带电粒子在圆形磁场中的运动
带电粒子在磁场中的运动旋转圆问题
带电粒子在磁场中的运动是一个充满深度和广度的问题,涉及到物理学中的许多重要概念和原理。
从宏观到微观,从经典到量子,这一主题的探讨可以帮助我们更深入地理解粒子在磁场中的行为,以及相关的物理规律。
一、带电粒子在磁场中的受力和运动1.受力分析当带电粒子进入磁场时,它会受到洛伦兹力的作用,这个力会使粒子发生偏转,并导致其在磁场中运动。
洛伦兹力的大小和方向取决于粒子的电荷大小、速度方向以及磁场的强度和方向。
2.运动轨迹在磁场中,带电粒子的运动轨迹通常是圆形或螺旋形的,具体取决于粒子的速度和磁场的强度。
这种运动旋转圆问题是研究带电粒子在磁场中行为的重要内容之一。
二、经典物理学对带电粒子运动的描述1.运动方程根据洛伦兹力和牛顿定律,可以建立带电粒子在磁场中的运动方程。
通过对这个方程的分析,可以得到粒子在磁场中的运动轨迹和运动规律。
2.圆周运动对于静止的带电粒子,它会在磁场中做匀速圆周运动;而对于具有初始速度的带电粒子,它会做螺旋运动。
这种经典的描述为我们理解带电粒子在磁场中的运动提供了重要参考。
三、量子物理学对带电粒子运动的描述1.量子力学效应在微观尺度下,带电粒子在磁场中的运动会受到量子力学效应的影响,比如磁量子效应和磁旋效应等。
这些效应对带电粒子的运动规律产生重要影响,需要通过量子力学来描述。
2.自旋和磁矩带电粒子除了具有电荷和质量外,还具有自旋和磁矩。
这些特性在磁场中会影响粒子的运动,使得其运动规律更加复杂和微妙。
四、个人观点和理解对于带电粒子在磁场中的运动旋转圆问题,我认为它不仅具有重要的理论意义,还在许多实际应用中发挥着关键作用。
比如在核磁共振成像技术中,正是利用了带电粒子在外加磁场中的运动规律,实现了对人体组织和器官进行高分辨率成像。
深入理解这一问题,不仅可以帮助我们认识自然界的规律,还有助于科学技术的发展和进步。
总结回顾一下,带电粒子在磁场中的运动旋转圆问题是一个充满深度和广度的物理学问题,涉及到经典物理学和量子物理学的交叉领域。
带电粒子在匀强磁场中的匀速圆周运动
洛伦兹力提供向心力,使带电 粒子绕固定点做圆周运动。
运动过程中,带电粒子的速度 方向时刻改变,但速度大小保 持不变。
周期和半径公式
周期公式
$T = frac{2pi m}{qB}$,其中$m$是带电粒子的质量,$q$是带电粒子的电荷 量,$B$是匀强磁场的磁感应强度。
半径公式
$r = frac{mv}{qB}$,其中$v$是带电粒子运动的速度。
偏转方向和速度大小不变
偏转方向
带电粒子在匀强磁场中做匀速圆周运 动时,其偏转方向与磁场方向垂直。
速度大小不变
由于洛伦兹力始终与带电粒子的速度 方向垂直,因此洛伦兹力不做功,带 电粒子的速度大小保持不变。
04 带电粒子在磁场中的运动 规律
周期与速度的关系
总结词
带电粒子在匀强磁场中做匀速圆周运动时,其周期与速度无关,即T=恒定值。
域。
核聚变反应
在高温高压条件下,带电粒子在匀 强磁场中高速旋转,可以引发核聚 变反应,为未来的清洁能源提供可 能。
磁流体发电
利用高温导电流体在匀强磁场中做 高速旋转运动,可以将机械能转化 为电能,具有高效、环保的优点。
对未来研究的展望
1 2 3
探索极端条件下的运动特性
随着实验技术的不断发展,未来可以进一步探索 带电粒子在更高温度、更高磁感应强度等极端条 件下的运动特性。
详细描述
带电粒子在匀强磁场中受到洛伦兹力作用,该力提供向心力使粒子做匀速圆周运 动。根据牛顿第二定律和向心力公式,粒子的周期T与速度v无关,只与磁场强度 B和粒子的质量m有关。
周期与磁场强度的关系
总结词
带电粒子在匀强磁场中做匀速圆周运 动时,其周期与磁场强度成正比。
详细描述
带电粒子在磁场中的运动(磁聚焦和磁扩散)
θR O/
OM
x
图 (b)
(3)带电微粒在y轴右方(X> O)的区域离开磁场并做 匀速直线运动.靠近上端发射出来的带电微粒在穿出 磁场后会射向X轴正方向的无穷远处,靠近下端发射 出来的带电微粒会在靠近原点之处穿出磁场.所以, 这束带电微粒与X轴相交的区域范围是X> 0.
