中考数学专题突破 几何综合

合集下载

北京市中考数学专题突破九:几何综合(含答案)

北京市中考数学专题突破九:几何综合(含答案)

北京市中考数学专题突破九:几何综合(含答案)专题突破(九)几何综合在北京中考试卷中,几何综合题通常出现在后两题,分值为8分或7分.几何综合题主要包含三角形(全等、相似)、四边形、锐角三角函数、圆等知识,主要研究图形中的数量关系、位置关系、几何计算以及图形的运动、变换等规律.求解几何综合题时,关键是抓住“基本图形”,能在复杂的几何图形中辨认、分解出基本图形,或通过添加辅助线补全、构造基本图形,或运用图形变换的思想将分散的条件集中起来,从而产生基本图形,再根据基本图形的性质,合理运用方程、三角函数的运算等进行推理与计算.2011-2015年北京几何综合题考点对比年份20112012201320142015考点平行四边形的性质、从特殊到一般、构造图形(全等三角形或等边三角形或特殊平行四边形)旋转变换、对称变换、构造全等三角形全等三角形的判定与性质、等边三角形的性质,等腰直角三角形旋转的性质以轴对称和正方形为载体,考查了等腰三角形、全等三角形、勾股定理、圆及圆周角定理以正方形为载体,考查了平移作图,利用轴对称图形的性质证明线段相等及写出求线段长的过程1.[2015·北京]在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH,PH.(1)若点P在线段CD上,如图Z9-1(a).①依题意补全图(a);②判断AH与PH的数量关系与位置关系,并加以证明.(2)若点P在线段CD的延长线上,且∠AHQ =152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果.........)图Z9-12.[2014·北京]在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图Z9-2①;(2)若∠PAB=20°,求∠ADF的度数;(3)如图②,若45°<∠PAB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.图Z9-23.[2013·北京]在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段B D.(1)如图Z9-3①,直接写出∠ABD的大小(用含α的式子表示);(2)如图②,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.图Z9-34.[2012·北京]在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°且点P与点M重合(如图Z9-4①),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;(2)在图②中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想∠CDB的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ =DQ,请直接写出α的范围.图Z9-45.[2011·北京]在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC 于点F.(1)在图Z9-5①中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图②),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB,DG(如图③),求∠BDG的度数.图Z9-51.[2015·怀柔一模]在等边三角形ABC外侧作直线AP,点B关于直线AP的对称点为D,连接BD,CD,其中CD交直线AP于点E.(1)依题意补全图Z9-6①;(2)若∠PAB=30°,求∠ACE的度数;(3)如图②,若60°<∠PAB<120°,判断由线段AB,CE,ED可以构成一个含有多少度角的三角形,并证明.图Z9-62.[2015·朝阳一模]在△ABC中,∠C=90°,AC=BC,点D在射线BC上(不与点B,C重合),连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE.(1)如图Z9-7(a),点D在BC边上.①依题意补全图(a);②作DF⊥BC交AB于点F,若AC=8,DF=3,求BE的长.(2)如图(b),点D在BC边的延长线上,用等式表示线段AB,BD,BE之间的数量关系(直接写出结论).图Z9-73.[2015·海淀一模]在菱形ABCD中,∠ADC=120°,点E是对角线AC上一点,连接DE,∠DEC=50°,将线段BC绕点B逆时针旋转50°并延长得到射线BF,交ED的延长线于点G.(1)依题意补全图形;(2)求证:EG=BC;(3)用等式表示线段AE,EG,BG之间的数量关系:________.图Z9-84.[2015·海淀二模]如图Z9-9①,在△ABC中,AB=AC,∠ABC=α,D是BC边上一点,以AD为边作△ADE,使AE=AD,∠DAE+∠BAC=180°.(1)直接写出∠ADE的度数(用含α的式子表示).(2)以AB,AE为边作平行四边形ABFE.①如图②,若点F恰好落在DE上,求证:BD=CD;②如图③,若点F恰好落在BC上,求证:BD=CF.图Z9-95.[2015·西城一模]在△ABC中,AB=AC,取BC边的中点D,作DE⊥AC于点E,取DE 的中点F,连接BE,AF交于点H.(1)如图Z9-10①,如果∠BAC=90°,那么∠AHB=________°,AFBE=________;(2)如图②,如果∠BAC=60°,猜想∠AHB的度数和AFBE的值,并证明你的结论;(3)如果∠BAC=α,那么AFBE=________.(用含α的代数式表示)图Z9-106.[2015·丰台一模]在△ABC中,CA=CB,CD为AB边上的中线,点P是线段AC上任意一点(不与点C重合),过点P作PE交CD于点E,使∠CPE=12∠CAB,过点C作CF⊥PE交PE的延长线于点F,交AB于点G.(1)如果∠ACB=90°,①如图Z9-11(a),当点P与点A重合时,依题意补全图形,并指出与△CDG全等的一个三角形;②如图(b),当点P不与点A重合时,求CF PE的值.(2)如果∠CAB=a,如图(c),请直接写出CF PE的值.(用含a的式子表示)图Z9-117.[2015·海淀]将线段AB绕点A逆时针旋转60°得到线段AC,继续旋转α(0°<α<120°)得到线段AD,连接CD.(1)连接BD,①如图Z9-12(a),若α=80°,则∠BDC 的度数为________.②在第二次旋转过程中,请探究∠BDC的大小是否改变.若不变,求出∠BDC的度数;若改变,请说明理由.(2)如图(b),以AB为斜边作直角三角形ABE,使得∠B=∠ACD,连接CE,DE.若∠CED =90°,求α的值.图Z9-128.[2015·西城二模]正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图Z9-13①,若点E是DC的中点,CH与AB之间的数量关系是________.(2)如图②,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由.(3)如图③,当点E,F分别在射线DC,DA 上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.图Z9-13参考答案北京真题体验1.解:(1)①如图(a)所示.②AH=PH,AH⊥PH.证明:连接CH,由条件易得:△DHQ为等腰直角三角形,又∵DP=CQ,∴△HDP≌△HQC,∴PH=CH,∠HPC=∠HCP.∵BD为正方形ABCD的对称轴,∴AH=CH,∠DAH=∠HCP,∴AH=PH,∠DAH=∠HPC,∴∠AHP=180°-∠ADP=90°,∴AH=PH且AH⊥PH.(2)如图(b),过点H作HR⊥PC于点R,∵∠AHQ=152°,∴∠AHB=62°,∴∠DAH=17°,∴∠DCH=17°.设DP=x,则DR=HR=RQ=1-x 2.由tan17°=HRCR得1-x21+x2=tan17°,∴x=1-tan17°1+tan17°.2.解:(1)补全图形如图①所示:(2)如图①,连接AE,则∠PAB=∠PAE=20°,AE=AB.∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠EAD=130°,AE=AD.∴∠ADF=25°.(3)如图②,连接AE,BF,BD.由轴对称的性质可得EF =BF ,AE =AB =AD ,∠ABF =∠AEF =∠ADF ,∴∠BFD =∠BAD =90°.∴BF 2+FD 2=BD 2.∴EF 2+FD 2=2AB 2.3.解:(1)∵AB =AC ,∠A =α,∴∠ABC =∠ACB =12(180°-∠A )=90°-12α. ∵∠ABD =∠ABC -∠DBC ,∠DBC =60°,∴∠ABD =30°-12α. (2)△ABE 是等边三角形.证明:连接AD ,CD ,ED ,∵线段BC 绕点B 逆时针旋转60°得到线段BD ,则BC =BD ,∠DBC =60°.∴△BCD 为等边三角形.∴BD =CD.∵∠ABE =60°,∴∠ABD =60°-∠DBE =∠EBC =30°-12α. 在△ABD 与△ACD 中,⎩⎪⎨⎪⎧AB =AC ,AD =AD ,BD =CD ,∴△ABD ≌△ACD ,∴∠BAD =∠CAD =12∠BAC =12α. ∵∠BCE =150°,∴∠BEC =180°-(30°-12α)-150°=12α=∠BAD.在△ABD 和△EBC 中,⎩⎪⎨⎪⎧∠BEC =∠BAD ,∠EBC =∠ABD ,BC =BD ,∴△ABD ≌△EBC ,∴AB =BE .又∵∠ABE =60°,∴△ABE 是等边三角形.(3)∵∠BCD =60°,∠BCE =150°, ∴∠DCE =150°-60°=90°. ∵∠DEC =45°,∴△DEC 为等腰直角三角形,∴DC =CE =BC.∵∠BCE =150°.∴∠EBC =12(180°-150°)=15°. ∵∠EBC =30°-12α=15°, ∴α=30°.4.解:(1)如图①,∵BA =BC ,∠BAC =60°,M 是AC 的中点,∴BM ⊥AC ,AM =MC.∵将线段PA 绕点P 顺时针旋转2α得到线段PQ ,∴AM =MQ ,∠AMQ =120°, ∴CM =MQ ,∠ CMQ =60°, ∴△CMQ 是等边三角形,∴∠ACQ =60°,∴∠CDB =30°.(2)连接PC ,AD ,∵AB =BC ,M 是AC 的中点, ∴BM ⊥AC ,∴AD =CD ,AP =PC.在△APD 与△CPD 中,∵⎩⎪⎨⎪⎧AD =CD ,PD =PD ,PA =PC ,∴△APD ≌△CPD ,∴∠ADB =∠CDB ,∠PAD =∠PCD , ∴∠ADC =2∠CDB.又∵PQ =PA ,∴PQ =PC ,∴∠PQC =∠PCD =∠PAD , ∴∠PAD +∠PQD =∠PQC +∠PQD =180°,∴∠APQ+∠ADC=360°-(∠PAD+∠PQD)=180°,∴∠ADC=180°-∠APQ=180°-2α,∴2∠CDB=180°-2α,∴∠CDB=90°-α.(3)∵∠CDB=90°-α,且PQ=QD,∴∠PAD=∠PCQ=∠PQC=2∠CDB=180°-2α.∵点P不与点B,M重合,∴∠BAD>∠PAD>∠MAD,∴2α>180°-2α>α,∴45°<α<60°.5.解:(1)∵AF平分∠BAD,∴∠BAF=∠DAF.∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠F.∴∠CEF=∠F.∴CE=CF.(2)∠BDG=45°.(3)如图,分别连接GB,GE,GC,∵AD∥BC,AB∥CD,∠ABC=120°,∴∠ECF=∠ABC=120°.∵FG∥CE且FG=CE,∴四边形CEGF是平行四边形.由(1)得CE=CF.∴四边形CEGF是菱形,∴GE=EC,①∠GCF=∠GCE=12∠ECF=60°,∴△ECG与△FCG是等边三角形,∴∠GEC=∠FCG,∴∠BEG=∠DCG,②由AD∥BC及AF平分∠BAD可得∠BAE =∠AEB,∴AB=BE.在▱ABCD中,AB=DC,∴BE=D C.③由①②③得△BEG≌△DCG,∴BG=DG,∠1=∠2,∴∠BGD=∠1+∠3=∠2+∠3=∠EGC =60°,∴∠BDG=180°-∠BGD2=60°. 北京专题训练1.解:(1)补全图形,如图①所示.(2)连接AD,如图①.∵点D与点B关于直线AP对称,∴AD=AB,∠DAP=∠BAP=30°,∵AB=AC,∠BAC=60°,∴AD=AC,∠DAC=120°,∴2∠ACE+120°=180°.∴∠ACE=30°.(3)线段AB,CE,ED可以构成一个含有60°角的三角形.证明:连接AD,EB,如图②.∵点D与点B关于直线AP对称,∴AD=AB,DE=BE,可证得∠EDA=∠EB A.∵AB=AC,AB=AD,∴AD=AC,∴∠ADE=∠ACE,∴∠ABE=∠ACE.设AC,BE交于点F,∵∠AFB=∠CFE,∴∠BAC=∠BEC=60°,∴线段AB,CE,ED可以构成一个含有60°角的三角形.2.解:(1)①补全图形,如图(a)所示.②如图(b),由题意可知AD=DE,∠ADE =90°.∵DF⊥BC,∴∠FDB=90°.∴∠ADF=∠ED B.∵∠C=90°,AC=BC,∴∠ABC=∠DFB=45°.∴DB=DF.∴△ADF≌△EDB.∴AF=EB.在△ABC和△DFB中,∵AC=8,DF=3,∴AB=8 2,BF=3 2.AF=AB-BF=5 2,即BE=5 2,(2)2BD=BE+AB.3.解:(1)补全图形,如图①所示.(2)方法一:证明:连接BE,如图②. ∵四边形ABCD是菱形,∴AD∥BC.∵∠ADC=120°,∴∠DCB=60°.∵AC]是菱形ABCD的对角线,∴∠DCA=12∠DCB=30°.∴∠EDC=180°-∠DEC-∠DCA=100°.由菱形的对称性可知,∠BEC=∠DEC=50°,∠EBC=∠EDC=100°,∴∠GEB=∠DEC+∠BEC=100°.∴∠GEB=∠CBE.∵∠FBC=50°,∴∠EBG =∠EBC -∠FBC =50°. ∴∠EBG =∠BEC.在△GEB 与△CBE 中,⎩⎪⎨⎪⎧∠GEB =∠CBE ,BE =EB ,∠EBG =∠BEC ,∴△GEB ≌△CBE .∴EG =BC .方法二:证明:连接BE ,设BG 与EC 交于点H ,如图②.∵四边形ABCD 是菱形,∴AD ∥BC.∵∠ADC =120°,∴∠DCB =60°.∵AC 是菱形ABCD 的对角线,∴∠DCA =12∠DCB =30°. ∴∠EDC =180°-∠DEC -∠DCA =100°.由菱形的对称性可知,∠BEC =∠DEC =50°,∠EBC =∠EDC =100°,∵∠FBC =50°,∴∠EBG =∠EBC -∠FBC =50°=∠BEC .∴BH =EH .在△GEH 与△CBH 中,⎩⎪⎨⎪⎧∠GEH =∠CBH ,EH =BH ,∠EHG =∠B HC ,∴△GEH ≌△CBH .∴EG =BC .(3)AE +BG =3EG .4.解:(1)∠ADE =90°-α.(2)①证明:∵四边形ABFE 是平行四边形, ∴AB ∥EF .∴∠EDC =∠ABC =α.由(1)知∠ADE =90°-α,∴∠ADC =∠ADE +∠EDC =90°. ∴AD ⊥BC.∵AB =AC ,∴BD =CD.②证明:∵AB =AC ,∠ABC =α, ∴∠C =α.∵四边形ABFE 是平行四边形,∴AE∥BF,AE=BF.∴∠EAC=∠C=α.由(1)知∠DAE=180°-2∠ADE=180°-2(90°-α)=2α,∴∠DAC=α.∴∠DAC=∠C.∴AD=CD.∵AD=AE=BF,∴BF=CD.∴BD=CF.5.解:(1)901 2(2)结论:∠AHB=90°,AFBE=32.证明:如图,连接AD.∵AB =AC ,∠BAC =60°, ∴△ABC 是等边三角形.∵D 为BC 的中点,∴AD ⊥BC.∴∠1+∠2=90°.又∵DE ⊥AC ,∴∠DEC =90°.∴∠2+∠C =90°.∴∠1=∠C =60°.设AB =BC =k (k >0),则CE =12CD =k 4,DE =34k . ∵F 为DE 的中点,∴DF =12DE =38k ,AD =32AB =32k . ∴AD BC =32,DF CE =32. ∴AD BC =DF CE. 又∵∠1=∠C ,∴△ADF ∽△BCE .∴AF BE =AD BC =32,∠3=∠4.又∵∠4+∠5=90°,∠5=∠6, ∴∠3+∠6=90°.∴∠AHB =90°. (3)12tan(90°-α2).6.解:(1)①作图.△ADE (或△PDE ).②过点P 作PN ∥AG 交CG 于点N ,交CD 于点M ,∴∠CPM =∠CAB.∵∠CPE =12∠CAB , ∴∠CPE =12∠CPN .∴∠CPE =∠FPN . ∵PF ⊥CG ,∴∠PFC =∠PFN =90°. ∵PF =PF ,∴△PFC ≌△PFN .∴CF =FN . 由①得:△PME ≌△CMN .∴PE =CN .∴CF PE =CF CN =12. (2)12tan α. 7.解:(1)①30°.②不改变,∠BDC 的度数为30°. 方法一:由题意知AB =AC =A D.∴点B ,C ,D 在以点A 为圆心,AB 为半径的圆上.∴∠BDC =12∠BAC =30°. 方法二:由题意知AB =AC =A D. ∵AC =AD ,∠CAD =α,∴∠ADC =∠ABD =180°-α2=90°-12α.∵AB =AD ,∠BAD =60°+α,∴∠ADB =∠ABD =180°-⎝⎛⎭⎫60°+α2=120°-α2=60°-12α. ∴∠BDC =∠ADC -∠ADB =(90°-12α)-(60°-12α)=30°. (2)过点A 作AM ⊥CD 于点M ,连接EM .∴∠AMC =90°.在△AEB 与△AMC 中,⎩⎪⎨⎪⎧∠AEB =∠AMC ,∠B =∠ACD ,AB =AC ,∴△AEB ≌△AMC.∴AE =AM ,∠BAE =∠CAM .∴∠EAM =∠EAC +∠CAM =∠EAC +∠BAE =∠BAC =60°.∴△AEM 是等边三角形.∴EM =AM =AE .∵AC =AD ,AM ⊥CD ,∴CM =DM .又∵∠DEC =90°,∴EM =CM =DM .∴AM=CM=DM.∴点A,C,D在以M为圆心,MC为半径的圆上.∴α=∠CAD=90°.8.解:(1)CH=AB(2)结论成立.证明:如图,连接BE.在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC =90°.∵DE=DF,∴AF=CE.在△ABF和△CBE中,⎩⎪⎨⎪⎧AB =CB ,∠A =∠BCE ,AF =CE ,∴△ABF ≌△CBE .∴∠1=∠2.∵EH ⊥BF ,∠BCE =90°,∴H ,C 两点都在以BE 为直径的圆上. ∴∠3=∠2.∴∠3=∠1.∵∠3+∠4=90°,∠1+∠HBC =90°, ∴∠4=∠HB C.∴CH =CB.∴CH =AB. (3)3 2+3.。

广东中考突破专题14 几何综合专题

广东中考突破专题14 几何综合专题
(1)求证:BC∥OP;
(2)若E恰好是OD的中点,且四边形
OAPB的面积是16 ,求阴影部分
的面积;
(3)若
1
sin∠BAC=3,且
AD=2 3,求切线 PA 的长.
导航
思路点拨(1)证明OP⊥AB,BC⊥AB,可得结论.
(2)设OE=m,用m的代数式表示AB,OP,构建方程求出m,求出
OA,AB,OE,再根据S阴=S扇形OAB-S△AOB,求解即可.
导航
【例2】(2021·广州)如图,在平面直角坐标系xOy中,直线l:y=

x+4分别与x轴,y轴相交于A、B两点,点P(x,y)为直线l在第

二象限的点.(1)求Fra bibliotek、B两点的坐标;
(2)设△PAO的面积为S,求S关于x的函数
解析式,并写出x的取值范围;
(3)作△PAO的外接圆☉C,延长PC交☉C
E为BC中点,AE⊥DE于点E.点O是线段AE上的点,以点O为圆
心,OE为半径的☉O与AB相切于点G,交BC于点F,连接OG.
(1)求证:△ECD∽△ABE;
(2)求证:☉O与AD相切;
(3)若BC=6,AB=3 ,
求☉O的半径和阴影部分的面积.
导航
思路点拨(1)根据同角的余角相等,可证∠AEB=∠CDE,且∠B
= 2OA·OB=2AB·OP,
AOB
OA×OB 8×4 8 5
∴OP= AB = 4 5 = 5 ,
OP OB
∵sin Q=sin ∠BAO,∴ = ,
PQ AB

