数列经典例题集锦

合集下载

数列练习题高中

数列练习题高中

数列练习题高中一、等差数列1. 已知等差数列的前三项分别为3,5,7,求第10项的值。

2. 在等差数列{an}中,若a1=1,公差d=2,求前10项的和。

3. 已知等差数列的通项公式为an=3n2,求前n项和的表达式。

4. 在等差数列{an}中,若a5+a8=34,a3+a6=26,求首项a1和公差d。

二、等比数列1. 已知等比数列的前三项分别为2,6,18,求第6项的值。

2. 在等比数列{bn}中,若b1=3,公比q=3,求前5项的和。

3. 已知等比数列的通项公式为bn=2^n,求前n项和的表达式。

4. 在等比数列{bn}中,若b3•b6=144,b4•b5=108,求首项b1和公比q。

三、数列的综合应用1. 已知数列{cn}的通项公式为cn=n^2+n,求前n项和。

2. 在数列{dn}中,若d1=1,d2=3,dn=dn1+dn2(n≥3),求第10项的值。

3. 已知数列{en}的前n项和为Sn=2^n1,求通项公式。

4. 设数列{fn}的通项公式为fn=3n+2,求证:数列{fn+1 fn}是等差数列。

四、数列的极限1. 求极限:lim(n→∞) (1+1/n)^n。

2. 求极限:lim(n→∞) (n^2 n) / (2n^2 + 3n + 1)。

3. 求极限:lim(n→∞) (sqrt(n^2+1) sqrt(n^21))。

五、数列的应用题1. 一等差数列的前5项和为35,前10项和为110,求前15项和。

2. 一等比数列的第3项为12,第6项为48,求首项和公比。

3. 一数列的前n项和为2^n 1,求第10项的值。

4. 一数列的通项公式为an=n^2+n,求证:该数列的前n项和为(n+1)(n+2)/2。

六、数列的性质与判定3. 已知数列{gn}的通项公式为gn=2n1,判断数列{gn+1 gn}是否为等差数列。

4. 已知数列{hn}的通项公式为hn=n^3,判断数列{hn+1 / hn}是否为等比数列。

数列的19种经典题型

数列的19种经典题型

数列的19种经典题型一、公差不等于零的等差数列1. 前n项和:求出前n项的和Sn=a1+a2+…+an,Sn=n/2*(a1+an);2. 等比数列的前n项和:求出前n项的和Sn=a1+a2+…+an,若q为等比数列的公比,则Sn = a1(1-q^n)/(1-q);3. 概率的前n项和:求出前n项的和Sn=a1+a2+…+an,若q为概率的公比,则Sn = a1(1-q^n)/(1-q);4. 等差数列的前n项乘积:求出前n项的乘积Pn = a1*a2*…*an,若d为等差数列的公差,则Pn = (a1 + (n-1)*d) * (a1 + (n-2)*d) * … * a1;5. 等比数列的前n项乘积:求出前n项的乘积Pn = a1*a2*…*an,若q为等比数列的公比,则Pn = a1 *q^(n-1) * q^(n-2) * … * a1;6. 概率的前n项乘积:求出前n项的乘积Pn =a1*a2*…*an,若q为概率的公比,则Pn = a1 * q^(n-1) * q^(n-2) * … * a1;7. 等差数列的通项公式:若a1,a2,…,an为等差数列,若d为该数列的公差,则an = a1+(n-1)*d;列,若q为该数列的公比,则an = a1*q^(n-1);9. 概率的通项公式:若a1,a2,…,an为概率的序列,若q为该数列的公比,则an = a1*q^(n-1);10. 等差数列中某项的值:若a1,a2,…,an为等差数列,若d为该数列的公差,若知a1的值,则求出an的值,只需要把an的表达式代入即可。

11. 等比数列中某项的值:若a1,a2,…,an为等比数列,若q为该数列的公比,若知a1的值,则求出an的值,只需要把an的表达式代入即可。

12. 概率的某项的值:若a1,a2,…,an为概率的序列,若q为该数列的公比,若知a1的值,则求出an的值,只需要把an的表达式代入即可。

完整版)数列典型例题(含答案)

完整版)数列典型例题(含答案)

完整版)数列典型例题(含答案)等差数列的前n项和公式为代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得代入已知条件,得到解得。

因此,前项和为。

⑵由已知条件可得代入等差数列的前n项和公式,得到化简得因此,前项和为。

8.(2010山东理) 已知等差数列 $a_1,a_2,\ldots,a_n,\ldots$,其中 $a_1=1$,公差为 $d$。

1) 求 $a_5$ 和 $a_{10}$。

2) 满足 $a_1+a_2+\ldots+a_k=100$,$a_1+a_2+\ldots+a_{k+1}>100$,$k\in\mathbb{N}$,求该等差数列的前 $k$ XXX。

考查目的:考查等差数列的通项公式和前项和公式等基础知识,考查数列求和的基本方法以及运算求解能力。

答案:(1) $a_5=5d+1$,$a_{10}=10d+1$;(2) $k=13$,前$k$ 项和为 $819$。

解析:(1) 根据等差数列的通项公式 $a_n=a_1+(n-1)d$,可得 $a_5=1+4d$,$a_{10}=1+9d$。

2) 设该等差数列的前 $k$ 项和为 $S_k$,则由等差数列的前项和公式可得 $S_k=\dfrac{k}{2}[2a_1+(k-1)d]$。

根据已知条件可列出不等式组:begin{cases}S_k=100\\S_{k+1}>100end{cases}将 $S_k$ 代入得:frac{k}{2}[2+(k-1)d]=100整理得:$k^2+kd-400=0$。

数列大题训练50题

数列大题训练50题

(III)求和: 1 1 1 1 1 1
a1 a2 a3 a4
a2 n1 a2 n
25.已知 a1=2,点(an,an+1)在函数 f(x)=x2+2x 的图象上,其中 n=1,2,3,… (1)证明数列{lg(1+an)}是等比数列; (2)设 Tn=(1+a1) (1+a2) …(1+an),求数列{an}的通项及 Tn;
n N*都成立,数列{bn1 bn} 是等差数列. (1)求数列{an} 与{bn} 的通项公式; (2)问是否存在 k N*,使得 bk ak (0,1) ?请说明理由. 8 .已知数列{an }中, a1 5且an 3an1 3n 1 (n 2,3,)
(I)试求 a2,a3 的值;
(2)求数列{ an }的通项公式;
第 4 页 共 32 页
(3)若 bn nan , 求数列{bn }的前n项和Sn .
数列大题训练 50 题
31.已知二次函数 y f (x) 的图像经过坐标原点,其导函数为 f ' (x) 6x 2 ,数列{an} 的前 n 项和为 Sn , 点 (n, Sn )(n N ) 均在函数 y f (x) 的图像上。
an
(2)求数列{bn}的通项公式;
(3)求数列{ bn }的前 n 项和 Sn.
15.已知函数 f (x) =a·bx 的图象过点 A(4, 1 )和 B(5,1). 4
(1)求函数 f (x) 解析式;
(2)记 an=log2 f (n) n∈N*, Sn 是数列 an 的前 n 项和,解关于 n 的不等式 an Sn 0
1
的所有项的和(即前
n
项和的极限)。
an

数列大题训练50题及答案

数列大题训练50题及答案

数列大题训练50题及答案本卷含答案及知识卡片,同学们做题务必认真审题,规范书写。

保持卷板整洁。

一.解答题(共50题),2a n+1a n+a n+1−a n=0.1. (2019•全国)数列{an}中, a1=13(1)求{aₙ}的通项公式 ;(2)求满足a1a2+a2a3+⋯+a n−1a n<1的n的最大值 .72.( 2019•新课标Ⅰ )记 Sn为等差数列{aₙ}的前 n项和 .已知Sg= -a₅.(1)若 a₃=4,求{aₙ}的通项公式 ;(2)若 a₁>0, 求使得Sₙ≥aₙ的n的取值范围 .3.( 2019·新课标Ⅱ)已知数列aₙ和bₙ满足a₁=1,b₁=0,4aₙ₊₁=3aₙ−bₙ+4,4bₙ₊₁=3bₙ−aₙ−4.( 1) 证明 : aₙ+bₙ是等比数列,aₙ−bₙ是等差数列;(2)求{aₙ}和bₙ的通项公式 .4.( 2019•新课标Ⅱ)已知{ aₙ}是各项均为正数的等比数列, a₁=2,a₃=2a₂+16.(1)求{aₙ}的通项公式 ;(2)设bₙ=log₂aₙ,求数列bₙ的前n项和 .5.(2018•新课标Ⅱ)记 Sn为等差数列aₙ}的前 n项和 , 已知a₁= - 7 , S₃= -15 .(1)求{ aₙ}的通项公式;(2)求Sₙ,并求Sₙ,的最小值 ..6 .( 2018•新课标Ⅰ )已知数列{ aₙ满足a₁=1,naₙ₊₁=2(n+1)aₙ,设b n=a nn(1)求b₁,b₂,b₃;( 2) 判断数列{bₙ}是否为等比数列,并说明理由;(3)求{aₙ}的通项公式 .7.( 2018•新课标Ⅲ ) 等比数列{aₙ}中 ,a₁=1,a₅=4a₃·(1)求{aₙ}的通项公式 ;(2)记 Sn为{aₙ}的前 n项和 .若Sₙ=63,求m..8.(2017•全国)设数列{bₙ}的各项都为正数 , 且b n+1=b nb n+1}为等差数列;( 1) 证明数列{1b n(2)设 b₁=1,求数列{ bₙbₙ₊₁的前n项和Sₙ.9 .( 2017•新课标Ⅱ )已知等差数列{aₙ}的前 n项和为 Sₙ,等比数列{bₙ}的前 n项和为Tₙ,a₁=−1,b₁=1,a₂+b₂=2(1)若 a₃+b₃=5,又求{bₙ}的通项公式 ;(2)若 T₃=21, 求 S₃.10 .( 2017•新课标Ⅰ )记. Sₙ,为等比数列{aₙ}的前 n项和 .已知 S₂=2,S₃=-6.(1)求{aₙ}的通项公式 ;(2)求Sₙ,并判断Sₙ₊₁,Sₙ,Sₙ₊₂是否成等差数列 .11 .( 2017•新课标Ⅲ)设数列{aₙ}满足a1+3a2++(2n−1)a n=2n.(1)求{an}的通项公式 ;}的前 n项和 .(2)求数列{a n2n+112.( 2016·全国) 已知数列aₙ}的前 n项和Sₙ=n².( Ⅰ )求{aₙ}的通项公式 ;,求数列{bₙ}的前 n项和 .(Ⅱ)记b n=√a n+√a n+113 .( 2016•新课标Ⅲ ) 已知数列aₙ}的前n项和Sₙ=1+λaₙ,其中λ≠0.(1) 证明{aₙ}是等比数列,并求其通项公式;,求λ .(2)若S5=313214 .( 2016•新课标Ⅰ ) 已知{aₙ}是公差为 3 的等差数列 , 数列{ bₙ满足b₁=1,,a n b n+1+b n+1=nb n.b2=13( Ⅰ )求{aₙ}的通项公式 ;(Ⅱ)求{bₙ}的前n项和.15 .( 2016•新课标Ⅲ) 已知各项都为正数的数列aₙ满足a1=1,a n2−(2a n+1(1)aₙ−2aₙ₊₁=0.(1)求 a₂, a₃;(2)求{aₙ}的通项公式 .16 .( 2016•新课标Ⅱ ) 等差数列{aₙ}中 ,a₃+a₄=4,a₅+a₇=6.( Ⅰ )求{aₙ}的通项公式 ;数列全国高考数学试题 参考答案与试题解析一 . 解答题(共50 小题)1.( 2019•全国)数列{a ₙ}中 , a 1=13,2a n+1a n +a n+1−a n =0.(1)求{a ₙ}的通项公式 ;( 2)求满足 a 1a 2+a 2a 3+⋯+a n−1a n <17的n 的最大值 .【解答】解:(1) ∵2a n+1a n +a n+1−a n =0.∴1a n+1−1a n=2,∴a 1a 2+a 2a 3++a n−1a n =12[(13−15)+(15−17)+⋯+(12n−1−12n+1)]=12(13−12n+1),∵a 1a 2+a 2a 3++a n−1a n <17,∴12(13−12n+1)<17, ∴4n +2<42,∴n <10,∵n ∈N ∗, ∴n 的最大值为9.【点评】本题考查了等差数列的定义 ,通项公式和裂项相消法求出数列的前 n【分析】(1)由 2aₙ₊₁aₙ+aₙ₊₁−aₙ=0可得−=2,可知数列 {}是等差数列 ,求出- 的通项公式可得 an ;(2)由(1)知1a a =1(2n−1)(2n+1)=12(12n−1−12n+1)(n ≥2),然后利用裂项相消法求出 a 1a 2+a 2a 3+⋯+a n−1a n 再解不等式可得n 的范围,进而得到n 的最大值 . 又1a =3,∴数列 {}是以3为首项 ,2 为公差的等差数列 , ∴1a =2n +1,∴a n =12n+1;(2)由(1)知 , a n−1a n =1(2n−1)(2n+1)=12(12n−1−12n+1)(n ≥2),。

