应学生用书第58页)1.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤3,x +y ≥0,则目标函数z =x +2y 的最小值为________.【解析】 画出不等式组表示的平面区域,由图可知目标函数在点(3,-3)处取得最小值-3.【答案】 -3图3-3-72.给出平面区域(包含边界)如图3-3-7所示,若使目标函数z =ax +y (a >0)取得最大值的最优解有无数多个,则a 的值为________.【解析】 由题意知-a =k AC =-35,∴a =35.【答案】 353.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2<0,x >1,x +y -7<0,则yx的取值范围是________.【解析】 目标函数y x 是可行域上的动点(x ,y )与原点连线的斜率,最小值是k OC =95,最大值是k AO =6,又可行域边界取不到,∴95<yx<6.【答案】 (95,6)4.已知x 、y 满足条件⎩⎪⎨⎪⎧7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0,求z =4x -3y 的最值.【解】 原不等式组表示的平面区域如图所示:其中A (4,1)、B (-1,-6)、C (-3,2). 作与4x -3y =0平行的直线l :4x -3y =t , 即y =43x -t3,则当l 过C 点时,t 最小; 当l 过B 点时,t 最大.∴z max =4×(-1)-3×(-6)=14,z min =4×(-3)-3×2=-18.(对应学生用书第97页)一、填空题1.(2013·微山高二检测)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1,y ≤x ,y ≥-2,则z =3x +y 的最大值为________.【解析】 不等式组表示的平面区域如图所示:把z =3x +y 变形为y =-3x +z 得到斜率为-3,在y 轴截距为z 的一族平行直线,由图当直线l :y =-3x +z 过可行域内一点M 时,在y 轴截距最大,z 也最大.由⎩⎪⎨⎪⎧x +y =1,y =-2,∴⎩⎪⎨⎪⎧x =3,y =-2,即M (3,-2).∴当x =3,y =-2时,z max =3×3+(-2)=7. 【答案】 72.(2013·苏州高二检测)变量x ,y 满足⎩⎪⎨⎪⎧2x +y ≥12,2x +9y ≥36,2x +3y ≥24,x ≥0,y ≥0,则使得z =3x +2y 的值最小的(x ,y )是________.【解析】 不等式组表示的平面区域如图所示:把z =3x +2y 变形为y =-32x +z 2,作与直线l 0:y =-32x 平行的直线l ,显然当l 经过可行域内点M 时在y 轴上截距最小,z 也最小.由⎩⎪⎨⎪⎧2x +y =12,2x +3y =24,∴⎩⎪⎨⎪⎧x =3,y =6,即M (3,6)时,z =3x +2y 的值最小. 【答案】 (3,6)3.设z =2y -2x +4,式中的x ,y 满足条件⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1,则z 的取值范围是________.【解析】 作出满足不等式组⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤2,2y -x ≥1的可行域(如图所示),作直线2y -2x =0,并将其平移,由图象可知当直线经过点A (0,2)时,z max =2×2-2×0+4=8; 当直线经过点B (1,1)时,z min =2×1-2×1+4=4. 所以z 的取值范围是[4,8]. 【答案】 [4,8]4.(2013·连云港检测)设实数x ,y 满足⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,则yx的最大值是________.【解析】 不等式组表示的平面区域如图所示:又y x =y -0x -0表示过平面区域内一点(x ,y )与原点(0,0)的直线的斜率,由图知(x ,y )在平面区域内A 点处时直线斜率最大.由⎩⎪⎨⎪⎧x +2y -4=0,2y -3=0得⎩⎪⎨⎪⎧x =1,y =32,∴A (1,32),∴y x 的最大值为32.【答案】 325.(2013·无锡检测)二元一次方程组⎩⎪⎨⎪⎧x <0,y <0,x +y +4>0表示的平面区域内,使得x +2y 取得最小值的整点坐标为________.【解析】 不等式组表示的平面区域如图所示:∵平面区域不包括边界,∴平面区域内的整点共有(-1,-1),(-1,-2),(-2,-1)三个. 代入检验知,整点为(-1,-2)时x +2y 取得最小值. 【答案】 (-1,-2)6.已知⎩⎪⎨⎪⎧x +y -1≤0,x -y +1≥0,y ≥-1,且u =x 2+y 2-4x -4y +8,则u 的最小值为________.【解析】 不等式组表示的平面区域如图所示,由已知得(x -2)2+(y -2)2=(u )2,则(u )min =|2+2-1|1+1=32,u min =92.【答案】 927.已知变量x ,y 满足约束条件1≤x +y ≤4,-2≤x -y ≤2.若目标函数z =ax +y (其中a >0)仅在点(3,1)处取得最大值,则a 的取值范围为________.【解析】 由题设知可行域为如图所示的矩形,要使目标函数z =ax +y 在点(3,1)处取得最大值,结合图形可知a >1.【答案】 (1,+∞)8.如果点P 在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0内,点Q 在曲线x 2+(y +2)2=1上,那么|PQ |的最小值为________.【解析】 首先作出不等式组表示的平面区域和曲线x 2+(y +2)2=1,如图所示,从而可知点P 到Q 的距离最小值是可行域上的点到(0,-2)的最小值减去圆的半径1,由图可知|PQ |min =12+-22-1=5-1。