8 5
5
PQ
=
4
,∴PQ=8,∴☉C 半径为 4.
4 5

专题四 几何测量——2023届中考数学热点题型突破(含答案)

专题四 几何测量——2023届中考数学热点题型突破(含答案)

专题四几何测量——2023届中考数学热点题型突破1.重庆轨道5号线正在如火如荼地建设中.如图工程队在由南向北的方向上将轨道线路铺设到A处时,测得档案馆C在A北偏西方向的600米处,再铺设一段距离到达B 处,测得档案馆C在B北偏西方向.(1)请求出A,B间铺设了多远的距离;(结果保留整数,参考数据:,)(2)档案馆C周围米内要建设文化广场,不能铺设轨道,若工程队将轨道线路铺设到B处时,沿北偏东的BE方向继续铺设,请问这是否符合建设文化广场的要求,通过计算说明理由.2.随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测量AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:如图,无人机在AB,CD两楼之间上方的点O处,点O 距地面AC的高度为,此时观测到楼AB底部点A处的俯角为,楼CD上点E 处的俯角为,沿水平方向由点O飞行到达点F,测得点E处俯角为,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到.参考数据:,,,).3.周末,小刚和爸爸一起到某湿地公园进行数学实践活动.如图,在爸爸的协助下,小刚在河的南岸点A处观测到北岸的一棵大树P在北偏东方向上,他沿北偏东方向走了到达点B处,此时他发现这棵大树在自己的正北方向上.请你帮小刚求出点B和大树P之间的距离.(结果精确到.参考数据:,,,)4.某数学小组的同学利用两个高度相同的测角仪和一把卷尺测量路杆AB顶端巨型广告牌的高度AN,如图,他们在路杆AB两侧的点C和点D处分别放置测角仪CE和DF(点C,B,D在同一直线上,点A,N与点C,B,D在同一平面内),测角仪CE测得点N处的仰角为,测角仪DF测得点A处的仰角为.已知两个测角仪相距,测角仪CE与AB之间的距离为.(1)求广告牌的高度AN.(结果精确到.参考数据:,,,)(2)利用测角仪测角度时,有哪些注意事项?(写出两条即可)5.如图是某地铁出站口扶梯侧面设计示意图,起初工程师计划修建一段坡度为,高度为32米的扶梯AB,但这样坡度太陡容易引发安全事故.现工程师对设计图进行了修改:修建AC,DE两段扶梯,并在这两段扶梯之间修建5米的水平平台CD,其中,,扶梯AC长米,点B,E在同一水平线上.求修改后扶梯底部E与原来扶梯底部B之间的距离.(结果精确到0.1米.参考数据:,,,)6.为测量某机场东西两栋建筑物A,B之间的距离.如图,勘测无人机在点C处,测得建筑物A的俯角为,CA的距离为千米,然后沿着平行于AB的方向飞行6.4千米到点D处,测得建筑物B的俯角为.(参考数据:,,, ,,).(1)无人机距离地面的飞行高度是多少千米?(2)求该机场东西两栋建筑物A,B之间的距离.(结果精确到0.01千米)7.“一去紫台连朔漠,独留青冢向黄昏.”美丽的昭君博物院作为著名景区,现已成为外地游客到呼和浩特市旅游的打卡地.如图,为测量景区中一座雕像AB的高度,某数学兴趣小组在D处用测角仪测得雕像顶部A的仰角为,测得底部B的俯角为.已知测角仪CD与水平地面垂直且高度为1米,求雕像AB的高.(用非特殊角的三角函数及根式表示即可)8.中国廊桥是桥梁与房屋的珠联璧合之作.如图,某桥面建造古典楼阁和廊道,主跨顶部建造双层楼阁.数学兴趣小组的同学为测量桥面上楼阁AB的高度,从D处观测到楼阁顶部点A的仰角为,观测到A点的正下方楼阁底部点B的仰角为,已知桥面高BC为50米,则楼阁AB的高度约为多少米(参考数据:,,)9.如图,由飞行高度为2000米的飞机上的P点测得到大楼顶部A处的俯角为,到大楼底部B处的俯角为,问大楼AB的高度约为多少米?(结果保留整数.参考数据:,)答案以及解析1.答案:(1)220(2)见解析解析:(1)解:如图,过点C作,交AB的延长线于点F,根据题意可知,,,,(2)符合建设文化广场的要求,理由如下,如图,过点C作根据题意可得符合建设文化广场的要求.2.答案:AC的长约为解析:分别延长AB,CD与直线OF交于点G,点H,如图,则.又,四边形ACHG是矩形,.由题意,得,,,,.在中,,,.是的外角,,,.在中,,,,.答:楼AB与CD之间的距离AC的长约为.3.答案:解析:如图,过点B作于点F,过点P作于点E,则四边形EFBP 是矩形,,.在中,,,,.在中,,,.故点B和大树P之间的距离约为.4.答案:(1)(2)见解析解析:(1)如图,连接EF交AB于点G,则,,,.在中,,.在中,,,.答:广告牌的高度AN大约为.(2)①测量时,测角仪要与地面垂直;②需测量多次,取平均值.(答案不唯一,合理即可)5.答案:修改后扶梯底部E与原来扶梯底部B之间的距离约为20.7米解析:如图,分别过点A,D作EB的垂线,垂足分别为点F,H,延长DC交AF于点M,则四边形DMFH是矩形,,,.,.在中,,,.,的坡度为,,,.在中,,,.答:修改后扶梯底部E与原来扶梯底部B之间的距离约为20.7米.6.答案:(1)无人机距离地面的飞行高度约是1.54千米(2)该机场东西两建筑物AB的距离约为7.2千米解析:(1)过点A作于点E,过点B作于点F.,在中,,,(千米)答:无人机距离地面的飞行高度约是1.54千米;(2)在中,(千米),四边形AEFB是矩形,千米,,在中,,,解得(千米),(千米)(千米)答:该机场东西两建筑物AB的距离约为7.2千米.7.答案:雕像AB的高为米解析:如图,过点C作于H,则.在中,.在中,,则.答:雕像AB的高为米.8.答案:楼阁AB的高度约为9.5米解析:由题意得:,在中,米,,(米),在中,,(米),(米),楼阁AB的高度约为9.5米.9.答案:大楼AB的高度约为541米解析:解:根据题意构建数学模型,如图,过点P作AB的垂线,交BA的延长线于点D.飞机的飞行高度为2000米,米.在中,,.在中,,(米),(米).答:大楼AB的高度约为541米.。

中考数学 精讲篇 专题突破十二 几何综合题 一、方法技巧突破

中考数学 精讲篇 专题突破十二 几何综合题 一、方法技巧突破

证明:过点 D 作 DH⊥CF 于点 H, ∵∠ACD=∠AEC=∠DHC=90°, ∴∠ACE+∠CAE=90°,∠ACE+∠DCH=90°, ∴∠CAE=∠DCH,
∴△ACE≌△CDH(AAS), ∴AE=CH,而 HF=DF·cos 30°= 23DF, ∴CF=CH+HF=AE+ 23DF.
解:∵AD⊥BC,DE⊥AC, ∴∠ADC=∠AED=90°, ∵∠DAE=∠DAC, ∴△DAE∽△CAD, ∴AD∶AC=AE∶AD.∴AD2=AC·AE. ∵AC=AB=4,∴AD2=AB·AE=4×3=12.
∴AD=2 3. 连接 DF. ∵AB=4,∠ADB=90°,BF=AF, ∴DF=12AB=2.
类型三:构造与 2, 3,12倍的线段 数量关系的方法
[重庆:A 卷 2021T26(2)、2020T26、2019T25;B 卷 2021T26(2)]
方法 1:构造 45°角的等腰直角三角形( 2倍的数量关系)
【方法归纳】
基本图形 辅助线作法
结论
作∠ADB=90°
AB= 2AD= 2BD
已知
∵AF 平分∠BAC, ∴∠FAC=45°. ∵CF⊥AF,∴∠AFC=90°, ∴△AFC 是等腰直角三角形,∴AF=CF. ∵∠BAC=90°,点 E 是 BC 的中点,∴AE=CE. 又∵FE=FE,∴△AFE≌△CFE(SSS). ∴∠AFE=∠CFE.
(2)连接 EH, ∵∠BAG=90°,AH⊥BG 且 AH 平分∠BAC, ∴点 H 为 BG 的中点,∠HAG=45°. 又∵点 E 为 BC 的中点,∴HE=12CG,HE∥CG. ∴∠FHE=∠HAG=45°. ∵∠HFE=∠CFE,∠AFC=90°,
类型二:与角平分线有关的辅助线作法

中考数学专题突破九:几何综合(含答案)

中考数学专题突破九:几何综合(含答案)

专题突破(九)几何综合1.在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH,PH.(1)若点P在线段CD上,如图Z9-1(a).①依题意补全图(a);②判断AH与PH的数量关系与位置关系,并加以证明.(2)若点P在线段CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果.........)图Z9-12.在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图Z9-2①;(2)若∠P AB=20°,求∠ADF的度数;(3)如图②,若45°<∠P AB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.图Z9-23.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段B D.(1)如图Z9-3①,直接写出∠ABD的大小(用含α的式子表示);(2)如图②,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.图Z9-34.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段P A绕点P顺时针旋转2α得到线段PQ.(1)若α=60°且点P与点M重合(如图Z9-4①),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;(2)在图②中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想∠CDB 的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,请直接写出α的范围.图Z9-45.在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图Z9-5①中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图②),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB,DG(如图③),求∠BDG的度数.图Z9-51.模]在等边三角形ABC外侧作直线AP,点B关于直线AP的对称点为D,连接BD,CD,其中CD交直线AP于点E.(1)依题意补全图Z9-6①;(2)若∠P AB=30°,求∠ACE的度数;(3)如图②,若60°<∠P AB<120°,判断由线段AB,CE,ED可以构成一个含有多少度角的三角形,并证明.图Z9-62.模]在△ABC中,∠C=90°,AC=BC,点D在射线BC上(不与点B,C重合),连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE.(1)如图Z9-7(a),点D在BC边上.①依题意补全图(a);②作DF⊥BC交AB于点F,若AC=8,DF=3,求BE的长.(2)如图(b),点D在BC边的延长线上,用等式表示线段AB,BD,BE之间的数量关系(直接写出结论).图Z9-73.模]在菱形ABCD中,∠ADC=120°,点E是对角线AC上一点,连接DE,∠DEC =50°,将线段BC绕点B逆时针旋转50°并延长得到射线BF,交ED的延长线于点G.(1)依题意补全图形;(2)求证:EG=BC;(3)用等式表示线段AE,EG,BG之间的数量关系:________.图Z9-84.模]如图Z9-9①,在△ABC中,AB=AC,∠ABC=α,D是BC边上一点,以AD 为边作△ADE,使AE=AD,∠DAE+∠BAC=180°.(1)直接写出∠ADE的度数(用含α的式子表示).(2)以AB,AE为边作平行四边形ABFE.①如图②,若点F恰好落在DE上,求证:BD=CD;②如图③,若点F恰好落在BC上,求证:BD=CF.图Z9-95.模] 在△ABC 中,AB =AC ,取BC 边的中点D ,作DE ⊥AC 于点E ,取DE 的中点F ,连接BE ,AF 交于点H .(1)如图Z9-10①,如果∠BAC =90°,那么∠AHB =________°,AFBE =________;(2)如图②,如果∠BAC =60°,猜想∠AHB 的度数和AFBE 的值,并证明你的结论;(3)如果∠BAC =α,那么AFBE=________.(用含α的代数式表示)图Z9-106.模] 在△ABC 中,CA =CB ,CD 为AB 边上的中线,点P 是线段AC 上任意一点(不与点C 重合),过点P 作PE 交CD 于点E ,使∠CPE =12∠CAB ,过点C 作CF ⊥PE 交PE的延长线于点F ,交AB 于点G .(1)如果∠ACB =90°,①如图Z9-11(a),当点P 与点A 重合时,依题意补全图形,并指出与△CDG 全等的一个三角形;②如图(b),当点P 不与点A 重合时,求CFPE的值.(2)如果∠CAB =a ,如图(c ),请直接写出CFPE的值.(用含a 的式子表示)图Z9-117. 将线段AB 绕点A 逆时针旋转60°得到线段AC ,继续旋转α(0°<α<120°)得到线段AD ,连接CD .(1)连接BD ,①如图Z9-12(a ),若α=80°,则∠BDC 的度数为________.②在第二次旋转过程中,请探究∠BDC 的大小是否改变.若不变,求出∠BDC 的度数;若改变,请说明理由.(2)如图(b ),以AB 为斜边作直角三角形ABE ,使得∠B =∠ACD ,连接CE ,DE .若∠CED =90°,求α的值.图Z9-128.模]正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图Z9-13①,若点E是DC的中点,CH与AB之间的数量关系是________.(2)如图②,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由.(3)如图③,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.图Z9-13参考答案1.解:(1)①如图(a)所示.②AH =PH ,AH ⊥PH . 证明:连接CH ,由条件易得:△DHQ 为等腰直角三角形, 又∵DP =CQ ,∴△HDP ≌△HQC , ∴PH =CH ,∠HPC =∠HCP . ∵BD 为正方形ABCD 的对称轴, ∴AH =CH ,∠DAH =∠HCP , ∴AH =PH ,∠DAH =∠HPC , ∴∠AHP =180°-∠ADP =90°, ∴AH =PH 且AH ⊥PH.(2)如图(b),过点H 作HR ⊥PC 于点R , ∵∠AHQ =152°, ∴∠AHB =62°, ∴∠DAH =17°, ∴∠DCH =17°.设DP =x ,则DR =HR =RQ =1-x2.由tan17°=HRCR 得1-x 21+x2=tan17°,∴x =1-tan17°1+tan17°.2.解:(1)补全图形如图①所示:(2)如图①,连接AE ,则∠P AB =∠P AE =20°,AE =AB. ∵四边形ABCD 是正方形, ∴∠BAD =90°,AB =AD , ∴∠EAD =130°,AE =AD. ∴∠ADF =25°.(3)如图②,连接AE ,BF ,BD.由轴对称的性质可得EF =BF ,AE =AB =AD ,∠ABF =∠AEF =∠ADF , ∴∠BFD =∠BAD =90°. ∴BF 2+FD 2=BD 2. ∴EF 2+FD 2=2AB 2.3.解:(1)∵AB =AC ,∠A =α,∴∠ABC =∠ACB =12(180°-∠A )=90°-12α.∵∠ABD =∠ABC -∠DBC ,∠DBC =60°, ∴∠ABD =30°-12α.(2)△ABE 是等边三角形. 证明:连接AD ,CD ,ED ,∵线段BC 绕点B 逆时针旋转60°得到线段BD , 则BC =BD ,∠DBC =60°. ∴△BCD 为等边三角形. ∴BD =CD.∵∠ABE =60°,∴∠ABD =60°-∠DBE =∠EBC =30°-12α.在△ABD 与△ACD 中, ⎩⎪⎨⎪⎧AB =AC ,AD =AD ,BD =CD , ∴△ABD ≌△ACD ,∴∠BAD =∠CAD =12∠BAC =12α.∵∠BCE =150°,∴∠BEC =180°-(30°-12α)-150°=12α=∠BAD.在△ABD 和△EBC 中, ⎩⎪⎨⎪⎧∠BEC =∠BAD ,∠EBC =∠ABD ,BC =BD ,∴△ABD ≌△EBC , ∴AB =BE .又∵∠ABE =60°,∴△ABE 是等边三角形.(3)∵∠BCD =60°,∠BCE =150°, ∴∠DCE =150°-60°=90°. ∵∠DEC =45°,∴△DEC 为等腰直角三角形, ∴DC =CE =BC. ∵∠BCE =150°.∴∠EBC =12(180°-150°)=15°.∵∠EBC =30°-12α=15°,∴α=30°.4.解:(1)如图①,∵BA =BC ,∠BAC =60°,M 是AC 的中点, ∴BM ⊥AC ,AM =MC.∵将线段P A 绕点P 顺时针旋转2α得到线段PQ , ∴AM =MQ ,∠AMQ =120°, ∴CM =MQ ,∠ CMQ =60°, ∴△CMQ 是等边三角形, ∴∠ACQ =60°, ∴∠CDB =30°. (2)连接PC ,AD ,∵AB =BC ,M 是AC 的中点, ∴BM ⊥AC ,∴AD =CD ,AP =PC. 在△APD 与△CPD 中, ∵⎩⎪⎨⎪⎧AD =CD ,PD =PD ,P A =PC , ∴△APD ≌△CPD ,∴∠ADB =∠CDB ,∠P AD =∠PCD , ∴∠ADC =2∠CDB. 又∵PQ =P A ,∴PQ =PC ,∴∠PQC =∠PCD =∠P AD , ∴∠P AD +∠PQD =∠PQC +∠PQD =180°,∴∠APQ +∠ADC =360°-(∠P AD +∠PQD )=180°, ∴∠ADC =180°-∠APQ =180°-2α, ∴2∠CDB =180°-2α, ∴∠CDB =90°-α.(3)∵∠CDB =90°-α,且PQ =QD ,∴∠P AD =∠PCQ =∠PQC =2∠CDB =180°-2α. ∵点P 不与点B ,M 重合, ∴∠BAD >∠P AD >∠MAD , ∴2α>180°-2α>α, ∴45°<α<60°.5.解:(1)∵AF 平分∠BAD , ∴∠BAF =∠DAF .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD ,∴∠DAF =∠CEF ,∠BAF =∠F . ∴∠CEF =∠F . ∴CE =CF .(2)∠BDG =45°.(3)如图,分别连接GB ,GE ,GC ,∵AD ∥BC ,AB ∥CD ,∠ABC =120°, ∴∠ECF =∠ABC =120°. ∵FG ∥CE 且FG =CE ,∴四边形CEGF 是平行四边形. 由(1)得CE =CF .∴四边形CEGF 是菱形, ∴GE =EC ,①∠GCF =∠GCE =12∠ECF =60°,∴△ECG 与△FCG 是等边三角形, ∴∠GEC =∠FCG ,∴∠BEG =∠DCG ,②由AD ∥BC 及AF 平分∠BAD 可得∠BAE =∠AEB , ∴AB =BE .在▱ABCD 中,AB =DC , ∴BE =D C.③由①②③得△BEG ≌△DCG , ∴BG =DG ,∠1=∠2,∴∠BGD =∠1+∠3=∠2+∠3=∠EGC =60°, ∴∠BDG =180°-∠BGD2=60°.1.解:(2)连接AD ,如图①.∵点D 与点B 关于直线AP 对称,∴AD =AB ,∠DAP =∠BAP =30°,∵AB =AC ,∠BAC =60°,∴AD =AC ,∠DAC =120°, ∴2∠ACE +120°=180°.∴∠ACE =30°.(3)线段AB ,CE ,ED 可以构成一个含有60°角的三角形. 证明:连接AD ,EB ,如图②.∵点D 与点B 关于直线AP 对称, ∴AD =AB ,DE =BE , 可证得∠EDA =∠EB A. ∵AB =AC ,AB =AD ,∴AD =AC ,∴∠ADE =∠ACE , ∴∠ABE =∠ACE . 设AC ,BE 交于点F ,∵∠AFB =∠CFE ,∴∠BAC =∠BEC =60°,∴线段AB ,CE ,ED 可以构成一个含有60°角的三角形. 2.解:(1)①补全图形,如图(a )所示.②如图(b ),由题意可知AD =DE ,∠ADE =90°. ∵DF ⊥BC ,∴∠FDB =90°. ∴∠ADF =∠ED B.∵∠C =90°,AC =BC , ∴∠ABC =∠DFB =45°. ∴DB =DF .∴△ADF ≌△EDB. ∴AF =EB.在△ABC 和△DFB 中,∵AC =8,DF =3,∴AB =8 2,BF =3 2. AF =AB -BF =5 2, 即BE =5 2, (2)2BD =BE +AB.3.解:(1)补全图形,如图①所示.(2)方法一:证明:连接BE ,如图②. ∵四边形ABCD 是菱形, ∴AD ∥BC.∵∠ADC =120°, ∴∠DCB =60°.∵AC ]是菱形ABCD 的对角线, ∴∠DCA =12∠DCB =30°.∴∠EDC =180°-∠DEC -∠DCA =100°.由菱形的对称性可知,∠BEC =∠DEC =50°,∠EBC =∠EDC =100°, ∴∠GEB =∠DEC +∠BEC =100°. ∴∠GEB =∠CBE . ∵∠FBC =50°,∴∠EBG =∠EBC -∠FBC =50°. ∴∠EBG =∠BEC.在△GEB 与△CBE 中, ⎩⎪⎨⎪⎧∠GEB =∠CBE ,BE =EB ,∠EBG =∠BEC ,∴△GEB ≌△CBE . ∴EG =BC .方法二:证明:连接BE ,设BG 与EC 交于点H ,如图②. ∵四边形ABCD 是菱形, ∴AD ∥BC.∵∠ADC =120°, ∴∠DCB =60°.∵AC 是菱形ABCD 的对角线, ∴∠DCA =12∠DCB =30°.∴∠EDC =180°-∠DEC -∠DCA =100°.由菱形的对称性可知,∠BEC =∠DEC =50°,∠EBC =∠EDC =100°, ∵∠FBC =50°,∴∠EBG =∠EBC -∠FBC =50°=∠BEC . ∴BH =EH .在△GEH 与△CBH 中, ⎩⎪⎨⎪⎧∠GEH =∠CBH ,EH =BH ,∠EHG =∠B HC , ∴△GEH ≌△CBH . ∴EG =BC .(3)AE +BG =3EG .4.解:(1)∠ADE =90°-α.(2)①证明:∵四边形ABFE 是平行四边形, ∴AB ∥EF .∴∠EDC =∠ABC =α. 由(1)知∠ADE =90°-α,∴∠ADC =∠ADE +∠EDC =90°. ∴AD ⊥BC. ∵AB =AC , ∴BD =CD.②证明:∵AB =AC ,∠ABC =α, ∴∠C =α.∵四边形ABFE 是平行四边形, ∴AE ∥BF ,AE =BF . ∴∠EAC =∠C =α.由(1)知∠DAE =180°-2∠ADE =180°-2(90°-α)=2α, ∴∠DAC =α. ∴∠DAC =∠C. ∴AD =CD .∵AD =AE =BF , ∴BF =CD. ∴BD =CF .5.解:(1)90 12(2)结论:∠AHB =90°,AF BE =32.证明:如图,连接AD .∵AB =AC ,∠BAC =60°, ∴△ABC 是等边三角形. ∵D 为BC 的中点, ∴AD ⊥BC.∴∠1+∠2=90°. 又∵DE ⊥AC , ∴∠DEC =90°. ∴∠2+∠C =90°. ∴∠1=∠C =60°. 设AB =BC =k (k >0), 则CE =12CD =k 4,DE =34k .∵F 为DE 的中点,∴DF =12DE =38k ,AD =32AB =32k .∴AD BC =32,DF CE =32. ∴AD BC =DF CE. 又∵∠1=∠C , ∴△ADF ∽△BCE . ∴AF BE =AD BC =32, ∠3=∠4.又∵∠4+∠5=90°,∠5=∠6, ∴∠3+∠6=90°. ∴∠AHB =90°. (3)12tan(90°-α2). 6.解:(1)①作图.△ADE (或△PDE ).②过点P 作PN ∥AG 交CG 于点N ,交CD 于点M ,∴∠CPM =∠CAB. ∵∠CPE =12∠CAB ,∴∠CPE =12∠CPN .∴∠CPE =∠FPN .∵PF ⊥CG ,∴∠PFC =∠PFN =90°. ∵PF =PF ,∴△PFC ≌△PFN .∴CF =FN . 由①得:△PME ≌△CMN . ∴PE =CN .∴CF PE =CF CN =12.(2)12tan α. 7.解:(1)①30°.②不改变,∠BDC 的度数为30°. 方法一:由题意知AB =AC =A D.∴点B ,C ,D 在以点A 为圆心,AB 为半径的圆上. ∴∠BDC =12∠BAC =30°.方法二:由题意知AB =AC =A D. ∵AC =AD ,∠CAD =α,∴∠ADC =∠ABD =180°-α2=90°-12α.∵AB =AD ,∠BAD =60°+α,∴∠ADB =∠ABD =180°-()60°+α2=120°-α2=60°-12α.∴∠BDC =∠ADC -∠ADB =(90°-12α)-(60°-12α)=30°.(2)过点A 作AM ⊥CD 于点M ,连接EM .∴∠AMC =90°.在△AEB 与△AMC 中, ⎩⎪⎨⎪⎧∠AEB =∠AMC ,∠B =∠ACD ,AB =AC ,∴△AEB ≌△AMC.∴AE =AM ,∠BAE =∠CAM .∴∠EAM =∠EAC +∠CAM =∠EAC +∠BAE =∠BAC =60°. ∴△AEM 是等边三角形. ∴EM =AM =AE .∵AC =AD ,AM ⊥CD , ∴CM =DM .又∵∠DEC =90°, ∴EM =CM =DM . ∴AM =CM =DM .∴点A ,C ,D 在以M 为圆心,MC 为半径的圆上. ∴α=∠CAD =90°. 8.解:(1)CH =AB (2)结论成立.证明:如图,连接BE .在正方形ABCD 中,AB =BC =CD =AD ,∠A =∠BCD =∠ABC =90°. ∵DE =DF , ∴AF =CE .在△ABF 和△CBE 中, ⎩⎪⎨⎪⎧AB =CB ,∠A =∠BCE ,AF =CE ,∴△ABF ≌△CBE . ∴∠1=∠2.∵EH ⊥BF ,∠BCE =90°,∴H ,C 两点都在以BE 为直径的圆上. ∴∠3=∠2. ∴∠3=∠1.∵∠3+∠4=90°,∠1+∠HBC =90°, ∴∠4=∠HB C. ∴CH =CB. ∴CH =AB. (3)3 2+3.。