数列练习题经典例题及详细解答

数列练习题经典例题及详细解答

数列练习题4.正项等比数列{a n }中a 1,a 49是2x 2-7x +6=0的两个根,则a 1·a 2·a 25·a 48·a 49的值为( )A .221B .93C .±93D .357、数列{}n a 满足首项*1114,323(),n n a a a n N +=+=∈那么使20n n a a +⋅<成立的n 值是( )A21 B20 C2和21 D21和225.已知数{}n a 的前n 项和142+-=n n S n ,则|||||||1021a a a ++++ 的值为( )A .67B .65C .61D .565.已知无穷等比数列}{n a 的前n 项和为n S ,所有项的和为S ,且1)2(lim =-∞→S S n n ,则其首项a 1的取值范围( )A .(-1,0)B .(-2,-1)C .(-2,-1)∪(-1,0)D .(-2,0) 9.若数列{}n a 成等差数列, a m =n ,a n =m(m ≠n),则a m +n = ( )A .0 B. 1 C. m +n D. -m -n10.若数列{}n a 成等差数列, ,()m n S n S m m n ==≠,则m n S += ( )A .0 B. 1 C. m +n D. -m -n(1) 解法一: 1m n a a d m n-==--,∴0m n m a a nd n n +=+=-= 解法二:设n a an b =+,则a n b m a m b n +=⎧⎨+=⎩解之1a b m n=-⎧⎨=+⎩,∴()0m n a m n m n +=-+++= 解法三:设首项和公差列方程组(略)(2) 解法一:1m n n s s a +-=+…+1111()()()()22m n m m n a m n a a m n a a n m ++=-+=-+=- ∴1112,()()2m n m n m n a a s m n a a m n ++++=-=++=-- 解法二: 设2n s an bn =+,则22an bn m am bm n⎧+=⎨+=⎩相减得()1a m n b ++=- ∴s m+n =a(m +n)2+b(m +n)=(m+n)[a(m +n)+b]=-m -n 解法三:由已知点(,),(,),(,)m n m n s s s m n m n m n m n+++共线, ∴m n m n s m n m m n n m n s m n m m n++--+=⇒=---4.若数列{}n a 的前n 项和12+=n n S ,则=+++22221n a a a ( )A .2)12(+nB .1(41)3n - C .)264(311+-n D .)234(31+n例10.设{a n }(n ∈N *)是公差为d 的等差数列,前n 项和为S n ,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是 ( )A .d <0B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值14.已知等比数列}{n a 公比为q ,且q>1,其前n 项和为S n ,则nn n S a 1lim +∞→= q -1 . 9.以()f n 表示下图中第(n )个图形的相应点数,根拒其规律()f n = ()2n n + .……15.在数列}{n a 中)(22+∈++-=N n kn n a n ,已知此数列是递减数列且恰从第三项起开始小于3,则实数k 的取值范围是_15 .,25[3)_________.例19.已知数列{a n }的前n 项和S n =(n -1)2n +1,是否存在等差数列{b n },使 a n =b 1C n 1+b 2C n 2+…+b n C n n 对一切正整数n 均成立?解:n ≥2时,a n =S n -S n-1=n2n-1,n =1时也成立,假设存在等差数列b n =an +b 满足条件 解法一: 则n2n-1=(a +b)C n 1+(2a +b)C n 2+…+(na +b)C n n=a(C n 1+2C n 2+…+nC n n )+b(C n 1+C n 2+…+C n n )=an2n-1+b(2n -1)=(an +2b)2n-1-b比较两边对应项系数可得b =0,a =1,所以存在等差数列b n =n 满足条件 解法二:a n = (a +b)C n 1+(2a +b)C n 2+…+(na +b)C n n倒序 a n =(na +b)C n n +(na-a+b)C n n-1+…+(a +b)C n 1相加2a n =(na +b)( C n 0+C n 1+C n 2+…+C n n )即 n ×2n =b n ×2n 所以b n =n 故存在等差数列b n =n 满足条件。

数列综合练习题(含答案)精选全文

数列综合练习题(含答案)精选全文

3月6日数列综合练习题一、单选题1.已知数列为等比数列,是它的前n项和.若,且与的等差中项为,则()A .35B .33C .31D .29【答案】C 【解析】试题分析:∵等比数列{}n a ,∴21a a q =⋅,∴13134222a q a a q a a ⋅⋅=⇒⋅=⇒=,又∵与的等差中项为54,∴477512244a a a ⋅=+⇒=,∴3741182a q q a ==⇒=,∴41316a a q ==,515116(1)(1)32311112a q S q--===--.2.等差数列{}n a 中,19173150a a a ++=则10112a a -的值是()A.30B.32C.34D.25【答案】A 【解析】试题分析:本题考查等差数列的性质,难度中等.由条件知930a =,所以10112a a -=930a =,故选A.3.数列满足且,则等于()A.B.C.D.【答案】D 【解析】由有解知数列1n x ⎧⎫⎨⎬⎩⎭是首项为1,公差为211112x x -=的等差数列;所以11121(1),221n n n n x x n +=+-=∴=+.故选D 4.设等差数列{}n a 的前n 项和为n S ,数列21{}n a -的前n 项和为n T ,下列说法错误..的是()A .若n S 有最大值,则n T 也有最大值B .若n T 有最大值,则n S 也有最大值C .若数列{}n S 不单调,则数列{}n T 也不单调D .若数列{}n T 不单调,则数列{}n S 也不单调【答案】C 【解析】【详解】解:数列{a 2n ﹣1}的首项是a 1,公差为2d ,A .若S n 有最大值,则满足a 1>0,d <0,则2d <0,即T n 也有最大值,故A 正确,B .若T n 有最大值,则满足a 1>0,2d <0,则d <0,即S n 也有最大值,故B 正确,C .S n =na 1()12n n -+•d 2d =n 2+(a 12d -)n ,对称轴为n 111122222d da a a d d d --=-==--⨯,T n =na 1()12n n -+•2d =dn 2+(a 1﹣d )n ,对称轴为n 111222a d d -=-=-•1a d,不妨假设d >0,若数列{S n }不单调,此时对称轴n 11322a d =-≥,即1a d-≥1,此时T n 的对称轴n 1122=-•111122a d ≥+⨯=1,则对称轴1122-•132a d <有可能成立,此时数列{T n }有可能单调递增,故C 错误,D .不妨假设d >0,若数列{T n }不单调,此时对称轴n 1122=-•132a d ≥,即1a d-≥2,此时{S n }的对称轴n 11122a d =-≥+25322>=,即此时{S n }不单调,故D 正确则错误是C ,故选C .5.设n=()A .333n 个B .21333n - 个C .21333n- 个D .2333n 个【答案】A【解析】1013333n n -====⋅⋅⋅ 个.故选A.6.已知各项均为正数的数列{}n a 的前n 项和为n S ,满足2124n n a S n +=++,且21a -,3a ,7a 恰好构成等比数列的前三项,则4a =().A .1B .3C .5D .7【答案】C 【详解】∵2124n n a S n +=++,当2n ≥,()21214n n a S n -=+-+,两式相减,化简得()2211n n a a +=+,∵0n a >,∴11n n a a +=+,数列{}n a 是公差1的等差数列.又21a -,3a ,7a 恰好构成等比数列的前三项,∴()()211126a a a +=+,∴12a =,∴45a =.故选:C第II 卷(非选择题)二、填空题7.已知数列{}n a 的首项11a =,且1(1)12nn na a n a +=+ ,则5a =____.【答案】198.等差数列{}n a 中,39||||a a =,公差0d <,则使前n 项和n S 取得最大值的自然数n 是________.【答案】5或6【解析】试题分析:因为0d <,且39||||a a =,所以39a a =-,所以1128a d a d +=--,所以150a d +=,所以60a =,所以0n a >()15n ≤≤,所以n S 取得最大值时的自然数n 是5或6.9.数列{}n a 满足:11a =,121n n a a +=+,且{}n a 的前n 项和为n S ,则n S =__.【答案】122n n +--【详解】由121n n a a +=+得()1+121n n a a +=+所以1112+n n a a +=+,且112a +=所以数列{}1n a +是以2为首项,2为公比的等比数列,且11=222n nn a -+⨯=所以21nn a =-前n 项和()123121222222212n nn nS n n n +-=++++-==--- 10.已知数列{}n a 中,132a =前n 项和为n S ,且满足()*123n n a S n N ++=∈,则满足2348337n n S S <<所有正整数n 的和是___________.【答案】12【详解】由()*123n n a S n N++=∈得()123n n n SS S +-+=,即()11332n n S S +-=-,所以数列{}3n S -是首项为113332S a -=-=-,公比为12的等比数列,故31322n nS -=-⋅,所以332n n S =-,所以22332n n S =-.由2348337n n S S <<得2332334833732n n -<-<,化简得1113327n <<,故3,4,5n =.满足2348337n nS S <<所有正整数n 的和为34512++=.故答案为:12三、解答题11.已知数列{a n }满足a 1=3,a n ﹣a n ﹣1﹣3n =0,n ≥2.(1)求数列{a n }的通项公式;(2)设b n 1na =,求数列{b n }的前n 项和S n .【详解】(1)数列{a n }满足a 1=3,a n ﹣a n ﹣1﹣3n =0,n ≥2,即a n ﹣a n ﹣1=3n ,可得a n =a 1+(a 2﹣a 1)+(a 3﹣a 2)+…+(a n ﹣a n ﹣1)=3+6+9+…+3n 12=n (3+3n )32=n 232+n ;(2)b n 123n a ==•2123n n =+(111n n -+),前n 项和S n 23=(1111112231n n -+-++-+ )23=(111n -+)()231n n =+.12.在数列{}n a 中,n S 为其前n 项和,满足2(,*)n n S ka n n k R n N =+-∈∈.(I )若1k =,求数列{}n a 的通项公式;(II )若数列{}21n a n --为公比不为1的等比数列,求n S .【答案】解:(1)当1k =时,2,n n S a n n =+-所以21,(2)n S n n n -=-≥,即22(1)(1),(1)n S n n n n n =+-+=+≥……3分所以当1n =时,112a S ==;当2n ≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=所以数列{}n a 的通项公式为.……………6分(II )当时,1122n n n n n a S S ka ka n --=-=-+-,1(1)22n n k a ka n --=-+,111a S ka ==,若1k =,则211n a n --=-,从而{}21n a n --为公比为1的等比数列,不合题意;……………8分若1k ≠,则10a =,221a k=-,3246(1)k a k -=-212325378333,5,71(1)k k k a a a k k --+--=--=-=--由题意得,2213(5)(3)(7)0a a a -=--≠,所以0k =或32k =.……10分当0k =时,2n S n n =-,得22n a n =-,213n a n --=-,不合题意;…12分当32k =时,1344n n a a n -=-+,从而1213[2(1)1]n n a n a n ---=---因为121130,a -⨯-=-≠210n a n --≠,{}21n a n --为公比为3的等比数列,213nn a n --=-,所以231nn a n =-+,从而1233222n n S n n +=+-+.………………………14分【解析】试题分析:解:(1)当1k =时,2,n n S a n n =+-所以21,(2)n S n n n -=-≥,即22(1)(1),(1)n S n n n n n =+-+=+≥……3分所以当1n =时,112a S ==;当2n ≥时,221(1)(1)2n n n a S S n n n n n -=-=+----=所以数列{}n a 的通项公式为…6分(2)当时,1122n n n n n a S S ka ka n --=-=-+-,1(1)22n n k a ka n --=-+,111a S ka ==,若1k =,则211n a n --=-,从而{}21n a n --为公比为1的等比数列,不合题意;若1k ≠,则10a =,221a k=-,3246(1)k a k -=-212325378333,5,71(1)k k k a a a k k --+--=--=-=--由题意得,2213(5)(3)(7)0a a a -=--≠,所以0k =或32k =.当0k =时,2n S n n =-,得22n a n =-,213n a n --=-,不合题意;当32k =时,1344n n a a n -=-+,从而1213[2(1)1]n n a n a n ---=---因为121130,a -⨯-=-≠210n a n --≠,{}21n a n --为公比为3的等比数列,213nn a n --=-,所以231nn a n =-+,从而1233222n n S n n +=+-+.13.设数列{}n a 的通项公式63n a n =-+,{}n b 为单调递增的等比数列,123512b b b =,1133a b a b +=+.()1求数列{}n b 的通项公式.()2若3nn na cb -=,求数列{}n c 的前n 项和n T .【详解】()1由题意,数列{}n a 的通项公式n a 6n 3=-+,{}n b 为单调递增的等比数列,设公比为q ,123b b b 512=,1133a b a b +=+.可得331b q 512=,2113b 15b q -+=-+,解得1b 4=,或1q 2(2=-舍去),则n 1n 1n b 422-+=⋅=。

(完整版)数列例题(含答案)

(完整版)数列例题(含答案)