简单的线性规划问题 说课稿 教案

简单的线性规划问题   说课稿  教案

简单的线性规划问题学习内容总析线性规划位于不等式和直线方程的结合点上,是培养学生转化能力和熟练运用数形结合能力的重要内容。

这一节的知识内容形成了一条结构紧密的知识链条:以二元一次不等式(组)表示的平面区域为基础,根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法解决简单的线性规划问题。

情总析本节内容是在学习了直线方程、二元一次不等式(组)所表示的平面区域的基础上,强调应用转化思想和数形结合思想来解决线性规划问题。

三维教学目标知识与技能:①了解线性规划的意义以及约束条件、线性目标函数、可行域、最优解等相关的基本概念;②在巩固二元一次不等式(组)所表示的平面区域的基础上,能从实际优化问题中抽象出约束条件和目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;③掌握对一些实际优化问题建立线性规划数模型并运用图解法进行求解的基本方法和步骤。

过程与方法:①培养学生的形象思维能力、绘图能力和探究能力;②强化数形结合的数思想方法;③提高学生构建(不等关系)数模型、解决简单实际优化问题的能力。

情感、态度与价值观:①在感受现实学生产、学生活中的各种优化、决策问题中体验应用数的快乐;②在运用求解线性规划问题的图解方法中,感受动态几何的魅力;③在探究性练学习中,感受多角度思考、探究问题并收获探究成果的乐趣。

教学重点及应对策略1、教学重点:根据实际优化问题准确建立目标函数,并依据目标函数的几何含义直观地运用图解法求出最优解;2、应对策略:将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题,然后借助直线方程的只是进行解决。

教学难点及应对策略1、教学难点:y轴上的截距与z最值之间的关系;①借助线性目标函数的几何含义准确理解线性目标函数在②用数语言表述运用图解法求解线性规划问题的过程。