中考数学专题突破复习题型(几何图形综合题)

中考数学专题突破复习题型(几何图形综合题)

初中数学几何图形综合题类型1 类比探究题1.(2020·眉山青神县一诊)如图1,在正方形ABCD 中,P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA =PE ,PE 交CD 于点F.(1)求证:PC =PE ;(2)求∠CPE 的度数;(3)如图2,把正方形ABCD 改为菱形ABCD ,其他条件不变,当∠ABC =120°时,连接CE ,试探究线段AP 与线段CE 的数量关系,并说明理由.解:(1)证明:在正方形ABCD 中,AB =BC ,∠ABP =∠CBP =45°在△ABP 和△CBP 中,⎩⎪⎨⎪⎧AB =BC ,∠ABP =∠CBP ,PB =PB ,∴△ABP ≌△CBP(SAS ).∴PA =PC.又∵PA =PE ,∴PC =PE.(2)由(1)知,△ABP ≌△CBP∴∠BAP =∠BCP.∴∠DAP =∠DCP.∵PA =PE ,∴∠DAP =∠E.∴∠DCP =∠E.∵∠CFP =∠EFD(对顶角相等)∴180°-∠PFC -∠PCF =180°-∠DFE -∠E即∠CPF =∠EDF =90°.(3)在菱形ABCD 中,AB =BC ,∠ABP =∠CBP =60°在△ABP 和△CBP 中,⎩⎪⎨⎪⎧AB =BC ,∠ABP =∠CBP ,PB =PB ,∴△ABP ≌△CBP(SAS ).∴PA =PC ,∠BAP =∠BCP.∵PA =PE ,∴PC =PE.∴∠DAP =∠DCP.∵PA =PE ,∴∠DAP =∠AEP.∴∠DCP =∠AEP.∵∠CFP =∠EFD(对顶角相等)∴180°-∠PFC -∠PCF =180°-∠DFE -∠AEP即∠CPF =∠EDF =180°-∠ADC =180°-120°=60°.∴△EPC 是等边三角形.∴PC =CE.∴AP =CE.2.(2020·成都)已知AC ,EC 分别为四边形ABCD 和EFCG 的对角线,点E 在△ABC 内,∠CAE +∠CBE =90°.(1)如图1,当四边形ABCD 和EFCG 均为正方形时,连接BF.①求证:△CAE ∽△CBF ;②若BE =1,AE =2,求CE 的长;(2)如图2,当四边形ABCD 和EFCG 均为矩形,且AB BC =EF FC =k 时,若BE =1,AE =2,CE =3,求k 的值;(3)如图3,当四边形ABCD 和EFCG 均为菱形,且∠DAB =∠GEF =45°时,设BE=m ,AE =n ,CE =p ,试探究m ,n ,p 三者之间满足的等量关系.(直接写出结果,不必写出解答过程)解:(1)证明:①∵四边形ABCD 和EFCG 均为正方形∴∠ACB =45°,∠ECF =45°.∴∠ACB -∠ECB =∠ECF -∠ECB即∠ACE =∠BCF.又∵AC BC =CE CF =2∴△CAE ∽△CBF.②∵△CAE ∽△CBF ,∴∠CAE =∠CBF ,AE BF = 2.∴BF = 2.又∠CAE +∠CBE =90°∴∠CBF +∠CBE =90°,即∠EBF =90°.∴CE 2=2EF 2=2(BE 2+BF 2)=6.解得CE = 6.(2)连接BF∵AB BC =EF FC =k ,∠CFE =∠CBA∴△CFE ∽△CBA.∴∠ECF =∠ACB ,CE CF =AC BC .∴∠ACE =∠BCF.∴△ACE ∽△BCF.∴∠CAE =∠CBF.∵∠CAE +∠CBE =90°∴∠CBF +∠CBE =90°即∠EBF =90°∴BC ∶AB ∶AC =1∶k ∶k 2+1CF ∶EF ∶EC =1∶k ∶k 2+1.∴AC BC =AE BF =k 2+1.∴BF =AE k 2+1,BF 2=AE 2k 2+1. ∴CE 2=k 2+1k 2EF 2=k 2+1k 2(BE 2+BF 2).∴32=k 2+1k 2(12+22k 2+1).解得k =104. (3)p 2-n 2=(2+2)m 2.题型2 与圆有关的几何综合题3.(2020·成都)如图,在Rt △ABC 中,∠ABC =90°,以CB 为半径作⊙C ,交AC 于点D ,交AC 的延长线于点E ,连接ED ,BE.(1)求证:△ABD ∽△AEB ; (2)当AB BC =43时,求tan E ;(3)在(2)的条件下,作∠BAC 的平分线,与BE 交于点F ,若AF =2,求⊙C 的半径.解:(1)证明:∵∠ABC =90°,∴∠ABD =90°-∠DBC.∵DE 是直径∴∠DBE =90°.∴∠E =90°-∠BDE.∵BC =CD ,∴∠DBC =∠BDE.∴∠ABD =∠E.∵∠BAD =∠DAB ,∴△ABD ∽△AEB.(2)∵AB ∶BC =4∶3∴设AB =4k ,BC =3k.∴AC =AB 2+BC 2=5k.∵BC =CD =3k∴AD =AC -CD =2k.∵△ABD ∽△AEB∴AB AE =AD AB =BD BE .∴AB 2=AD·AE.∴(4k)2=2k·AE.∴AE =8k.在Rt △DBE 中tan E =BD BE =AB AE =4k 8k =12.(3)过点F 作FM ⊥AE 于点M.由(2)知,AB =4k ,BC =3k ,AD =2k ,AC =5k则AE =8k ,DE =6k.∵AF 平分∠BAC∴S △ABFS △AFE=BF EF =AB AE .∴BF EF =4k 8k =12.∵tan E =12∴cos E =255,sin E =55.∴BE DE =255.∴BE =1255k.∴EF =23BE =855k. ∴sin E =MF EF =55.∴MF =85k. ∵tan E =12∴ME =2MF =165k.∴AM =AE -ME =245k.∵AF 2=AM 2+MF 2∴4=(245k)2+(85k)2.∴k =108.∴⊙C 的半径为3k =3108.4.(2020·内江)如图,在Rt △ABC 中,∠ABC =90°,AC 的垂直平分线分别与AC ,BC 及AB 的延长线相交于点D ,E ,F.⊙O 是△BEF 的外接圆,∠EBF 的平分线交EF 于点G ,交⊙O 于点H ,连接BD ,FH.(1)试判断BD 与⊙O 的位置关系,并说明理由;(2)当AB =BE =1时,求⊙O 的面积;(3)在(2)的条件下,求HG·HB 的值.解:(1)直线BD 与⊙O 相切.理由:连接OB.∵BD 是Rt △ABC 斜边上的中线,∴DB =DC.∴∠DBC =∠C.∵OB =OE∴∠OBE =∠OEB.又∵∠OEB =∠CED ,∴∠OBE =∠CED.∵DF ⊥AC ,∴∠CDE =90°.∴∠C +∠CED =90°.∴∠DBC +∠OBE =90°.∴BD 与⊙O 相切.(2)连接AE.在Rt △ABE 中,AB =BE =1,∴AE = 2.∵DF 垂直平分AC ,∴CE =AE = 2.∴BC =1+ 2.∵∠C +∠CAB =90°,∠DFA +∠CAB =90°∴∠ACB =∠DFA.又∠CBA =∠FBE =90°,AB =BE∴△CAB ≌△FEB.∴BF =BC =1+ 2.∴EF 2=BE 2+BF 2=12+(1+2)2=4+2 2.∴S ⊙O =π·(EF 2)2=2+22π.(3)∵AB =BE ,∠ABE =90°∴∠AEB =45°.∵EA =EC ,∴∠C =22.5°.∴∠H =∠BEG =∠CED =90°-22.5°=67.5°.∵BH 平分∠CBF∴∠EBG =∠HBF =45°.∴∠BGE =∠BFH =67.5°.∴BG =BE =1,BH =BF =1+ 2.∴GH =BH -BG = 2.∴HB ·HG =2×(1+2)=2+ 2.5.(2020·内江)如图,在△ACE 中,CA =CE ,∠CAE =30°,⊙O 经过点C ,且圆的直径AB 在线段AE 上.(1)试说明CE 是⊙O 的切线;(2)若△ACE 中AE 边上的高为h ,试用含h 的代数式表示⊙O 的直径AB ;(3)设点D 是线段AC 上任意一点(不含端点),连接OD ,当12CD +OD 的最小值为6时,求⊙O 的直径AB 的长.解:(1)证明:连接OC.∵CA =CE ,∠CAE =30°∴∠E =∠CAE =30°,∠COE =2∠A =60°.∴∠OCE =90°.∴CE 是⊙O 的切线.(2)过点C 作CH ⊥AB 于点H ,由题可得CH =h.在Rt △OHC 中,CH =OC·sin ∠COH∴h =OC·sin 60°=32OC.∴OC =2h 3=233h. ∴AB =2OC =433h.(3)作OF 平分∠AOC ,交⊙O 于点F ,连接AF ,CF ,DF.则∠AOF =∠COF =12∠AOC =12×(180°-60°)=60°.∵OA =OF =OC∴△AOF ,△COF 是等边三角形.∴AF =AO =OC =FC.∴四边形AOCF 是菱形.∴根据对称性可得DF =DO.过点D 作DM ⊥OC 于点M∵OA =OC ,∴∠OCA =∠OAC =30°.∴DM =DC·sin ∠DCM =DC·sin 30°=12DC. ∴12CD +OD =DM +FD.根据两点之间线段最短可得:当F ,D ,M 三点共线时,DM +FD(即12CD +OD)最小,此时FM =OF·sin ∠FOM =32OF =6则OF =43,AB =2OF =8 3.∴当12CD +OD 的最小值为6时,⊙O 的直径AB 的长为8 3.6.(2020·南充)如图,已知AB 是⊙O 的直径,BP 是⊙O 的弦,弦CD ⊥AB 于点F ,交BP 于点G ,E 在CD 的反向延长线上,EP =EG(1)求证:直线EP 为⊙O 的切线;(2)点P 在劣弧AC 上运动,其他条件不变,若BG 2=BF·BO.试证明BG =PG ;(3)在满足(2)的条件下,已知⊙O 的半径为3,sin B =33.求弦CD 的长.解:(1)证明:连接OP.∵EP =EG∴∠EGP =∠EGP.又∵∠EGP =∠BGF∴∠EPG =∠BGF.∵OP =OB∴∠OPB =∠OBP.∵CD ⊥AB ,∴∠BGF +∠OBP =90°.∴∠EPG +∠OPB =90°,即∠EPO =90°.∴直线EP 为⊙O 的切线.(2)证明:连接OG ,AP.∵BG 2=BF·BO ,∴BG BO =BF BG . 又∵∠GBF =∠OBG ,∴△BFG ∽△BGO.∴∠BGF =∠BOG ,∠BGO =∠BFG =90°.∵∠APB =∠OGB =90°,∴OG ∥AP.又∵AO=BO∴BG=PG. (3)连接AC,BC.∵sin B=33,∴OGOB=33.∵OB=r=3,∴OG= 3.由(2)得∠EPG+∠OPB=90°∠B+∠BGF=∠OGF+∠BOG=90°又∵∠BGF=∠BOG∴∠B=∠OGF.∴sin∠OGF=33=OFOG.∴OF=1.∴BF=BO-OF=3-1=2FA=OF+OA=1+3=4.在Rt△BCA中,CF2=BF·FA∴CF=BF·FA=2×4=2 2.∴CD=2CF=4 2.7.(2020·攀枝花)如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t 秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB,OA的交点分别为C,D,连接CD,QC.(1)当t为何值时,点Q与点D重合?(2)当⊙Q 经过点A 时,求⊙P 被OB 截得的弦长;(3)若⊙P 与线段QC 只有一个公共点,求t 的取值范围.解:(1)∵在Rt △AOB 中,OA =6,OB =8∴AB =OA 2+OB 2=10.由题意知OQ =AP =t∴AC =2t.∵AC 是⊙P 的直径∴∠CDA =90°.又∵∠AOB =90°,∴∠AOB =∠CDA.∴CD ∥OB.∴△ACD ∽△ABO.∴AC AB =AD OA ,即2t 10=AD 6.∴AD =65t.当Q 与D 重合时,AD +OQ =OA∴65t +t =6.解得t =3011.(2)如图1,当⊙Q 经过A 点时,OQ =OA -QA =4.∴t =41=4.∴PA =4.∴BP =AB -PA =6.过点P 作PE ⊥OB 于点E ,设⊙P 与OB 交于点F ,G ,连接PF.∴PE ∥OA.∴△PEB ∽△AOB.∴PE OA =BP AB ,即PE 6=610.∴PE =185.∴在Rt △PEF 中,EF =PF 2-PE 2=42-(185)2=2195. ∴FG =2EF =4195.(3)如图2,当QC 与⊙P 相切时,此时∠QCA =90°.∵OQ =AP =t ,∴AQ =6-t ,AC =2t.∵∠A =∠A ,∠QCA =∠BOA∴△AQC ∽△ABO.∴AQ AB =AC OA ,即6-t 10=2t 6.解得t =1813.∴当0<t ≤1813时,⊙P 与QC 只有一个交点当QC ⊥OA 时,此时Q 与D 重合由(1)可知t =3011.∴当3011<t ≤5时,⊙P 与QC 只有一个交点.综上所述,当⊙P 与QC 只有一个交点,t 的取值范围为0<t ≤1813或3011<t ≤5.。

中考数学解答题压轴题突破 重难点突破十 几何综合题

中考数学解答题压轴题突破 重难点突破十 几何综合题

(1)证明:∵四边形 ABCD 是矩形,
∴AB∥CD,AB=CD,∠A=90°.
∵点 E,F 分别是 AB,CD 的中点,
1
1
∴AE=2AB,DF=2CD,∴AE=DF.
∵AE∥DF,∴四边形 AEFD 是平行四边形,
∵∠A=90°,∴四边形 AEFD 是矩形.
(2)解:如解图①,连接 OA,AM, ∵点 A 关于 BP 的对称点为点 M, ∴BP 垂直平分 AM, ∴OA=OM. ∵四边形 AEFD 是矩形, ∴EF⊥AB. ∵点 E 是 AB 的中点, ∴EF 垂直平分 AB, ∴OA=OB,∴OB=OM.
(3)证明:如解图,连接 AC,过点 B 作 BP∥AC 交 AF 的延长线于点 P, ∴△BFP∽△CFA, ∴BCFF=BCPA, ∵四边形 ABCD 是平行四边形,AB=AD, ∴四边形 ABCD 是菱形, ∵∠ABC=60°, ∴∠PBC=∠ACB=60°. ∴∠ABP=120°,∴∠DAE=∠ABP,
在△ADE 与△BAP 中, ∠DAE=∠ABP, AD=AB, ∠ADE=∠BAF, ∴△ADE≌△BAP(ASA),
∴AE=BP,
又∵AC=AD, BF AE
∴CF=AD.
类型二:动点问题
(省卷:2017T23;昆明:2020T23)
(2020·岳阳)如图 1,在矩形 ABCD 中,AB=6,BC=8,动点 P,Q 分別从 C 点,A 点同时以每秒 1 个单位长度的速度出发,且分别在边 CA, AB 上沿 C→A,A→B 的方向运动,当点 Q 运动到点 B 时,P,Q 两点同时 停止运动.设点 P 运动的时间为 t(s),连接 PQ,过点 P 作 PE⊥PQ,PE 与边 BC 相交于点 E,连接 QE.

