量子点英语介绍
量子点
量子点(quantum dot,QD)又可称为半导体纳米微晶体(semiconductor nanocrystal),是一种由II-VI族或III-V族元素组成的稳定的、溶于水的、尺寸在2~20nm之间的纳米晶粒。
目前研究较多的是CdS、CdSe、CdTe、ZnS等。
近年来,半导体量子点由于其独特的性质越来越受到人们的重视,其研究内容涉及物理、化学、材料、生物等多学科,已成为一门新兴的交叉学科。
作为一种最新型的荧光材料,与传统的有机染料分子相比量子点确实具有多种优势。
其中最大的优点在于有丰富的颜色。
单一种类的纳米半导体材料就能够按尺寸变化产生一个发光波长不同的、颜色分明的标记物家族,这是染料分子根本无法实现的。
此外,它激发光谱宽,且连续分布;而发射光谱单色性好,且颜色可调;并能够承受多次的激发和光发射,有持久的稳定性;空间位阻小,适于单分子标记。
因此,这些优异的光学性质使得量子点在生物化学、分子生物学、细胞生物学、基因组学、蛋白质组学、药物筛选、生物大分子相互作用等研究中有极广的应用前景。
introduction of quantum dot量子点技术介绍(附演讲稿)-半导体物理全英文展示
Introuction
Nanoscale crystals<=100nm Diameter of ≈10 to 50 atoms Contains 100 - 100,000 atoms
Introuction
Emission spectrum controlled by size Larger QDs emit longer wavelengths Smaller QDs emit shorter wavelengths
4. From our course, we know it’s nano scale size make quantum dots so special. The important point is Bohr diameter. These data is cited form our course slides. In this kind of single point, carriers are constrained strongly. So they have discrete, quantized energy levels, according to the laws of quantum theory. It is a bit like individual atoms, sometimes known as "artificial atoms."
Fluorescence mages for the detection of CEA
Conclusion
Nanocrystal Size controlling emission color Optical, biomedical research application
电致发光量子点材料
电致发光量子点材料
电致发光量子点(Electroluminescent Quantum Dots)是一种新型的发光材料,具有优异的光电性能和调控性。
本材料由纳米尺寸的半导体颗粒构成,可以在电场激励下发射
可见光。
制备电致发光量子点的方法主要包括热分解法、溶液法和气相沉积法。
对于热分解法,先将金属前驱体(如金属鹅卵石矿、金属氧化物或金属甲酸盐)溶解在有机溶剂中,然后
在高温下加入表面活性剂,通过热解使前驱体成核并生长成量子点。
溶液法是将前驱体溶
解在溶剂中,然后通过热解或光解、氧化还原等反应使其形成量子点。
气相沉积法则是将
前驱体蒸发或溶解在气体载气中,然后在高温下使其气体相转变为固体相。
电致发光量子点具有调控发光波长的优点,可以通过改变量子点的尺寸和组成来实现。
这种材料还具有较高的量子效率、较长的寿命和优异的色纯度。
在应用方面,电致发光量
子点被广泛应用于LED显示器、照明、生物成像等领域,具有重要的应用潜力。
需要注意的是,电致发光量子点的制备过程需要进行严格的实验条件控制,并且在实
际应用中仍然存在一些挑战,如量子点表面的稳定性、合成成本和环境友好性等问题。
未
来的研究将需要进一步改进材料制备技术,以实现电致发光量子点的商业化应用。
量子点(Quantum
量⼦点(Quantum Dots)量⼦点(quantum dot)是准零维(quasi-zero-dimensional)的奈⽶材料,由少量的原⼦所构成。
粗略地说,量⼦点三个维度的尺⼨都在100奈⽶(nm)以下,外观恰似⼀极⼩的点状物,其内部电⼦在各⽅向上的运动都受到局限,所以量⼦局限效应(quantum confinement effect)特别显著。
由于量⼦局限效应会导致类似原⼦的不连续电⼦能阶结构,因此量⼦点⼜被称为「⼈造原⼦」(artificial atom)。
科学家已经发明许多不同的⽅法来制造量⼦点,并预期这种奈⽶材料在⼆⼗⼀世纪的奈⽶电⼦学(nanoelectronics)上有极⼤的应⽤潜⼒。
若要严格定义量⼦点,则必须由量⼦⼒学(quantum mechanics)出发。
我们知道电⼦具有粒⼦性与波动性,电⼦的物质波特性取决于其费⽶波长(Fermi wavelength)λF = 2π / k F在⼀般块材中,电⼦的波长远⼩于块材尺⼨,因此量⼦局限效应不显著。
如果将某⼀个维度的尺⼨缩到⼩于⼀个波长(如图⼀所⽰),此时电⼦只能在另外两个维度所构成的⼆维空间中⾃由运动,这样的系统我们称为量⼦井(quantum well);如果我们再将另⼀个维度的尺⼨缩到⼩于⼀个波长,则电⼦只能在⼀维⽅向上运动,我们称为量⼦线(quantum wire);当三个维度的尺⼨都缩⼩到⼀个波长以下时,就成为量⼦点了。
由此可知,并⾮⼩到100nm以下的材料就是量⼦点,真正的关键尺⼨是由电⼦在材料内的费⽶波长来决定。
⼀般⽽⾔,电⼦费⽶波长在半导体内较在⾦属内长得多,例如在半导体材料砷化镓GaAs(100)中,费⽶波长约40nm,在铝⾦属中却只有0.36nm。
⽬前量⼦点的制造⽅法主要有以下四种:1.化学溶胶法(chemical colloidal method):以化学溶胶⽅式合成,可制作复层(multilay ered)量⼦点,过程简单,且可⼤量⽣产。
2023年诺贝尔化学奖发现和合成量子点简单介绍一下
2023年诺贝尔化学奖发现和合成量子点引言1. 量子点(Quantum Dots)是一种被广泛应用于物理、化学、生物学和材料科学等领域的纳米材料。
它们具有独特的光学和电学性质,因此在显示技术、生物成像、太阳能电池和光电子器件等方面具有巨大的应用潜力。
2. 2023年诺贝尔化学奖的获奖者对量子点的发现和合成做出了重要贡献,为相关领域的研究和应用带来了突破性进展。
第一部分:量子点的发现3. 量子点最早由美国物理学家Louis E. Brus在1984年提出,他发现了半导体纳米晶体在光激发下呈现出尺寸依赖的光学性质。
这一发现开启了量子点研究的大门,引起了科学界的广泛关注。
4. 随后,许多科学家对量子点进行了深入研究,发现了它们的量子限制效应和色调依赖性质,为量子点的合成和应用奠定了基础。
第二部分:量子点的合成5. 量子点的合成一直是科学家们关注的焦点之一。
早期的研究主要使用离子束沉积、化学气相沉积和溶液法等方法,但存在着合成难度大、成本高和产率低的问题。
6. 随着科学技术的发展,研究人员不断探索新的合成方法,如微乳液法、热分解法、离子交换法等,逐渐实现了高效、低成本的量子点合成,为量子点的大规模应用奠定了基础。
第三部分:2023年诺贝尔化学奖的获得者7. 2023年诺贝尔化学奖的获得者在量子点的研究和应用方面取得了重大突破,对其发明和发现做出了杰出贡献。
8. 他们的研究不仅推动了科学理论的发展,还为量子点在荧光标记、生物成像、光催化和电子器件等方面的广泛应用提供了重要技术支持。
结论9. 2023年诺贝尔化学奖的颁发,标志着量子点研究取得了巨大的成就,对于促进纳米材料科学和技术发展具有重要意义。
10. 量子点的发现和合成不仅丰富了人们对纳米材料的认识,还为未来的科研和应用提供了无限可能,有望在多个领域产生革命性的影响。
量子点(Quantum Dots)是一种具有独特光学和电学性质的纳米材料,是纳米技术领域的重要研究对象。
量子点具有量子力学的