1.设等差数列{a n}的前n项和为S n,且S4=4S2,a2n=2a n+1.(1)求数列{a n}的通项公式;(2)设数列{b n}的前n项和为T n且(λ为常数).令c n=b2n(n∈N*)求数列{c n}的前n项和R n.【解答】解:(1)设等差数列{a n}的首项为a1,公差为d,由a2n=2a n+1,取n=1,得a2=2a1+1,即a1﹣d+1=0①再由S4=4S2,得,即d=2a1②联立①、②得a1=1,d=2.所以a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1;(2)把a n=2n﹣1代入,得,则.所以b1=T1=λ﹣1,当n≥2时,=.所以,.R n=c1+c2+…+c n=③④③﹣④得:=所以;所以数列{c n}的前n项和.2.等差数列{a n}中,a2=4,a4+a7=15.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=2+n,求b1+b2+b3+…+b10的值.【解答】解:(Ⅰ)设公差为d,则,解得,所以a n=3+(n﹣1)=n+2;(Ⅱ)b n=2+n=2n+n,所以b1+b2+b3+…+b10=(2+1)+(22+2)+…+(210+10)=(2+22+...+210)+(1+2+ (10)=+=2101.3.已知数列{log2(a n﹣1)}(n∈N*)为等差数列,且a1=3,a3=9.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)证明++…+<1.【解答】(I)解:设等差数列{log2(a n﹣1)}的公差为d.由a1=3,a3=9得2(log22+d)=log22+log28,即d=1.所以log2(a n﹣1)=1+(n﹣1)×1=n,即a n=2n+1.(II)证明:因为==,所以++…+=+++…+==1﹣<1,即得证.4.已知{a n}是正数组成的数列,a1=1,且点(,a n+1)(n∈N*)在函数y=x2+1的图象上.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若列数{b n}满足b1=1,b n+1=b n+2an,求证:b n•b n+2<b n+12.【解答】解:解法一:(Ⅰ)由已知得a n+1=a n+1、即a n+1﹣a n=1,又a1=1,所以数列{a n}是以1为首项,公差为1的等差数列.故a n=1+(n﹣1)×1=n.(Ⅱ)由(Ⅰ)知:a n=n从而b n+1﹣b n=2n.b n=(b n﹣b n﹣1)+(b n﹣1﹣b n﹣2)+…+(b2﹣b1)+b1=2n﹣1+2n﹣2+…+2+1=∵b n•b n+2﹣b n+12=(2n﹣1)(2n+2﹣1)﹣(2n+1﹣1)2=(22n+2﹣2n﹣2n+2+1)﹣(22n+2﹣2•2n+1+1)=﹣2n<0∴b n•b n+2<b n+12解法二:(Ⅰ)同解法一.(Ⅱ)∵b2=1b n•b n+2﹣b n+12=(b n+1﹣2n)(b n+1+2n+1)﹣b n+12=2n+1•bn+1﹣2n•bn+1﹣2n•2n+1=2n(b n+1﹣2n+1)=2n(b n+2n﹣2n+1)=2n(b n﹣2n)=…=2n(b1﹣2)=﹣2n<0∴b n•b n+2<b n+125.已知等差数列{a n}满足a1+a2=10,a4﹣a3=2(1)求{a n}的通项公式;(2)设等比数列{b n}满足b2=a3,b3=a7,问:b6与数列{a n}的第几项相等?【解答】解:(I)设等差数列{a n}的公差为d.∵a4﹣a3=2,所以d=2∵a1+a2=10,所以2a1+d=10∴a1=4,∴a n=4+2(n﹣1)=2n+2(n=1,2,…)(II)设等比数列{b n}的公比为q,∵b2=a3=8,b3=a7=16,∴∴q=2,b1=4∴=128,而128=2n+2∴n=63∴b6与数列{a n}中的第63项相等6.设等差数列{a n}的前n项和为S n,且a5+a13=34,S3=9.(1)求数列{a n}的通项公式及前n项和公式;(2)设数列{b n}的通项公式为,问:是否存在正整数t,使得b1,b2,b m(m≥3,m∈N)成等差数列?若存在,求出t和m的值;若不存在,请说明理由.【解答】解:(1)设等差数列{a n}的公差为d.由已知得即解得.故a n=2n﹣1,S n=n2(2)由(1)知.要使b1,b2,b m成等差数列,必须2b2=b1+b m,即,(8分).移项得:=﹣=,整理得,因为m,t为正整数,所以t只能取2,3,5.当t=2时,m=7;当t=3时,m=5;当t=5时,m=4.故存在正整数t,使得b1,b2,b m成等差数列.7.设{a n}是等差数列,b n=()an.已知b1+b2+b3=,b1b2b3=.求等差数列的通项a n.【解答】解:设等差数列{a n}的公差为d,则a n=a1+(n﹣1)d.∴b1b3=•==b22.由b1b2b3=,得b23=,解得b2=.代入已知条件整理得解这个方程组得b1=2,b3=或b1=,b3=2∴a1=﹣1,d=2或a1=3,d=﹣2.所以,当a1=﹣1,d=2时a n=a1+(n﹣1)d=2n﹣3.当a1=3,d=﹣2时a n=a1+(n﹣1)d=5﹣2n.8.已知等差数列{a n}的公差大于0,且a3,a5是方程x2﹣14x+45=0的两根,数列{b n}的前n项的和为S n,且S n=1﹣(1)求数列{a n},{b n}的通项公式;(2)记c n=a n b n,求证c n+1≤c n.【解答】解:(1)∵a3,a5是方程x2﹣14x+45=0的两根,且数列{a n}的公差d>0,∴a3=5,a5=9,公差∴a n=a5+(n﹣5)d=2n﹣1.又当n=1时,有b1=S1=1﹣当∴数列{b n}是等比数列,∴(2)由(Ⅰ)知,∴∴c n+1≤c n.9.已知等差数列{a n}的前n项和为S n,S5=35,a5和a7的等差中项为13.(Ⅰ)求a n及S n;(Ⅱ)令(n∈N﹡),求数列{b n}的前n项和T n.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,因为S5=5a3=35,a5+a7=26,所以,…(2分)解得a1=3,d=2,…(4分)所以a n=3+2(n﹣1)=2n+1;S n=3n+×2=n2+2n.…(6分)(Ⅱ)由(Ⅰ)知a n=2n+1,所以b n==…(8分)=,…(10分)所以T n=.…(12分)10.已知等差数列{a n}是递增数列,且满足a4•a7=15,a3+a8=8.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)令b n=(n≥2),b1=,求数列{b n}的前n项和S n.【解答】解:(1)根据题意:a3+a8=8=a4+a7,a4•a7=15,知:a4,a7是方程x2﹣8x+15=0的两根,且a4<a7解得a4=3,a7=5,设数列{a n}的公差为d由.故等差数列{a n}的通项公式为:(2)=又∴=11.设f(x)=x3,等差数列{a n}中a3=7,a1+a2+a3=12,记S n=,令b n=a n S n,数列的前n项和为T n.(Ⅰ)求{a n}的通项公式和S n;(Ⅱ)求证:;(Ⅲ)是否存在正整数m,n,且1<m<n,使得T1,T m,T n成等比数列?若存在,求出m,n的值,若不存在,说明理由.【解答】解:(Ⅰ)设数列{a n}的公差为d,由a3=a1+2d=7,a1+a2+a3=3a1+3d=12.解得a1=1,d=3∴a n=3n﹣2∵f(x)=x3∴S n==a n+1=3n+1.(Ⅱ)b n=a n S n=(3n﹣2)(3n+1)∴∴(Ⅲ)由(2)知,∴,∵T1,T m,T n成等比数列.∴即当m=1时,7=,n=1,不合题意;当m=2时,=,n=16,符合题意;当m=3时,=,n无正整数解;当m=4时,=,n无正整数解;当m=5时,=,n无正整数解;当m=6时,=,n无正整数解;当m≥7时,m2﹣6m﹣1=(m﹣3)2﹣10>0,则,而,所以,此时不存在正整数m,n,且1<m<n,使得T1,T m,T n成等比数列.综上,存在正整数m=2,n=16,且1<m<n,使得T1,T m,T n成等比数列.12.已知等差数列{a n}的前n项和为S n=pn2﹣2n+q(p,q∈R),n∈N+.(Ⅰ)求的q值;(Ⅱ)若a1与a5的等差中项为18,b n满足a n=2log2b n,求数列{b n}的前n和T n.【解答】解:(Ⅰ)当n=1时,a1=S1=p﹣2+q当n≥2时,a n=S n﹣S n﹣1=pn2﹣2n+q﹣p(n﹣1)2+2(n﹣1)﹣q=2pn﹣p﹣2∵{a n}是等差数列,a1符合n≥2时,a n的形式,∴p﹣2+q=2p﹣p﹣2,∴q=0(Ⅱ)∵,由题意得a3=18又a3=6p﹣p﹣2,∴6p﹣p﹣2=18,解得p=4∴a n=8n﹣6由a n=2log2b n,得b n=24n﹣3.∴,即{b n}是首项为2,公比为16的等比数列∴数列{b n}的前n项和.13.已知等差数列{a n}的前n项和为S n,且满足:a2+a4=14,S7=70.(Ⅰ)求数列a n的通项公式;(Ⅱ)设b n=,数列b n的最小项是第几项,并求出该项的值.【解答】解:(I)设公差为d,则有…(2分)解得以a n=3n﹣2.…(4分)(II)…(6分)所以=﹣1…(10分)当且仅当,即n=4时取等号,故数列{b n}的最小项是第4项,该项的值为23.…(12分)14.己知各项均为正数的数列{a n}满足a n+12﹣a n+1a n﹣2a n2=0(n∈N*),且a3+2是a2,a4的等差中项.(1)求数列{a n}的通项公式a n;(2)若b n=a n a n,S n=b1+b2+…+b n,求S n+n•2n+1>50成立的正整数n的最小值.【解答】解:(Ⅰ)∵a n+12﹣a n+1a n﹣2a n2=0,∴(a n+1+a n)(a n+1﹣2a n)=0,∵数列{a n}的各项均为正数,∴a n+1+a n>0,∴a n+1﹣2a n=0,即a n+1=2a n,所以数列{a n}是以2为公比的等比数列.∵a3+2是a2,a4的等差中项,∴a2+a4=2a3+4,∴2a1+8a1=8a1+4,∴a1=2,∴数列{a n}的通项公式a n=2n.(Ⅱ)由(Ⅰ)及b n=得,b n=﹣n•2n,∵S n=b1+b2++b n,∴S n=﹣2﹣2•22﹣3•23﹣4•24﹣﹣n•2n①∴2S n=﹣22﹣2•23﹣3•24﹣4•25﹣﹣(n﹣1)•2n﹣n•2n+1②①﹣②得,S n=2+22+23+24+25++2n﹣n•2n+1=,要使S n+n•2n+1>50成立,只需2n+1﹣2>50成立,即2n+1>52,∴使S n+n•2n+1>50成立的正整数n的最小值为5.15.设数列{a n}的前n项和为S n,且a1=1,a n+1=2S n+1,数列{b n}满足a1=b1,点P(b n,b n+1)在直线x﹣y+2=0上,n∈N*.(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)设,求数列{c n}的前n项和T n.【解答】解:(Ⅰ)由a n+1=2S n+1可得a n=2S n﹣1+1(n≥2),两式相减得a n+1﹣a n=2a n,a n+1=3a n(n≥2).又a2=2S1+1=3,所以a2=3a1.故{a n}是首项为1,公比为3的等比数列.所以a n=3n﹣1.由点P(b n,b n+1)在直线x﹣y+2=0上,所以b n+1﹣b n=2.则数列{b n}是首项为1,公差为2的等差数列.则b n=1+(n﹣1)•2=2n﹣1(Ⅱ)因为,所以.则,两式相减得:.所以=.。

数学经典例题集锦:数列(含答案)

数学经典例题集锦:数列(含答案)