2019北京市中考数学专题突破九:几何综合(含答案)

2019北京市中考数学专题突破九:几何综合(含答案)

专题突破(九) 几何综合在北京中考试卷中,几何综合题通常出现在后两题,分值为8分或7分.几何综合题主要包含三角形(全等、相似)、四边形、锐角三角函数、圆等知识,主要研究图形中的数量关系、位置关系、几何计算以及图形的运动、变换等规律.求解几何综合题时,关键是抓住“基本图形”,能在复杂的几何图形中辨认、分解出基本图形,或通过添加辅助线补全、构造基本图形,或运用图形变换的思想将分散的条件集中起来,从而产生基本图形,再根据基本图形的性质,合理运用方程、三角函数的运算等进行推理与计算.1.[2019·北京] 在正方形ABCD 中,BD 是一条对角线,点P 在射线CD 上(与点C ,D 不重合),连接AP ,平移△ADP ,使点D 移动到点C ,得到△BCQ ,过点Q 作QH ⊥BD 于点H ,连接AH ,PH .(1)若点P 在线段CD 上,如图Z9-1(a ). ①依题意补全图(a );②判断AH 与PH 的数量关系与位置关系,并加以证明.(2)若点P 在线段CD 的延长线上,且∠AHQ =152°,正方形ABCD 的边长为1,请写出求DP 长的思路.(可以不写出计算结果.........)图Z9-12.[2019·北京]在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图Z9-2①;(2)若∠P AB=20°,求∠ADF的度数;(3)如图②,若45°<∠P AB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.图Z9-23.[2019·北京]在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B 逆时针旋转60°得到线段B D.(1)如图Z9-3①,直接写出∠ABD的大小(用含α的式子表示);(2)如图②,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.图Z9-34.[2019·北京]在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段P A绕点P顺时针旋转2α得到线段PQ.(1)若α=60°且点P与点M重合(如图Z9-4①),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;(2)在图②中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想∠CDB 的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,请直接写出α的范围.图Z9-45.[2011·北京]在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图Z9-5①中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图②),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB,DG(如图③),求∠BDG的度数.图Z9-51.[2019·怀柔一模]在等边三角形ABC外侧作直线AP,点B关于直线AP的对称点为D,连接BD,CD,其中CD交直线AP于点E.(1)依题意补全图Z9-6①;(2)若∠P AB=30°,求∠ACE的度数;(3)如图②,若60°<∠P AB<120°,判断由线段AB,CE,ED可以构成一个含有多少度角的三角形,并证明.图Z9-62.[2019·朝阳一模]在△ABC中,∠C=90°,AC=BC,点D在射线BC上(不与点B,C重合),连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE.(1)如图Z9-7(a),点D在BC边上.①依题意补全图(a);②作DF⊥BC交AB于点F,若AC=8,DF=3,求BE的长.(2)如图(b),点D在BC边的延长线上,用等式表示线段AB,BD,BE之间的数量关系(直接写出结论).图Z9-73.[2019·海淀一模]在菱形ABCD中,∠ADC=120°,点E是对角线AC上一点,连接DE,∠DEC=50°,将线段BC绕点B逆时针旋转50°并延长得到射线BF,交ED的延长线于点G.(1)依题意补全图形;(2)求证:EG=BC;(3)用等式表示线段AE,EG,BG之间的数量关系:________.图Z9-84.[2019·海淀二模]如图Z9-9①,在△ABC中,AB=AC,∠ABC=α,D是BC边上一点,以AD为边作△ADE,使AE=AD,∠DAE+∠BAC=180°.(1)直接写出∠ADE的度数(用含α的式子表示).(2)以AB,AE为边作平行四边形ABFE.①如图②,若点F恰好落在DE上,求证:BD=CD;②如图③,若点F恰好落在BC上,求证:BD=CF.图Z9-95.[2019·西城一模] 在△ABC 中,AB =AC ,取BC 边的中点D ,作DE ⊥AC 于点E ,取DE 的中点F ,连接BE ,AF 交于点H .(1)如图Z9-10①,如果∠BAC =90°,那么∠AHB =________°,AFBE =________;(2)如图②,如果∠BAC =60°,猜想∠AHB 的度数和AFBE 的值,并证明你的结论;(3)如果∠BAC =α,那么AFBE=________.(用含α的代数式表示)图Z9-106.[2019·丰台一模] 在△ABC 中,CA =CB ,CD 为AB 边上的中线,点P 是线段AC 上任意一点(不与点C 重合),过点P 作PE 交CD 于点E ,使∠CPE =12∠CAB ,过点C 作CF ⊥PE 交PE 的延长线于点F ,交AB 于点G .(1)如果∠ACB =90°,①如图Z9-11(a),当点P 与点A 重合时,依题意补全图形,并指出与△CDG 全等的一个三角形;②如图(b),当点P 不与点A 重合时,求CFPE的值.(2)如果∠CAB =a ,如图(c ),请直接写出CFPE的值.(用含a 的式子表示)图Z9-117.[2019·海淀]将线段AB绕点A逆时针旋转60°得到线段AC,继续旋转α(0°<α<120°)得到线段AD,连接CD.(1)连接BD,①如图Z9-12(a),若α=80°,则∠BDC的度数为________.②在第二次旋转过程中,请探究∠BDC的大小是否改变.若不变,求出∠BDC的度数;若改变,请说明理由.(2)如图(b),以AB为斜边作直角三角形ABE,使得∠B=∠ACD,连接CE,DE.若∠CED =90°,求α的值.图Z9-128.[2019·西城二模]正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图Z9-13①,若点E是DC的中点,CH与AB之间的数量关系是________.(2)如图②,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由.(3)如图③,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.图Z9-13参考答案1.解:(1)①如图(a)所示.②AH =PH ,AH ⊥PH . 证明:连接CH ,由条件易得:△DHQ 为等腰直角三角形, 又∵DP =CQ ,∴△HDP ≌△HQC , ∴PH =CH ,∠HPC =∠HCP . ∵BD 为正方形ABCD 的对称轴, ∴AH =CH ,∠DAH =∠HCP , ∴AH =PH ,∠DAH =∠HPC , ∴∠AHP =180°-∠ADP =90°, ∴AH =PH 且AH ⊥PH.(2)如图(b),过点H 作HR ⊥PC 于点R , ∵∠AHQ =152°, ∴∠AHB =62°, ∴∠DAH =17°, ∴∠DCH =17°.设DP =x ,则DR =HR =RQ =1-x2.由tan17°=HRCR 得1-x 21+x2=tan17°,∴x =1-tan17°1+tan17°.2.解:(1)补全图形如图①所示:(2)如图①,连接AE ,则∠P AB =∠P AE =20°,AE =AB. ∵四边形ABCD 是正方形, ∴∠BAD =90°,AB =AD , ∴∠EAD =130°,AE =AD. ∴∠ADF =25°.(3)如图②,连接AE ,BF ,BD.由轴对称的性质可得EF =BF ,AE =AB =AD ,∠ABF =∠AEF =∠ADF , ∴∠BFD =∠BAD =90°. ∴BF 2+FD 2=BD 2. ∴EF 2+FD 2=2AB 2.3.解:(1)∵AB =AC ,∠A =α,∴∠ABC =∠ACB =12(180°-∠A )=90°-12α.∵∠ABD =∠ABC -∠DBC ,∠DBC =60°, ∴∠ABD =30°-12α.(2)△ABE 是等边三角形. 证明:连接AD ,CD ,ED ,∵线段BC 绕点B 逆时针旋转60°得到线段BD , 则BC =BD ,∠DBC =60°. ∴△BCD 为等边三角形. ∴BD =CD.∵∠ABE =60°,∴∠ABD =60°-∠DBE =∠EBC =30°-12α.在△ABD 与△ACD 中, ⎩⎪⎨⎪⎧AB =AC ,AD =AD ,BD =CD , ∴△ABD ≌△ACD ,∴∠BAD =∠CAD =12∠BAC =12α.∵∠BCE =150°,∴∠BEC =180°-(30°-12α)-150°=12α=∠BAD.在△ABD 和△EBC 中, ⎩⎪⎨⎪⎧∠BEC =∠BAD ,∠EBC =∠ABD ,BC =BD ,∴△ABD ≌△EBC , ∴AB =BE .又∵∠ABE =60°,∴△ABE 是等边三角形.(3)∵∠BCD =60°,∠BCE =150°, ∴∠DCE =150°-60°=90°. ∵∠DEC =45°,∴△DEC 为等腰直角三角形, ∴DC =CE =BC. ∵∠BCE =150°.∴∠EBC =12(180°-150°)=15°.∵∠EBC =30°-12α=15°,∴α=30°.4.解:(1)如图①,∵BA =BC ,∠BAC =60°,M 是AC 的中点, ∴BM ⊥AC ,AM =MC.∵将线段P A 绕点P 顺时针旋转2α得到线段PQ , ∴AM =MQ ,∠AMQ =120°, ∴CM =MQ ,∠ CMQ =60°, ∴△CMQ 是等边三角形, ∴∠ACQ =60°, ∴∠CDB =30°. (2)连接PC ,AD ,∵AB =BC ,M 是AC 的中点, ∴BM ⊥AC ,∴AD =CD ,AP =PC. 在△APD 与△CPD 中, ∵⎩⎪⎨⎪⎧AD =CD ,PD =PD ,P A =PC , ∴△APD ≌△CPD ,∴∠ADB =∠CDB ,∠P AD =∠PCD , ∴∠ADC =2∠CDB. 又∵PQ =P A ,∴PQ =PC ,∴∠PQC =∠PCD =∠P AD , ∴∠P AD +∠PQD =∠PQC +∠PQD =180°,∴∠APQ +∠ADC =360°-(∠P AD +∠PQD )=180°, ∴∠ADC =180°-∠APQ =180°-2α, ∴2∠CDB =180°-2α, ∴∠CDB =90°-α.(3)∵∠CDB =90°-α,且PQ =QD ,∴∠P AD =∠PCQ =∠PQC =2∠CDB =180°-2α. ∵点P 不与点B ,M 重合, ∴∠BAD >∠P AD >∠MAD , ∴2α>180°-2α>α, ∴45°<α<60°.5.解:(1)∵AF 平分∠BAD , ∴∠BAF =∠DAF .∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AB ∥CD ,∴∠DAF =∠CEF ,∠BAF =∠F . ∴∠CEF =∠F . ∴CE =CF .(2)∠BDG =45°.(3)如图,分别连接GB ,GE ,GC ,∵AD ∥BC ,AB ∥CD ,∠ABC =120°, ∴∠ECF =∠ABC =120°. ∵FG ∥CE 且FG =CE ,∴四边形CEGF 是平行四边形. 由(1)得CE =CF .∴四边形CEGF 是菱形, ∴GE =EC ,①∠GCF =∠GCE =12∠ECF =60°,∴△ECG 与△FCG 是等边三角形, ∴∠GEC =∠FCG ,∴∠BEG =∠DCG ,②由AD ∥BC 及AF 平分∠BAD 可得∠BAE =∠AEB , ∴AB =BE .在▱ABCD 中,AB =DC , ∴BE =D C.③由①②③得△BEG ≌△DCG , ∴BG =DG ,∠1=∠2,∴∠BGD =∠1+∠3=∠2+∠3=∠EGC =60°, ∴∠BDG =180°-∠BGD2=60°.1.解:(2)连接AD ,如图①.∵点D 与点B 关于直线AP 对称,∴AD =AB ,∠DAP =∠BAP =30°,∵AB =AC ,∠BAC =60°,∴AD =AC ,∠DAC =120°, ∴2∠ACE +120°=180°.∴∠ACE =30°.(3)线段AB ,CE ,ED 可以构成一个含有60°角的三角形. 证明:连接AD ,EB ,如图②.∵点D 与点B 关于直线AP 对称, ∴AD =AB ,DE =BE , 可证得∠EDA =∠EB A. ∵AB =AC ,AB =AD ,∴AD =AC ,∴∠ADE =∠ACE , ∴∠ABE =∠ACE . 设AC ,BE 交于点F ,∵∠AFB =∠CFE ,∴∠BAC =∠BEC =60°,∴线段AB ,CE ,ED 可以构成一个含有60°角的三角形. 2.解:(1)①补全图形,如图(a )所示.②如图(b ),由题意可知AD =DE ,∠ADE =90°. ∵DF ⊥BC ,∴∠FDB =90°. ∴∠ADF =∠ED B.∵∠C =90°,AC =BC , ∴∠ABC =∠DFB =45°. ∴DB =DF .∴△ADF ≌△EDB. ∴AF =EB.在△ABC 和△DFB 中,∵AC =8,DF =3,∴AB =8 2,BF =3 2. AF =AB -BF =5 2, 即BE =5 2, (2)2BD =BE +AB.3.解:(1)补全图形,如图①所示.(2)方法一:证明:连接BE ,如图②. ∵四边形ABCD 是菱形, ∴AD ∥BC.∵∠ADC =120°, ∴∠DCB =60°.∵AC ]是菱形ABCD 的对角线, ∴∠DCA =12∠DCB =30°.∴∠EDC =180°-∠DEC -∠DCA =100°.由菱形的对称性可知,∠BEC =∠DEC =50°,∠EBC =∠EDC =100°, ∴∠GEB =∠DEC +∠BEC =100°. ∴∠GEB =∠CBE . ∵∠FBC =50°,∴∠EBG =∠EBC -∠FBC =50°. ∴∠EBG =∠BEC.在△GEB 与△CBE 中, ⎩⎪⎨⎪⎧∠GEB =∠CBE ,BE =EB ,∠EBG =∠BEC ,∴△GEB ≌△CBE . ∴EG =BC .方法二:证明:连接BE ,设BG 与EC 交于点H ,如图②. ∵四边形ABCD 是菱形, ∴AD ∥BC.∵∠ADC =120°, ∴∠DCB =60°.∵AC 是菱形ABCD 的对角线, ∴∠DCA =12∠DCB =30°.∴∠EDC =180°-∠DEC -∠DCA =100°.由菱形的对称性可知,∠BEC =∠DEC =50°,∠EBC =∠EDC =100°, ∵∠FBC =50°,∴∠EBG =∠EBC -∠FBC =50°=∠BEC . ∴BH =EH .在△GEH 与△CBH 中, ⎩⎪⎨⎪⎧∠GEH =∠CBH ,EH =BH ,∠EHG =∠B HC , ∴△GEH ≌△CBH . ∴EG =BC .(3)AE +BG =3EG .4.解:(1)∠ADE =90°-α.(2)①证明:∵四边形ABFE 是平行四边形, ∴AB ∥EF .∴∠EDC =∠ABC =α. 由(1)知∠ADE =90°-α,∴∠ADC =∠ADE +∠EDC =90°. ∴AD ⊥BC. ∵AB =AC , ∴BD =CD.②证明:∵AB =AC ,∠ABC =α, ∴∠C =α.∵四边形ABFE 是平行四边形, ∴AE ∥BF ,AE =BF . ∴∠EAC =∠C =α.由(1)知∠DAE =180°-2∠ADE =180°-2(90°-α)=2α, ∴∠DAC =α. ∴∠DAC =∠C. ∴AD =CD .∵AD =AE =BF , ∴BF =CD. ∴BD =CF .5.解:(1)90 12(2)结论:∠AHB =90°,AF BE =32.证明:如图,连接AD .∵AB =AC ,∠BAC =60°, ∴△ABC 是等边三角形. ∵D 为BC 的中点, ∴AD ⊥BC.∴∠1+∠2=90°. 又∵DE ⊥AC , ∴∠DEC =90°. ∴∠2+∠C =90°. ∴∠1=∠C =60°. 设AB =BC =k (k >0), 则CE =12CD =k 4,DE =34k .∵F 为DE 的中点,∴DF =12DE =38k ,AD =32AB =32k .∴AD BC =32,DF CE =32. ∴AD BC =DF CE. 又∵∠1=∠C , ∴△ADF ∽△BCE . ∴AF BE =AD BC =32, ∠3=∠4.又∵∠4+∠5=90°,∠5=∠6, ∴∠3+∠6=90°. ∴∠AHB =90°. (3)12tan(90°-α2). 6.解:(1)①作图.△ADE (或△PDE ).②过点P 作PN ∥AG 交CG 于点N ,交CD 于点M ,∴∠CPM =∠CAB. ∵∠CPE =12∠CAB ,∴∠CPE =12∠CPN .∴∠CPE =∠FPN .∵PF ⊥CG ,∴∠PFC =∠PFN =90°. ∵PF =PF ,∴△PFC ≌△PFN .∴CF =FN . 由①得:△PME ≌△CMN . ∴PE =CN .∴CF PE =CF CN =12.(2)12tan α. 7.解:(1)①30°.②不改变,∠BDC 的度数为30°. 方法一:由题意知AB =AC =A D.∴点B ,C ,D 在以点A 为圆心,AB 为半径的圆上. ∴∠BDC =12∠BAC =30°.方法二:由题意知AB =AC =A D. ∵AC =AD ,∠CAD =α,∴∠ADC =∠ABD =180°-α2=90°-12α.∵AB =AD ,∠BAD =60°+α,∴∠ADB =∠ABD =180°-()60°+α2=120°-α2=60°-12α.∴∠BDC =∠ADC -∠ADB =(90°-12α)-(60°-12α)=30°.(2)过点A 作AM ⊥CD 于点M ,连接EM .∴∠AMC =90°.在△AEB 与△AMC 中, ⎩⎪⎨⎪⎧∠AEB =∠AMC ,∠B =∠ACD ,AB =AC ,∴△AEB ≌△AMC.∴AE =AM ,∠BAE =∠CAM .∴∠EAM =∠EAC +∠CAM =∠EAC +∠BAE =∠BAC =60°. ∴△AEM 是等边三角形. ∴EM =AM =AE .∵AC =AD ,AM ⊥CD , ∴CM =DM .又∵∠DEC =90°, ∴EM =CM =DM . ∴AM =CM =DM .∴点A ,C ,D 在以M 为圆心,MC 为半径的圆上. ∴α=∠CAD =90°. 8.解:(1)CH =AB (2)结论成立.证明:如图,连接BE .在正方形ABCD 中,AB =BC =CD =AD ,∠A =∠BCD =∠ABC =90°. ∵DE =DF , ∴AF =CE .在△ABF 和△CBE 中, ⎩⎪⎨⎪⎧AB =CB ,∠A =∠BCE ,AF =CE ,∴△ABF ≌△CBE . ∴∠1=∠2.∵EH ⊥BF ,∠BCE =90°,∴H ,C 两点都在以BE 为直径的圆上. ∴∠3=∠2. ∴∠3=∠1.∵∠3+∠4=90°,∠1+∠HBC =90°, ∴∠4=∠HB C. ∴CH =CB. ∴CH =AB. (3)3 2+3.。