量子点具有量子力学的英文回答:Quantum dots exhibit quantum mechanical effects due to their nanoscale dimensions. These effects include:Quantization of energy levels: The energy levels of electrons in quantum dots are discrete, meaning they can only occupy certain specific energies. This is in contrast to the continuous energy levels of electrons in bulk materials.Tunable bandgap: The bandgap of a quantum dot is the energy difference between the valence band and the conduction band. The bandgap of a quantum dot can be tuned by changing the size of the dot. This allows quantum dots to be used in a variety of optoelectronic applications.Enhanced optical properties: Quantum dots have enhanced optical properties, such as high photoluminescenceefficiency and narrow emission spectra. These properties make quantum dots ideal for use in applications such as light-emitting diodes (LEDs), lasers, and solar cells.中文回答:量子点由于其纳米尺度的尺寸而表现出量子力学效应。
量子点 生物 碳 氧化锌
量子点生物碳氧化锌全文共四篇示例,供读者参考第一篇示例:量子点(Quantum Dots,QDs)是一种微纳米级别的半导体材料,具有尺寸特异性的荧光特性。
由于其在生物医学和光电子学领域具有广泛的应用前景,因此成为当前研究的热点之一。
本文将重点介绍量子点在生物医学领域的应用,尤其是与碳和氧化锌等材料的复合使用。
量子点在生物医学领域的应用主要集中在生物成像、药物输送、分子诊断和疾病治疗等方面。
由于其尺寸特异性的荧光特性,量子点可以被用作生物标记物,用于追踪细胞内分子的运动以及研究生物过程中的相互作用。
与传统的有机荧光染料相比,量子点具有更高的光稳定性和荧光量子产率,可以提高成像的分辨率和灵敏度。
在生物成像领域,碳量子点被广泛应用于细胞标记和活细胞成像。
碳量子点具有优异的生物相容性和荧光性能,可以有效提高细胞的成像质量。
碳量子点还可通过表面修饰实现靶向成像,进一步提高成像的特异性和灵敏度。
除了单独应用外,碳和氧化锌量子点还可以被复合利用,形成复合量子点系统,以实现多功能性的应用。
碳量子点和氧化锌量子点可以通过表面修饰和功能化实现靶向荧光标记和药物输送,在肿瘤治疗和诊断中展现出良好的应用前景。
第二篇示例:量子点是一种微细颗粒,大小约在几纳米到几十纳米之间,能够在特定条件下发光。
它们最初是由化学家发现的,但后来被生物学家发现可以在生物体内起到一定的作用。
碳量子点是一种被广泛研究的量子点材料,具有良好的生物相容性和荧光性能。
氧化锌量子点则是一种较新的研究对象,其在生物医学领域的应用前景也备受期待。
量子点的发光性能主要依赖于其尺寸和结构。
在碳量子点中,碳原子通过化学方法的控制形成亚甲基结构,这种结构在生物组织中有良好的相容性,因此碳量子点被广泛应用于生物成像、药物传递和生物传感器等领域。
碳量子点的荧光性能可以通过调节其表面官能团来实现,使其在不同波长的激发下发出不同颜色的荧光。
氧化锌量子点是由氧化锌纳米晶通过特定方法剥离得到的,具有较好的荧光性能和抗氧化性质。
有关量子点的专业名词次
量子点
有关量子点的专业名词次
1.猝灭效应:荧光的猝灭(熄灭)一词,从广义上说,指的是任何可使某给定荧光物质的
荧光强度降低的作用,或者任何可使荧光强度不与荧光物质的浓度呈线性关系的作用。
从狭义上说,指的是荧光物质分子与溶剂分子或其它溶质分子之间的相互作用,导致荧光强度降低的现象。
与荧光物质发生相互作用而使荧光强度降低的物质,称为猝灭剂。
荧光猝灭的形式很多,机理也比较复杂。
2.量子点连接分为两种:静电吸附和共价连接
最稳定的方式是共价连接
共价连接需要两个条件:
(1)量子点上有供连接反应的化学基团(羧基羟基氨基巯基)
(2)待连接分子上有发生反应的化学基团(同样是氨基羧基巯基羟基)
你提供的小分子上没有能够用于连接量子点的官能团
所以化学连接的可能性没有
另外还有一种方法是通过小分子的分子间聚合包覆到量子点外层
但是通过结构式分析你的小分子不能形成大分子聚合物
所以不可能包覆连接量子点。
荧光量子点——精选推荐
荧光量子点在生物体内分子和细胞成像中的应用[原文] Xiaohu Gao, Lily Yang, John A Petros, Fray F Marshall, Jonathan W Simons and Shuming Nie. In vivo molecular and cellular imaging with quantum dots. Current Opinion in Biotechnology2005, 16, 63–72.量子点(Quantum Dot)是一类具有纳米尺寸的发光粒子,它作为一类新的荧光材料被应用于生物分子和细胞成像中。
和传统的有机染料分子和荧光蛋白相比,量子点具有独特的光学和电子性质,如它具有发射光波长可调,高亮度,抗光漂白性以及多种量子点不同颜色荧光同时激发的优点。
目前已经开发出多功能的纳米微粒荧光探针就具有高亮度和生物体内稳定存在的特点。
在量子点的结构设计上,先在量子点基本结构的外围引入一层两性的共聚物外壳,然后再将这层外壳与肿瘤特异性识别配体或药物转运官能团相连。
带有聚合物外壳的量子点对细胞和动物是无毒的,但它们对细胞的长期毒性和降解机制还需要深入研究。
与生物组织相连的量子点为动物或是人体高灵敏多元细胞成像技术开辟了道路。
简介半导体量子点在过去的20年里已经引起了广大科学工作者的兴趣,它表现出来的奇特的光学和电子性质是单个分子或是大尺寸的固体所没有的。
近来,纳米荧光量子点已经被用来作为荧光探针用于生物机理的研究,与传统的有机染料和荧光蛋白相比,它具有以下的优点:通过调节量子点的大小和组成可以获得从红外到可见波长的荧光发射,而且它在比较宽的吸收波长范围内具有大的摩尔消光系数,它较其他类型的荧光探针具有高亮度和光稳定性的优点[1]。
因为它的宽吸收波长范围和窄发射波长,各种颜色和发射强度的量子点被用于生物体蛋白、基因序列和其他生物分子的研究[2-4]。
尽管荧光量子点具有相对大的尺寸(直径2-8nm),但现有的研究表明量子点荧光探针的行为与荧光蛋白(直径4-6nm)类似,而且从目前的荧光量子点的众多应用实例中还没有发现它在成键动力学和立体位阻方面存在问题[5-12]。
量子点, 量子棒,背光板
Quantum Dots and Aligned Quantum Rods for Polarized LC Backlights†Kristiaan Neyts*, Mohammad Mohammadimasoudi*, Zeger Hens**, Jeroen Beeckman* *LCP group, ELIS Department, Ghent University, Ghent, Belgium**PCN group, Chemistry Department, Ghent University, Ghent, BelgiumAbstractA backlight that emits linearly polarized light would make it possible to increase the transmission through the first polarizer by a factor two. We used quantum rods that have a CdSe core that emits partially polarized yellowish green light (around 570 nm) and a CdS bulk that absorbs blue. The quantum rods can be aligned with their long axis parallel to an applied electric field with sufficient amplitude. The resulting layer emits linearly polarized light with a high degree of polarization. Such a layer can be used in