2、应对策略:在理论解释的同学时,可用动画进行演示辅助理解。

教学过程设计。

高中数学《3.3简单的线性规划问题(1)》教案新人教版必修5

高中数学《3.3简单的线性规划问题(1)》教案新人教版必修5

简单的线性规划问题(1)
教学目标:了解线性规划的意义、了解可行域的意义;掌握简单的二元线性规划问题的解法. 教学重点、难点:二元线性规划问题的解法的掌握.
教学过程:
一.问题情境
1.问题:在约束条件41043200
x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩下,如何求目标函数2P x y =+的最大值?
二.学生活动
探究:1.作出约束条件41043200
x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩所表示的平面区域:
2. 将目标函数2P x y =+变形为2y x P =-+的形式,它表示一条直线,斜率为_____________________,在y 轴上的截距为_________________________;
3.作出直线0l :2y x =-,并平移;
因此,
三.建构数学
1.可行域:
2.线性规划:
说明:
四.数学运用
例1.设2z x y =+,式中变量,x y 满足条件4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩
,求z 的最大值和最小值.
例2.设z=6x-10y ,式中,x y 满足条件4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩
,求z 的最大值.
说明:1.线性目标函数的最大值、最小值一般在可行域的顶点处取得;
2.线性目标函数的最大值、最小值也可在可行域的边界上取得,即满足条件的最优解有无数多个.
练习:课本第89页练习第1,2,3题.五.回顾反思:
六.作业布置:
书P87 习题3.3 3(1),5,7 ,8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学:《简单的线性规划问题》(第一课时)说课稿一、内容与内容解析本节课是《普通高中课程标准实验教科书数学》人教A版必修5第三章《不等式》中3.3.2《简单的线性规划问题》的第一课时. 主要内容是线性规划的相关概念和简单的线性规划问题的解法.线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,广泛地应用于军事作战、经济分析、经营管理和工程技术等方面.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出.简单的线性规划关心的是两类问题:一是在人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;二是给定一项任务,如何合理规划,能以最少的人力、物力、资金等资源来完成. 教科书利用生产安排的具体实例,介绍了线性规划问题的图解法,引出线性规划等概念,最后举例说明了简单的二元线性规划在饮食营养搭配中的应用.本节内容蕴含了丰富的数学思想方法,突出体现了优化思想、数形结合思想和化归思想.本节教学重点:线性规划问题的图解法;寻求有实际背景的线性规划问题的最优解.二、目标和目标解析(一)教学目标1.了解约束条件、目标函数、可行解、可行域、最优解等基本概念.2. 会用图解法求线性目标函数的最大值、最小值.3.培养学生观察、联想、作图和理解实际问题的能力,渗透化归、数形结合的数学思想.4.结合教学内容培养学生学习数学的兴趣和“用数学”的意识.(二)教学目标解析1. 了解线性规划模型的特征:一组决策变量(,)x y表示一个方案;约束条件是一次不等式组;目标函数是线性的,求目标函数的最大值或最小值.熟悉线性约束条件(不等式组)的几何表征是平面区域(可行域).体会可行域与可行解、可行域与最优解、可行解与最优解的关系.2.使学生学会从实际优化问题中抽象、识别出线性规划模型.能理解目标函数的几何表征(一组平行直线).能依据目标函数的几何意义,运用数形结合方法求出最优解和线性目标函数的最大(小)值,其基本步骤为画、移、求、答.3.教学中不但要教教材,还要教教材中的蕴含的方法.在探究如何求目标函数的最值时,通过以下几方面让学生领悟数形结合思想、化归思想在数学中的应用.(1)不定方程的解与平面内点的坐标的结合,进而产生了直线的方程.(2)线性目标函数解析式与直线的斜截式方程的结合.(3)线性目标函数的函数值与直线的纵截距的结合.(4)二元一次不等式(组)的解集与可行域的结合.(5)线性目标函数在线性约束条件下的最值与直线过可行域内的点时纵截距的最值的结合.这样就能使学生对数形结合思想的理解更透彻,为以后解析几何的学习和研究奠定基础,使学生从更深层次理解“以形助数”的作用以及具体方法.4. 在线性规划问题的探究过程中,使学生经历观察、分析、操作、归纳、概括的认知过程,培养解决运用已有知识解决新问题的能力.三、教学问题诊断分析本节课学生在学习过程中可能遇到以下疑虑和困难:(1)将实际问题抽象成线性规划问题;(2)用图解法解线性规划问题中,为什么要将求目标函数最值问题转化为经过可行域的直线在y轴上的截距的最值问题?如何想到要这样转化?(3)数形结合思想的深入理解.为此教学中教师要千方百计地为学生创设探究情境,并作合理适度的引导,通过学生的积极主动思考,运用由特殊到一般的研究方法,借助于讨论、动手画图等形式进行深入探究.