装带 置点
微 粒 发 射
Pv Cr
(2)这束带电微粒都通过坐标原点。 如图(b)所示,从任一点P水平进入磁场的 带电微粒在磁场中做半径为R 的匀速圆周运动,圆 心位于其正下方的Q点,设微粒从M 点离开磁 场.可证明四边形PO’ MQ是菱形,则M 点就是坐 标原点,故这束带电微粒都通过坐标原点0.
y
v AC
R O/
O
x
图 (a)
y
Pv R
y
D
C
v0
O
x
A
B
S=2(πa2/4-a2/2) =(π-2)a2/2
解:(1)设匀强磁场的磁感应强度的大小为B。令圆弧AEC是自C点垂直于 BC入射的电子在磁场中的运行轨道。依题意,圆心在A、C连线的中垂线上, 故B点即为圆心,圆半径为a,按照牛顿定律有 ev0B= mv02/a,得B= mv0/ea。 (2)自BC边上其他点入射的电子运动轨道只能在BAEC区域中。因而,圆弧 AEC是所求的最小磁场区域的一个边界。
(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区
域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感
应强度的大小与方向。
y
(2)请指出这束带电微粒与x轴相 带
交的区域,并说明理由。
点 微
粒
(3)在这束带电磁微粒初速度变为
发 射
带电粒子在磁场中的运动动态圆法课件
探索动态圆法与其他物理方法的结合, 以解决更复杂、更广泛的物理问题。
开发基于动态圆法的计算机模拟软件, 为实验研究和工程应用提供更准确、更
便捷的工具。
THANKS
感谢观看
稳定性
动态圆在磁场中的运动是稳定的 ,只要洛伦兹力与向心力平衡, 带电粒子就会做稳定的圆周运动 。
05
动态圆法在物理实验中的应用
实验原理和步骤
• 实验原理:动态圆法是一种通过观察带电粒子在磁场中的运动 轨迹来研究磁场特性的实验方法。通过改变磁场强度或粒子速 度,可以观察到轨迹圆半径的变化,从而得到磁场与粒子运动 之间的关系。
课程目标和意义
掌握动态圆法的基本原理和计算 方法,能够运用动态圆法解决实
际问题。
理解带电粒子在磁场中运动的物 理机制,提高对电磁学原理的理
解和应用能力。
通过学习动态圆法,培养学生的 逻辑思维和数学分析能力,为进 一步学习物理学和相关领域打下
基础。
02
带电粒子在磁场中的基本性质
电荷在磁场中的受力
在等离子体物理实验中,动态圆法也 被用来研究等离子体的特性和行为。
在粒子加速器、回旋加速器、核聚变 装置等实验设备中,需要利用动态圆 法来研究带电粒子的运动轨迹和行为。
04
带电粒子在磁场中的动态圆运动
动态圆在磁场中的受力分析
洛伦兹力
带电粒子在磁场中受到的力称为洛伦兹力,其方向由左手定则确定,大小为$F = qvBsintheta$,其中$q$是带电粒子的电荷量,$v$是速度,$B$是磁感应 强度,$theta$是速度与磁感应强度的夹角。
实验结果和结论
实验结果
通过动态圆法实验,可以观察到带电粒子在磁场中的运动轨迹呈现圆形,并且随着磁场强度的增加或粒子速度的 减小,轨迹圆的半径逐渐减小。实验结果与理论值基本一致。
带电粒子在圆形匀强磁场中的运动规律
带电粒子在圆形匀强磁场中的运动规律作者:张敏来源:《知识窗·教师版》2020年第08期摘要:带电粒子在匀强磁场中的运动是高中物理常见的问题,其中有界磁场是经常考查的知识点,也是学生学习的难点。
究其根源,是学生不理解其中的规律。
关键词:圆形匀强磁场; ;軌迹圆; ;磁场圆; ;磁发散; ;磁聚焦处理带电粒子在匀强磁场中的圆周运动问题,本质是平面几何知识与物理知识的综合运动。
带电粒子在圆形匀强磁场中的运动,主要是从带电粒子射入磁场的方向是否沿着磁场圆的半径、轨迹圆半径与磁场圆半径的大小关系这两个方面入手研究。
一、入射方向沿半径方向射入带电粒子入射速度方向是沿着圆形匀强磁场的半径射入,则出射速度方向的反向延长线必过区域圆的圆心,也就是沿着径向入,必沿着径向出。