different backlight configurations.Author KeywordsPolarized backlight; quantum dots; quantum rods; electric field alignment; backlight architectures.1. IntroductionIn conventional LC displays, the backlight combines blue-emitting GaN-based LEDs with a yellow phosphor to obtain a white spectrum. The yellow phosphor downconverts blue photons from the LED to photons with a wide spectral range that covers green, yellow and red. The LC display contains color filters that transmit only red, green or blue light within well-defined wavelength bands. To obtain a display with a wide color gamut [2], the spectrum of the blue green and red primaries that pass through the color filters should have narrow wavelength bands around respectively 460, 530 and 630 nm [1, 2].Figure 1. Top: CdSe quantum dots with narrow bandemission. The central wavelength of the emission is determined by the size and the interface properties of the quantum dots: smaller quantum dots are emitting photons with higher energy. Middle: CdSe quantum dot inside a CdS rod. Bottom: TEM image of the quantum rods used inthis work. It is most efficient to use downconversion phosphors that emit a narrow-band green or red spectrum, because the LC color filters can then transmit almost all of the green or red light, while maintaining a high color purity. When wide band green/yellow/red emitters are used, the color filters have to absorb all photons that are not in the desired bands to obtain the required color purity.Semiconductor quantum dots based on CdSe can emit photons in a narrow (~20 nm) wavelength band in the visible light. If the diameter of a quantum dot decreases below 10 nm, the electron energy bands split up in individual levels and the band gap between the lowest conduction level and the highest valence level increases. The result is that smaller quantum dots have a fluorescent emission that is blue shifted compared to the emission of bulk CdSe, as illustrated in Figure 1. By changing the size of the CdSe quantum dots, by making alloys with other materials (ZnSe, ZnS) or by adding a shell of another material (CdS), the central wavelength of the fluorescent emission band can be adapted to match the values that are of interest for displays: 530 nm and 630 nm. The quantum efficiency (the probability to emit a green or red photon per blue photon absorbed) of the quantum dots can be in the order of 80%. This means that quantum dots can combine a narrow emission band with a high efficiency. Compared to organic dyes, quantum dots have the advantage that they are less sensitive to bleaching. Figure 2: Different configurations to incorporate quantum dots or quantum rods in a liquid crystal display backlight.Top row: the light of the blue LED is coupled to a light guide plate and the downconversion particles are placed on the light guide. Bottom row: the downconversion particles are placed in the vicinity of the blue LED and red green and blue light are coupled to the light guide. Left column: quantum dots absorb and emit light in an isotropic way. Right column: quantum rods emit light that is mainly polarized along the long axis of the rods. Semiconductor quantum dots can be placed in the immediate vicinity of the blue-emitting LED, in the same way as yellowphosphors are positioned in LEDs for lighting applications. This 552 • SID 2016 DIGEST ISSN 0097-966X/16/4702-0552-$1.00 © 2016 SIDmay be done by depositing the quantum dots on the surface of the LED or by dispersing them in transparent binder material (Figure 2). In the neighborhood of the LED the temperature can be well above room temperature, which can reduce the efficiency of the quantum dots. By placing the quantum dots further away from the LED, for example on a sheet that is