教师的引导是至关重要的,要做到既能给学生启示又能发展学生思维,让学生通过自己的探究获取直接经验.教学难点:用图解法求最优解的探索过程;数形结合思想的理解.教学关键:指导学生紧紧抓住化归、数形结合的数学思想方法找到目标函数与直线方程的关系四、教法分析新课程倡导学生积极主动、勇于探索的学习方式,课堂中应注重创设师生互动、生生互动的和谐氛围,通过学生动手实践、动脑思考等方法探究数学知识获取直接经验,进而培养学生的思维能力和应用意识等.本节课以学生为中心,以问题为载体,采用启发、引导、探究相结合的教学方法.(1)设置“问题”情境,激发学生解决问题的欲望;(2)提供“观察、探索、交流”的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取直接经验.(3)在教学中体现“重过程、重情感、重生活”的理念; (4)让学生经历“学数学、做数学、用数学”的过程. 五、教学支持条件分析根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,调动学生的学习兴趣,借助信息技术工具,以“几何画板”软件为平台,将目标函数与直线方程进行转化,通过直线的平行移动的演示,观察纵坐标的变化,求出目标函数的最值.让学生学会用“数形结合”思想方法建立起代数问题和几何问题间的密切联系.六、教学过程(一) 创设情境,激发探究欲望 组织学生做选盒子的游戏活动.在下图的方格中,每列(x )与每行(y )的交汇处都放有一个盒子,每次你只能选其中的一个盒子,每个盒子对应一个分值,即为你的得分,而且该分值与盒子所在的行数和列数有关,且每次的关系式在变化,你会选哪个盒子?例如: 第一次:分值=x y + (即: 列数+行数) 第二次:分值=2y x - (即: 行数-列数×2)师生活动:教师组织学生做选盒子得分的游戏,学生用“运算—比较”的方法容易解决老师提出的问题.之后,给出图3,让学生在图中找目标函数2b x y =+的最大值,学生沿用上面计算的方法显然很复杂,于是学生的思维产生“结点”.引出课题,提出何为线性(即为一次的)?xy 0 12 345 1 24 3 y 012 3 45 x12 43图1图2怎么规划(即求函数的最值)?是本节课的研究重点.【设计意图】数学是现实世界的反映.创设学生感兴趣的问题情境,从兴趣解决→稍有困难→有较大困难,使学生产生急于解决问题的内驱力,同时培养学生从实际问题抽象出数学模型的能力.(二)独思共议,引导探究方法引导学生由特殊到一般分析目标函数的函数值. 问题1:当6b =时,求x ,y 的值.师生活动:学生通过计算找到三个点的坐标,并观察出三点共线,求出直线方程26y x =-+,教师引导学生观察6b =所对应的直线的纵截距.【设计意图】通过特殊问题,帮助学生理解问题的实质:求x ,y 的值即求不定方程的解.数形结合,将求变量x ,y 转化成求点的坐标(,)x y .观察6b =时三个盒子所在点的位置关系及直线的方程,使学生体会b 值就是直线的纵截距.问题2.在图3中,求2b x y =+的最大值.师生活动:学生在教师的引导下分组讨论,求b 的最大值.通过之前教师的引导及学生对上一节“二元一次不等式表示的平面区域”的学习,对学生的讨论结果有两种预案:预案1:学生通过由特殊到一般的分析,将目标函数2b x y =+转化成2y x b =-+,x ,y 在x14 523791011 812 3 4 Oy图3取得每个可行解时,b 的取值就是直线2y x b =-+过(,)x y 这个点时的纵截距,而所有这些直线都是平行的,因此只需平移直线看纵截距的最大值即可.预案2:根据上一节“二元一次不等式(组)所表示的平面区域”的知识,学生认为b 取最大值时x 、y 的取值一定在直线26y x =-+的右上方的位置,为此就依次在这些位置上画平行于26y x =-+的直线,只要上面有点就不停的画,直至最后一点.师生活动:学生展示讨论结果,教师借助几何画板作演示、分析,渗透转化和数形结合的数学思想.并对学生的结论作出总结,先作直线2y x =-,再作平移,观察直线的纵截距.【设计意图】由特殊到一般,利用数形结合,寻求解题思路. (三)变式思考,深化探究思路1.将目标函数变成34b x y =+, 求b 的最大值.师生活动:通过学生将34b x y =+化成344b y x =-+的形式,做直线34y x =-并进行平移,观察纵截距的最大值的回答过程,教师强调解题步骤:画、作、移、求.【设计意图】规范方法并检验学生对方法的理解程度,使学生感受由直线斜率的变化引起使b 取最大值的过程中点的变化.2.将目标函数变成34b x y =-,求b 的最大值.师生活动:教师引导学生比较此题和上题的区别,学生发现平移直线时若按上题的方法找纵截距的最大值便会出现问题,通过思考、讨论,找到本题需取截距最小的原因.【设计意图】通过目标函数的不同变式,让学生熟悉求最值的方法,尤其是直线中纵截距的符号为负的情况.借助“几何画板”集中呈现目标函数的图形变化,提高课堂效率,建立精准的数形联系.(四)规范格式,应用探究成果1.例1:(习题3.3A 组第3题)电视台应某企业之约播放两套连续剧,其中,连续剧甲每次播放时间为80min ,其中广告时间为1min ,收视观众为60万;连续剧乙每次播放时间为40min ,广告时间为1min ,收视观众为20万.已知此企业与电视台达成协议,要求电视台每周至少播放6mi n 广告,而电视台每周只能为该企业提供不多于320min 的节目时间.