数列题目精选精编【典型例题】(一)研究等差等比数列的有关性质 1.研究通项的性质例题1.已知数列{a }满足nn1a 11,a3a 1(n2).nn(1)求a 2,a 3;a nn 31 2(2)证明: .解:(1) 2a 11,a 2314,a 33413.(2)证明:由已知 n1 a n a ,故()()()n122113a n a n a n1a n a n aa 13a n a n a n1a n a n aa n1221a 1 n1n2 3331 n 31 2 ,所以证得 a nn312.例题2.数列a n 的前n项和记为S ,a1,a2S1(n1) n1n1n(Ⅰ)求a n 的通项公式;(Ⅱ)等差数列b n 的各项为正,其前n项和为T ,且 nT 315,又a 1b 1,2a 2b 3,a 3b成等比数列,求T n .解:(Ⅰ)由a n12S n 1可得a n 2S n11(n2), 两式相减得:a n1a n 2a n ,a n13a n (n2), 又a 22S 113∴a 23a 1故a 是首项为1,公比为3的等比数列 n∴ a nn 31 (Ⅱ)设b n 的公比为d ,由T 得,可得b 1b 2b 315,可得b 25 315故可设b 15d,b 35d ,又a aa , 11,23,39由题意可得 2(5d1)(5d9)(53),解得 d 12,d 210 ∵等差数列b n 的各项为正,∴d0∴d2∴n(n1)2T3n2n2n n2例题3.已知数列a n 的前三项与数列 b 的前三项对应相同,且 n2a 12a 22a 3...n12a8n 对任意的nn 都成立,数列b n b n N * 1是等差数列.⑴求数列a n 与b 的通项公式; n⑵是否存在k N ,使得ba(0,1),请说明理由.kk点拨:(1)2n1aaaan左边相当于是数列12223 (28)nn21an前n项和的形式,可以联想到已知S n求a的方法,当n2时,nS Sa.nn1n -1-(2)把b k a k 看作一个函数,利用函数的思想方法来研究b 的取值情况. kak解:(1)已知 2a 12a 22a 3,n 2 1 a 8n(nN*)① nn2时, 2a 12a 22a 3,n2 28(1)an(nN*)② n1 ①-②得, n1 2a8,求得 n 4n a2,n在①中令n1,可得得 41a 182,所以4n a2(n N*).n 由题意b 18,b 24,b 32,所以b 2b 14,b 3b 22, ∴数列{b n1b n }的公差为2(4)2, ∴b n1b n 4(n1)22n6,bb 1(b 2b 1)(b 3b 2)(bb 1)nnn(4)(2)(2n8)n 27n14(nN*).(2)b k a k2714 kk4 2k ,当k4时,77 2f(k)(k) 244 2k 单调递增,且f(4)1,所以k4时, 2f(k)k7k1424k 1, 又f(1)f(2)f(3)0,所以,不存在kN*,使得b k a k (0,1).例题4.设各项均为正数的数列{a n }和{bn}满足:a n 、b n 、a n+1成等差数列,b n 、a n+1、b n+1 成等比数列,且a 1=1,b 1=2,a 2=3,求通项a n ,b n解:依题意得: 2bn+1=an+1+an+2① 2a n+1=b n b n+1②∵a n 、b n 为正数,由②得11,212a ,nbbabbnnnnn代入①并同除以b n1得: 2b n b n b n 12 , ∴{b}为等差数列n9 2 a 2bb,则b 212∵b 1=2,a2=3,2,92(n1)b n 2(n1)(2)(n1),b n ∴2222 ,n(n abb nnn1∴当n ≥2时,21),1)n(nan又a1=1,当n=1时成立,∴2质2.研究前n项和的性例题5.已知等比数列{a}的前n项和为2nnnSab,且a13.-2-(1)求a 、b 的值及数列{a }的通项公式; n(2)设 bn n a ,求数列{b }的前n 项和nnT . nn111解:(1)n2时,aSS 12a .而{a }为等比数列,得a 12aa ,nnnn又a3,得a3,从而 1n1 a.又 32 na 12ab3,b3.(2) nn b nn1 a ,32n123n T(1)n n21322211123n1n T( n23n1n 2322222 ),得 11111n T(1) n2n1n 232222,1 1(1) 2[2]4(11)nnnT n nnn113123222. 例题6.数列{a }是首项为1000,公比为n110的等比数列,数列{b} n 满足1 b(lgalgalga)k12kk* (k N ), (1)求数列{b n }的前n项和的最大值;(2)求数列{|b n |}的前n 项和S n .解:(1)由题意:4n a10,∴lg4an ,∴数列{lga}是首项为3,公差为1nnn的等差数列,∴lgalgalga3k 12kk (k1) 2,∴ 1n(n1)7n b[3n] nn22b nb 由1n 0 0 ,得6n7,∴数列{b} n 的前n项和的最大值为SS 6721 2 .(2)由(1)当n7时,b0,当n7时,b0,nn∴当n7时, 当n7时,7n 311322Sbbb()nnn n12n244Sbbbbbb n12789n1132 2S(bbb)nn21712n44S n1132nn(n7) 441132nn21(n7) 44∴.例题7.已知递增的等比数列{a n}满足a2a3a428,且a32是a2,a4的等差中项.(1)求{a n}的通项公式a n;(2)若b aa,lognn1n2 S bbb求使n12n-3-Sn 成立的n 的最小值.230 n1n解:(1)设等比数列的公比为q (q >1),由 1 a 1q+a 1q 2+a 1q 3=28,a 1q+a 1q 3=2(a 1q 2+2),得:a 1=2,q=2或a 1=32,q=2+a 1q 3=28,a 1q+a 1q 3=2(a 1q 2+2),得:a 1=2,q=2或a 1=32,q=2(舍) (n -1) ∴a n =2·2=2n(2)∵n balogan2 nn1n 22+3·23+⋯+n ·2n ) ,∴S n =-(1·2+2·2 2+2·23+⋯+n ·2n+1),∴S n =2+22+23+⋯+2n -n ·2n+1=-(n -1)·2n+1-2,∴2S n =-(1·2 若S n +n ·2n+1>30成立,则2n+1>32,故n >4,∴n 的最小值为5.例题8.已知数列{a }的前n 项和为Sn,且1,S,a 1成等差数列,nnn*n N ,a 1.函数1fxx.()log3(I )求数列{a }的通项公式;nbn (II )设数列{b }满足n1 (n3)[f(a)2],记数列{} b 的前n 项和为Tn,试比较nnT 与n 52n5 12312的大小. 解:(I )1,S n ,a n1成等差数列,2S n a n 11①当n2时,2S n1a n 1②.①-②得:2(S n S n1)a n 1a n ,3a n a 1, n a n13.an当n=1时,由①得2S 12a 1a 21,又 a 11,a 2 a2 3,3, a 1{a n }是以1为首项3为公比的等比数列, a n n1 3. (II )∵fxlog 3x , n1f(a)logalog3n1,n3n3b n11111 ()(3)[()2](1)(3)213 nfannnn ,nT n 1111111111111 ()224354657nn2n1n3 11111 ()223n2n352n5122(n2)(n3),T 与n 比较52n5 12312 的大小,只需比较2(n2)(n3)与312的大小即可.22又2(n2)(n3)3122(n5n6156)2(n5n150)2(n15)(n10)∵n N∴当*,*,*1n9且n N时,52n52(n2)(n3)312,即T;n12312当n10时,52n5 2(n2)(n3)312,即T;n12312当*n10且n N时,2(n2)(n3)312,即Tn52n512312 .3.研究生成数列的性质-4-例题9.(I )已知数列c n ,其中nn c23,且数列c n1pc n 为等比数列,求常数 np ;(II )设a n 、b n 是公比不相等的两个等比数列,c n a n b n ,证明数列c n 不是 等比数列.解:(Ⅰ)因为{c n+1-pc n }是等比数列,故有(c n+1-pc n ) 2=(c n+2-pc n+1)(c n -pc n -1), 将c n =2n+3n代入上式,得n +1n +1-p (2n+3n )]2[2+3n +2+3n +2-p (2n+1+3n+1)]·[2n +3n -p (2n -1+3n -1)],=[2n+(3-p )3n ]2即[(2-p )2n+1n+1n -1n -1=[(2-p )2+(3-p )3][(2-p )2+(3-p )3],1整理得6n n=0,(2-p )(3-p )·2·3解得p=2或p=3. (Ⅱ)设{a n }、{bn}的公比分别为p 、q ,p ≠q ,cn=an+bn.为证{c n }不是等比数列只需证 2 c ≠c1·c 3. 2事实上, 2 c=(a 1p +b 1q ) 2 2= 2 a p 1 2+ 2 b q1b 1pq ,1 2+2a22 a p b q 2+b 1q 2)=2+2+a 1b 1(p 2+q 2).c1·c3=(a 1+b 1)(a 1p11 由于p ≠q ,p2+q 2>2pq ,又a 1、b 1不为零,因此 2 cc1·c 3,故{c n }不是等比数列.2例题10.n2(n ≥4)个正数排成n 行n 列:其中每一行的数成等差数列,每一列的数成13 a 42,a43等比数列,并且所有公比相等已知a 24=1,816求S=a 11+a 22+a 33+,+a nn解:设数列{a 1k }的公差为d ,数列{a }(i=1,2,3,,,n )的公比为q ik则a 1k =ak -111+(k -1)d ,a kk =[a 11+(k -1)d]qa 24 (a 11 3d)q1a 42 (a 11d)q 3 1 833a(a 2d)q4311依题意得:16 又n 2个数都是正数,1k1,解得:a 11=d=q=±2∴a 11=d=q=2 ,∴a kk =k 2S1 22 1 22 3 1 3 2 n1 2 n,1 2S 11123n 22 342221n1,-5-两式相减得:S21 n2 1 n n 2例题11.已知函数f(x)log 3(axb)的图象经过点A(2,1)和B(5,2),记f(n)*a3,n N. n(1)求数列{a }的通项公式;n(2)设anb,nTbbb2,若Tm(mZ ) nn12nn ,求m的最小值;(3)求使不等式 (1 111 )(1)(1)p2n1aa n 对一切nN*均成立的最大a 12实数p.log(2ab)1a23解:(1)由题意得log(5)2 ab 3,解得b1, f(x)log 3(2x1) a n log(2n1)21,33nnN *b n 2n n 21 ,T n1 123 2 25 3 2 2n n 2 1 3 2n n 21 (2)由(1)得 ①1 2 T n132n52n32n2n2n3n122221 1②①-②得1 2 T n1 12 2 2 2 23 2 2 n 2 1 2 n 2 2n n 2 1 1 1 1 2 ( 1 1 2 1 2 2 1 n 2 2 1 n 2 1 ) 2n13 1 22n n1n1n 2221 1 . T n 3 1 n2 22n 2 n1 3 2n n23 ,设 f2n3 (n),n N n2 *,则由2n5f 得(n1)12n1n51 2 2n3f(n)2(2n3)22nn3 1 2 1 512 2n3*f(n),n Nn 随n 的增大而减小2当时,T3又T n m(mZ )恒成立,3mnnminp 1 2n 1 (1 1 a 1 )(1 1 a 2 ) (1 1 a n ) 对 n N*(3)由题意得恒成立F(n) 1 2n 1 (1 111)(1)(1a 1aa n2),则记-6-F(n1) 1 2n3(1 1 a 1 )(1 1 a 2 ) (1 1 a n )(1 1 a n 1)F (n) 1 2n 1(1 1 a 1 )(1 1 a 2 ) (1 1 a n)(2n2n2 1)(2n 3) 4(n 2(n 2 1) 1) (n 1) 2 2n n 1 1 1F 即是随n 的增大而增大(n)0,F(n1)F(n),F(n)F 的最小值为 (n)F(1) 23 3 , p 23 3 ,即 p max 23 3 . (二)证明等差与等比数列 1.转化为等差等比数列.a 中,a 18,a2且满足例题12.数列{}n4a n22a 1a , nn*n N .⑴求数列{a n }的通项公式;⑵设S n |a||a||a|,求12nS ; n1⑶设b n =n (12a) n **(n N ),Tbbb(n N ),是否存在最大的整数m ,使得n12n对任意 m n ,均有T n 32N * 成立?若存在,求出m 的值;若不存在,请说明理由.解:(1)由题意,a n2a n a n a n ,{a }为等差数列,设公差为d ,11n由题意得283dd2,a82(n1)102n.n(2)若102n0则n5,5,||||||n 时S n aaa12n8102n2aaan9nn, 12n2n 时,S n aaaaaa n6125672S 5(S n S 5)2S 5S n n9n402 9nn n5nS 2故n9n40n6(3)bn11111()nannnn,(12)2(1)21nT n 1111111111[(1)()()()()]222334n1nnn1n.2(n1)mTn 若32 对任意nm*n N成立,即116n对任意*n N成立,1n*(n N)n的最小值是2 1 ,m1162,m的最大整数值是7.即存在最大整数m7,使对任意*n N,均有Tnm.32 a例题13.已知等比数列{b n}与数列{a n}满足3,bn N*.nn-7-(1)判断{a}是何种数列,并给出证明;n(2)若a8a13m,求b1b2b20.aa1n。

数列经典试题(含答案)

数列经典试题(含答案)