in front of the LCD backlight, the temperature requirements can be relaxed. However, in this approach a larger amount of quantum dots is required to convert the same flux of light.LC displays operate with polarized light and therefore a linear polarizer is placed between the backlight and the LC panel. This polarizer absorbs typically 50% of the light. In order to reduce this loss, some backlights use a brightness enhancement foil that is based on an anisotropic Bragg grating that reflects the light with the perpendicular polarization towards the backlight where the polarization can be changed by scattering. This foil has to work for red, green and blue and for a wide range of angles, which makes it very complicated. Realizing a backlight that provides polarized light would be a valuable improvement [3]. Quantum rods are long-shaped semiconductor particles that are realized by anisotropic growth from solution. We consider here quantum rods made of CdS with a quantum dot core of CdSe, as illustrated in Figure 1. The CdS rod is tens of nm long and behaves mainly as bulk material with a wide absorption band [4]. When a photon is absorbed in the CdS shell, the resulting electron and holes are transferred to the CdSe dot where the energy bands are closer together. The central wavelength of the photoluminescence depends on the size of the CdSe dot and can be in the green or red spectral range. Semiconductor quantum rods have a high refractive index and when placed in a medium with a lower refractive index, the electric fields inside the quantum rod will be lower than outside because of dielectric depolarization. Because of the anisotropic shape, electric fields perpendicular to the particle long axis will be reduced more than electric fields along the long axis. As a result, light polarized along the long axis of a quantum rod will be absorbed more effectively in the CdS rod than light that is polarized perpendicularly to the long axis. The absorption by a quantum rod is therefore strongly anisotropic. In a similar way, the emission of a CdSe quantum dot that is surrounded by an anisotropic shell of CdS is strongly anisotropic: the emission is mainly linearly polarized in the plane that contains the long axis of the rod.Quantum rods become particularly interesting when they can be aligned with their long axes in the same direction, because then the material emits polarized light. In literature several methods have been described to align quantum rods, based on electric fields, flow or evaporation. In this work we describe the alignment of CdSe quantum dots in CdS rods that are aligned in a particular direction, parallel with an applied electric field. Figure 2 illustrates two approaches to use aligned nanorods in a polarized backlight: either the aligned nanorods are placed in the neighborhood of the blue-emitting LED and polarized green and red light is coupled to the light guide plate, or the aligned nanorods are placed above the light guide plate. In the first approach less nanorods are needed, but the polarization that is present in the light guide plate must be maintained after scattering to the liquid crystal panel.2. ExperimentalIn this work we describe methods to align quantum rods along a preferred direction by the application of an electric field. Quantum rods have a permanent electrical dipole moment p along the long axis of the particles and this leads to an electrical torque p x E when the quantum rod is present in a homogeneous electric field. Quantum rods that are dispersed individually in a liquid experience random Brownian motion and rotation according to their thermodynamic energy, the viscosity of the liquid and the shape of the particle. When there is a sufficiently strong