如果你是电视台的制片人,电视台每周应播映两套连续剧各多少次,才能获得最高的收视率?播放时间广告时间观众人数(万)(min)(min) 甲 80 1 60 乙 40120320≥ 6≤解:设甲播放x 次,乙播放y 次,收视观众z 万人次 则6020z x y =+.8040320,6,0,0.x y x y x y +≥⎧⎪+≤⎪⎨≥⎪⎪≥⎩ 用如下步骤求z 的最大值: (1)画出可行域;(2)作出直线0l :3y x =-(3)平移0l 至点A 处纵截距最大,即z 最大;(4)解方程组:80403206x y x y +=⎧⎨+=⎩ 得24x y =⎧⎨=⎩,因此max200z=.答:甲播放2次,乙播放4次,收视观众最多为200万人次.师生活动:教师引领学生理解题意,让学生继续领会用表格形式描述数据的直观性.让学生独立建立线性规划的数学模型,并正确设出变量,找好目标函数及约束条件后自行完成此题.通过学生板演,教师规范写法,然后借助解题的过程介绍线性目标函数、线性约束条件、可行解、可行域、最优解及线性规划的数学概念.【设计意图】利用学生感兴趣的例子激发学习动机,通过一道完整的简单线性规划问题,让学生掌握解决简单线性规划问题的基本步骤,培养学生的数学建模意识.同时进一步加深对图解法的认识.2.反思例1解题过程,深入体会数形结合思想师生活动:教师引导学生纵观解题过程,体会在解题中“数”与“形”是怎样结合的,并加以总结.代数几何线性目标函数6020z x y =+ 直线320zy x =-+线性目标函数的函数值直线的纵截距转化图4xyO线性约束条件(二元一次不等式(组)的解集) 可行域线性目标函数的最值直线的纵截距的最值【设计意图】通过反思总结,加强对“数形结合”数学思想的认识,形成学生良好的认知结构.3.例2:(课本例2)营养学家指出,成人良好的日常饮食应该至少提供0.075kg 的碳水化合物,0.06kg 的蛋白质,0.06kg 的脂肪.1kg 食物A 含有0.105kg 的碳水化合物,0.07kg 的蛋白质,0.14kg 的脂肪,花费28元; 1kg 食物B 含有0.105kg 的碳水化合物,0.14kg 的蛋白质,0.07kg 的脂肪,花费21元.为了满足饮食要求,同时使花费最低,需要同时食用食物A 和食物B 各多少kg?师生活动:学生独自完成此题,由一位同学生展示自己的解题过程和结果.规范解题步骤和格式.解:设每天食用x kg 食物A ,y kg 食物B ,总成本为z ,那么0.1050.1050.075,0.070.140.06,0.140.070.06,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩① 目标函数为2821z x y =+.二元一次不等式组①等价于775,7146,1476,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩ ②二元一次不等式组所表示的平面区域(图5),即可行域.考虑2821z x y =+,将它变形为4321zy x =-+.这里4321z y x =-+是斜率为43-,随z 变化的一组平行直线,21z是直线在y 轴上的截距,当21z取最小值时,z 的值最小.当然直线要与可行域相交,即在满足约束条件时目标函数2821z x y =+取得最小值.由图5可见,当直线2821z x y =+经过可行域上的点M 时,截距21z最小,即z 最小. MN图5O xy解方程组775,147 6.x yx y+=⎧⎨+=⎩得M的坐标为17x=,47y=.所以282116z x y=+=.答:每天食用食物A为17kg,食物B为47kg,能够满足日常饮食要求,又使花费最低,最低成本为16元.【设计意图】通过此题检测学生对已学知识的掌握情况,进一步培养学生的运算能力和准确作图的能力.4.反思例2的求解过程.教师通过巡视发现错解的学生,帮助学生找到错误的原因.并提出问题:有时若由于不可避免的误差带来错解,你如何解决?师生活动:由教师帮助学生分析错解的原因,并提出问题.学生意识到可以把所有可能的解都求出来,进行比较即可.【设计意图】通过反思及寻求问题答案,让学生深入思考,培养学生科学严谨的学习态度和解决问题的能力.(五)归纳梳理,体会探究价值由学生和教师共同总结本节课所学到的知识.师生活动:先由学生总结学习的内容,教师作补充说明,尤其是本节课是如何经历的知识探究过程,如何运用化归与数形结合思想得到方法,以及如何通过数学建模解决实际问题.再有教师介绍数学是有用的,通过本节课看到了时间如何合理分配收获最大的问题,如何使消费最少保证饮食健康的问题,还有很多实际应用由学生自己查资料作为拓展作业.【设计意图】通过总结,培养学生数学交流和表达的能力,养成及时总结的良好习惯,并将所学知识纳入已有的认知结构.(六)目标检测题1.在线性约束条件5315153x yy xx y+≤⎧⎪≤+⎨⎪-≤⎩下,求①目标函数35z x y=+的最大值和最小值;②目标函数310z x y=-的最大值和最小值;2.某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天工作8h计算,该厂所有可能的日生产安排是多少?【设计意图】检测题主要考查学生对本节课重点知识的掌握情况,检查学生能否运用所学知识解决问题的能力;拓展作业的设置是为了教会学生怎样利用资料进行数学学习,同时让学生了解网络是自主学习和拓展知识面的一个重要平台,这是本节内容的一个提高与拓展.。

相关文档
最新文档