2025年九年级中考数学二轮复习专题突破课件:专题十一 几何多解题

2025年九年级中考数学二轮复习专题突破课件:专题十一 几何多解题
第2部分 专题突破
一、几何背景下的多结论问题专题十一 几何多解题
常考类型 等腰三角形中腰和底不确定 例1 如图,在正方形ABCD中,AB=6,点E在边CD上,且CE=2, 点F在边BC上,当△AEF为等腰三角形时,BF的长为___4_或___13___.
例1题图
分析:
①AE=AF. 请画出图形:
∴A′C2=A′E2+CE2.∴∠A′EC=90°.
∴∠AME+∠AEM=∠BEC+∠AEM=90°.
∴∠AME=∠BEC.
答图5
在 Rt△BEC 中,sin
∠BEC=BCCE

6 3
,tan ∠BEC=BBCE

2
.
在 Rt△AME 中,sin ∠AME=sin ∠BEC= AE = 6 . ME 3
第15题图
16.如图,在▱ABCD中,AB=3,∠ABC=60°,BE平分∠ABC 交边AD于点E,连接CE,将CE绕点E旋转,使点C的对应点F落在线段 AB上,若点F恰好是AB的三等分点,则BC的长为___7_或__8____.
第16题图
17.如图,在矩形ABCD中,BC=2 2 ,E是AD的中点,连接BE, 将 △ ABE 沿 BE 折 叠 后 得 到 △GBE , 延 长 BG 交 射 线 DC 于 点 F. 若 CD = 2CF,则AB的长为__2__或__2_3__3_.
③点B′落在边BC上. 该情况不存在.
答图12
答图13
画出图形如答图12所示. 画出图形如答图13所示.
思路 点拨
利用矩形与折叠的性质易 得AB=BE,建立一元一 次方程即可解决
利用折叠的性质证明 △ADB′∽△B′CE,再根据相似 三角形对应边成比例即可解决

人教版初中数学中考重难题型高分突破(七) 二次函数与几何综合题

人教版初中数学中考重难题型高分突破(七) 二次函数与几何综合题

6.(都匀模拟)如图,直线y=-x-3交坐标轴于A,C两点,抛物线y=x2+bx+c 过A,C两点.
(1)求抛物线的解析式; (2)若P为第三象限内抛物线上一动点,连接PA,PC,试问△PAC的面积是否 存在最大值?若存在,请求出△APC面积的最大值,以及此时点P的坐标;若不 存在,请说明理由;
对点训练 5.(2017·黔南州)如图,在平面直角坐标系中,A,B,D三点的坐标分别为A
(8,0),B(0,4),D(-1,0),点C与点B关于x轴对称,连接AB,AC.
(1)求过A,B,D三点的抛物线的解析式; (2)有一动点E从原点O出发,以每秒2个单位的速度向右运动,过点E作x轴的 垂线,交抛物线于点P,交线段CA于点M,连接PA,PB.设点E运动的时间为t (0<t<4)秒,求四边形PBCA的面积S与t的函数解析式,并求出四边形PBCA 的最大面积; (3)抛物线的对称轴上是否存在一点H,使得△ABH是直角三角形?若存在, 请直接写出点H的坐标;若不存在,请说明理由.
点B在y轴上,P是AB下方抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于 点C,交直线AB于点D.
(1)求抛物线的解析式; (2)是否存在点P,使△PAD是直角三角形?若存在,求出点P的坐标;若不存 在,说明理由. 【思路分析】(1)将x=0代入y=x-1求出点B的坐标.将x=-3代入y=x-1求 出点A的坐标,由待定系数法就可以求出抛物线的解析式. (2)当∠APD=90°时,易得点P与点A关于抛物线对称轴对称;当∠PAD= 90°时,作AE⊥x轴于点E,设直线AB交x轴于点F,设出点P的坐标,根据勾股 定理,可分别得到EF,CE,AF的长,再根据平行线分线段成比例得到AD的 长,再由△PAD∽△FEA列出比例式求解;∠ADP不能为90°.

中考数学核心考点强化突破几何综合应用含解析

中考数学核心考点强化突破几何综合应用含解析

中考数学核心考点强化突破:几何综合应用类型1 以三角形为背景的计算和证明问题1.如图,一条4 m 宽的道路将矩形花坛分为一个直角三角形和一个直角梯形,根据图中数据,可知这条道路的占地面积为____ m 2.【解析】如图,作DE⊥AC 于点E,可证△DAE∽△ACB∴DE AB =AE BC .即:4AB =312解得:AB =16(m),∴道路的面积为AD×AB=5×16=80(m 2). 2.在Rt △ABC 中,∠A=90°,AC =AB =4,D,E 分别是边AB,AC 的中点.若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P.(1)如图1,当α=90°时,线段BD 1的长等于;(直接填写结果)(2)如图2,当α=135°时,求证:BD 1=CE 1,且BD 1⊥CE 1;(3)求点P 到AB 所在直线的距离的最大值.(直接写出结果)解:(2)证明:当α=135°时,由旋转可知∠D 1AB =∠E 1AC =135°.又∵AB=AC,AD 1=AE 1,∴△D 1A B≌△E 1AC.∴BD 1=CE 1且∠D 1BA =∠E 1CA.设直线BD 1与AC 交于点F,有∠BFA=∠CFP ,∴∠CPF=∠FAB=90°.∴BD 1⊥CE 1.(3)1+3(四边形AD 1PE 1为正方形时,距离最大,此时PD 1=2,PB =2+23).3.如图,已知△ABC 中AB =AC =12厘米,BC =9厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点P 点Q 的运动速度相等,经过1秒后,△BPD 与△CQP 是否全等,请说明理由;②若点P 点Q 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间,点P 与点Q 第一次在△ABC 的哪条边上相遇?解:(1)①∵t=1(秒),∴BP=CQ =3(厘米)∵AB=12,D 为AB 中点,∴BD=6(厘米)又∵PC=BC -BP =9-3=6(厘米)∴PC=BD∵AB=AC,∴∠B=∠C ,在△BPD 与△CQP中,⎩⎪⎨⎪⎧BP =CQ ∠B=∠C BD =PC,∴△BPD≌△CQP(SAS ),②∵V P ≠V Q ,∴BP≠CQ ,又∵∠B=∠C ,要使△BPD≌△CPQ ,只能BP =CP =4.5,∵△BPD≌△CPQ ,∴CQ=BD =6.∴点P 的运动时间t =BP 3=4.53=1.5(秒),此时V Q =CQ t =61.5=4(厘米/秒);(2)因为V Q >V P ,只能是点Q 追上点P,即点Q 比点P 多走AB +AC 的路程,设经过x 秒后P 与Q 第一次相遇,依题意得4x =3x +2×12,解得x =24(秒),此时P 运动了24×3=72(厘米)又∵△ABC 的周长为33厘米,72=33×2+6,∴点P 、Q 在BC 边上相遇,即经过24秒,点P 与点Q 第一次在BC边上相遇.类型2 以四边形为背景的计算和证明问题4.已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与边BC、DC的延长线交于点E、F,连接EF.设CE=a,CF=b.(1)如图1,当∠EAF被对角线AC平分时,求a,b的值;(2)当△AEF是直角三角形时,求a,b的值;(3)如图3,探索∠EAF绕点A旋转的过程中a,b满足的关系式,并说明理由.解:(1)可证△ACF≌△ACE,∴CE=CF,∵CE=a,CF=b,∴a=b,∵△ACF≌△ACE,∴∠AEF=∠AFE,∵∠EAF=45°,∴∠AEF=∠AFE=67.5°,∵CE=CF,∠ECF=90°,∠AEC=∠AFC=22.5°,∵∠CAF =∠CAE=22.5°,∴∠CAE=∠CEA,∴CE=AC=42,即:a=b=42;(2)当△AEF是直角三角形时,①当∠AEF=90°时,∵∠EAF=45°,∴∠AFE=45°,∴△AEF是等腰直角三角形,∴AF2=2FE2=2(CE2+CF2),AF2=2(AD2+BE2),∴2(CE2+CF2)=2(AD2+BE2),∴CE2+CF2=AD2+BE2,∴CE2+CF2=16+(4+CE)2,∴CF2=8(CE+4)①∵∠AEB+∠BEF=90°,∠AEB+∠BAE=90°,∴∠BEF=∠BAE,∴△ABE∽△ECF,∴4CE =CE+4CF,∴4CF=CE(CE+4)②,联立①②得,CE=4,CF=8∴a=4,b=8,②当∠AFE=90°时,同①的方法得,CF=4,CE=8,∴a=8,b=4.(3)ab=32,理由:如图,可证△ACF∽△ECA ,∴EC×CF=AC 2=2AB 2=32∴ab=32.5.已知:如图所示,在平面直角坐标系xOy 中,四边形OABC 是矩形,OA =4,OC =3,动点P 从点C 出发,沿射线CB 方向以每秒2个单位长度的速度运动;同时,动点Q 从点O 出发,沿x 轴正半轴方向以每秒1个单位长度的速度运动.设点P 、点Q 的运动时间为t(s).(1)当t =1 s 时,求经过点O,P,A 三点的抛物线的解析式;(2)当t =2s 时,求tan ∠QPA 的值;(3)当线段PQ 与线段AB 相交于点M,且BM =2AM 时,求t(s )的值;(4)连接CQ,当点P,Q 在运动过程中,记△CQP 与矩形OABC 重叠部分的面积为S,求S 与t 的函数关系式.解:(1)当t =1 s 时,则CP =2,∴P(2,3),且A(4,0),∴y=-34x 2+3x ;(2)当t =2 s 时,则CP =2×2=4=BC,即点P 与点B 重合,OQ =2,如图1,∴AQ=OA -OQ =4-2=2,且AP =OC =3,∴tan ∠QPA=AQ AP =23;(3)当线段PQ 与线段AB 相交于点M,则可知点Q 在线段OA 上,点P 在线段CB 的延长线上,如图2,则CP=2t,OQ =t,∴BP=PC -CB =2t -4,AQ =OA -OQ =4-t,∵PC∥OA ,∴△PBM∽△QAM ,∴BP AQ =BM AM ,∴2t -44-t=2,解得t =3;(4)当0≤t≤2时,如图3,由题意可知CP =2t,∴S=S △PCQ =12×2t×3=3t ;当2<t≤4时,设PQ 交AB 于点M,如图4,由题意可知PC =2t,OQ =t,则BP =2t -4,AQ =4-t,同(3)可得BP AQ =BMAM =2t -44-t ,解得AM =12-3t t,∴S=S 四边形BCQM =S 矩形OA BC -S △COQ -S △AMQ =24-24t-3t ;当t >4时,设CQ 与AB 交于点M,如图5,由题意可知OQ =t,AQ =t -4,∵AB∥OC ,∴AM OC =AQ OQ ,即AM 3=t -4t ,解得AM =3t -12t ,∴BM=12t,∴S=S △BCM =12×4×12t =24t;综上可知: S =⎩⎪⎨⎪⎧3t (0≤t≤2)24-24t -3t (2<t≤4)24t (t >4).。

中考数学解答题压轴题突破 重难点突破八 几何综合探究题 类型二:操作型探究问题

中考数学解答题压轴题突破 重难点突破八 几何综合探究题 类型二:操作型探究问题

5.(2022·嘉兴)小东在做九上课本 123 页习题:“1∶ 2 也是一个很有 趣的比.已知线段 AB(如图①),用直尺和圆规作 AB 上的一点 P,使 AP∶ AB=1∶ 2.”小东的作法是:如图②,以 AB 为斜边作等腰直角三角形 ABC,再以点 A 为圆心,AC 长为半径作弧,交线段 AB 于点 P,点 P 即为 所求作的点.小东称点 P 为线段 AB 的“趣点”.
(1)【阅读理解】我国是最早了解勾股定理的国家之一,它被记载于我国 古代的数学著作《周髀算经》中.汉代数学家赵爽为了证明勾股定理, 创制了一幅如图①所示的“弦图”,后人称之为“赵爽弦图”. 根据“赵爽弦图”写出勾股定理和推理过程;
解: a2+b2=c2(直角三角形两条直角边的平方和等于斜边的平方). 推理如下: ∵如图①,4 个△ADE 的面积和+正方形 EFGH 的面积=正方形 ABCD 的面 积, 即 4×12ab+(b-a)2=c2, 整理得 a2+b2=c2.
解:∵在正方形 PQMN 中,PN=PQ=DE,PN∥BC,∴△APN∽△ABC,AE=
PN AE AD-DE=AD-PN,∴BC=AD,
PN h-PN
ah
ah
∴ a = h ,∴PN=a+h,∴正方形 PQMN 的边长为a+h.
(2)【操作推理】如何画出这个正方形 PQMN 呢? 如图②,小杰画出了图①的△ABC,然后又进行以下操作:先在 AB 边上 任取一点 P′,画正方形 P′Q′M′N′,使点 Q′,M′在 BC 边上,点 N ′在△ABC 内,然后连接 BN′,并延长交 AC 于点 N,作 NM⊥BC 于点 M, NP⊥NM 交 AB 于点 P,PQ⊥BC 于点 Q,得到四边形 PQMN.证明:图②中的 四边形 PQMN 是正方形; 【分层分析】先推出四边形 PQMN 是矩形,再根据 P′N′∥PN,M′N′∥ MN,可得P′PNN′=N′NMM′,结合 M′N′=P′N′,推得 MN=PN 进而得证;

中考数学核心考点强化突破函数与几何综合运用含解析

中考数学核心考点强化突破函数与几何综合运用含解析

中考数学核心考点强化突破:函数与几何综合运用类型1 存在性问题存在性问题一般有以下题型:是否存在垂直、平行——位置关系;等腰、直角三角形、(特殊)平行四边形——形状关系;最大、最小值--数量关系等.1.如图,已知二次函数y 1=-x 2+134x +c 的图象与x 轴的一个交点为A(4,0),与y 轴的交点为B,过A 、B 的直线为y 2=kx +b.(1)求二次函数的解析式及点B 的坐标;(2)由图象写出满足y 1<y 2的自变量x 的取值范围;(3)在两坐标轴上是否存在点P,使得△ABP 是以AB 为底边的等腰三角形?若存在,求出点P 的坐标;若不存在,说明理由.解:(1)将A(4,0)代入y 1=-x 2+134x +c,得-42+134×4+c =0,解得c =3.∴所求二次函数的解析式为y 1=-x 2+134x +3.∵当x =0时,y 1=3,∴点B 的坐标为(0,3). (2)满足y 1<y 2的自变量x 的取值范围是:x <0或x >4.(3)存在,理由如下:作线段AB 的中垂线l,垂足为C,交x 轴于点P 1,交y 轴于点P 2.∵A(4,0),B(0,3),∴OA=4,OB =3.∴在Rt △AOB 中,AB=OA 2+OB 2=5.∴AC=BC =52.∵Rt △ACP 1与Rt △AOB 有公共∠OAB ,∴Rt △ACP 1∽Rt △AOB.∴AP 1AB =AC OA ,即AP 15=524,解得AP 1=258.而OP 1=OA -AP 1=4-258=78,∴点P 1的坐标为(78,0).又∵Rt △P 2CB 与Rt △AOB 有公共∠OBA ,∴Rt △P 2CB∽Rt △AOB.∴P 2B AB =BC BO ,即P 2B 5=523,解得P 2B =256.而OP 2=P 2B -OB =256-3=76,∴点P 2的坐标为(0,-76).∴所求点P 的坐标为(78,0)或(0,-76).2.如图,抛物线y =ax 2+bx -3经过点A(2,-3),与x 轴负半轴交于点B,与y 轴交于点C,且OC =3OB.(1)求抛物线的解析式;(2)点D 在y 轴上,且∠BDO=∠BAC ,求点D 的坐标;(3)点M 在抛物线上,点N 在抛物线的对称轴上,是否存在以点A,B,M,N 为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M 的坐标;若不存在,请说明理由.解:(1)由y =ax 2+bx -3得C(0.-3),∴OC=3,∵OC=3OB,∴OB=1,∴B(-1,0),把A(2,-3),B(-1,0)代入y =ax 2+bx -3得⎩⎪⎨⎪⎧4a +2b -3=-3a -b -3=0,∴⎩⎪⎨⎪⎧a =1b =-2,∴抛物线的解析式为y =x 2-2x -3; (2)设连接AC,作BF⊥AC 交AC 的延长线于F,∵A(2,-3),C(0,-3),∴AF∥x 轴,∴F(-1,-3),∴BF=3,AF =3,∴∠BAC=45°,设D(0,m),则OD =|m|,∵∠BDO=∠BAC ,∴∠BDO=45°,∴OD=OB =1,∴|m|=1,∴m=±1,∴D 1(0,1),D 2(0,-1);(3)设M(a,a 2-2a -3),N(1,n),①以AB 为边,则AB∥MN ,AB =MN,如图2,过M 作ME⊥对称轴于E,AF⊥x 轴于F,则△ABF≌△NME ,∴NE=AF =3,ME =BF =3,∴|a-1|=3,∴a=4或a =-2,∴M(4,5)或(-2,5);②以AB 为对角线,BN =AM,BN∥AM ,如图3,则N 在x 轴上,M 与C 重合,∴M(0,-3),综上所述,存在以点A,B,M,N 为顶点的四边形是平行四边形,M(4,5)或(-2,5)或(0,-3).类型2 几何最值、定值问题3.如图,在平面直角坐标系中,平行四边形ABOC 如图放置,将此平行四边形绕点O 顺时针旋转90°得到平行四边形A′B′OC′.抛物线y =-x 2+2x +3经过点A 、C 、A′三点.(1)求A 、A′、C 三点的坐标;(2)求平行四边形ABOC 和平行四边形A′B′OC′重叠部分的面积;(3)点M 是第一象限内抛物线上的一动点,问点M 在何处时,△AMA′的面积最大?最大面积是多少?并写出此时M 的坐标.解:(1)当y =0时,-x 2+2x +3=0,解得x 1=3,x 2=-1,∴C(-1,0),A′(3,0).当x =0时,y =3,∴A(0,3).(2)设A′C′与OB 相交于点D.∵C(-1,0),A(0,3),∴B(1,3).∴OB=32+12=10.∴S △BOA =12×1×3=32.又∵平行四边形ABOC 旋转90°得到平行四边形A′B′OC′, ∴∠ACO=∠OC′D.又∵∠ACO=∠ABO ,∴∠ABO=∠OC′D.又∵∠C′OD=∠AOB ,∴△C′OD∽△BOA.∴S △C′OD S △BO A =(OC′OB )2=(110)2.∴S △C′OD =320. (3)设M 点的坐标为(m,-m 2+2m +3),连接OM.S △AMA′=S △MOA′+S △MOA -S △AOA′=12×3×(-m 2+2m +3)+12×3×m-12×3×3=-32m 2+92m =-32(m -32)2+278.(0<m <3)当m =32时,S △AMA′取到最大值278,∴M(32,154).4.如图,已知抛物线y =ax 2-23ax -9a 与坐标轴交于A,B,C 三点,其中C(0,3),∠BAC 的平分线AE 交y 轴于点D,交BC 于点E,过点D 的直线l 与射线AC,AB 分别交于点M,N.(1)直接写出a 的值、点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若△PAD 为等腰三角形,求出点P 的坐标;(3)证明:当直线l 绕点D 旋转时,1AM +1AN 均为定值,并求出该定值.解:(1)∵C(0,3).∴-9a =3,解得:a =-13.令y =0得:ax 2-2x -9a =0,∵a≠0,∴x 2-2x -9=0,解得:x =-3或x =33.∴点A 的坐标为(-3,0),B(33,0).∴抛物线的对称轴为x = 3. (2)∵OA=3,OC =3,∴tan∠CAO=3,∴∠CAO=60°.∵AE 为∠BAC 的平分线,∴∠DAO=30°.∴DO =33AO =1.∴点D 的坐标为(0,1)设点P 的坐标为(3,a). 依据两点间的距离公式可知:AD 2=4,AP 2=12+a 2,DP 2=3+(a -1)2.当AD =PA 时,4=12+a 2,方程无解.当AD =DP 时,4=3+(a -1)2,解得a =2或a =0,当a =2时,点A,D,P 三点共线,不能构成三角形,∴a≠2,∴点P 的坐标为(3,0).当AP =DP 时,12+a 2=3+(a -1)2,解得a =-4.∴点P 的坐标为(3,-4).综上所述,点P 的坐标为(3,0)或(3,-4).(3)设直线AC 的解析式为y =mx +3,将点A 的坐标代入得:-3m +3=0,解得:m =3,∴直线AC 的解析式为y =3x +3.设直线MN 的解析式为y =kx +1.把y =0代入y =kx +1得:kx +1=0,解得:x =-1k ,∴点N 的坐标为(-1k ,0).∴AN=-1k +3=3k -1k.将y =3x +3与y =kx +1联立解得:x =2k -3.∴点M 的横坐标为2k -3.过点M 作MG⊥x 轴,垂足为G.则AG =2k -3+3.∵∠MAG=60°,∠AGM=90°,∴AM=2AG =4k -3+23=23k -2k -3.∴1AM +1AN =k -323k -2+k 3k -1=3k -323k -2=3(3k -1)2(3k -1)=32类型3 反比例函数与几何问题5.如图,P 1,P 2是反比例函数y =k x(k >0)在第一象限图象上的两点,点A 1的坐标为(4,0).若△P 1OA 1与△P 2A 1A 2均为等腰直角三角形,其中点P 1,P 2为直角顶点.①求反比例函数的解析式.②(Ⅰ)求P 2的坐标.(Ⅱ)根据图象直接写出在第一象限内当x 满足什么条件时,经过点P 1,P 2的一次函数的函数值大于反比例函数y =k x 的函数值.解:①过点P 1作P 1B⊥x 轴,垂足为B,∵点A 1的坐标为(4,0),△P 1OA 1为等腰直角三角形,∴OB=2,P 1B =12OA 1=2,∴P 1的坐标为(2,2),将P 1的坐标代入反比例函数y =k x (k >0),得k =2×2=4,∴反比例函数的解析式为y =4x;②(Ⅰ)过点P 2作P 2C⊥x 轴,垂足为C∵△P 2A 1A 2为等腰直角三角形,∴P 2C =A 1C,设P 2C =A 1C =a,则P 2的坐标为(4+a,a),将P 2的坐标代入反比例函数的解析式y =4x 中,得a =44+a,解得a 1=22-2,a 2=-22-2(舍去),∴P 2的坐标为(2+22,22-2);(Ⅱ)在第一象限内,当2<x <2+22时,一次函数的函数值大于反比例函数的函数值.6.如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,点C 的坐标为(0,3),点A 在x 轴的负半轴上,点D,M 分别在边AB,OA 上,且AD =2DB,AM =2MO,一次函数y =kx +b 的图象过点D 和M,反比例函数y =m x的图象经过点D,与BC 的交点为N. (1)求反比例函数和一次函数的表达式;(2)若点P 在直线DM 上,且使△OPM 的面积与四边形OMNC 的面积相等,求点P 的坐标.解:(1)∵正方形OABC 的顶点C(0,3),∴OA=AB =BC =OC =3,∠OAB=∠B=∠BCO=90°,∵AD=2DB,∴AD=23AB =2,∴D(-3,2),把D 坐标代入y =m x 得:m =-6,∴反比例函数解析式为y =-6x,∵AM=2MO,∴MO=13OA =1,即M(-1,0),把M 与D 的坐标代入y =kx +b 中得:⎩⎪⎨⎪⎧-k +b =0,-3k +b =2,解得:k =b =-1,则直线DM 解析式为y =-x -1 (2)把y =3代入y =-6x得:x =-2,∴N(-2,3),即NC =2,设P(x,y),∵△OPM 的面积与四边形OMNC 的面积相等,∴12(OM +NC)·OC=12OM|y|,即|y|=9,解得:y =±9,当y =9时,x =-10,当y =-9时,x =8,则P 坐标为(-10,9)或(8,-9).。