electric field, the rotational freedom will be limited by the electrical torque and the quantum rod (and its permanent dipole moment) aligns with the electric field vector.DC electric fields are not appropriate to align dispersed quantum rods, because most of the quantum rods are charged and drift in a DC field along the electric field lines to aggregate near the electrode with the opposite polarity. To avoid drift and aggregation near the electrodes, we use an AC electric field. The aim is to align the quantum rods along the electric field lines and reverse their dipole moment every half period. We choose the period of the AC voltage sufficiently short to avoid the transport across the distance between the electrodes, but sufficiently long to allow the quantum rods to reverse their orientation when the voltage switches sign.Recently we have developed procedures to align quantum rods along the electric field and to fixate this alignment. One approach is based on dip-coating as illustrated in Figure 3. A substrate with ITO electrodes in a finger pattern is slowly pulled out of a suspension with CdSe/CdS quantum rods, during the application of an AC electric field [5]. We have demonstrated that this procedure makes it possible to align and fixate the quantum rods in the desired orientation. The alignment of the quantum rods on a substrate after dip coating is visible from the AFM image shown in Figure 3.Figure 3. Top: dip coating in a quantum rod suspension during the application of an electric field to deposit oriented quantum rods on a substrate. Bottom left: AFM image of quantum rods and aggregates on a surface after dip coating and drying. Bottom right: processed AFMimage showing individual quantum rods and theirorientation (aggregates are removed).SID 2016 DIGEST • 553The applicability of quantum rods in a polarized backlight can be evaluated by observing the degree of polarization of the fluorescent emission. Figure 4 illustrates the setup in which the nanorods are illuminated with 470 nm emitting blue LEDs. The nanorods emit yellowish green light that is observed with a polarization microscope.The polarization microscopy images clearly show that the fluorescence of the aligned nanorods is more intense when the polarizer is parallel to the electric field (compared to the polarizer perpendicular to the electric field). One can also note that the distribution of the nanorods is not homogenous: there are more nanorods between the electrodes than on the electrodes.By measuring the photoluminescence as a function of the orientation of the linear polarizer, the degree of polarization of the light can be obtained. The ratio between the minimum and maximum intensity is almost 4, which corresponds to a polarization ratio of 0.6. This is not so far from the polarization ratio of individual quantum rods which has been determined as 0.75.Figure 4. Top left: fluorescence of oriented quantum rods under a polarizing microscope, illumated by blue LEDs at the bottom. Top right: dependency of the PhotoLuminescence intensity on the azimuth angle of the polarizer.Bottom: fluorescence microscopy of a particular region on the substrate with oriented quantum rods with the polarizer parallel (left) and perpendicular (right) to theapplied electric field.3. DiscussionThe nanorods that we have used are not at the optimal color coordinates for a display. We would need nanorods with slightly smaller CdSe quantum dots that emit green light and with slightly larger quantum dots that emit red light. When the alignment is performed with the same polarization ratio as in the experiment outlined above, the polarizer would transmit 80% of the light (instead of 50% for the case of unpolarized light). Figure 5 gives a