强力推荐人教版数学高中必修5习题第二章数列1 . 孔}是首项a1= 1, 公差为d =3的等差数列,如果a n =2 005, 则序号n 等千().A. 667B. 668C. 669D. 6702. 在各项都为正数的等比数列{孔}中,首项a1= 3 f前三项和为21I则a3+ a4 + a s = ( ). A. 33B. 72C. 84D. 1893. 如果a1,a2, …,as 为各项都大千零的等差数列,公差d-:t-0,则().A.a泣s > a 泣5B.a也s < a 泣5C . a 1+as < a4 + a s D . a 1as= a 泣54. 已知方程(Jf -2x+ m )(烂-2x+ n ) = 0的四个根组成一个首项为-的等差数列,则4 Im-n I 等于().A. 13-4B 1_2c D. 3-85. 等比数列{孔}中,a2= 9 , as = 243 , 则{动的前4项和为(). A. 81B. 120C. 168D. 1926. 若数列a 动是等差数列,首项a1> 0, B2 003 + a2 004 > 0 , a2 003·a2 004 < 0 , 则使前n项和Sn>0成立的最大自然数E=In 定:().A. 4 005B. 4 006C. 4 007D. 4 0087. 已知等差数列{劲的公差为2,若a1, a3 , a4成等比数列则a2=().A. -4B. -6C. -8D. -108. 设岛是等差数列{劲的前n项和,若化=5 S ——,贝u----2...= ()a 39 S 5A. 1 B . -1C.2 l-2.D 9. 已知数列-l,a1,a2-4成等差数列-1 a — 2 aII纺,纺,�/-4成等比数列,则]的值是(b 2)1_2. A l -2 . B l -2 或l -2 . cl-4. D 10. 在等差数列{孔}中,a n t:-0,a n -l -a�+ a n +l = O (n�2), 若S2n -l = 38 , 则n =( ) .A. 38B. 20C. 10D.9二、填空题11 . 设心= 1,利用课本中推导等差数列前n 项和公式的方法,可求得I(-5) + I(-4) + ... + f(O) +…+ /(5) 2勹一五+ /(6)的值为12. 已知等比数列{动中,(1)若a3盆·as =8, 则a2·务函岔兔=(2)若a1+ a2 = 324 , a3 + a4 = 36 , 则as+a 产(3)若S4=2,Ss =6,则a17+ a1s + a19 + a20 = 8 2713 . 在-和—之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为14. 在等差数列{孔}中,3(a 产生)+ 2(动+a10 + a13) = 2 4 , 则此数列前13项之和为15 . 在等差数列{孔}中,as =3,a6= -2, 则a4+as+…+a10 =16. 设平面内有n 条直线(n�3)/其中有且仅有两条直线互相平行,任意三条直线不过同—点.若用杯)表示这n 条直线交点的个数,则私)=三、解答题;当n>4时,杯)=17 . (1)已知数列{孔}的前n 项和S n =3rF -2n,求证数列{孔}成等差数列(2)已知1 1 1 — —, -成等差数列,求证b+cc+a a+b也成等差数列abcab c18. 设{孔}是公比为q的等比数列,且a1,a3,a2成等差数列.(1)求q的值;(2)设{如是以2为首项,q为公差的等差数列,其前n项和为S n,当n�2时,比较岛与幻的大小,并说明理由.19. 数列{孔}的前n项和记为S n,已知a1= 1 求证:数列{二}是等比数列.n+2, an+ 1 = Sn(n = 1 , 2 , 3 ...) .20. 已知数列{孔}是首项为a且公比不等于1的等比数列,岛为其前n项和,a1/ 2句,3a4成等差数列,求证:1253 / 55 / 512 -55成等比数列第二章数列参考答案一、选择题1.C解析:由题设,代入通项公式a n=a1 +(n -l)d, 即2005 = 1 +3(n -1) ,.·.n = 699 .2.C解析:本题考查等比数列的相关概念,及其有关计算能力.设等比数列{孔}的公比为q(q>0) /由题意得a1+ a2 +a3 = 21 ,即a1(l+ q+矿)= 21, 又a1=3,:.l+q+矿=7.解得q=2或q=-3(不合题意,舍去),.岛+函+a s=a1矿(1+ q+矿)= 3x2奴7=84.3.B.解析:由a1+as=a4+a s,才非除C.又a1岔=a1(a1 +7动=a产+7 a1d,a4· 无=(a1 +3功(a1+ 4动=a产+7 a1d + 12d > a1·as .4.C解析:1解法1:设a1= , a尸1 1 1— —+ d, a3 = -+ 2d, a4 =—+3d, 而方程烂-2x+m=O中两根之和为2烂-2x+n=O4 4 4 4中两根之和也为2,.a1 +a2 +a3 +函=1+6d=4,7 3 5:.d=—, a1 =—, a4=—是一个方程的两个根,a1=—, a产—是另一个方程的两个根.2 4 4 4 47 15.-. —, —分别为m或n,1616.-. Im -n I =_!_, 故选C .2解法2:设方程的四个根为X 1, X2 , X3 , X4 , 且X 1+X2=X3+X4=2 IX1为=m ,X3凶=n.由等差数列的性质:若等差数列为,1 3 5 7 4 4 4 4715 :.m =—, n =— 1616+s =p +q ,则a7+ a s = a p+ a q /若设X1为第—项,X 2必为第四项,则X2=—,千是可得4.-. Im -n I.1-25.B解析:a2 = 9 , as = 243 , 生-=矿=—-243 =27 a 29.·.q = 3 I a1q = 9 I a1 = 3 I S 4= 3—35=严=120l —326. B 解析:解法1:由a2003 + a 2 004 > 0 , a2 003·a2 004 < 0 , 知a2003和a2004两项中有—正数—负数,又a1> 0 /则公差为负数,否则各项总为正数,故a2003 > a2 004 , 即a2003 > 0 , a2 004 < 0.4 006(a1+a 4 006 )4 006(a +a ).-. 54 006 ==2 003 2 004 > O ,224 0074 007 :.S4 007 =·(a1+ a4 007) =·2a2 004 < 0 , 22 故4006为S n>0的最大自然数选B.解法2:由a1> 0 , a2 003 + a2 004 > 0 , a2 003·a2 004 < 0 ,同解法1的分析得a2003 >0 , a2 004 < 0 ,.·.S2 003为岛中的最大值.I(第6题)岛是关于n的二次函数,如草图所示,.2 003到对称轴的距离比2004到对称轴的距离小,4 007.在对称轴的右侧.根据已知条件及图象的对称性可得4006在图象中右侧零点B的左侧,4007 I4 008都在其右侧,S n >0的最大自然数是4006.7.B解析:了{孔}是等差数列,..岔=a1 + 4 , a4 = a1 + 6 , 又由a1, a 3, a4成等比数列,..(a1 + 4)2 = a1(a1 + 6) , 解得a 1= -8 t .a 2 = -8 + 2 = -6 . 8.AA 选, 1 __ 5-9 9-5 = 53 a a .. 95 __ 、丿、晶,丿95 a a +2+2a l a _ (( 95 __ s 9-i ·' .. 析解9.A解析:设d和q分别为公差和公比,则-4 = -1 + 3d且-4 = (-1) cf / .d = -1 , 矿=2,a -a .2 I d l ..= =— 九-矿210. C解析:{孔}为等差数列,a�= an-l + an+l, .·.a�= 2an, 又BntO, ."孔=2 / {孔}为常数数列,s2n-138而a n =I即2n -1 =—= 19,2n -12:.n = 10二、填空题11. 3五.解析:了伈劝=2勹一五2x.f(_l -劝=1 =2x=✓2 i 1-x 十五2+✓2·2x 忒+2XI·2x l + 1.y1(✓2+ 2x)伈店-劝=1+✓2=✓2 =✓2五+2x迈+2x五+2x丘+2x设S =I(_ -5) +/(_ -4) +…+和)+…+朽)+秅),贝U 5 = /(_6) + /(_5) +…+ f(_O) +…+ I(_ -4) + I(_ -5):.2S = [/(_6) + I(_ -5)] +团5)+ /(_ -4)] +…+ [/(_ -5) +秅)] = 6✓2..S = I(_ -5) + /(_ -4) + ... +和)+…+朽)+秅)=3五.12 . (1) 32 ; (2) 4 ; (3) 32 . 解析:(1)由a3岔=Q�/得a4= 2I_2__ :.a2·a3·a4·a5·a6 = a 5 = 32. (2) {a , + a , �324⇒ 矿=丿(a, +aJ 矿=369 I.岛+a6= (a1 + a2)才=4.(3){义�a 三+a ,+a 4�24⇒旷�2'S 8=a 1+a 2+· · ·+a 8=S 4+S 4q:.a 17 + a 1s + a19 + a20 = S4泸=32.13 . 216 .8 27解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与-,—同号,由等比中项的中间数为厂产=6I ..插入的三个数之积为汇竺x6= 216. 3 23214. 26.解析:·.岔+a s =2a4, 句+au =2a10, :.6(a4 + a 10) = 24 , a4 + a 10 = 4 , :.S 13 =13(a 1+a 13) 13(a 4+a 10) 13X42 = 2 = 2= 26. 15 . -49. 解析:·:d =a 6 -a s = -5 , .·.a4 +a s+…+ a10 =7(a 4+a 10)_ 7(a 5—d+a 5+5d) =7(a s +2动= -49.16. 5, —(n + l)(n-2) . 解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,.f(k)=f(k-1) + (k-1)由/(3)= 2/(4) = /(3) + 3 = 2 + 3 = 5 , /(5) = /(4) + 4 = 2 + 3 + 4 = 9 ,f(n) = f(n -1) + (n -1), 相加得杯)=2+3+4+ 三、解答题1…+ (n -1) =—(n + l)(n -2) . 2 17. 分析:判定给定数列是否为等差数列关键看是否满足从第2项开始每项与其前一项差为常数.证明:(1) n= 1时,a1=51=3-2=1,当n�2时,a n =S n -S n _ 1 = 3 ff -2 n -[3(n -1)2 -2(n -1)] = 6n -5 n=l 时,亦满足,:.a n =6n -S(nE N *) .首项a1= 1 ,a n -a n -1 = 6n -5 -[6(n -1) -5] = 6(常数)(nEN*),.数列{动成等差数列且a1= 1, 公差为6.(2) .. 1 1 1 , 成等差数列,a b c 2 1 1 :. —=-+-化简得2a c =以a +CJ b a cb+c a+b += bc+c 2+a 2+ab b(a+c)+a 2+c 2 (a+c)2 (a+c)2 a+c = = = = 2a C ac acac b(a+c) b . b+c c+a a+b, 也成等差数列.a bc 18. 解:(1)由题设2a3= a1 + a2 , 即2a心=a1 + a1q, :a1-:t-O, :.2矿-q -1=0,:.q= 1或-—.12(2)若q=1, 则S n =2n+= n(n —I) n 2+3n 2 2当n�2时,S -b n = S n -(n —1) (n+2)n 1=>O, 故S n >b n .若q = 2I n(n 1),则S n =2n + l —n +9n -—(-—) =2 2 2 4. 当n�2时,S n -炕=S n -1 =, (n —I) (IO —n)2故对于nEN+,当2匀区9时,S 户肛;当n =10时,S n =b n ; 当n�ll时,S n <b n . 19. 证明...n+2 .. a n +i = Sn+l -S n I a n +i = nS n I .·.(n + 2)S n = n(S n +l -S n ),整理得nS n +l = 2(n + 1) S n , s 所以n +l 2S n n+I n s 故{二}是以2为公比的等比数列.20. 证明:由a1/ 2句,3a4成等差数列,得4句=a1 + 3a4, 即4a1cf = a1 + 3a1矿,变形得(4矿+1)(矿-1) = 0 , 1 矿=--或矿=1(舍).4 吓-矿)由戈=1-q = l+q 3 =上12S 3 12a, (1-矿)12 16 1—qa l (l —q '2) S ,2-S 6 =旯l —q 1-1= -1=1+ -1=—·# s 6 s 6 a , (1—q 勹得戈=凡-S 6. 12S 3 S 61-q .12S3 I S5 I S12 -吴成等比数列.16。