如图1所示,设正离子从磁场区域的b 点射出,射出速度方向的延长线与入射方向的直径交点为O’。
正离子在磁场中运动的轨迹为一段圆弧,该轨迹圆弧对应的圆心O’位于初、末速度方向垂线的交点,也在弦ab的垂直平分线上,O’b与区域圆相切,弦ab既是轨迹圆弧对应的弦,又是区域圆的弦。
由此可知,OO’就是弦ab的垂直平分线,O点就是磁场区域圆的圆心。
二、入射方向不沿半径方向射入入射速度方向(不一定指向磁场圆的圆心)与轨迹圆弧对应的弦的夹角为θ(弦切角),则出射速度方向与入射速度方向的偏转角为2θ,轨迹圆强对应的圆心角也为2θ,并且初末速度方向的交点,轨迹圆的圆心,磁场圆的圆心都在孤弦的要直平分线上。
如图2所示,带电粒子从a点射入匀强磁场区城,初速度方向不指向区域圆圆心,若出射点为b,轨迹圆的圆心O’在初速度v0方向的垂线和弦ab的垂直平分线的交点上,入射速度方向与该中垂线的交点为d,可以证明:出射速度方向的反向延长线也过d点,O、d、O’都在弦ab的垂直平分线上。
三、比较磁场圆的半径与轨迹圆的半径大小关系1.当轨迹圆的半径与磁场圆的半径相等时,存在两条特殊规律磁发散是指带电粒子从圆形有界磁场边界上某点射入磁场,若圆周运动的半径与磁场半径相同,则无论在磁场内的速度方向如何,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如图3所示。
带电粒子旋转圆问题有界磁场
带电粒子旋转圆问题
当一个带电粒子在有界磁场中旋转成圆形轨道时,其运动可由洛伦兹力和向心力共同决定。
洛伦兹力是由磁场和带电粒子的电荷性质决定的力,它始终垂直于带电粒子的速度和磁场方向。
向心力则是由带电粒子的质量和速度决定的力,它指向圆心,使得带电粒子保持在圆形轨道上。
首先,考虑洛伦兹力的作用。
洛伦兹力的大小与带电粒子的电荷大小、速度以及磁场强度相关。
在磁场中,洛伦兹力会使带电粒子受到一个向心力的作用,引导其沿着圆形轨道运动。
洛伦兹力的方向始终垂直于速度和磁场的方向,这使得带电粒子的速度方向会不断发生变化,从而导致其轨道是一个圆形。
其次,向心力也会参与其中。
向心力始终指向圆心,使得带电粒子保持在圆形轨道上。
向心力的大小与带电粒子的质量和速度有关。
在带电粒子绕圆形轨道运动时,向心力和洛伦兹力相等,使得带电粒子保持运动的稳定性。
需要注意的是,带电粒子的质量、电荷大小、速度和磁场强度等因素会影响带电粒子在有界磁场中旋转圆的半径和速度。
通过调节磁场强度或改变粒子的性质,可以实现对带电粒子旋转圆运动的调控。
总之,在有界磁场中,带电粒子旋转成圆形轨道的问题涉及到洛伦兹力和向心力的相互作用。
这种运动是通过调节带电粒子的性质和磁场强度来实现的,可以用来研究电磁场中粒子的运动规律。
带电粒子在圆形边界磁场中运动 (微课课件)
1交于圆心:带电粒子沿指向圆心的方向进入磁场,则出磁 场时速度矢量的反向延长线一定过圆心,即两速度矢量相交于 圆心;如左下图所示. b. 直径最小:带电粒子从圆与某直径的一个交点射入磁场则从 该直径与圆的另一交点射出时,磁场区域最小.如右下图所示.
3、环状磁场区域
a. 带电粒子沿(逆)半径方向射入磁场,若能返回同一边界, 则一定逆(沿)半径方向射出磁场 b. 最值相切:如下图,当带电粒子的运动轨迹与圆相切时,粒 子有最大速度vm或磁场有最小磁感应强度B.
4、事例分析
地磁场可以“屏蔽”来自太空的带电粒子,防止这些高速运动的带 电粒子对地球带来的危害.在高能物理实验中, 为了避免宇宙射线中的带电粒子对实验的影响, 可在实验装置外加磁场予以屏蔽.如图所示,半 径为r2的圆管形实验通道为实验中高能带电粒子 的通道,在r2到r1的圆环形加有匀强磁场.假设来 自太空的带电粒子的最大速度为v,粒子均沿半 径方向射入磁场区,为了使这些粒子均不能进入实验通道,则磁感应强 度B至少为多大?已知带电粒子的质量均为m,电荷量均为-q.