simple design of the LCD stack, including the blue LEDs that are coupled to the light guide plate, the layer with green and red emitting nanorods, the polarizers and the color filters. The concept illustrated in Figure 5 requires relatively large amounts of nanorods, because approximately two thirds of the blue photons must be absorbed in one pass through the layer (to be transformed into green or red photons). The amount of nanorods could be reduced by placing the nanorods close to the blue LED as illustrated in Figure 2 (lower right part).Figure 5. Concept for an LCD with a polarized LC backlight, based on blue edge-emitting LEDs and red and green photoluminescent nanorods. The liquid crystal panel with color filters, glass substrates and crossed polarizersis also shown.4. ImpactBy using aligned quantum rods we have shown that it is possible to realize a backlight that emits polarized light. The degree of polarization is not sufficient to eliminate the polarizer entirely, but it can reduce the losses in the LC polarizer considerably. In the future blue LEDs could be combined with red and green quantum dots to combine a wide color gamut with improved optical transmission through the LC stack.5. AcknowledgementsParts of this work have been supported by the Interuniversity Attraction Poles program of the Belgian Science Policy Office (grant IAP P7-35 photonics@be).6. References1. E. Jang, S. Jun, H. Jang, J. Llim, B. Kim, and Y. Kim, "White-Light-Emitting Diodes with Quantum Dot Color Converters for Display Backlights," Adv Mater 22, 3076-3080 (2010).2. R. D. Zhu, Z. Y. Luo, H. W. Chen, Y. J. Dong, and S. T. Wu, "Realizing Rec. 2020 color gamut with quantum dot displays," Opt Express 23, 23680-23693 (2015).3. T. C. Teng, and L. W. Tseng, "Slim planar apparatusfor converting LED light into collimated polarized light uniformly emitted from its top surface," Opt Express 22,A1477-A1490 (2014). 554 • SID 2016 DIGEST4. F. Pisanello, L. Martiradonna, G. Lemenager, P. Spinicelli, A. Fiore, L. Manna, J. P. Hermier, R. Cingolani, E. Giacobino, M. De Vittorio, and A. Bramati, "Room temperature-dipolelike single photon source with a colloidal dot-in-rod," Appl Phys Lett 96 (2010).5. M. Mohammadimasoudi, L. Penninck, T. Aubert, R. F. Gomes Pinto Fernandes, Z. Hens, F. Strubbe, and K. Neyts, "Fast and versatile deposition of aligned semiconductor nanorods by dip-coating on a substrate with interdigitated electrodes," Opt Mater Express 3, 2045-2054 (2013).SID 2016 DIGEST • 555。
量子点
量子点(英语:Quantum Dot)是在把导带电子、价带空穴及激子在三个空间方向上束缚住的半导体纳米结构。
这种约束可以归结于静电势(由外部的电极,掺杂,应变,杂质产生),两种不同半导体材料的界面(例如:在自组量子点中),半导体的表面(例如:半导体纳米晶体),或者以上三者的结合。
量子点具有分离的量子化的能谱。
所对应的波函数在空间上位于量子点中,但延伸于数个晶格周期中。
一个量子点具有少量的(1-100个)整数个的电子、空穴或空穴电子对,即其所带的电量是元电荷的整数倍。
描述:小的量子点,例如胶体半导体纳米晶,可以小到只有2到10个纳米,这相当于10到50个原子的直径的尺寸,在一个量子点体积中可以包含100到100,000个这样的原子.自组装量子点的典型尺寸在10到50 纳米之间。
通过光刻成型的门电极或者刻蚀半导体异质结中的二维电子气形成的量子点横向尺寸可以超过100纳米。
将10纳米尺寸的三百万个量子点首尾相接排列起来可以达到人类拇指的宽度。
制造:美国科学家首度利用光将胶状(colloidal)半导体量子点(quantum dot)磁化,且其生命周期远远超过先前的记录。
这个结果除了能激发更多基础研究,对于同时利用自旋与电荷的自旋电子元件(spintronics)领域,也是一项重大的进展。
直到目前,半导体只能在相当低温下呈现磁性,原因是磁化半导体纳米微粒需要靠激子(exciton)之间的磁性交互作用,但此作用的强度在30 K附近就不足以对抗热效应。
最近,华盛顿大学的Daniel Gamelin等人制造出掺杂的纳米微晶,它们的量子局限效应(quantum confinement effect)使激子具有很大的磁性交互作用,且生命周期可长达100 ns,比先前的记录200皮秒(picosecond, ps)高出很多。
研究人员利用光将激子注入胶状纳米微晶中,产生相当强的光诱发磁化(light-induced magnetization)现象。
QuantumDots(量子点概述)
In terms of actual formation, the process characteristically went like this: ten atomic layers of film would form smoothly. As more layers were deposited, the film broke up into tiny pyramid-shaped islands. With more layers, the pyramids self-organized and coarsened, and then became dome-shaped islands.
optical and optoelectronic devices, quantum computing, and information storage.