潍坊市中考专题突破专题四:几何变换综合题(含答案解析)

潍坊市中考专题突破专题四:几何变换综合题(含答案解析)

专题类型突破专题四几何变换综合题类型一涉及一个动点的几何问题(·长春中考)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC 于点D(点P不与点A,B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P 的运动时间为t秒.(1)用含t的代数式表示线段DC的长;(2)当点Q与点C重合时,求t的值;(3)设△P DQ与△ABC重叠部分图形的面积为S,求S与t之间的函数关系式;(4)当线段PQ的垂直平分线经过△ABC一边中点时,直接写出t的值.【分析】 (1)先求出AC,用三角函数求出AD,即可得出结论;(2)利用AD+DQ=AC,即可得出结论;(3)分两种情况,利用三角形的面积公式和面积差即可得出结论;(4)分三种情况,利用锐角三角函数,即可得出结论.【自主解答】1.(·江西中考)在菱形ABCD中,∠ABC=60°,点P是射线BD上一动点,以AP为边向右侧作等边△APE,点E的位置随着点P的位置变化而变化.(1)如图1,当点E在菱形ABCD内部或边上时,连接CE,BP与CE的数量关系是,CE与AD的位置关系是;(2)当点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由(选择图2,图3中的一种情况予以证明或说理);(3)如图4,当点P在线段BD的延长线上时,连接BE,若AB=23,BE=219,求四边形ADPE的面积.类型二涉及两个动点的几何问题(·青岛中考)已知:如图,四边形ABCD,AB∥DC,CB⊥AB,AB=16 cm,BC=6 cm,CD=8 cm,动点P从点D开始沿DA边匀速运动,动点Q从点A开始沿AB边匀速运动,它们的运动速度均为2 cm/s.点P和点Q同时出发,以QA,QP为边作平行四边形AQPE,设运动的时间为t(s),0<t<5.根据题意解答下列问题: (1)用含t 的代数式表示AP ;(2)设四边形CPQB 的面积为S(cm 2),求S 与t 的函数关系式; (3)当QP⊥BD 时,求t 的值;(4)在运动过程中,是否存在某一时刻t ,使点E 在∠ABD 的平分线上?若存在,求出t 的值;若不存在,请说明理由.【分析】 (1)作D H⊥AB 于点H ,则四边形DHBC 是矩形,利用勾股定理求出AD 的长即可解决问题;(2)作PN⊥AB 于N ,连接PB ,根据S =S △PQ B +S △BCP 计算即可;(3)当QP⊥BD 时,∠PQN+∠DBA =90°,∠QPN+∠PQN=90°,推出∠QPN =∠DBA ,由此利用三角函数即可解决问题;(4)连接BE 交DH 于点K ,作KM⊥BD 于点M.当BE 平分∠ABD 时,△K B H≌△K BM ,推出KH =KM.作EF⊥AB 于点F ,则△A EF≌△QPN,推出EF =PN ,AF =QN ,由KH∥EF 可得KH EF =BHBF ,由此构建方程即可解决问题.【自主解答】2.(·黄冈中考)如图,在平面直角坐标系xOy 中,菱形OABC 的边OA 在x 轴正半轴上,点B ,C 在第一象限,∠C =120°,边长OA =8.点M 从原点O 出发沿x 轴正半轴以每秒1个单位长的速度作匀速运动,点N 从A 出发沿边AB -BC -CO 以每秒2个单位长的速度作匀速运动,过点M 作直线MP 垂直于x 轴并交折线OCB 于P ,交对角线OB 于Q ,点M 和点N 同时出发,分别沿各自路线运动,点N 运动到原点O 时,M 和N 两点同时停止运动. (1)当t =2时,求线段PQ 的长; (2)求t 为何值时,点P 与N 重合;(3)设△APN 的面积为S ,求S 与t 的函数关系式及t 的取值范围.类型三 图形的平移变换(·扬州中考)如图,将△ABC 沿着射线BC 方向平移至△A ′B ′C ′,使点A ′落在∠ACB 的外角平分线CD 上,连接AA ′. (1)判断四边形ACC ′A ′的形状,并说明理由;(2)在△ABC 中,∠B =90°,AB =24,cos ∠BAC =1213,求CB ′的长.【分析】 (1)根据平行四边形的判定定理(有一组对边平行且相等的四边形是平行四边形)知四边形ACC′A′是平行四边形.再根据对角线平分对角的平行四边形是菱形知四边形ACC′A′是菱形.(2)通过解直角△ABC得到AC,BC的长度,由(1)中菱形ACC′A′的性质推知AC =AA′,由平移的性质得四边形ABB′A′是平行四边形,则AA′=BB′,所以CB′=BB′-BC.【自主解答】平移变换命题的呈现形式主要有:(1)坐标系中的点、函数图象的平移问题;(2)涉及基本图形平移的几何问题;(3)利用平移变换作为工具解题.其解题思路:(1)特殊点法:解题的关键是学会运用转化的思想,如坐标系中图象的平移问题,一般是通过图象上一个关键(特殊)点的平移来研究整个图象的平移;(2)集中条件法:通过平移变换添加辅助线,集中条件,使问题获得解决;(3)综合法:已知条件中涉及基本图形的平移或要求利用平移作图的问题时,要注意找准对应点,看清对应边,注意变换性质的理解和运用.3.(·安徽中考)如图,直线l1,l2都与直线l垂直,垂足分别为M,N,MN=1.正方形ABCD的边长为2,对角线AC在直线l上,且点C位于点M处.将正方形ABCD沿l向右平移,直到点A与点N重合为止.记点C平移的距离为x,正方形ABCD的边位于l1,l2之间部分的长度和为y,则y关于x的函数图象大致为( )4.如图,在平面直角坐标系中,△AOB 的顶点O 为坐标原点,点A 的坐标为(4,0),点B 的坐标为(0,1),点C 为边AB 的中点,正方形OBDE 的顶点E 在x 轴的正半轴上,连接CO ,CD ,CE.(1)线段OC 的长为 ; (2)求证:△CBD ≌△COE ;(3)将正方形OBDE 沿x 轴正方向平移得到正方形O 1B 1D 1E 1,其中点O ,B ,D ,E 的对应点分别为点O 1,B 1,D 1,E 1,连接CD 1,CE 1,设点E 1的坐标为(a ,0),其中a ≠2,△CD 1E 1的面积为S.①当1<a <2时,请直接写出S 与a 之间的函数解析式; ②在平移过程中,当S =14时,请直接写出a 的值.类型四图形的旋转变换(·潍坊中考)边长为6的等边△ABC中,点D,E分别在AC,BC边上,D E∥AB,EC=2 3.(1)如图1,将△DEC沿射线EC方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点N.当CC′多大时,四边形MCND′为菱形?并说明理由.(2)如图2,将△DEC绕点C旋转∠α(0°<α<360°),得到△D′E′C,连接AD′,B E′.边D′E′的中点为P.①在旋转过程中,AD′和B E′有怎样的数量关系?并说明理由;②连接AP,当AP最大时,求AD′的值.(结果保留根号)【分析】 (1)先判断出四边形MCND′为平行四边形,可得△M C E′和△N CC′为等边三角形,即可求出CC′,得出CN=CM,即证四边形MCND′为菱形;(2)①分两种情况,利用旋转的性质,即可判断出△ACD′≌△BC E′,即可得出结论;②先判断出点A,C,P三点共线,求出CP,AP,最后用勾股定理即可得出结论.【自主解答】旋转变换问题的解题思路:(1)以旋转为背景的问题,要根据题意,找准对应点,看清对应边,注意对旋转的性质的理解和运用,想象其中基本元素,如点、线(角)之间的变化规律,再结合几何图形的性质,大胆地猜想结果并加以证明来解决问题;(2)利用旋转变换工具解决问题,要注意观察,通过旋转图形中的部分,运用旋转的性质,将复杂问题简单化.5.(·菏泽中考)问题情境:在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将矩形纸片ABCD沿对角线AC剪开,得到△ABC和△ACD.并且量得AB=2 cm,AC=4 cm.操作发现:(1)将图1中的△ACD以点A为旋转中心,按逆时针方向旋转∠α,使∠α=∠BAC,得到如图2所示的△AC′D,过点C作AC′的平行线,与DC′的延长线交于点E,则四边形ACEC′的形状是.(2)创新小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使B,A,D三点在同一条直线上,得到如图3所示的△AC′D,连接CC′,取CC′的中点F,连接AF并延长至点G,使FG=AF,连接CG,C′G,得到四边形ACGC′,发现它是正方形,请你证明这个结论.实践探究:(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC沿着BD方向平移,使点B与点A重合,此时A点平移至A′点,A′C与BC′相交于点H,如图4所示,连接CC′,试求t a n∠C′CH的值.类型五图形的翻折变换(·德州中考)如图1,在矩形纸片ABCD 中,AB =3 cm ,AD =5 cm ,折叠纸片使B 点落在边AD 上的E 处,折痕为PQ.过点E 作EF∥AB 交PQ 于F ,连接BF. (1)求证:四边形BFEP 为菱形;(2)当点E 在AD 边上移动时,折痕的端点P ,Q 也随之移动. ①当点Q 与点C 重合时(如图2),求菱形BFEP 的边长;②若限定P ,Q 分别在边BA ,BC 上移动,求出点E 在边AD 上移动的最大距离.【分析】 (1)由折叠的性质得出PB =PE ,BF =EF ,∠BPF =∠EPF,由平行线的性质得出∠BPF =∠EFP,证出∠EPF=∠EFP,得出EP =EF ,因此BP =BF =EF =EP ,即可得出结论;(2)①由矩形的性质得出BC =AD =5 cm ,CD =AB =3 cm ,∠A =∠D =90°,由对称的性质得出CE =BC =5 cm ,在Rt △CDE 中,由勾股定理求出DE =4 cm ,得出AE =AD -DE =1 cm ;在Rt △APE 中,由勾股定理得出方程,解方程得出EP =53 cm即可;②当点Q 与点C 重合时,点E 离点A 最近,由①知,此时AE =1 cm ;当点P 与点A 重合时,点E 离点A 最远,此时四边形ABQE 为正方形,AE =AB =3 cm ,即可得出答案. 【自主解答】翻折变换问题的解题思路:以翻折变换为载体,考查几何图形的判定和性质问题.一般先作出折叠前、后的图形位置,考虑折叠前、后哪些线段、角对应相等,哪些量发生了变化.然后再利用轴对称的性质和相关图形的性质推出相等的线段、角、全等三角形等,当有直角三角形出现时,考虑利用勾股定理以及方程思想来解决.6.(·兰州中考)如图1,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形;(2)如图2,过点D 作D G∥BE ,交BC 于点G ,连接FG 交BD 于点O. ①判断四边形BFDG 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长.类型六 图形的相似变换【探究证明】(1)某班数学课题学习小组对矩形内两条相互垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明:如图1,矩形ABCD 中,EF⊥GH,EF 分别交AB ,CD 于点E ,F ,GH 分别交AD ,BC 于点G ,H.求证:EF GH =ADAB ;【结论应用】(2)如图2,在满足(1)的条件下,又A M⊥BN ,点M ,N 分别在边BC ,CD 上.若EFGH=1115,则BNAM 的值为 ; 【联系拓展】(3)如图3,四边形ABCD 中,∠ABC =90°,AB =AD =10,BC =CD =5,A M⊥DN ,点M ,N 分别在边BC ,AB 上,求DNAM的值.【分析】 (1)过点A 作A P∥EF,交CD 于点P ,过点B 作B Q∥GH,交AD 于点Q ,易证AP =EF ,GH =BQ ,△P DA ∽△Q AB ,然后运用相似三角形的性质就可以解决问题;(2)只需运用(1)中的结论,就可得到EF GH =AD AB =BNAM ,就可以解决问题;(3)过D 作AB 的平行线,交BC 的延长线于点E ,作A F⊥AB 交直线DE 于点F ,易证得四边形ABEF 是矩形,通过等量代换,得∠1=∠3,进而得到△AD F∽△DCE ,根据相似三角形的性质,得出线段DE ,AF ,DC ,AD 之间的关系,再通过设未知数及勾股定理求出AF ,最后根据(1)中的结论,即可解决问题. 【自主解答】求两条线段的比,一般有两种方法:一是根据定义,求出两条线段的长度,再求两条线段的比;二是利用比例线段,等比转换,能够产生比例线段的是相似三角形和平行线,可以利用相似三角形和平行线的性质去寻找比例线段.在含有比值与相似的问题中,关键是证明三角形相似.判定三角形相似的方法一般有:(1)条件中若有平行线,可采用找角相等证两个三角形相似;(2)条件中若有一组对应角相等,可再找一组对应角相等或再找此角所在的两边对应成比例;(3)条件中若有两边对应成比例,可找夹角相等;(4)条件中若有一组直角,可考虑再找一组等角或证明斜边、直角边对应成比例;(5)条件中若有等腰关系,可找顶角相等或找对应底角相等或底和腰对应成比例.7.(·湖州中考)已知在Rt △ABC 中,∠BAC =90°,AB ≥AC ,D ,E 分别为AC ,BC 边上的点(不包括端点),且DC BE =ACBC =m ,连接AE ,过点D 作D M⊥AE ,垂足为点M ,延长DM 交AB 于点F.(1)如图1,过点E 作EH⊥AB 于点H ,连接DH. ①求证:四边形DHEC 是平行四边形; ②若m =22,求证:AE =DF ;(2)如图2,若m =35,求DFAE的值.类型七 类比、拓展类探究问题(·淄博中考)(1)操作发现:如图1,小明画了一个等腰三角形ABC ,其中AB =AC ,在△ABC 的外侧分别以AB ,AC 为腰作了两个等腰直角三角形ABD ,ACE.分别取BD ,CE ,BC 的中点M ,N ,G.连接GM ,GN.小明发现了:线段GM 与GN 的数量关系是 ;位置关系是 .(2)类比思考:如图2,小明在此基础上进行了深入思考.把等腰三角形ABC 换为一般的锐角三角形.其中AB>AC ,其他条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入探究:如图3,小明在(2)的基础上,又作了进一步探究,向△ABC 的内侧分别作等腰直角三角形ABD ,ACE.其他条件不变,试判断△GMN 的形状,并给予证明.【分析】 (1)利用S A S 判断出△AEB ≌△ACD ,得出EB =CD ,∠AEB =∠ACD ,进而判断出EB ⊥CD ,最后用三角形中位线定理即可得出结论; (2)同(1)的方法即可得出结论;(3)同(1)的方法得出MG =NG ,最后利用三角形中位线定理和等量代换即可得出结论. 【自主解答】8.(·日照中考)问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt △ABC 中,∠ACB =90°,∠ABC =30°,则AC =12AB.探究结论:小明同学对以上结论作了进一步探究.(1)如图1,连接AB 边上中线CE ,由于CE =12AB ,易得结论:①△ACE 为等边三角形;②BE 与CE 之间的数量关系为 ;(2)如图2,点D 是边CB 上任意一点,连接AD ,作等边△ADE ,且点E 在∠ACB 的内部,连接BE.试探究线段BE 与DE 之间的数量关系,写出你的猜想并加以证明;(3)当点D 为边CB 延长线上任意一点时,在(2)条件的基础上,线段BE 与DE 之间存在怎样的数量关系?请直接写出你的结论 ;拓展应用:如图3,在平面直角坐标系xOy 中,点A 的坐标为(-3,1),点B 是x 轴正半轴上的一动点,以AB 为边作等边△ABC.当C 点在第一象限内,且B(2,0)时,求C 点的坐标.参考答案类型一【例1】 (1)∵在Rt △ABC 中,∠A=30°,AB =4, ∴AC=2 3.∵PD⊥AC,∴∠ADP=∠CDP=90°. 在Rt △ADP 中,AP =2t ,∴DP=t ,AD =3t ,∴CD=AC -AD =23-3t(0<t <2). (2)在Rt △PDQ 中, ∵∠DPQ=60°,∴∠PQD=30°=∠A,∴PA=PQ. ∵PD⊥AC,∴AD=DQ.∵点Q 和点C 重合,∴AD+DQ =AC ,∴23t =23,∴t=1. (3)当0<t≤1时,S =S △PDQ =12DQ·DP=12×3t·t=32t 2.如图,当1<t <2时,CQ =AQ -AC =2AD -AC = 23t -23=23(t -1). 在Rt △CEQ 中,∠CQE=30°,∴CE=CQ·t a n ∠CQE=23(t -1)×33=2(t -1),∴S=S △PDQ -S △ECQ =12×3t·t-12×23(t -1)×2(t-1)=-332t 2+43t -23,∴S=⎩⎪⎨⎪⎧32t 2(0<t≤1),-332t 2+43t -23(1<t<2).