带电粒子在磁场中的运动
带电粒子在磁场中的运动因为洛伦兹力F始终与速度v垂直,即F只改变速度方向而不改变速度的大小,所以运动电荷非平行与磁感线进入匀强磁场且仅受洛伦兹力时,一定做匀速圆周运动,由洛伦磁力提==2/。
带电粒子在磁场中运动问题大致可分两种情况:1. 做供向心力,即F qvB mv R完整的圆周运动(在无界磁场或有界磁场中);2. 做一段圆弧运动(一般在有界磁场中)。
无论何种情况,其关键均在圆心、半径的确定上。
1. 找圆心方法1:若已知粒子轨迹上的两点的速度方向,则可根据洛伦兹力F⊥v,分别确定两点处洛伦兹力F的方向,其交点即为圆心。
方法2:若已知粒子轨迹上的两点和其中一点的速度方向,则可作出此两点的连线(即过这两点的圆弧的弦)的中垂线,再画出已知点v的垂线,中垂线与垂线的交点即为圆心。
2. 求半径圆心确定下来后,半径也随之确定。
一般可运用平面几何知识来求半径的长度。
3. 画轨迹在圆心和半径确定后可根据左手定则和题意画出粒子在磁场中的轨迹图。
4. 应用对称规律带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向与出射速度方向与边界的夹角相等,利用这一结论可以轻松画出粒子的轨迹。
临界点是粒子轨迹发生质的变化的转折点,所以只要画出临界点的轨迹就可以使问题得解。
一、由两速度的垂线定圆心例1. 电视机的显像管中,电子(质量为m,带电量为e)束的偏转是用磁偏转技术实现的。
电子束经过电压为U的加速电场后,进入一圆形匀强磁场区,如图1所示,磁场方向垂直于圆面,磁场区的中心为O,半径为r。
当不加磁场时,电子束将通过O点打到屏幕的中心M点。
为了让电子束射到屏幕边缘P,需要加磁场,使电子束偏转一已知角度θ,此时磁场的磁感强度B应为多少?图1解析:如图2所示,电子在匀强磁场中做圆周运动,圆周上的两点a、b分别为进入和射出的点。
做a、b点速度的垂线,交点O1即为轨迹圆的圆心。
图2设电子进入磁场时的速度为v,对电子在电场中的运动过程有=22/eU mv对电子在磁场中的运动(设轨道半径为R)有=2/evB mv R由图可知,偏转角θ与r、R的关系为θ2=r Rtan(/)/联立以上三式解得θ122=(/)/tan(/)B r mU e二、由两条弦的垂直平分线定圆心例2. 如图3所示,有垂直坐标平面的范围足够大的匀强磁场,磁感应强度为B,方向向里。
带电粒子在匀强磁场中的圆周运动
带电粒子在匀强磁场中的运动一、带电粒子在匀强磁场中的匀速圆周运动1.洛伦兹力的作用效果洛伦兹力只改变带电粒子速度的方向,不改变带电粒子速度的大小,或者说洛伦兹力不对带电粒子做功,不改变粒子的能量。
2.带电粒子的运动规律沿着与磁场垂直的方向射入磁场的带电粒子,在匀强磁场中做匀速圆周运动。
洛伦兹力总与速度方向垂直,正好起到了向心力的作用。
公式:q v B =m v 2rr =m vqBT =2πm qB3.圆心、半径、运动时间的分析思路(1)圆心的确定:带电粒子垂直进入磁场后,一定做圆周运动,其速度方向一定沿圆周的切线方向,因此圆心的位置必是两速度方向垂线的交点,如图(a)所示,或某一速度方向的垂线与圆周上两点连线中垂线的交点,如图(b)所示.(2)运动半径大小的确定:一般先作入射点、出射点对应的半径,并作出相应的辅助三角形,然后利用三角函数求解出半径的大小.(3)运动时间的确定:首先利用周期公式T =2πm qB ,求出运动周期T ,然后求出粒子运动的圆弧所对应的圆心角α,其运动时间t =α2πT .(4)圆心角的确定:①带电粒子射出磁场的速度方向与射入磁场的速度方向间的夹角φ叫偏向角.偏向角等于圆心角即φ=α,如图所示.②某段圆弧所对应的圆心角是这段圆弧弦切角的二倍,即α=2θ.[特别提醒]带电粒子(不计重力)以一定的速度v 进入磁感应强度为B 的匀强磁场时的运动轨迹:(1)当v ∥B 时,带电粒子将做匀速直线运动.(2)当v ⊥B 时,带电粒子将做匀速圆周运动.(3)当带电粒子斜射入磁场时,带电粒子将沿螺旋线运动.4、带电粒子在三类有界磁场中的运动轨迹特点(1)直线边界:进出磁场具有对称性。
(2)平行边界:存在临界条件。
(3)圆形边界:沿径向射入必沿径向射出。