Semiconductors with QDs as Material for Cascade Lasers
Semiconductors with QDs as Material for IR Photodetectors
The size ,shape and number of electrons can be precisely controlled
Just as in an atom, the energy levels are quantized due to the confinement of electrons.
These huge pressures, as new layers are deposited, force the initially flat film to separate into dots and then pop up into the third dimension to relieve stress, rather than continue to grow against resistance in two dimensions.
量子点escence
Quadruplex QD-IHC Sequential staining was performed using biotinylated antibodies and streptavidin-coated QDs
QD-FISH 检测EBER在 鼻咽癌中的表达
QDs 能为多种标志物作定量分析。 The Nuance spectral imaging system supplied by Cambridge Research Instruments (CRI, Woburn, MA, USA) 上述这个系统能电子分离不同光谱或信号,特别是使 组织的自发荧光与另外的荧光标志物分离。
量子点是一种由Ⅱ-Ⅵ族或Ⅲ-Ⅴ族元素组成的,粒 径约为2-6nm,能够接受激发光产生荧光的半导体纳米 微晶体,生物标记中最常用的是CdSe系列量子点。
荧光强度高,是罗丹明6G的20倍。 荧光稳定,是罗丹明6G的100倍以上,耐光漂白。 颜色丰富,不同粒径大小的量子点具有不同的颜色
,用同一波长的光可激发多种颜色的量子点,使多 组份同时检测成为可能。 这些独特的光学特性,使量子点成为一种最佳的荧 光标记物应用于生物医学领域。
免疫组化、免疫荧光与量子点标 记的免疫荧光检测的优缺点?
S-P法是目前国内使用最广泛的一种免疫酶法,由 于它的敏感性强,效果好,背景清晰,无杂质而大 受人们的欢迎。特点:敏感性较高,特异性强,应 用范围广,节省时间,背景清晰,少非特异性染色, 适合于照相及半永久保存。缺点:某些脏器存在内 源性生物素干扰,streptavidin与核酸及细胞膜中 磷脂有非特异反应,DAB显色有一定的致癌性等。
ቤተ መጻሕፍቲ ባይዱ
传统的免疫荧光染料存在诸多问题:1. 荧光容易漂 白,制作好的切片不能长期保存,影响各种资料的 积累;2. 激发和发射波长差不多,影响检测的敏感 性,也很难与组织或细胞的自发荧光区分,故所作 出的结论较主观;3. 发射波长比较宽,限制了用于 多种信号的检测,而且不适合于石蜡包埋组织的检 测等。
CdSe量子点简要综述2
CdSe量子点综述量子点(quantum dots, QDs)是一种半导体纳米晶(nanocrystals, NCs)通常由Ⅱ-Ⅱ和Ⅱ-Ⅱ族元素组成,如CdSe、CdTe、ZnSe、CuInS、InP等。
也可以由两种或两种上的半导体材料构成,如核壳结构的CdSe/ZnS、CdSe/CdZnS等,以及掺杂结构的ZnS:Mn,ZnSe:Cu等。
1.量子点结构常见的二元半导体量子点由于覆盖光谱有限且稳定性不高,易受外界环境物理化学的影响而发生质量退化,因此,常通过制备合金量子点或核壳结构量子点来改善量子点的物理化学性质错误!未找到引用源。
1.1合金量子点合金量子点即将几种不同带隙的半导体材料在纳米尺度上进行的合金化,形成合金或固溶体。
由于每种半导体材料都有其相应的能带宽,通过形成合金通过调节合金半导体组分的化学计量比来改变纳米晶的组成,从而改变量子点的能带宽及晶格常数。
此类量子点也可按照组成元素的多少分为三元合金和多元合金。
要制备均匀结构的合金,两种组成的生长速率必须相等,并且在一种成分的生长的条件下不能阻止另一种成分的生长,同时两种成分需要充分相似使得两者容易混合,否则会形成核壳结构或者两种组分独立成核。
1.2核/壳结构量子点根据各种半导体材料能带位置的不同,壳层在核/壳结构量子点中起到作用的不同,可以将核/壳量子点分为三类:TypeⅡ、TypeⅡ和TypeⅡ型结构,如图1.1所示。
图1.1 半导体异质结的能带结构TypeⅡ型结构的量子点要求壳层材料能带大于核层材料能带,电子和空穴都被限域在核材料中,从而提高量子点的荧光效率,但也有相反的情况;TypeⅡ型结构的量子点要求壳层材料的价带或导带处于核层材料的带隙中,通过光子的激发,壳层材料能带的重叠导致电子和空穴的空间分离而分别处于核层材料和壳层材料中;TypeⅡ型结构很少应用到核壳量子点结构中去。
TypeⅠ型结构是最早被研究的结构,该结构中宽能带的壳层材料所起的作用是钝化核层材料的表面缺陷,使核材料与外部环境隔离,将载流束缚在核中。
silar方法量子点
silar方法量子点Silar method is a popular technique used in the synthesis of quantum dots, which are nanoscale semiconductor particles with unique optical and electronic properties. This method involves the use of a precursor solution containing the desired semiconductor material, which is then heated to high temperatures to promote the growth of quantum dots. The resulting quantum dots can be tailored to exhibit specific properties by controlling the reaction conditions and precursor composition.From a scientific perspective, the silar method offers several advantages in the synthesis of quantum dots. Firstly, it allows for the precise control of size, shape, and composition of the quantum dots, which is crucial for achieving desired optical and electronic properties. This control is achieved by adjusting the reaction parameters such as temperature, reaction time, and precursor concentration. Additionally, the silar method is relatively simple and cost-effective compared to other synthesistechniques, making it a preferred choice for large-scale production of quantum dots.Furthermore, the silar method enables the synthesis of quantum dots with high crystallinity and uniformity. The high-temperature reaction conditions facilitate the growth of quantum dots with well-defined crystal