数列的典型例题

数列的典型例题

数列的典型例题1、等差数列{}n a 中,前三项依次为x x x 1,65,11+,求:105?a = 解:由等差数列中项公式得:511261x x x ⋅=++,则:2x =. 首项为:11113a x ==+,公差为:15151621212d x x =-=-=;则数列通项为:1113(1)31212n n n a a n d -+=+-=+=. 故:1053105391212n a ++===.2、前100个自然数(1到100)中,除以7余2的所有数之和S 是? 解:这些数构成的数列为:7(1)275n a n n =-+=-;在100之内,n 的最大数m 为:10075m =-,即15m =;这些数之和S 为:151(115)15(75)75157652k S n =+⨯⎡⎤=-=-⨯=⎢⎥⎣⎦∑3、在等差数列{}n a 中,前n 项和为n S . 若10a >,160S >,170S <,则n S 最大时,?n =解:等差数列通项为:1(1)n a a n d =+-,求和公式为:1(1)2n n n S na d -=+; 则:16116151602S a d ⨯=+>,即:11502a d +>,170a d +>,即:80a >; 17117161702S a d ⨯=+<,即:180a d +<,即:90a <.故n S 最大时,8n =.4、数列{}n a 的通项公式n a =n 项和为9n S =,求:?n =解:通项:n a==则:119nn k S ====∑,于是:99n =5、等差数列{}n a ,其公差不为0,其中,2a 、3a 、6a 依次构成等比数列,求公比?q = 解:等差数列通项:1(1)n a a n d =+-,则:32a a d =+,624a a d =+,构成等比数列,则:2326a a a =,即:2222()(4)a d a a d +=+; 即:222222224a a d d a a d ++=+.因为0d ≠,故:22d a =; 所以:32222233a a d a q a a a +====.6、已知等差数列{}n a 的前n 项和n S ,且11a =,1133S =. 设14na nb ⎛⎫= ⎪⎝⎭,求证:{}n b 是等比数列,并求其前n 项和n T . 证明:通项:1(1)n a a n d =+-,求和公式:1(1)2n n n S na d -=+; 则:11111011332S d ⨯=+=,即:115533d +=,故:25d =.于是:2231(1)55n n a n +=+-=;则:23514n n b +⎛⎫= ⎪⎝⎭,2(1)35114n n b +++⎛⎫= ⎪⎝⎭则:2(1)323255511144n n n n b b +++-+⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 故{}n b 是首项为114b =,公比为25114n n b q b +⎛⎫== ⎪⎝⎭,的等比数列,通项为:23514n n b +⎛⎫= ⎪⎝⎭.()()2n 5221n n 55n 12255111q 1444T b 1q 4144114-⎛⎫- ⎪--⎛⎫⎝⎭==⋅= ⎪-⎝⎭⎛⎫-- ⎪⎝⎭7、若x y ≠,且两个数列:12,,,x a a y 和123,,,,x b b b y 均为等差数列,求:13?a xy b -=- 解:设两个等差数列的公差分别为:1d 和2d ,则:113y x a x d --==,324y xy b d --==. 故:131()4313()4y x a x y b y x --==--8、已知正项数列{}n a 的前n 项和n S 满足:21056n nn S a a =++,且1a 、3a 、15a 成等比数列,求数列{}n a 的通项?n a =解:由已知:2+1+1+11056n n n S a a =++ ①21056n n n S a a =++ ②由①-②:2211110()5()n n n n n a a a a a +++=-+-移项合并:2211()5()0n n n n a a a a ++--+=,即:11()(5)0n n n n a a a a +++--=由于正项数列1()0n n a a ++>,所以:150n n a a +--=,即:15n n a a +-=; 由此得到{}n a 是公差为5的等差数列.设:15(1)n a a n =+-,则:3110a a =+,15170a a =+;由1a 、3a 、15a 成等比数列得:23115a a a =,即:2111(10)(70)a a a +=+; 即:2211112010070a a a a ++=+,故:12a =. 所以:25(1)53n a n n =+-=-9、已知数列{}n a 的前n 项和1(1)(2)3n S n n n =++,试求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和?n T =解:由已知:1111(1)(2)=(1)(24)=(1)(21)(1)3662n S n n n n n n n n n n n =++++++++及:211(1)(21)6nk k n n n ==++∑ 和:11(1)2n k k n n ==+∑得到上面求和公式可分成两部分,一个2n a n =求和,一个n a n =求和. 故:2(1)n a n n n n =+=+. 那么:1111(1)1n a n n n n ==-++;所以:1111()1111nn k nT k k n n ==-=-=+++∑.10、已知数列{}n a 的前n 项和为n S ,其首项11a =,且满足3(2)n n S n a =+,求通项?n a = 解:由已知:3(2)n n S n a =+ ①113(1)n n S n a --=+ ②由①-②:13(2)(1)n n n a n a n a -=+-+ ; 移项合并:1(1)(1)n n n a n a --=+,即:111n n n a a n -+=- 由此递推得:()1211112......1121211(1)(1)1122n n n kk n n n n n k a a a a n n n n n k n n n n n n a a k k --++++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪⎪ ⎪⎪ ⎪-----⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭++=+⋅⋅⋅⋅==+11、如果数列{}n a 中,相邻两项n a 和1+n a 是二次方程23=0nn n x nx c ++(n=1,2,3…)的两个根,当12a =时,试求100?c =解:由韦达定理:13n n a a n ++=- ① 1n n n a a c +⋅= ②由①式可得:121()()3n n n n a a a a ++++-+=-,即:23n n a a +-=- ③ ③式表明:13521,,,...,k a a a a -和2462,,,...,k a a a a 都是公差为-3的等差数列. 又因12a =,代入①式可得:25a =-,于是得到等差数列为:211(1)(3)23353k a a k k k -=+--=-+=-; 22(1)(3)53323k a a k k k =+--=--+=--.那么: 1002350152a =--⨯=-,1015351148a =-⨯=- 代入②式得:100100101(152)(148)22496c a a =⋅=-⨯-=12、有两个无穷的等比数列{}n a 和{}n b ,其公比的绝对值都小于1,其各项和分别是11n k k S a ∞===∑和12n k k T b ∞===∑,对一切自然数都有:2nn a b =,求这两个数列的首项和公比. 解:由111a S q ==-和121bT r==-得:11a q =-,及12(1)b r =-. 数列的首项 设这两个等比数列的通项公式分别为:111(1)n n n a a q q q --==- ① 1112(1)n n n b b r r r --==- ②将①②两式代入2nn a b =,并采用赋值法,分别令1n =和2n =得: 211a b =,即:2(1)2(1)q r -=- ③222a b =,即:22(1)2(1)q q r r -=- ④由③④得:2r q = ⑤ 将⑤式代入③式得:22(1)2(1)q q -=-因为:1q ≠,则上式化简为:12(1)q q -=+,即:13q =-将13q =-代入⑤式得:19r = 这是这两个数列的公比.将13q =-和19r =分别代入①式和②式得:()1114114(1)413333n nn n n n a q q-+-⎛⎫⎛⎫=-=⋅-=--=-⋅ ⎪ ⎪⎝⎭⎝⎭;1181162(1)2999n n n n b r r --⎛⎫=-=⨯⨯=⎪⎝⎭13、已知数列{}n a 的前n 项和为n S ,112a =,当2n ≥时,满足:120n n n a S S -+=;求证:数列1n S ⎧⎫⎨⎬⎩⎭为等差数列;并求{}n S 的通项公式?n S =解:由120n n n a S S -+=得:1120n n n n S S S S ---+=,即:11120n nS S --+=, 则:1112n n S S --=,11112S a ==. 上式表明:1n S ⎧⎫⎨⎬⎩⎭是一个首项为2,公差为2的等差数列.则:122(1)2n n n S =+-=,即:12n S n=,112(1)n S n -=-; 于是:111122(1)2(1)n n n a S S n n n n -=-=-=--- 故:1(1)21(2)2(1)n n a n n n ⎧=⎪⎪=⎨⎪-≥-⎪⎩14、已知等比数列{}n a 的首项112a =,且满足:10103020102(21)0S S S -++=. (1)求{}n a 的通项;(2)求{}n nS 的前n 项和n T .解:将3030111q S a q -=-、2020111q S a q -=-、1010111q S a q-=-代入上面等式得:10301020102(1)(21)(1)(1)0q q q --+-+-=化简得:10102010102(1)(21)(1)10q q q ++-+++= 即:101010201010102(1)22(1)(1)10q q q q ++-+-++=整理得:10201020q q -=,即:12q =±则:111111222n n n n a a q--⎛⎫==⋅= ⎪⎝⎭或1111111(1)222n n n n n a a q ---⎛⎫==⋅-=- ⎪⎝⎭第14题第(2)问解答:(2)A.对于等比数列:12a n n =,其求和公式为:11112112212n S n n -=⋅=--故:1(1)221111n n n n k T kS k k n k k k k k k k ⎛⎫==-=-∑∑∑∑ ⎪⎝⎭==== 1> (1)21n n n k k +=∑=2> 23123 (222)221n n n k nR k k ⎛⎫==++++∑ ⎪⎝⎭= ① 则:231234221 (22222)1n n n knR kk -⎛⎫==+++++∑⎪⎝⎭= ② 由②-①得:22331121324311()()()...()222222222n n n n n n nR ---=+-+-+-++--23112311...22222n n n -=+++++-111222(1)21222212nn n n n n n n -+=-=--=-- 综合1>和2>得:(1)2222211nn n kn n n T k n kk k ⎛⎫++=-=+-∑∑⎪⎝⎭== (2)B.对于等比数列:11(1)2n n n a -=-其求和公式为:11()11111(1)2[1(1)]12333221()2n n n S n n n ---=⋅=⋅--=-⋅-- 故:11[1(1)](1)333221111k k n n n n k k k T kS n kk k k k k k ⎛⎫==⋅--=--∑∑∑∑ ⎪⎝⎭==== 1> (1)361n k n n k +=∑= 2> 2311123(1)...(1)33222221kn n n n k n U kk ⎛⎫⎡⎤=-=-+-++-∑⎪⎢⎥⎣⎦⎝⎭= ③ 则:12111232...(1)31222n n n n U -⎡⎤=-+-++-⎢⎥⎣⎦④由③+④得:1221112132131()()...(1)()(1)32222222n n n n n n n n n U ---⎡⎤=-+---++--+-⎢⎥⎣⎦2111111...(1)(1)32222n n n n n -⎡⎤=-+-++-+-⎢⎥⎣⎦ 21111111...(1)(1)322232n n n n n -⎡⎤=-+-++-+⋅-⎢⎥⎣⎦ (1)1112(1)13321()2nnn n n --=-⋅+⋅---2(1)1[1](1)9232n n n n n -=-⋅-+⋅- 故:2(1)(1)[1]27292n n n n n nU --=-⋅-+⋅ 于是:1(1)2(1)(1)(1)[1]33627292211n n k n n n n k kn n nT nk k k ⎛⎫+--=--=-⋅-+⋅∑∑ ⎪⎝⎭== 15、若等差数列{}2log n x 的第m 项等于k ,第k 项等于m(其中m k ≠),求数列{}n x 的前m k +项的和。

数列典范例题(裂项相消法)

数列典范例题(裂项相消法)

数列裂项相消求和的典型题型1.已知等差数列}{n a 的前n 项和为,15,5,55==S a S n 则数列}1{1+n n a a 的前100项和为( ) A .100101 B .99101 C .99100 D .1011002.数列,)1(1+=n n a n 其前n 项之和为,109则在平面直角坐标系中,直线0)1(=+++n y x n 在y 轴上的截距为( )A .-10B .-9C .10D .93.等比数列}{n a 的各项均为正数,且6223219,132a a a a a ==+.(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)设,log log log 32313n n a a a b +++= 求数列}1{nb 的前n 项和. 4.正项数列}{n a 满足02)12(2=---n a n a n n .(Ⅰ)求数列}{n a 的通项公式n a ; (Ⅱ)令,)1(1nn a n b +=求数列}{n b 的前n 项和n T .5.设等差数列}{n a 的前n 项和为n S ,且12,4224+==n n a a S S . (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)设数列}{n b 满足,,211*2211N n a b a b a b n n n ∈-=+++ 求}{n b 的前n 项和n T . 6.已知等差数列}{n a 满足:26,7753=+=a a a .}{n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令),(11*2N n a b n n ∈-=求数列}{n b 的前n 项和n T . 7.在数列}{n a 中n n a na a 211)11(2,1,+==+. (Ⅰ)求}{n a 的通项公式;(Ⅱ)令,211n n n a a b -=+求数列}{n b 的前n 项和n S ; (Ⅲ)求数列}{n a 的前n 项和n T .8.已知等差数列}{n a 的前3项和为6,前8项和为﹣4. (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)设),,0()4(*1N n q q a b n n n ∈≠-=-求数列}{n b 的前n 项和n S .9.已知数列}{n a 满足,2,021==a a 且对*,N n m ∈∀都有211212)(22n m a a a n m n m -+=+-+--.(Ⅰ)求53,a a ;(Ⅱ)设),(*1212N n a a b n n n ∈-=-+证明:}{n b 是等差数列;(Ⅲ)设),,0()(*11N n q q a a c n n n n ∈≠-=-+求数列}{n c 的前n 项和n S .10.已知数列}{n a 是一个公差大于0的等差数列,且满足16,557263=+=a a a a . (Ⅰ)求数列}{n a 的通项公式;(Ⅱ)数列}{n a 和数列}{n b 满足等式),(2222*33221N n b b b b a n n n ∈++++=求数列}{n b 的前n 项和n S . 11.已知等差数列}{n a 的公差为2,前n 项和为n S ,且421,,S S S 成等比数列. (1)求数列}{n a 的通项公式; (2)令,4)1(112+--=n n n a a nb 求数列}{n b 的前n 项和n T .12.正项数列}{n a 的前n 项和n S 满足:0)()1(222=+--+-n n S n n S n n .(1)求数列}{n a 的通项公式n a ; (2)令,)2(122n n a n n b ++=数列}{n b 的前n 项和为n T ,证明:对于,*N n ∈∀都有645<n T . 答案: 1.A ;2.B3.解:(Ⅰ)设数列{a n }的公比为q ,由a 32=9a 2a 6有a 32=9a 42,∴q 2=. 由条件可知各项均为正数,故q=.由2a1+3a2=1有2a1+3a1q=1,∴a1=.故数列{a n}的通项式为a n=.(Ⅱ)b n=++…+=﹣(1+2+…+n)=﹣,故=﹣=﹣2(﹣)则++…+=﹣2[(1﹣)+(﹣)+…+(﹣)]=﹣,∴数列{}的前n项和为﹣.4.解:(Ⅰ)由正项数列{a n}满足:﹣(2n﹣1)a n﹣2n=0,可有(a n﹣2n)(a n+1)=0∴a n=2n.(Ⅱ)∵a n=2n,b n=,∴b n===,T n===.数列{b n}的前n项和T n为.5.解:(Ⅰ)设等差数列{a n}的首项为a1,公差为d,由S4=4S2,a2n=2a n+1有:,解有a1=1,d=2.∴a n=2n﹣1,n∈N*.(Ⅱ)由已知++…+=1﹣,n∈N*,有:当n=1时,=,当n≥2时,=(1﹣)﹣(1﹣)=,∴,n=1时符合.∴=,n∈N*由(Ⅰ)知,a n=2n﹣1,n∈N*.∴b n=,n∈N*.又T n=+++…+,∴T n=++…++,两式相减有:T n=+(++…+)﹣=﹣﹣∴T n=3﹣.6.解:(Ⅰ)设等差数列{a n}的公差为d,∵a3=7,a5+a7=26,∴有,解有a1=3,d=2,∴a n=3+2(n﹣1)=2n+1;S n==n2+2n;(Ⅱ)由(Ⅰ)知a n=2n+1,∴b n====,∴T n===,即数列{b n}的前n项和T n=.7.解:(Ⅰ)由条件有,又n=1时,,故数列构成首项为1,公式为的等比数列.∴,即.(Ⅱ)由有,,两式相减,有:,∴.(Ⅲ)由有.∴T n=2S n+2a1﹣2a n+1=.8.解:(Ⅰ)设{a n}的公差为d,由已知有解有a1=3,d=﹣1故a n=3+(n﹣1)(﹣1)=4﹣n;(Ⅱ)由(Ⅰ)的解答有,b n=n•q n﹣1,于是S n=1•q0+2•q1+3•q2+…+n•q n﹣1.若q≠1,将上式两边同乘以q,有qS n=1•q1+2•q2+3•q3+…+n•q n.上面两式相减,有(q﹣1)S n=nq n﹣(1+q+q2+…+q n﹣1)=nq n﹣于是S n=若q=1,则S n=1+2+3+…+n=∴,S n=.9.解:(Ⅰ)由题意,令m=2,n=1,可有a3=2a2﹣a1+2=6再令m=3,n=1,可有a5=2a3﹣a1+8=20(Ⅱ)当n∈N*时,由已知(以n+2代替m)可有a2n+3+a2n﹣1=2a2n+1+8 于是[a2(n+1)+1﹣a2(n+1)﹣1]﹣(a2n+1﹣a2n﹣1)=8即b n+1﹣b n=8∴{b n}是公差为8的等差数列(Ⅲ)由(Ⅰ) (Ⅱ)解答可知{b n}是首项为b1=a3﹣a1=6,公差为8的等差数列则b n=8n﹣2,即a2n+1﹣a2n﹣1=8n﹣2另由已知(令m=1)可有a n=﹣(n﹣1)2.∴a n+1﹣a n=﹣2n+1=﹣2n+1=2n于是c n=2nq n﹣1.当q=1时,S n=2+4+6++2n=n(n+1)当q≠1时,S n=2•q0+4•q1+6•q2+…+2n•q n﹣1.两边同乘以q,可有qS n=2•q1+4•q2+6•q3+…+2n•q n.上述两式相减,有(1﹣q)S n=2(1+q+q2+…+q n﹣1)﹣2nq n=2•﹣2nq n=2•∴S n=2•综上所述,S n=.10.解:(Ⅰ)设等差数列{a n}的公差为d,则依题意可知d>0由a2+a7=16,有,2a1+7d=16①由a 3a 6=55,有(a 1+2d )(a 1+5d )=55② 由①②联立方程求,有d=2,a 1=1/d=﹣2,a 1=(排除)∴a n =1+(n ﹣1)•2=2n ﹣1 (Ⅱ)令c n =,则有a n =c 1+c 2+…+c na n+1=c 1+c 2+…+c n+1 两式相减,有a n+1﹣a n =c n+1,由(1)有a 1=1,a n+1﹣a n =2 ∴c n+1=2,即c n =2(n ≥2), 即当n ≥2时,b n =2n+1,又当n=1时,b 1=2a 1=2 ∴b n =于是S n =b 1+b 2+b 3+…+b n =2+23+24+…2n+1=2n+2﹣6,n ≥2,.11.解 (1)因为S 1=a 1,S 2=2a 1+2×12×2=2a 1+2,S 4=4a 1+4×32×2=4a 1+12,由题意得(2a 1+2)2=a 1(4a 1+12),解得a 1=1, 所以a n =2n -1. (2)b n=(-1)n -14na n a n +1=(-1)n -14n(2n -1)(2n +1)=(-1)n -1(12n -1+12n +1). 当n 为偶数时,T n =(1+13)-(13+15)+…+(12n -3+12n -1)-(12n -1+12n +1)=1-12n +1=2n2n +1.当n 为奇数时,T n =(1+13)-(13+15)+…-(12n -3+12n -1)+(12n -1+12n +1)=1+12n +1=2n +22n +1.所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.(或T n =2n +1+(-1)n -12n +1)12.(1)解 由S 2n -(n 2+n -1)S n -(n 2+n )=0,得[S n -(n 2+n )](S n +1)=0, 由于{a n }是正项数列,所以S n +1>0. 所以S n =n 2+n (n ∈N *).n ≥2时,a n =S n -S n -1=2n , n =1时,a 1=S 1=2适合上式.∴a n =2n (n ∈N *). (2)证明 由a n=2n (n ∈N *)得b n =n +1(n +2)2a 2n =n +14n 2(n +2)2=116⎣⎢⎡⎦⎥⎤1n 2-1(n +2)2 T n =116⎣⎢⎡ ⎝ ⎛⎭⎪⎫1-132+⎝ ⎛⎭⎪⎫122-142+⎝ ⎛⎭⎪⎫132-152+…⎦⎥⎤+⎝ ⎛⎭⎪⎫1(n -1)2-1(n +1)2+⎝ ⎛⎭⎪⎫1n 2-1(n +2)2 =116⎣⎢⎡⎦⎥⎤1+122-1(n +1)2-1(n +2)2<116⎝ ⎛⎭⎪⎫1+122=564(n ∈N *). 即对于任意的n ∈N *,都有T n <564.。