(4)①如图,当PQ 的垂直平分线过AB 的中点F 时,∴∠PGF=90°,PG =12PQ =12AP =t ,AF =12AB =2. ∵∠A=∠AQP=30°,∴∠FPG=60°,∴∠PFG=30°,∴PF=2PG =2t , ∴AP+PF =2t +2t =2, ∴t=12.②如图,当PQ 的垂直平分线过AC 的中点N 时,∴∠QMN=90°, AN =12AC =3,QM =12PQ =12AP =t.在Rt △NMQ 中,NQ =MQ cos 30°=233t.∵AN+NQ =AQ ,∴3+233t =23t ,∴t=34.③如图,当PQ 的垂直平分线过BC 的中点F 时,∴BF=12BC =1,PE =12PQ =t ,∠H=30°.∵∠ABC=60°, ∴∠BFH=30°=∠H, ∴BH=BF =1.在Rt △PEH 中,PH =2PE =2t.∵AH=AP +PH =AB +BH ,∴2t+2t =5, ∴t=54.即当线段PQ 的垂直平分线经过△ABC 一边中点时,t 的值为12或34或54.变式训练1.解:(1)BP =CE CE⊥AD 提示:如图,连接AC.∵四边形ABCD 是菱形, ∠ABC=60°,∴△ABC,△ACD 都是等边三角形,∠ABD=∠CBD=30°,∴A B =AC. 又∵△APE 是等边三角形,∴AP=AE ,∠BAC=∠PAE=60°,∴∠BAP=∠CAE, ∴△BAP≌△CAE,∴BP=CE ,∠ABP=∠ACE=30°. 延长CE 交AD 于点H. ∵∠CAH=60°, ∴∠CAH+∠ACH=90°, ∴∠AHC=90°,即CE⊥AD.(2)结论仍然成立.理由:如图,连接AC交BD于点O,设CE交AD于点H.∵四边形ABCD是菱形,∠ABC=60°,∴△ABC,△ACD都是等边三角形,∠ABD=∠CBD=30°,∴AB=AC.∵△APE是等边三角形,∴AP=AE,∠BAC=∠PAE=60°,∴∠BAP=∠CAE,∴△BAP≌△CAE,∴BP=CE,∠ABP=∠ACE=30°.∵∠CAH=60°,∴∠CA H+∠ACH=90°,∴∠AHC=90°,即CE⊥AD.也可选用图3进行证明,方法同上.(3)如图,连接AC交BD于点O,连接CE交AD于点H,由(2)可知EC⊥AD,CE=BP.在菱形ABCD中,AD∥BC,∴EC⊥BC.∵BC=AB=23,BE=219,在Rt△BC E中,EC=(219)2-(23)2=8,∴BP=CE =8.∵AC 与BD 是菱形的对角线, ∴∠ABD=12∠ABC=30°,AC⊥BD,∴BD=2BO =2AB·cos 30°=6, ∴OA=12AB =3,DP =BP -BD =8-6=2,∴OP=OD +DP =5.在Rt △AOP 中,AP =AO 2+OP 2=27,∴S 四边形ADPE =S △ADP +S △AEP =12×2×3+34×(27)2=8 3.类型二【例2】 (1)如图,作DH⊥AB 于点H ,则四边形DHBC 是矩形, ∴CD=BH =8,DH =BC =6. ∵AH=AB -BH =8, ∴AD=DH 2+AH 2=10, ∴AP =AD -DP =10-2t.(2)如图,作PN⊥AB 于点N ,连接PB. 在Rt △APN 中,PA =10-2t , ∴PN=PA·sin ∠DAH=35(10-2t),AN =PA·cos ∠DAH=45(10-2t),∴BN=16-AN =16-45(10-2t),∴S=S △PQB +S △BCP =12·(16-2t)·35(10-2t)+12×6×[16-45(10-2t)]=65t 2-545t +72.(3)当QP⊥BD 时,∠PQN+∠DBA=90°. ∵∠QPN+∠PQN=90°,∴∠QPN=∠DBA, ∴t a n ∠QPN=QN PN =34,∴45(10-2t )-2t 35(10-2t )=34,解得t =3527.经检验,t =3527是分式方程的解,且符合题意,∴当t =3527时,QP⊥BD.(4)存在.理由如下:如图,连接BE 交DH 于点K ,作KM⊥BD 于点M. 当BE 平分∠ABD 时,△KBH≌△KBM, ∴KH=KM ,BH =BM =8. ∵BD=CD 2+BC 2=10, ∴DM=2. 设KH =KM =x ,在Rt △DKM 中,(6-x)2=22+x 2, 解得x =83.如图,作EF⊥AB 于点F ,则△AEF≌△QPN, ∴EF=PN =35(10-2t),AF =QN =45(10-2t)-2t.∴BF=16-[45(10-2t)-2t].∵KH∥EF,∴KH EF =BH BF , ∴8335(10-2t )=816-[45(10-2t )-2t], 解得t =2518. 经检验,t =2518是分式方程的解,且符合题意, ∴当t =2518时,点E 在∠ABD 的平分线上.变式训练2.解:(1)当t =2时,OM =2,在Rt △OPM 中,∠POM=60°,∴PM=OM·t a n 60°=2 3.在Rt △OMQ 中,∠QOM=30°,∴QM=OM·t a n 30°=233, ∴PQ=PM -QM =23-233=433. (2)当t≤4时,AN =PO =2OM =2t ,t =4时,P 到达C 点,N 到达B 点,点P ,N 在边BC 上相遇.设t 秒时,点P 与N 重合,则(t -4)+2(t -4)=8,解得t =203,即t =203秒时,点P 与N 重合.(3)①当0<t≤4时,S =12·2t·43=43t. ②当4<t≤203时,S =12×[8-(t -4)-(2t -8)]×4 3 =403-63t.③当203<t≤8时,S =12×[(t-4)+(2t -8)-8]×4 3 =63t -40 3. ④当8<t≤12时,S =S 菱形ABCO -S △AON -S △ABP -S △CPN =323-12·(24-2t)·43-12·[8-(t -4)]·43-12(t -4)·32·(2t-16)=-32t 2+123t -56 3. 综上所述,S 与t 的函数关系式为S =⎩⎪⎪⎨⎪⎪⎧43t (0<t≤4),403-63t (4<t ≤203),63t -403(203<t≤8),-32t 2+123t -563(8<t≤12). 类型三【例3】 (1)四边形ACC′A′是菱形.理由如下:由平移的性质得到AC∥A′C′,且AC =A′C′,则四边形ACC′A′是平行四边形,∴∠ACC′=∠AA′C′.又∵CD 平分∠ACB 的外角,即CD 平分∠ACC′,易证CD 也平分∠AA′C′,∴四边形ACC′A′是菱形.(2)∵在△ABC 中,∠B=90°,AB =24,cos ∠BAC=1213, ∴cos ∠BAC=AB AC =1213,即24AC =1213,∴AC=26, ∴由勾股定理知BC =AC 2-AB 2=262-242=10.又由(1)知,四边形ACC′A′是菱形,∴AC=AA′=26.由平移的性质得到AB∥A′B′,AB =A′B′,则四边形ABB′A′是平行四边形,∴AA′=BB′=26,∴CB′=BB′-BC =26-10=16.变式训练3.A4.解:(1)172(2)∵∠AOB=90°,点C 是AB 的中点,∴OC=BC =12AB ,∴∠CBO=∠COB. ∵四边形OBDE 是正方形,∴BD=OE ,∠DBO=∠EOB=90°,∴∠CBD=∠COE.在△CBD 和△COE 中,⎩⎪⎨⎪⎧CB =CO ,∠CBD=∠COE,BD =OE ,∴△CBD≌△COE(S A S ). (3)①S=-12a +1. ②a=32或52.类型四【例4】 (1)当CC′=3时,四边形MCND′为菱形.理由:由平移的性质得CD∥C′D′,DE∥D′E′.∵△ABC为等边三角形,∴∠B=∠ACB=60°,∴∠ACC′=180°-60°=120°.∵CN是∠ACC′的角平分线,∴∠NCC′=60°.∵AB∥DE,DE∥D′E′,∴AB∥D′E′,∴∠D′E′C′=∠B=60°,∴∠D′E′C′=∠NCC′,∴D′E′∥CN,∴四边形MCND′为平行四边形.∵∠ME′C′=∠MCE′=60°,∠NCC′=∠NC′C=60°,∴△MCE′和△NCC′为等边三角形,∴MC=CE′,NC=CC′.又∵E′C′=23,CC′=3,∴CE′=CC′=3,∴MC=CN,∴四边形MCND′为菱形.(2)①AD′=BE′.理由:当α≠180°时,由旋转的性质得∠ACD′=∠BCE′.由(1)知AC=BC,CD′=CE′,∴△ACD′≌△BCE′,∴AD′=BE′.当α=180°时,AD′=AC+CD′,BE′=BC+CE′,即AD′=BE′.综上可知,AD′=BE′.②如图,连接CP,在△ACP中,由三角形三边关系得AP<AC+CP,∴当A,C,P三点共线时AP最大.此时,AP=AC+CP.在△D′CE′中,由P为D′E′中点得AP⊥D′E′,PD′=3,∴CP=3,∴AP=6+3=9.在Rt△APD′中,由勾股定理得AD′=AP2+PD′2=92+(3)2=221.变式训练5.(1)解:菱形(2)证明:∵点F是CC′的中点,∴CF=FC′.∵FG=AF,∴四边形ACGC′是平行四边形.∵在Rt△ABC和Rt△AC′D中,∠BAC+∠ACB=90°,∠ACB=∠DAC′,∴∠BAC+∠DAC′=90°.又∵B,A,D三点在同一条直线上,∴∠CAC′=90°,∴四边形ACGC′是矩形.∵AC=AC′,∴四边形ACGC′是正方形.(3)解:在Rt△A′BC和Rt△BC′D中,BC=BD=42-22=2 3.∵Rt△A′BC≌Rt△BC′D,∴∠DBC′+∠BA′C=90°,∴∠BHA′=90°,∴BC′⊥A′C.在Rt△A′BC中,A′C·BH=BC·A′B,即4BH=2×23,∴BH=3,∴C′H=BC′-BH=4- 3.在Rt △A′BH 中,A′H=A′B 2-BH 2=22-(3)2=1,∴CH=4-1=3,∴t a n ∠C′CH=C′H CH =4-33, ∴t a n ∠C′CH 的值为4-33. 类型五【例5】 (1)∵折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,∴点B 与点E 关于PQ 对称,∴PB=PE ,BF =EF ,∠BPF=∠EPF.又∵EF∥AB,∴∠BPF=∠EFP,∴∠EPF =∠EFP,∴EP=EF ,∴BP=BF =FE =EP ,∴四边形BFEP 为菱形.(2)①如图1,图1∵四边形ABCD 为矩形,∴BC=AD =5 cm ,CD =AB =3 cm ,∠A=∠D=90°.∵点B 与点E 关于PQ 对称,∴CE=BC =5 cm .在Rt △CDE 中,DE 2=CE 2-CD 2,即DE 2=52-32,∴DE=4 cm ,∴AE=AD -DE =5-4=1(cm ).在Rt △APE 中,AE =1,AP =3-PB =3-PE ,∴EP 2=12+(3-EP)2,解得EP =53 cm , ∴菱形BFEP 的边长为53cm . ②图2当点Q 与点C 重合时,如图1,点E 离A 点最近,由①知,此时AE =1 cm .当点P 与点A 重合时,如图2,点E 离A 点最远,此时四边形ABQE 为正方形, AE =AB =3 cm ,∴点E 在边AD 上移动的最大距离为2 cm .变式训练6.(1)证明:根据折叠的性质知∠DBC=∠DBE.又∵AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF ,∴△BDF 是等腰三角形.(2)解:①∵四边形ABCD 是矩形,∴AD∥BC,∴FD∥BG.又∵DG∥BE,∴四边形BFDG 是平行四边形.∵DF=BF ,∴四边形BFDG 是菱形.②∵AB=6,AD =8,∴BD=10,∴OB=12BD =5. 假设DF =BF =x ,则AF =AD -DF =8-x ,∴在Rt △ABF 中,AB 2+AF 2=BF 2,即62+(8-x)2=x 2,解得x =254,即BF =254,∴FO=BF 2-OB 2=⎝ ⎛⎭⎪⎫2542-52=154, ∴FG=2FO =152. 类型六【例6】 (1)如图,过点A 作AP∥EF,交CD 于点P ,过点B 作BQ∥GH,交AD 于点Q ,交AP 于点T.∵四边形ABCD 是矩形,∴AB∥DC,AD∥BC,∴四边形AEFP 和四边形BHGQ 都是平行四边形,∴AP=EF ,GH =BQ. ∵GH⊥EF,∴AP⊥BQ,∴∠QAT+∠AQT=90°.∵四边形ABCD 是矩形,∴∠DAB=∠D=90°,∴∠DAP+∠DPA=90°,∴∠AQT=∠DPA, ∴△PDA∽△QAB,∴AP BQ =AD BA ,∴EF GH =AD AB. (2)1115. 提示:∵EF⊥GH,AM⊥BN,∴由(1)结论可得EF GH =AD AB ,BN AM =AD AB, ∴BN AM =EF GH =1115. (3)如图,过D 作AB 的平行线,交BC 的延长线于E ,作AF⊥AB 交ED 延长线于点F.∵∠BAF=∠B=∠E=90°,∴四边形ABEF 是矩形.连接AC ,由已知条件得△ADC≌△ABC, ∴∠ADC=∠ABC=90°,∠1+∠2=90°.又∵∠2+∠3=90°,∴∠1=∠3,∴△ADF∽△DCE, ∴DE AF =DC AD =510=12. 设DE =x ,则AF =2x ,DF =10-x.在Rt △ADF 中,AF 2+DF 2=AD 2,即(2x)2+(10-x)2=100,解得x 1=4,x 2=0(舍去),∴AF=2x =8,∴DN AM =AF AB =810=45. 变式训练7.(1)①证明:∵EH⊥AB,∠BAC=90°,∴EH∥CA,∴△BHE∽△BAC,∴BE BC =HE AC. ∵DC BE =AC BC ,∴BE BC =DC AC, ∴HE AC =DC AC,∴HE=DC. ∵EH∥DC,∴四边形DHEC 是平行四边形.②证明:∵AC BC =22,∠BAC=90°,∴AC=AB. ∵DC BE =22,HE =DC ,∴HE BE =22. ∵∠BHE=90°,∴BH=HE.∵HE=DC ,∴BH=CD ,∴AH=AD.∵DM⊥AE,EH⊥AB,∴∠EHA=∠AMF=90°,∴∠HAE+∠HEA=∠HAE+∠AFM=90°, ∴∠HEA=∠AFD.∵∠EHA=∠FAD=90°,∴△HEA≌△AFD,∴AE=DF.(2)解:如图,过点E 作EG⊥AB 于点G.∵CA⊥AB,∴EG∥CA,∴△EGB∽△CAB,∴EG CA =BE BC ,∴EG BE =CA BC =35. ∵CD BE =35,∴EG=CD. 设EG =CD =3x ,AC =3y ,∴BE=5x ,BC =5y , ∴BG=4x ,AB =4y.∵∠EGA=∠A MF =90°,∴∠GEA+∠EAG=∠EAG+∠AFM,∴∠AFM=∠AEG.∵∠FAD=∠EGA=90°,∴△FAD∽△EGA,∴DF AE =AD AG =3y -3x 4y -4x =34. 类型七【例7】 (1)MG =NG MG⊥NG提示:如图,连接EB ,DC ,EB ,DC 交于点F.∵AE=AC ,AB =AD ,∠EAC=∠BAD=90°,∴∠EAB=∠CAD,∴△AEB≌△ACD,∴EB=CD ,∠AEB=∠ACD.∵∠AHE=∠FHC,∴∠EFC=∠EAC=90°,∴EB⊥CD.∵M,N ,G 分别是BD ,CE ,BC 的中点,∴NG∥EB,且NG =12EB ,MG∥CD,且MG =12CD , ∴MG=NG ,MG⊥NG.(2)成立.理由:类似于(1)的证明方法,可以得出△ADC≌△ABE,从而得出EB⊥CD,再利用三角形中位线定理可证明结论还成立.(3)△GMN 是等腰直角三角形.证明:如图,连接EB ,DC ,并分别延长交于点F.∵AE=AC ,AB =AD ,∠EAB=∠CAD,∴△AEB≌△ACD,∴EB=CD ,∠AEB=∠ACD,∴∠AEB+∠ACF=180°.又∠EAC=90°,∴∠F=90°,∴EB⊥CD.∵M,N ,G 分别是BD ,CE ,BC 的中点,∴NG∥EB,且NG =12EB , MG∥CD,且MG =12CD , ∴MG=NG ,MG⊥NG,∴△GMN 是等腰直角三角形.变式训练8.解:(1)BE =CE(2)BE =DE.证明如下:如图,取AB 的中点P ,连接EP.由(1)结论可知△CPA 为等边三角形,∴∠CAP=60°,CA =PA.∵△ADE 为等边三角形,∴∠DAE=60°,AD =AE ,∴∠CAP=∠DAE,∴∠CAP-∠DAB=∠DAE-∠DAB,∴∠CAD=∠PAE,∴△ACD≌△APE(S A S ),∴∠APE=∠ACD=90°,∴EP⊥AB.∵P为AB的中点,∴AE=BE.∵DE=AE,∴BE=DE.(3)BE=DE拓展应用:如图,连接OA,OC,过点A作AH⊥x轴于点H.∵A的坐标为(-3,1),∴∠AOH=30°.由探究结论(3)可知CO=CB.∵O(0,0),B(2,0),∴点C的横坐标为1.设C(1,m).∵CO2=CB2=12+m2,AB2=12+(2+3)2,AB=CB,∴12+m2=12+(2+3)2,∴m=2+3,∴C点的坐标是(1,2+3).。