【例题1】如图所示,一束电荷量为e 的电子以垂直于磁场方向(磁感应强度为B )并垂直于磁场边界的速度v 射入宽度为d 的磁场中,穿出磁场时速度方向和原来射入方向的夹角为θ=60°.求电子的质量和穿越磁场的时间.答案:23dBe 3v 23πd 9v解析:过M 、N 作入射方向和出射方向的垂线,两垂线交于O 点,O 点即电子在磁场中做匀速圆周运动的圆心,过N 作OM 的垂线,垂足为P ,如图所示.由直角三角形OPN 知,电子的轨迹半径r =d sin 60°=233d ①由圆周运动知e v B =m v 2r②解①②得m =23dBe 3v.电子在无界磁场中运动周期为T =2πeB ·23dBe 3v =43πd 3v.电子在磁场中的轨迹对应的圆心角为θ=60°,故电子在磁场中的运动时间为t =16T =16×43πd 3v =23πd 9v.带电粒子在磁场中的圆周运动问题处理方法(1)定圆心:圆心一定在与速度方向垂直的直线上,也在弦的中垂线上,也是圆的两个半径的交点.(2)求半径的两种方法:一是利用几何关系求半径,二是利用r =m v Bq 求半径.(3)求时间:可以利用T =2πr v 和t =Δl v 求时间,也可以利用t =θ2πT 求时间.【例题2】如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v从A 点沿直径AOB 方向射入磁场,经过t 时间从C 点射出磁场,OC 与OB 成60°角。
高中物理 带电粒子在圆形有界磁场中的运动之磁聚焦与磁发散
高中物理 带电粒子在圆形有界磁场中的运动之--磁聚焦与磁发散模型概述带电粒子在圆形有界匀强磁场中运动时,会出现一束平行粒子经磁场偏转后会聚于边界一点,此现象为磁聚焦;一束粒子从边界一点向不同方向经磁场偏转后平行射出,此现象为磁发散。
等半径原理:圆形磁场半径与粒子运动半径相等时,会出现菱形,如下图所示。
当粒子入射方向指向磁场区域圆心,或粒子入射方向不指向磁场区域圆心,根据几何关系,易证明四边形AOCO'为菱形。
物理建模:模型:如图所示。
当圆形磁场区域半径R 与轨迹圆半径r 相等时,从磁场边界上任一点向各个方向射入圆形磁场的粒子全部平行射出,出射方向与过入射点的磁场圆直径垂直(磁发散);反之,平行粒子束射入圆形磁场必会聚在磁场边界上某点,且入射方向与过出射点的磁场圆直径垂直(磁聚焦)。
O A证明:如图所示,任意取一带电粒子以速率v从A点射入时,粒子在磁场中的运动轨迹圆半径为R,有界圆形磁场的半径也为R,带电粒子从区域边界C点射出,其中O为有界圆形磁场的圆心,B为轨迹圆的圆心。
图中AO、OC、CO'、O'A的长度均为R,故AOCO'为菱形。
由几何关系可知CO'∥AO,即从C点飞出的粒子速度方向与OA垂直,因此粒子飞出圆形有界磁场时速度方向均与OA垂直。
反之也成立。
解题切入点:分析发现粒子轨道半径与磁场区域圆半径的关系,二者相等为磁聚焦或磁发散,否则不满足该关系,但满足怎么进入怎么出去的角度关系,借助几何关系解答。
【典例1】(磁聚焦)如图所示,x轴正方向水平向右,y轴正方向竖直向上。
在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场。
在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒。
发射时,这束带电微粒分布在0<y<2R的区间内.已知重力加速度大小为g。
(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y轴负方向离开,求电场强度和磁感应强度的大小与方向。
带电粒子在圆形有界磁场中运动的两个重要结论
带电粒子在圆形有界磁场中运动的两个重要结论莫尔定律和牛顿定律是描述带电粒子在圆形有界磁场中运动的两个重要结论,他们是理解电磁学的重要关联,正是由它们的联合作用才有了良好的物理现象。
首先,莫尔定律申明了微粒子在圆形有界磁场中运动的轨迹及磁场中粒子具有持续平衡状态。
从表面上看,粒子在曲线上定时变化,每次完成弧形循环,时期性地回到原来地方。
非常规趜势,莫尔定律把运动周期视为运动圆定律,由磁链间距决定,即只要有磁场存在,就会存在周期性运动。
从物理学角度上来说,由莫尔定律可以观测出,带电粒子在受到磁场作用的情况下,它的运动可以被划分成给定的部分,越是向磁场中心旋转,给粒子的加速度就越大,给到粒子的力就越大,使其旋转速度更快,可以比两个出发时间相同的粒子,得到更多的运动平衡状态,获得更多的速度。
因此,这一定律不仅可以应用于带电粒子的运动,还可以应用于旋转体系中的直线运动。
其次,牛顿定律研究了带电粒子在圆形有界磁场中运动的动量守恒。
从观测上看,穿越磁场时粒子受到一个恒定的力,这种力在物体运动过程中是恒定的,它描述了受磁场作用的带电粒子在运动过程中运动规律,说明由力磁场所使得的动量具有守恒性质。