structures, resulting in improved optical and electronic properties. The uniformity of the quantum dots is important for applications such as optoelectronic devices and biological imaging, where consistent performance is desired.From a technological standpoint, the silar method has found widespread applications in various fields. Quantum dots synthesized using this method have been extensively used in optoelectronic devices such as solar cells, light-emitting diodes (LEDs), and photodetectors. Their unique optical properties, including size-tunable emission and high photoluminescence quantum yield, make them ideal candidates for these applications. Additionally, quantum dots synthesized using the silar method have shown promise in biological imaging and sensing, where their small sizeand bright fluorescence enable high-resolution imaging of cellular structures and biomolecules.Moreover, the silar method can be easily scaled up for industrial production, making it commercially viable. The low cost and simplicity of the method make it attractivefor large-scale synthesis of quantum dots, which is essential for meeting the growing demand in various industries. The ability to produce quantum dots with consistent properties on a large scale is crucial for their integration into commercial products and technologies.In conclusion, the silar method is a versatile and efficient technique for the synthesis of quantum dots. Its ability to precisely control the size, shape, and composition of quantum dots, along with its simplicity and cost-effectiveness, make it a preferred choice for both scientific research and industrial applications. The unique optical and electronic properties of quantum dots synthesized using the silar method have opened up new possibilities in fields such as optoelectronics, biological imaging, and sensing. With further advancements in thismethod, we can expect continued progress in the synthesis and utilization of quantum dots for a wide range of applications.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
definition
Part Ⅱ:What is luminesence?
Part Ⅲ:The application of quantum dots?
Solar cell
Solar cell
Part Ⅲ:The application of quantum dots?
QLED
QLED
Part Ⅲ:The application of quantum dots?
Recognize some websites to everybody
小木虫论坛: /bbs/index.php ACS:/ Web of sicence :https:/// SCI: /
The highly luminescent(发光) of quantum dots (量子点) —————Gaoliang Fang 161200010
The highly luminescet of quantum dots (QDs)
What is quantum dots ?
What is luminesence? The application of quantum dots
Part Ⅱ:What is luminesence?
When a material be excited by rays, high-energy particles, electron ,the material in the excited state released energy by light.
Part Ⅰ: What is quantum dots ?
charfferent emit colors by adjust the diameter of quantum dots .
diameter
Intrinsic color
Emitted color
Part Ⅰ: What is quantum dots ? definition
Size between 2-10nm nanoparticles(纳米颗粒). Semiconductor Quantum confinement effect(量子限域) Produce fluorescence(荧光) by inspired.
biological
marker
non-toxic
the journal about my major
Nature Science Nature Materials/Photonics/Communications Progress of Materials Science Advanced Materials Advanced Functional/Energy/Optical Materials Nano Letters/Small/Nanoscale/Nanotechnology Biomaterials Acta Materialia/Scripta Materialia Chemistry of Materials Journal of Materials Chemistry A&B&C Journal of American Ceramics Society Materials Science and Engineering A&B&Reports Materials Chemistry and Physics/Materials Letters Optical Materials Journal of Luminescence Journal of Fluorescence