数列应用题(典型例题)

数列应用题(典型例题)

1、(2004年福建高考)某企业去年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降,若不进行技术改造,预测今年起每年比上一年纯利润减少20万元。

今年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第n年(今年为第一年)的利润为500(1+12n)万元(n为正整数)①设从今年起的前n年,若该企业不进行技术改造的累计纯利润为A n万元,进行技术改造后的累计纯利润为B n万元(需扣除技术改造资金),求A n、B n的表达式;②依上述预测,从今年起该企业至少经过多少年,进行技术改造后的累计纯利润超过不进行技术改造的累计纯利润2、(2001年全国理)从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业. 根据规划,本年度投入800万元,以后每年投入将比上年减少15.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加14。

(Ⅰ)设n年内(本年度为第一年)总投入为a n万元,旅游业总收入为b n万元. 写出a n,b n的表达式(Ⅱ)至少经过几年旅游业的总收入才能超过总投入?3、(2007年安徽卷)某国采用养老储备金制度,公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d (d>0),因此,历年所交纳的储备金数目a1,a2,…是一个公差为d的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定利率为r(r>0),那么,在第n年末,第一年所交纳的储备金就变为a1(1 + r)n – 1,第二年所交纳的储备金就变为a2(1 + r) n – 2,…,以T n表示到第n年末所累计的储备金总额.(1)写出T n与T n– 1(n≥2)的递推关系式;(2)求证:T n = A n + B n,其中{A n}是一个等比数列,{B n}是一个等差数列.4、某工厂在1999年的“减员增效”中对部分人员实行分流,规定分流人员第一年可以到原单位领取工资的100%,从第二年起,以后每年只能在原单位按上一年的23领取工资,该厂根据分流人员的技术特长,计划创办新的经济实体,该经济实体预计第一年属投资阶段,第二年每人可获得b元收入,从第三年起每人每年的收入可在上一年的基础上递增50%,如果某人分流前工资的收入每年a元,分流后进入新经济实体,第n年的收入为na元,(1)求{}na的通项公式;(2)当827ab=时,这个人哪一年的收入最少?最少为多少?(3)当38ab≥时,是否一定可以保证这个人分流一年后的收入永远超过分流前的年收入?5、某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不作广告宣传且每件获利a元的前提下,可卖出b件。

数列极限中的典型例题

数列极限中的典型例题
于是
0<
+1
=1

− < 1, = 1,2, ⋯
所以数列 单调减且有下界,因此 lim = 存在。在递推公式 + = ( − )
→∞
两边令 → ∞取极限得, = (1 − ),所以
lim = =0
→∞
取 =
1
,

= 1,2, ⋯ , 则
1,2, ⋯ , ln( − )均有意义,由于对 > 0, 不等式ln ≤ − 1恒成立,因此有
+1 − = ln − ≤ − − 1, = 2,3, ⋯ .
由此得,
S+1 ≤ − 1, = 2,3, ⋯
.
从而得,
ln( − S+1 ) ≥ ln − + 1 = 0, = 2,3, ⋯


→∞
=0
证明令 = + + ⋯ + , = 1,2, ⋯ ,及 lim = .则
→∞
1 = 1, = − −1, = 1,2, ⋯ ,
于是
11 + 22 + ⋯ + 11 + 2(2−1) + ⋯ + ( −−1)

也存在或为+∞,且
→∞
+∞时, lim

− +1
lim
= lim
→∞
→∞ − +1

+1 −
存在或为+∞时,
→∞ +1 −
斯铎兹定理2(∞型) 设数列{ }单调增加且 lim = +∞.如果 lim

数列常见大题含答案

数列常见大题含答案

常见数列大题收集1.已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-。

(Ⅰ)求{}n a 的通项公式;(公式法)(Ⅱ)求数列21211{}n n a a -+的前n 项和。

(裂项法) 1.(1)设{a n }的公差为d ,则S n =1(1)2n n na d -+。

由已知可得111330,1, 1.5105,a d a d a d +=⎧==-⎨+=-⎩解得{}n =2-.n a a n 故的通项公式为(2)由(I )知212111111(),(32)(12)22321n n a a n n n n -+==-----从而数列21211n n n a a -+⎧⎫⎨⎬⎩⎭的前项和为1111111-+-++)2-1113232112nn n n-=---(. 2.在等比数列}{n a 中,*)(0N n a n ∈>,公比1>q , 1002534231=++a a a a a a , 且4是2a 与4a 的等比中项,⑴求数列}{n a 的通项公式;(公式法) ⑵设n nn a a b 22log +=,求数列}{n b 的前n 项和n S ,(分组求和法)解:(1)设等比数列{}n a 的公比为q ,则11n n a a q -=,由已知得⎩⎨⎧====∴>=+-∴===+>=+=++82,8,2101610164,10,0,100)(23114224224242242534231q a q a a a q x x a a a a a a a a a a a a a a a n 即的两根,为方程、,又则又 …………………………… 4分解得112a q =⎧⎨=⎩ 12n n a -∴=.…………………………… 7分(2)由(1)知,212log 4(1)n n n n b a a n -=+=+-21(1444)(1231)(1)41 32n n n T n n n -∴=+++++++++---=+…………………………… 12分3. 数列{a n }的前n 项和n S =2n ,数列{n b }满足112,32n a n n b b b +==+•。

初中数学数列典型10类例题

初中数学数列典型10类例题

初中数学数列典型10类例题1、有一个农妇,拿着一篮鸡蛋来到市场上,第一位顾客买了全部鸡蛋的一半再加半个;第二位顾客买了第一次剩下部分的一半再加半个;第三位顾客买了第二次剩下的一半再加半个,如此继续,当第六位顾客买了第五次剩下的一半再加半个时,他发现自己和其他顾客所买的鸡蛋都是整个的,而且农妇也刚好卖完所有鸡蛋,那么农妇一共拿了多少个鸡蛋到市场?你能算出来吗?(63个) 2、小明和小刚是好朋友,他们一个月里两次同时到一家超市买鸡蛋,两次鸡蛋的单价有变化,其中第一次鸡蛋的单价为x元/千克,第二次鸡蛋的单价为y元/千克。

现知道两人的购买方式不一样,小明每次总是买相同质量的鸡蛋,小刚则每次只拿出相同数量的钱买鸡蛋。

两种买鸡蛋的方式哪种合算?3、一小船由A港到B港顺流需行6小时,由B港到A港逆流需行8小时.一天,小船从早晨6点由A港出发顺流到达B 港时,发现一救生圈在途中落入水中,立刻返回,一小时后找到救生圈。

问:(1)若小船按水流速度由A漂流到B港需要多少小时?(2〉救生圈是在何时落入水中的?4、已知: b7+2ab-c2+2ac则三角形ABC是什么三角形(直角或等腰)5、已知: a+b2+c2-2ab+2ac+2bc,则三角形ABC是什么三角形(等边三角形)6、己知:(a-b)-是三角形的三边,则(a-b)-c?___(大于0或小于0)7、关于x的分式方程."_-1,下列说法正确的是()A、方程的解是x=m+5.B、m>-5时,方程的解是正数.c、m<-5时,方程的解是负数. D、无法确定.8、某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1〉今年三月份甲种型号电脑每台售价多少元?(2)为了增加收入,该公司决定再经销乙种型号电脑,已知甲种型号电脑每台进价为3500元,乙种型号电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种型号的电脑共15台,有几种进货方案?(3)如果乙种型号电脑每台售价为3800元,为打开乙种型号电脑的销路,公司决定每售出一台乙种型号电脑,返还顾客现金a元,要使(2〉中所有方案获利相同,a的值应是多少?此时,哪种方案对公司更有利?9、甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工作效率相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是(A>A、8B、7c、6D、510、若x=2008/2009,y=2009/2010,则x,y的大小关系是_。