这一定律可以用来分析带电粒子在受磁场作用的情况下非定向运动的物理效应,计算出恒定力,牛顿第二定律所描述的情形,它用力和加速度关系描述了圆磁场中由磁力诱导的粒子运动过程。
因此,莫尔定律和牛顿定律对描述带电粒子在圆形有界磁场中的运动具极其重要的意义,他们的联合作用能产生多种物理现象,深刻地改善了电磁学研究。
莫尔定律指出,受磁场作用的粒子具有周期性的运动状态,通过改变磁链间距来改变其运动速度;牛顿定律提出,受磁场作用的粒子具有动量守恒性质,计算出粒子运动过程中所受力的大小,从而产生更为优雅的物理现象。
最终,这两个重要的定律所承载的丰厚理论赋予科学家们一份重要的探索、研究、思考与创新的力量,为具体技术实现提供了依据。
带电粒子在圆形磁场中运动
带电粒子在“圆形磁场区域”中的运动粒子沿圆形磁场区的半径方向垂直磁场射入,由对称性可知出射线的反向延长线必过磁场圆的圆心。
由几何关系可得:偏向角与两圆半径间的关系:t a n r Rθ=2 偏转时间的关系式:m t T qBθθπ=∙=2 O 、O ′分别为 磁场圆与轨迹圆的圆心;r 、R 分别为 磁场圆与轨迹圆的半径 。
例1、如图所示,在圆心为O ,半径为r 的圆形区域内,有匀强磁场,磁感应强度为B ,方向垂直纸面向里.一个带电粒子以速度v 射入磁场,初速度方向指向圆心O ,它穿过磁场后,速度方向偏转α角,则该带电粒子的荷质比______=mq .例2、 在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。
一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,它恰好从磁场边界与y轴的交点C 处沿+y 方向飞出。
(1)请判断该粒子带何种电荷,并求出其比荷q/m ;(2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求:磁感应强度B ′多大?此次粒子在磁场中运动所用时间t 是多少?例3、如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角。
现将带电粒子的速度变为,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为( ) A.Δt B.2Δt C.Δt D.3Δt例4、如图所示,在纸面内半径为R 的圆形区域中充满了垂直于纸面向里、磁感应强度为B 的匀强磁场,一点电荷从图中A 点以速度v 0垂直磁场射入,当该电荷离开磁场时,速度方向刚好改变了180°,不计电荷的重力,下列说法正确的是( )A. 该点电荷离开磁场时速度方向的反向延长线通过O 点B. 该点电荷的比荷为q m =2v 0BRC. 该点电荷在磁场中的运动时间t =πR 3v 0D. 该点电荷带正电1、如图,半径为R 的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B ,方向垂直于纸面向外,一电荷量为q (q >0)。
带电粒子在磁场中的运动(磁聚焦)
例1、在xoy平面内有很多质量为m,电量为e的电子,从坐
标原点O不断以相同速率沿不同方向射入第一象限,如 图所示.现加一垂直于xOy平面向里、磁感强度为B的匀 强磁场,要求这些入射电子穿过磁场都能平行于x轴且 沿x轴正向运动,试问符合该条件的磁场的最小面积为 多大?(不考虑电子间的相互作用)
y
v0
例3放置在坐标原点O的粒子源,可以向第二象限内放射出质量为m、电荷量为q
的带正电粒子,带电粒子的速率均为v,方向均在纸面内,如图所示.若在某区域内
存在垂直于xOy平面的匀强磁场(垂直纸面向外),磁感应强度大小为B,则这些粒子
都能在穿过磁场区后垂直射到垂直于x轴放置的挡板PQ上,求:
(1)挡板PQ的最小长度; (2)磁场区域的最小面积.
On
x2 + (r-y)2=r2。
即所有出射点均在以坐标(0,r)为圆心的圆弧abO上,显然,
磁场分布的最小面积应是实线1和圆弧abO所围的面积,由几何
关系得
Smin
2(1 r2
4
1 2
r2)
(
2
1)( mv0 eB
)2
解2: 磁场上边界如图线1所示。
y
设P(x,y)为磁场下边界上的一 点,经过该点的电子初速度与x轴
子最后扩展到 -2H<y<2H 范围内,继续沿 x 轴正向平行地
Байду номын сангаас
以相同的速率 v0向远处射出。已知电子的电量为 e,质量为
m,不考虑电子间的相互作用。
y
v0
2H
v0
H
对称思想
O -H v0 -2H
x 图形象什么?
v0
蝴蝶
如图,在xoy平面上-H<y<H的范围内有一片稀疏的电子.从x轴的负半轴的
带电粒子在圆形磁场区域运动规律
带电粒子在圆形磁场区域的运动规律处理带电粒子在匀强磁场中的圆周运动问题,关键就是综合运用平面几何知识与物理知识。
最重要的是,画出准确、清晰的运动轨迹。
对于带电粒子在圆形磁场区域中做匀速圆周运动,有下面两个规律,可以帮助大家准确、清晰画出带电粒子的圆周运动的轨迹。
规律一:带电粒子沿着半径方向射入圆形边界内的匀强磁场,经过一段匀速圆周运动偏转后,离开磁场时射出圆形区域的速度的反向延长通过边界圆的圆心。
规律二:入射速度方向(不一定指向区域圆圆心)与轨迹圆弧对应的弦的夹角为θ(弦切角),则出射速度方向与入射速度方向的偏转角为2θ,轨迹圆弧对应的圆心角也为θ2,并且初末速度方向的交点、轨迹圆的圆心、区域圆的圆心都在弧弦的垂直平分线上。
以上两个规律,利用几何知识很容易证明,在解题时,可以直接应用,请看下面的两个例子:例1如图1所示,在平面坐标系xoy 内,第Ⅱ、Ⅲ象限内存在沿y 轴正方向的匀强电场,第I 、Ⅳ象限内存在半径为L的圆形匀强磁场,磁场圆心在M (L ,0)点,磁场方向垂直于坐标平面向外.一带正电粒子从第Ⅲ象限中的Q (一2L ,一L )点以速度0v 沿x 轴正方向射出,恰好从坐标原点O 进入磁场,从P (2L ,O )点射出磁场.不计粒子重力,求: (1)电场强度与磁感应强度大小之比 (2)粒子在磁场与电场中运动时间之比 解析:(1)设粒子的质量和所带正电荷分别为m 和q ,粒子在电场中运动,由平抛运动规律得:102t v L =2121at L =,又牛顿运动定律得:ma qE = 粒子到达O 点时沿y +方向分速度为0v at v y ==,1tan 0==v v y α 故045=α,粒子在磁场中的速度为02v v =,应用规律二,圆心角为:0902=α,画出的轨迹如图2所示,由rm v Bqv 2=,由几何关系得L r 2=得:2v B E = (2)在磁场中运动的周期vrT π2=粒子在磁场中运动时间为02241v L T t π==图2图1得412π=t t 例2如图3所示,真空中有一以(r ,O )为圆心,半径为r 的圆柱形匀强磁场区域,磁场的磁感应强度大小为B ,方向垂直于纸面向里,在y ≤一r 的范围内,有方向水平向右的匀强电场,电场强度的大小为E 。
带电粒子在匀强磁场中的圆周运动
带电粒子在匀强磁场中的圆周运动由于带电粒子在匀强磁场中的受力情况特殊,其运动轨迹呈现为圆周运动。
本文将详细介绍带电粒子在匀强磁场中的圆周运动原理及相关公式。
根据洛伦兹力的作用,当带电粒子运动时,受到匀强磁场的力会使其偏离直线路径,而呈现出圆周运动。
该力的方向垂直于带电粒子的速度方向与磁场方向,符合右手螺旋定则。
由于受力方向始终向心,因此粒子在磁场中做圆周运动。
带电粒子在匀强磁场中的圆周运动可以通过以下公式进行描述:1.某物质在匀强磁场中的圆周运动半径:$$r=\frac{mv}{|qB|}$$其中,$r$为圆周运动半径,$m$为粒子质量,$v$为粒子速度,$q$为粒子电荷量,$B$为磁感应强度。
2.圆周运动的周期:$$T=\frac{2\pi m}{|q|B}$$其中,$T$为圆周运动的周期,$m$为粒子质量,$q$为粒子电荷量,$B$为磁感应强度。
3.圆周运动的频率:$$f=\frac{1}{T}=\frac{|q|B}{2\pi m}$$其中,$f$为圆周运动的频率,$T$为圆周运动的周期,$q$为粒子电荷量,$B$为磁感应强度,$m$为粒子质量。
从以上公式可以看出,带电粒子的质量、速度、电荷量以及磁感应强度都会对其圆周运动的半径、周期和频率产生影响。
在匀强磁场中,不同的带电粒子具有不同的圆周运动轨迹。
根据质量和电荷量的不同,带电粒子的圆周运动半径、周期和频率都会有所差异。
因此,通过对带电粒子在匀强磁场中的圆周运动进行观测和测量,可以对粒子的性质进行研究和分析。
带电粒子在匀强磁场中的圆周运动在物理学和实际应用中具有重要的意义。
它可以被应用于粒子物理实验、质谱仪、核磁共振等领域。
了解带电粒子在匀强磁场中的圆周运动的原理及相关公式,有助于理解和应用这些技术和方法。
总结了带电粒子在匀强磁场中的圆周运动原理及相关公式,希望对读者对该主题有一个清晰的了解。
带电粒子在磁场中的圆运动的轨迹画法及其计算
--
--
带电粒子在磁场中的圆运动的轨迹画法及其计算
米易中学物理组
易良录
首先,带电粒子在磁场中的运动,本质是洛伦兹力提供向心力(粒子不受重力),粒
子
做匀速圆周运动(整圆或部分圆),故只有洛伦兹力,没有重力、电场力等,与带电物体在复合场的题目有明显差别,运动形式仅限于匀速圆周运动,没有其他运动形式(如直线、匀加速、平抛)。
其次,本类题目用到的主要公式及结论为:
v
2
2
m v
2 m 2 得 R
由
qvB m
mR
qB
T
R
T
qB
再次认识到,本类题目通常为大的计算题,分值大,难度大,必须处理好。
难点之一,就是如何画出运动轨迹,如何找到圆心,如何找到旋转半径与已知长度、角度的数量关系。
难点之二,就是极限条件的取得。
一、
圆轨迹的画法
:
画圆的轨迹时,遵循下面的一些原则:1.过进入点作速度的垂线 ----- 半径垂直于速度(速度沿圆的切线方向)2.作进出点连线的中垂线 ----
对称性
3.进入直线边界时夹
θ角,出来时也夹
θ角----
对称性4.