高中数列累加法例题20道

高中数列累加法例题20道

高中数列累加法例题20道1.求等差数列3, 6, 9, 12, ... 的前5 项之和。

2.求等差数列2, 5, 8, 11, ... 的前6 项之和。

3.求等比数列2, 6, 18, 54, ... 的前4 项之和。

4.求等比数列3, 9, 27, 81, ... 的前5 项之和。

5.求斐波那契数列1, 1, 2, 3, 5, ... 的前6 项之和。

6.求斐波那契数列2, 4, 6, 10, ... 的前5 项之和。

7.求调和数列1, 1/2, 1/3, 1/4, ... 的前4 项之和。

8.求调和数列1/2, 1/3, 1/4, 1/5, ... 的前5 项之和。

9.求几何级数1/2, 1/4, 1/8, 1/16, ... 的前5 项之和。

10.求几何级数2, 4, 8, 16, ... 的前4 项之和。

11.求等差数列3, 7, 11, 15, ... 的前6 项之和。

12.求等差数列5, 10, 15, 20, ... 的前5 项之和。

13.求等比数列2, 6, 18, 54, ... 的前4 项之和。

14.求等比数列3, 9, 27, 81, ... 的前5 项之和。

15.求斐波那契数列1, 1, 2, 3, 5, ... 的前6 项之和。

16.求斐波那契数列2, 4, 6, 10, ... 的前5 项之和。

17.求调和数列1, 1/2, 1/3, 1/4, ... 的前4 项之和。

18.求调和数列1/2, 1/3, 1/4, 1/5, ... 的前5 项之和。

19.求几何级数1/2, 1/4, 1/8, 1/16, ... 的前5 项之和。

20.10. 求几何级数3, 6, 12, 24, ... 的前4 项之和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列题目精选精编【典型例题】(一)研究等差等比数列的有关性质 1. 研究通项的性质例题1. 已知数列}{n a 满足1111,3(2)n n n a a a n --==+≥. (1)求32,a a ;(2)证明:312n n a -=. 解:(1)21231,314,3413a a a =∴=+==+=.(2)证明:由已知113--=-n n n a a ,故)()()(12211a a a a a a a n n n n n -++-+-=---1213133312n n n a ---+=++++=, 所以证得312n n a -=.例题2. 数列{}n a 的前n 项和记为11,1,21(1)n n n S a a S n +==+≥(Ⅰ)求{}n a 的通项公式;(Ⅱ)等差数列{}n b 的各项为正,其前n 项和为n T ,且315T =,又112233,,a b a b a b +++成等比数列,求n T .解:(Ⅰ)由121n n a S +=+可得121(2)n n a S n -=+≥,两式相减得:112,3(2)n n n n n a a a a a n ++-==≥,又21213a S =+=∴213a a = 故{}n a 是首项为1,公比为3的等比数列∴13n n a -=(Ⅱ)设{}n b 的公比为d ,由315T =得,可得12315b b b ++=,可得25b = 故可设135,5b d b d =-=+,又1231,3,9a a a ===,由题意可得2(51)(59)(53)d d -+++=+,解得122,10d d ==∵等差数列{}n b 的各项为正,∴0d > ∴2d =∴2(1)3222n n n T n n n -=+⨯=+例题3. 已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322...a a a +++128n n a n -+=对任意的*N n ∈都成立,数列{}n n b b -+1是等差数列.⑴求数列{}n a 与{}n b 的通项公式;⑵是否存在N k *∈,使得(0,1)k k b a -∈,请说明理由.点拨:(1)2112322...28n n a a a a n -++++=左边相当于是数列{}12n n a -前n 项和的形式,可以联想到已知n S 求n a 的方法,当2n ≥时,1n n n S S a --=.(2)把k k a b -看作一个函数,利用函数的思想方法来研究k k a b -的取值情况.解:(1)已知212322a a a +++…12n n a -+8n =(n ∈*N )① 2n ≥时,212322a a a +++ (2)128(1)n n a n --+=-(n ∈*N )②①-②得,128n n a -=,求得42n n a -=,在①中令1n =,可得得41182a -==,所以42nn a -=(n ∈N*). 由题意18b =,24b =,32b =,所以214b b -=-,322b b -=-,∴数列}{1n n b b -+的公差为2)4(2=---, ∴1n nb b +-=2)1(4⨯-+-n 26n =-,121321()()()n n n b b b b b b b b -=+-+-++-(4)(2)(28)n =-+-++-2714n n =-+(n ∈*N ).(2)k k b a -=2714k k -+-42k-,当4k ≥时,277()()24f k k =-+-42k-单调递增,且(4)1f =, 所以4k ≥时,2()714f k k k =-+-421k-≥, 又(1)(2)(3)0f f f ===,所以,不存在k ∈*N ,使得(0,1)k k b a -∈.例题4. 设各项均为正数的数列{a n }和{b n }满足:a n 、b n 、a n+1成等差数列,b n 、a n+1、b n+1成等比数列,且a 1 = 1, b 1 = 2 , a 2 = 3 ,求通项a n ,b n 解: 依题意得:2b n+1 = a n+1 + a n+2 ① a 2n+1 = b n b n+1 ②∵ a n 、b n 为正数, 由②得21211,+++++==n n n n n n b b a b b a , 代入①并同除以1+n b 得:212+++=n n n b b b , ∴}{n b 为等差数列∵ b 1 = 2 , a 2 = 3 ,29,22122==b b b a 则 ,∴ 2)1(),1(22)229)(1(22+=∴+=--+=n b n n b n n ,∴当n ≥2时,2)1(1+==-n n b b a n n n , 又a 1 = 1,当n = 1时成立, ∴2)1(+=n n a n2. 研究前n 项和的性质例题5. 已知等比数列}{n a 的前n 项和为2nn S a b =⋅+,且13a =.(1)求a 、b 的值及数列}{n a 的通项公式;(2)设n n n b a =,求数列}{n b 的前n 项和n T . 解:(1)2≥n 时,a S S a n n n n ⋅=-=--112.而}{n a 为等比数列,得a a a =⋅=-1112, 又31=a ,得3=a ,从而123-⋅=n n a .又123,3a a b b =+=∴=-.(2)132n n n n n b a -==⋅, 21123(1)3222n n nT -=++++231111231(2322222n n n n n T --=+++++) ,得2111111(1)232222nn n n T -=++++-,111(1)2412[](1)13232212n n n n n n n T +⋅-=-=---.例题6. 数列{}n a 是首项为1000,公比为110的等比数列,数列{b }n 满足121(lg lg lg )k k b a a a k=+++*()N k ∈, (1)求数列{b }n 的前n 项和的最大值;(2)求数列{|b |}n 的前n 项和n S '.解:(1)由题意:410nn a -=,∴lg 4n a n =-,∴数列{lg }n a 是首项为3,公差为1-的等差数列,∴12(1)lg lg lg 32k k k a a a k -+++=-,∴1(1)7[3]22n n n nb n n --=-=由100n n b b +≥⎧⎨≤⎩,得67n ≤≤,∴数列{b }n 的前n 项和的最大值为67212S S ==.(2)由(1)当7n ≤时,0n b ≥,当7n >时,0n b <,∴当7n ≤时,212731132()244n n n S b b b n n n -+'=+++==-+当7n >时,12789n n S b b b b b b '=+++----27121132()2144n S b b b n n =-+++=-+∴22113(7)4411321(7)44n n n n S n n n ⎧-+≤⎪⎪'=⎨⎪-+>⎪⎩.例题7. 已知递增的等比数列{n a }满足23428a a a ++=,且32a +是2a ,4a 的等差中项. (1)求{n a }的通项公式n a ;(2)若12log n n nb a a =,12n n S b b b =+++求使1230n n S n ++⋅>成立的n 的最小值.解:(1)设等比数列的公比为q (q >1),由a 1q +a 1q 2+a 1q 3=28,a 1q +a 1q 3=2(a 1q 2+2),得:a 1=2,q =2或a 1=32,q =12(舍)∴a n =2·2(n -1)=2n(2) ∵12log 2nn n n b a a n ==-⋅,∴S n =-(1·2+2·22+3·23+…+n ·2n ) ∴2S n =-(1·22+2·23+…+n ·2n +1),∴S n =2+22+23+…+2n -n ·2n +1=-(n -1)·2n +1-2, 若S n +n ·2n +1>30成立,则2n +1>32,故n >4,∴n 的最小值为5.例题8. 已知数列}{n a 的前n 项和为S n ,且11,,n n S a +-成等差数列,*1,1N n a ∈=. 函数3()log f x x =.(I )求数列}{n a 的通项公式; (II )设数列{}n b 满足1(3)[()2]n n b n f a =++,记数列{}n b 的前n 项和为T n ,试比较52512312n n T +-与的大小. 解:(I )11,,n n S a +-成等差数列,121n n S a +∴=-① 当2n ≥时,121n n S a -=-②. ①-②得:112()n n n n S S a a -+-=-,13+=∴n n a a ,13.n na a +∴=当n =1时,由①得112221S a a ∴==-, 又11,a =2213,3,a a a ∴=∴={}n a ∴是以1为首项3为公比的等比数列,13.n n a -∴=(II )∵()x log x f 3=,133()log log 31n n n f a a n -∴===-, 11111()(3)[()2](1)(3)213n n b n f a n n n n ===-++++++,1111111111111()224354657213n T n n n n ∴=-+-+-+-++-+-+++11111()22323n n =+--++525,122(2)(3)n n n +=-++比较52512312n n T +-与的大小,只需比较2(2)(3)n n ++与312 的大小即可. 222(2)(3)3122(56156)2(5150)n n n n n n ++-=++-=+-又2(15)(10)n n =+-∵*,N n ∈∴当*19N n n ≤≤∈且时,5252(2)(3)312,;12312nn n n T +++<<-即当10n =时,5252(2)(3)312,;12312n n n n T +++==-即当*10N n n >∈且时,5252(2)(3)312,12312n n n n T +++>>-即.3. 研究生成数列的性质例题9. (I ) 已知数列{}n c ,其中nn n c 32+=,且数列{}n n pc c -+1为等比数列,求常数p ;(II ) 设{}n a 、{}n b 是公比不相等的两个等比数列,n n n b a c +=,证明数列{}n c 不是等比数列.解:(Ⅰ)因为{c n +1-pc n }是等比数列,故有 (c n +1-pc n )2=( c n +2-pc n+1)(c n -pc n -1), 将c n =2n +3n 代入上式,得 [2n +1+3n +1-p (2n +3n )]2=[2n +2+3n +2-p (2n +1+3n +1)]·[2n +3n -p (2n -1+3n -1)], 即[(2-p )2n +(3-p )3n ]2=[(2-p )2n+1+(3-p )3n+1][ (2-p )2n -1+(3-p )3n -1],整理得61(2-p )(3-p )·2n ·3n =0,解得p =2或p =3. (Ⅱ)设{a n }、{b n }的公比分别为p 、q ,p ≠q ,c n =a n +b n . 为证{c n }不是等比数列只需证22c ≠c 1·c 3.事实上,22c =(a 1p +b 1q )2=21a p 2+21b q 2+2a 1b 1pq , c 1·c 3=(a 1+b 1)(a 1 p 2+b 1q 2)=21a p 2+21b q 2+a 1b 1(p 2+q 2).由于p ≠q ,p 2+q 2>2pq ,又a 1、b 1不为零,因此≠22c c 1·c 3,故{c n }不是等比数列.例题10. n 2( n ≥4)个正数排成n 行n 列:其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比相等已知a 24=1,163,814342==a a 求S=a 11 + a 22 + a 33 + … + a nn解: 设数列{1k a }的公差为d , 数列{ik a }(i=1,2,3,…,n )的公比为q则1k a = a 11 + (k -1)d , a kk = [a 11 + (k -1)d]q k -1依题意得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+==+==+=163)2(81)(1)3(31143311421124q d a a q d a a q d a a ,解得:a 11 = d = q = ±21 又n 2个数都是正数,∴a 11 = d = q = 21 , ∴a kk = kk2nn S 212132122132⨯++⨯+⨯+= ,1432212132122121+⨯++⨯+⨯+=n n S ,两式相减得:n n n S 22121--=-例题11. 已知函数3()log ()f x ax b =+的图象经过点)1,2(A 和)2,5(B ,记()*3,.f n n a n N =∈(1)求数列}{n a 的通项公式;(2)设n n n nn b b b T a b +++==21,2,若)(Z m m T n ∈<,求m 的最小值;(3)求使不等式12)11()11)(11(21+≥+++n p a a a n对一切*N n ∈均成立的最大实数p .解:(1)由题意得⎩⎨⎧=+=+2)5(log 1)2(log 33b a b a ,解得⎩⎨⎧-==12b a ,)12(log )(3-=∴x x f *)12(log ,1233N n n a n n ∈-==- (2)由(1)得n n n b 212-=, nn n n n T 2122322523211321-+-++++=∴- ① 1132212232252232121+--+-+-+++=n n n n n n n T ② ①-②得)21212121(2121n 22222222221T 211n 2n 2111n n 1n 321n --+-+++++=--+++++= 1n 1n 1n 21n 2212321n 2+-+---=--.n n 2n n 23n 2321n 2213T +-=---=∴-, 设*,232)(N n n n f n ∈+=,则由 1512132121)32(252232252)()1(1<+≤++=++=++=++n n n n n n f n f n n 得*,232)(Nn n n f n ∈+=随n 的增大而减小 +∞→∴n 当时,3→n T 又)(Z m m T n ∈<恒成立,3min =∴m(3)由题意得*21)11()11)(11(121N n a a a n p n ∈++++≤对 恒成立记)11()11)(11(121)(21n a a a n n F ++++=,则()()11n 21n 2)1n ()1n (4)1n (2)3n 2)(1n 2(2n 2)a 11()a 11)(a 11(1n 21)a 11)(a 11()a 11)(a 11(3n 21)n (F )1n (F 2n 211n n 21=++>+-++=+++=+++++++++=++)(),()1(,0)(n F n F n F n F 即>+∴> 是随n 的增大而增大)(n F 的最小值为332)1(=F ,332≤∴p ,即332max =p .(二)证明等差与等比数列 1. 转化为等差等比数列.例题12. 数列{}n a 中,2,841==a a 且满足n n n a a a -=++122,*N n ∈. ⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++= ,求n S ;⑶设n b =1(12)n n a -**12(),()N N n n n T b b b n ∈=+++∈,是否存在最大的整数m ,使得对任意*N n ∈,均有>n T 32m成立?若存在,求出m 的值;若不存在,请说明理由.解:(1)由题意,n n n n a a a a -=-+++112,}{n a ∴为等差数列,设公差为d , 由题意得2832d d =+⇒=-,82(1)102n a n n ∴=--=-. (2)若50210≤≥-n n 则,||||||,521n n a a a S n +++=≤ 时21281029,2n na a a n n n +-=+++=⨯=-6n ≥时,n n a a a a a a S ---+++= 765212555()2940n n S S S S S n n =--=-=-+故⎪⎩⎪⎨⎧+--=40n 9n n n 9S 22n 56n n ≤≥ (3)11111()(12)2(1)21n n b n a n n n n ===--++, ∴n T 1111111111[(1)()()()()]22233411n n n n =-+-+-++-+--+.2(1)n n =+ 若32n m T >对任意*N n ∈成立,即116n m n >+对任意*N n ∈成立, *()1N n n n ∈+的最小值是21,1,162m ∴<m ∴的最大整数值是7.即存在最大整数,7=m 使对任意*N n ∈,均有.32n m T >例题13. 已知等比数列{}n b 与数列{}n a 满足3,n an b n =∈N *.(1)判断{}n a 是何种数列,并给出证明; (2)若8131220,a a m b b b +=求.解:(1)设{}n b 的公比为q ,∵3n an b =,∴()q log 1n a a 3q 331n a 1n a n 1-+=⇒=⋅-。

相关文档
最新文档