沿半径方向进入圆形磁场区域,出来时也沿半径方向
----
对称性
通常,根据上述几点,可以画出带电粒子在磁场中的运动轨迹。
二、
旋转半径的计算:
在正确画出带电粒子在磁场中的运动轨迹后,
下一步的主要任务是,
求出旋转半径与已。
带电粒子在环形磁场中的运动
Bθ = Bθ (r) , r = x2 + y2 ,
由螺线管电流线圈产生的环向场 Bϕ ,因
安匝数相同、由安路环路定理得
Bϕ
∞
1 R
,
图 2-5-5
则
Bϕ = B0R0 / R ,
B0 为轴心上的环向磁场,因为等离子体半径 a R0 ,所以等离子体中 P 点的
坐标 x R0 , x / R0 1,则环向场
在 xy 平面投影,仍然是(2.5.12)方程,即
dr dx
=
±
vDB v Bθ
。
(2.5.16)
v 但是,现在(2.5.16)式中的 是随 x 变化的,
即 v ( x) 。因为捕获粒子的 v 比通行粒子的 v 小很多,而且在两个反射点 M1、
M2 处 v = 0 ,另外(2.5.16)式中“+”号对应于顺时针旋转,“-”号对应于逆
= v Bθ sinθ = v Bθ
B
B
= −v Bθ cosθ = −v By来自r Bθ Bx r
(3.5.9)
52
如果是逆时针方向旋转,上面两式都变个符号。导向中心运动
v = v +vD,
(2.5.10)
于是,将(2.5.9)式代入(2.5.10)式,得导向中心的 xy 平面上投影的运运方程 为
B ≈ Bϕ ≈ B0 (1− x / R0 ) ,
则
v
= v0
1− 1− x / R0 1− xM / R0
≈ v0
x − xM R0
(2.5.17)
这里 xM 为反射点 M1,M2 的横坐标,上式应用了 x / R0 1, xM R0 1条件。将
(2.5.17)式代入(2.5.16)方程,得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在圆形磁场中的运动
1.如图所示,在真空中半径为r=3×10-2m的圆形区域内,有一匀强磁场,磁场的磁感应强度B=0.2T,方向垂直纸面向外.一带正电粒子以v0=1.2×106m/s的初速度从磁场边界上的直径AB一端a点射入磁场,已知该粒子的比荷q/m=1.0×108C/kg,不计粒子的重力,
(1)若已知初速度方向AB方向,求粒子通过磁场的偏向角和时间。
(2)如果不改变磁场,你有哪些方法改变偏向角?
(3)粒子以什么角度入射,在磁场中运动的时间最长?最长时间是多少?
请总结:带电粒子通过圆形磁场的轨迹特点和解题策略。
(4)如果磁场不变,粒子正对AB射入,要使粒子射出场区时的速度与入射方向的夹角为90°,则需要具备什么条件?
(5)在上一问题的前提下,如果粒子以任意角度从A点射入磁场,则正离子射出磁场区域的方向有什么特点?
(6)设在某一平面内有M、N两点,由M点向平面内各个方向发射速率均为的电子,请设计一种匀强磁场的分布,使所有从M点出射的电子均能汇集到N点。
2.(09年浙江卷)25.(22分)如图8.5-11所示,x轴正方向水平向右,y轴正方向竖直向上。
在xOy平面内有与y轴平行的匀强电场,在半径为R的圆内还有与xOy平面垂直的匀强磁场。
在圆的左边放置一带电微粒发射装置,它沿x轴正方向发射出一束具有相同质量m、电荷量q(q>0)和初速度v的带电微粒。
发射时,这束带电微粒分布在0<y<2R的区间内。
已知重力加速度大小为g。
(1)从A点射出的带电微粒平行于x轴从C点进入有磁场区域,并从坐标原点O沿y 轴负方向离开,求点场强度和磁感应强度的大小和方向。
(2)请指出这束带电微粒与x轴相交的区域,并说明理由。
(3)若这束带电微粒初速度变为2v,那么它们与x轴相交的区域又在哪里?并说明理由。
3.匀强磁场,磁场方向垂直于xy平面,在xy平面上,磁场分布在以O为中心的一个圆形区域内。
一个质量为m、电荷量为q的带电粒子,由原点O开始运动,初速为v,方向沿x正方向。
后来,粒子经过y轴上的P点,此时速度方向与y轴的夹角为30°,P到O 的距离为L,如图所示。
不计重力的影响。
求磁场的磁感应强度B的大小和xy平面上磁场区域的半径R。
(甘肃等四省理综卷)。