中考数学解答题压轴题突破 重难点突破八 几何综合题 类型四:与角度有关的几何问题

中考数学解答题压轴题突破 重难点突破八 几何综合题 类型四:与角度有关的几何问题
2,CA=5,则AD的长度为 13;
(2)如图②,当点D在△ABC外部ห้องสมุดไป่ตู้,连接AE,F为AE的中点,连接FD并延 长到点G,连接EG,若EG=EB,求证:∠EGF=∠FDA;
(2)证明:延长GF到点H,使FH=FD,连接EH. ∵EF=AF,∠EFH=∠AFD,∴△EFH≌△AFD(SAS), ∴∠FDA=∠H,AD=EH. ∵AC=BC,∠ACD=∠BCE,CD=CE,∴△ACD≌△BCE(SAS), ∴AD=BE.∵BE=EG,∴EH=EG,∴∠EGF=∠H,∴∠EGF=∠FDA.
(3)如图③,当点D在△ABC中线CF上时,在线段BF上取一点Q(不与点F重 合),连接DQ,将△FDQ沿DQ翻折得到△F′DQ,连接BF′,EF′,若CD =2,AC=3 2,当BF′最小时,求△DEF′的面积.
(3)解:连接BD,∵△ABC是等腰直角三角形,CF是中线,∴CF⊥AB,
∵AC=3 2,∴CF=BF=3,∵CD=2,∴DF=1,DE=2 2,
②判断∠DEC和∠EDC的数量关系,并说明理由; ②解:∠DEC+∠EDC=90°,理由:∵DB=DC,DA⊥BC, ∴∠BDA=12∠BDC=30°,∵△BAD≌△BEC,∴∠BCE=∠BDA=30°, 在等边三角形BCD中,∠BCD=60°,∴∠DCE=∠BCE+∠BCD=90°, ∴∠DEC+∠EDC=90°.
∴∠BDA=∠CDA=12∠BDC=30°,在△BDA中,DB=DA, 180°-∠BDA
∴∠BAD= 2 =75°,在△DAC中,DA=DC, 180°-∠ADC
∴∠DAC= 2 =75°, ∴∠BAC=∠BAD+∠DAC=75°+75°=150°;
②当点A在线段DF上时, ∵以点B为旋转中心,把BA顺时针方向旋转60°至BE,∴BA=BE, ∠ABE=60°,在等边三角形BDC中,BD=BC,∠DBC=60°, ∴∠DBC=∠ABE,∠DBC-∠ABC=∠ABE-∠ABC,即∠DBA=∠EBC, ∴△DBA≌△CBE,∴DA=CE,在Rt△DFC中,∠DFC=90°,∴DF<DC, ∵DA<DF,DA=CE,∴CE<DC, 由②可知△DCE为直角三角形,∴∠DEC≠45°.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年北京中考专题突破几何综合在北京中考试卷中,几何综合题通常出现在后两题,分值为8分或7分.几何综合题主要包含三角形(全等、相似)、四边形、锐角三角函数、圆等知识,主要研究图形中的数量关系、位置关系、几何计算以及图形的运动、变换等规律.求解几何综合题时,关键是抓住“基本图形”,能在复杂的几何图形中辨认、分解出基本图形,或通过添加辅助线补全、构造基本图形,或运用图形变换的思想将分散的条件集中起来,从而产生基本图形,再根据基本图形的性质,合理运用方程、三角函数的运算等进行推理与计算.1.[2015·北京]在正方形ABCD中,BD是一条对角线,点P在射线CD上(与点C,D 不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH,PH.(1)若点P在线段CD上,如图Z9-1(a).①依题意补全图(a);②判断AH与PH的数量关系与位置关系,并加以证明.(2)若点P在线段CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果.........)图Z9-12.[2014·北京]在正方形ABCD外侧作直线AP,点B关于直线AP的对称点为E,连接BE,DE,其中DE交直线AP于点F.(1)依题意补全图Z9-2①;(2)若∠P AB=20°,求∠ADF的度数;(3)如图②,若45°<∠P AB<90°,用等式表示线段AB,FE,FD之间的数量关系,并证明.图Z9-23.[2013·北京]在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B 逆时针旋转60°得到线段B D.(1)如图Z9-3①,直接写出∠ABD的大小(用含α的式子表示);(2)如图②,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.图Z9-34.[2012·北京]在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段P A绕点P顺时针旋转2α得到线段PQ.(1)若α=60°且点P与点M重合(如图Z9-4①),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;(2)在图②中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想∠CDB 的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,请直接写出α的范围.图Z9-45.[2011·北京]在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图Z9-5①中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图②),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB,DG(如图③),求∠BDG的度数.图Z9-51.[2015·怀柔一模]在等边三角形ABC外侧作直线AP,点B关于直线AP的对称点为D,连接BD,CD,其中CD交直线AP于点E.(1)依题意补全图Z9-6①;(2)若∠P AB=30°,求∠ACE的度数;(3)如图②,若60°<∠P AB<120°,判断由线段AB,CE,ED可以构成一个含有多少度角的三角形,并证明.图Z9-62.[2015·朝阳一模]在△ABC中,∠C=90°,AC=BC,点D在射线BC上(不与点B,C重合),连接AD,将AD绕点D顺时针旋转90°得到DE,连接BE.(1)如图Z9-7(a),点D在BC边上.①依题意补全图(a);②作DF⊥BC交AB于点F,若AC=8,DF=3,求BE的长.(2)如图(b),点D在BC边的延长线上,用等式表示线段AB,BD,BE之间的数量关系(直接写出结论).图Z9-73.[2015·海淀一模]在菱形ABCD中,∠ADC=120°,点E是对角线AC上一点,连接DE,∠DEC=50°,将线段BC绕点B逆时针旋转50°并延长得到射线BF,交ED的延长线于点G.(1)依题意补全图形;(2)求证:EG=BC;(3)用等式表示线段AE,EG,BG之间的数量关系:________.图Z9-84.[2015·海淀二模]如图Z9-9①,在△ABC中,AB=AC,∠ABC=α,D是BC边上一点,以AD为边作△ADE,使AE=AD,∠DAE+∠BAC=180°.(1)直接写出∠ADE的度数(用含α的式子表示).(2)以AB,AE为边作平行四边形ABFE.①如图②,若点F恰好落在DE上,求证:BD=CD;②如图③,若点F恰好落在BC上,求证:BD=CF.图Z9-95.[2015·西城一模] 在△ABC 中,AB =AC ,取BC 边的中点D ,作DE ⊥AC 于点E ,取DE 的中点F ,连接BE ,AF 交于点H .(1)如图Z9-10①,如果∠BAC =90°,那么∠AHB =________°,AFBE =________;(2)如图②,如果∠BAC =60°,猜想∠AHB 的度数和AFBE 的值,并证明你的结论;(3)如果∠BAC =α,那么AFBE=________.(用含α的代数式表示)图Z9-106.[2015·丰台一模] 在△ABC 中,CA =CB ,CD 为AB 边上的中线,点P 是线段AC 上任意一点(不与点C 重合),过点P 作PE 交CD 于点E ,使∠CPE =12∠CAB ,过点C 作CF ⊥PE 交PE 的延长线于点F ,交AB 于点G .(1)如果∠ACB =90°,①如图Z9-11(a),当点P 与点A 重合时,依题意补全图形,并指出与△CDG 全等的一个三角形;②如图(b),当点P 不与点A 重合时,求CFPE的值.(2)如果∠CAB =a ,如图(c ),请直接写出CFPE的值.(用含a 的式子表示)图Z9-117.[2015·海淀]将线段AB绕点A逆时针旋转60°得到线段AC,继续旋转α(0°<α<120°)得到线段AD,连接CD.(1)连接BD,①如图Z9-12(a),若α=80°,则∠BDC的度数为________.②在第二次旋转过程中,请探究∠BDC的大小是否改变.若不变,求出∠BDC的度数;若改变,请说明理由.(2)如图(b),以AB为斜边作直角三角形ABE,使得∠B=∠ACD,连接CE,DE.若∠CED =90°,求α的值.图Z9-128.[2015·西城二模]正方形ABCD的边长为3,点E,F分别在射线DC,DA上运动,且DE=DF.连接BF,作EH⊥BF所在直线于点H,连接CH.(1)如图Z9-13①,若点E是DC的中点,CH与AB之间的数量关系是________.(2)如图②,当点E在DC边上且不是DC的中点时,(1)中的结论是否成立?若成立给出证明;若不成立,说明理由.(3)如图③,当点E,F分别在射线DC,DA上运动时,连接DH,过点D作直线DH的垂线,交直线BF于点K,连接CK,请直接写出线段CK长的最大值.图Z9-13参考答案1.解:(1)①如图(a)所示.②AH=PH,AH⊥PH.证明:连接CH,由条件易得:△DHQ为等腰直角三角形,又∵DP=CQ,∴△HDP≌△HQC,∴PH=CH,∠HPC=∠HCP.∵BD为正方形ABCD的对称轴,∴AH=CH,∠DAH=∠HCP,∴AH=PH,∠DAH=∠HPC,∴∠AHP=180°-∠ADP=90°,∴AH=PH且AH⊥PH.(2)如图(b),过点H作HR⊥PC于点R,∵∠AHQ =152°,∴∠AHB =62°,∴∠DAH =17°,∴∠DCH =17°.设DP =x ,则DR =HR =RQ =1-x 2.由tan17°=HRCR 得1-x 21+x 2=tan17°,∴x =1-tan17°1+tan17°.2.解:(1)补全图形如图①所示:(2)如图①,连接AE ,则∠P AB =∠P AE =20°,AE =AB. ∵四边形ABCD 是正方形, ∴∠BAD =90°,AB =AD , ∴∠EAD =130°,AE =AD. ∴∠ADF =25°.(3)如图②,连接AE ,BF ,BD.由轴对称的性质可得EF =BF ,AE =AB =AD ,∠ABF =∠AEF =∠ADF , ∴∠BFD =∠BAD =90°. ∴BF 2+FD 2=BD 2.∴EF 2+FD 2=2AB 2.3.解:(1)∵AB =AC ,∠A =α,∴∠ABC =∠ACB =12(180°-∠A )=90°-12α.∵∠ABD =∠ABC -∠DBC ,∠DBC =60°, ∴∠ABD =30°-12α.(2)△ABE 是等边三角形. 证明:连接AD ,CD ,ED ,∵线段BC 绕点B 逆时针旋转60°得到线段BD , 则BC =BD ,∠DBC =60°. ∴△BCD 为等边三角形. ∴BD =CD.∵∠ABE =60°,∴∠ABD =60°-∠DBE =∠EBC =30°-12α.在△ABD 与△ACD 中, ⎩⎪⎨⎪⎧AB =AC ,AD =AD ,BD =CD , ∴△ABD ≌△ACD ,∴∠BAD =∠CAD =12∠BAC =12α.∵∠BCE =150°,∴∠BEC =180°-(30°-12α)-150°=12α=∠BAD.在△ABD 和△EBC 中, ⎩⎪⎨⎪⎧∠BEC =∠BAD ,∠EBC =∠ABD ,BC =BD ,∴△ABD ≌△EBC , ∴AB =BE .又∵∠ABE =60°,∴△ABE 是等边三角形.(3)∵∠BCD =60°,∠BCE =150°, ∴∠DCE =150°-60°=90°. ∵∠DEC =45°,∴△DEC 为等腰直角三角形, ∴DC =CE =BC. ∵∠BCE =150°.∴∠EBC =12(180°-150°)=15°.∵∠EBC =30°-12α=15°,∴α=30°.4.解:(1)如图①,∵BA =BC ,∠BAC =60°,M 是AC 的中点, ∴BM ⊥AC ,AM =MC.∵将线段P A 绕点P 顺时针旋转2α得到线段PQ , ∴AM =MQ ,∠AMQ =120°, ∴CM =MQ ,∠ CMQ =60°, ∴△CMQ 是等边三角形, ∴∠ACQ =60°, ∴∠CDB =30°. (2)连接PC ,AD ,∵AB =BC ,M 是AC 的中点, ∴BM ⊥AC ,∴AD =CD ,AP =PC. 在△APD 与△CPD 中, ∵⎩⎪⎨⎪⎧AD =CD ,PD =PD ,P A =PC ,∴△APD ≌△CPD ,∴∠ADB =∠CDB ,∠P AD =∠PCD ,∴∠ADC=2∠CDB.又∵PQ=P A,∴PQ=PC,∴∠PQC=∠PCD=∠P AD,∴∠P AD+∠PQD=∠PQC+∠PQD=180°,∴∠APQ+∠ADC=360°-(∠P AD+∠PQD)=180°,∴∠ADC=180°-∠APQ=180°-2α,∴2∠CDB=180°-2α,∴∠CDB=90°-α.(3)∵∠CDB=90°-α,且PQ=QD,∴∠P AD=∠PCQ=∠PQC=2∠CDB=180°-2α.∵点P不与点B,M重合,∴∠BAD>∠P AD>∠MAD,∴2α>180°-2α>α,∴45°<α<60°.5.解:(1)∵AF平分∠BAD,∴∠BAF=∠DAF.∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠F.∴∠CEF=∠F.∴CE=CF.(2)∠BDG =45°.(3)如图,分别连接GB ,GE ,GC ,∵AD ∥BC ,AB ∥CD ,∠ABC =120°, ∴∠ECF =∠ABC =120°. ∵FG ∥CE 且FG =CE ,∴四边形CEGF 是平行四边形. 由(1)得CE =CF .∴四边形CEGF 是菱形, ∴GE =EC ,①∠GCF =∠GCE =12∠ECF =60°,∴△ECG 与△FCG 是等边三角形, ∴∠GEC =∠FCG , ∴∠BEG =∠DCG ,②由AD ∥BC 及AF 平分∠BAD 可得∠BAE =∠AEB , ∴AB =BE .在▱ABCD 中,AB =DC , ∴BE =D C.③由①②③得△BEG ≌△DCG , ∴BG =DG ,∠1=∠2,∴∠BGD =∠1+∠3=∠2+∠3=∠EGC =60°, ∴∠BDG =180°-∠BGD2=60°.1.解:(2)连接AD ,如图①.∵点D 与点B 关于直线AP 对称,∴AD =AB ,∠DAP =∠BAP =30°,∵AB =AC ,∠BAC =60°,∴AD =AC ,∠DAC =120°, ∴2∠ACE +120°=180°.∴∠ACE =30°.(3)线段AB ,CE ,ED 可以构成一个含有60°角的三角形.证明:连接AD ,EB ,如图②. ∵点D 与点B 关于直线AP 对称, ∴AD =AB ,DE =BE , 可证得∠EDA =∠EB A.∵AB =AC ,AB =AD ,∴AD =AC ,∴∠ADE =∠ACE , ∴∠ABE =∠ACE . 设AC ,BE 交于点F ,∵∠AFB =∠CFE ,∴∠BAC =∠BEC =60°,∴线段AB ,CE ,ED 可以构成一个含有60°角的三角形. 2.解:(1)①补全图形,如图(a )所示.②如图(b ),由题意可知AD =DE ,∠ADE =90°. ∵DF ⊥BC , ∴∠FDB =90°.∴∠ADF =∠ED B.∵∠C =90°,AC =BC , ∴∠ABC =∠DFB =45°. ∴DB =DF .∴△ADF ≌△EDB.∴AF =EB.在△ABC 和△DFB 中, ∵AC =8,DF =3,∴AB =8 2,BF =3 2. AF =AB -BF =5 2, 即BE =5 2, (2)2BD =BE +AB.3.解:(1)补全图形,如图①所示. (2)方法一:证明:连接BE ,如图②.∵四边形ABCD 是菱形, ∴AD ∥BC.∵∠ADC =120°, ∴∠DCB =60°.∵AC ]是菱形ABCD 的对角线, ∴∠DCA =12∠DCB =30°.∴∠EDC =180°-∠DEC -∠DCA =100°.由菱形的对称性可知,∠BEC =∠DEC =50°,∠EBC =∠EDC =100°, ∴∠GEB =∠DEC +∠BEC =100°. ∴∠GEB =∠CBE . ∵∠FBC =50°,∴∠EBG =∠EBC -∠FBC =50°. ∴∠EBG =∠BEC.在△GEB 与△CBE 中,⎩⎪⎨⎪⎧∠GEB =∠CBE ,BE =EB ,∠EBG =∠BEC ,∴△GEB ≌△CBE .∴EG =BC .方法二:证明:连接BE ,设BG 与EC 交于点H ,如图②.∵四边形ABCD 是菱形,∴AD ∥BC.∵∠ADC =120°,∴∠DCB =60°.∵AC 是菱形ABCD 的对角线,∴∠DCA =12∠DCB =30°. ∴∠EDC =180°-∠DEC -∠DCA =100°.由菱形的对称性可知,∠BEC =∠DEC =50°,∠EBC =∠EDC =100°, ∵∠FBC =50°,∴∠EBG =∠EBC -∠FBC =50°=∠BEC .∴BH =EH .在△GEH 与△CBH 中,⎩⎪⎨⎪⎧∠GEH =∠CBH ,EH =BH ,∠EHG =∠B HC ,∴△GEH ≌△CBH .∴EG =BC .(3)AE +BG =3EG .4.解:(1)∠ADE =90°-α.(2)①证明:∵四边形ABFE 是平行四边形,∴AB ∥EF .∴∠EDC =∠ABC =α.由(1)知∠ADE =90°-α,∴∠ADC =∠ADE +∠EDC =90°.∴AD ⊥BC.∵AB =AC ,∴BD =CD.②证明:∵AB =AC ,∠ABC =α,∴∠C =α.∵四边形ABFE 是平行四边形,∴AE ∥BF ,AE =BF .∴∠EAC =∠C =α.由(1)知∠DAE =180°-2∠ADE =180°-2(90°-α)=2α,∴∠DAC =α.∴∠DAC =∠C.∴AD =CD .∵AD =AE =BF ,∴BF =CD.∴BD =CF .5.解:(1)90 12(2)结论:∠AHB =90°,AF BE =32. 证明:如图,连接AD .∵AB =AC ,∠BAC =60°,∴△ABC 是等边三角形.∵D 为BC 的中点,∴AD ⊥BC.∴∠1+∠2=90°.又∵DE ⊥AC ,∴∠DEC =90°.∴∠2+∠C =90°.∴∠1=∠C =60°.设AB =BC =k (k >0),则CE =12CD =k 4,DE =34k . ∵F 为DE 的中点,∴DF =12DE =38k ,AD =32AB =32k . ∴AD BC =32,DF CE =32. ∴AD BC =DF CE. 又∵∠1=∠C ,∴△ADF ∽△BCE . ∴AF BE =AD BC =32, ∠3=∠4.又∵∠4+∠5=90°,∠5=∠6,∴∠3+∠6=90°.∴∠AHB =90°.(3)12tan(90°-α2). 6.解:(1)①作图.△ADE (或△PDE ).②过点P 作PN ∥AG 交CG 于点N ,交CD 于点M , ∴∠CPM =∠CAB.∵∠CPE =12∠CAB , ∴∠CPE =12∠CPN .∴∠CPE =∠FPN . ∵PF ⊥CG ,∴∠PFC =∠PFN =90°.∵PF =PF ,∴△PFC ≌△PFN .∴CF =FN .由①得:△PME ≌△CMN .∴PE =CN .∴CF PE =CF CN =12. (2)12tan α. 7.解:(1)①30°.②不改变,∠BDC 的度数为30°.方法一:由题意知AB =AC =A D.∴点B ,C ,D 在以点A 为圆心,AB 为半径的圆上.∴∠BDC =12∠BAC =30°. 方法二:由题意知AB =AC =A D.∵AC =AD ,∠CAD =α,∴∠ADC =∠ABD =180°-α2=90°-12α. ∵AB =AD ,∠BAD =60°+α,∴∠ADB =∠ABD =180°-()60°+α2=120°-α2=60°-12α. ∴∠BDC =∠ADC -∠ADB =(90°-12α)-(60°-12α)=30°. (2)过点A 作AM ⊥CD 于点M ,连接EM .∴∠AMC =90°.在△AEB 与△AMC 中,⎩⎪⎨⎪⎧∠AEB =∠AMC ,∠B =∠ACD ,AB =AC ,∴△AEB ≌△AMC.∴AE =AM ,∠BAE =∠CAM .∴∠EAM =∠EAC +∠CAM =∠EAC +∠BAE =∠BAC =60°. ∴△AEM 是等边三角形.∴EM =AM =AE .∵AC =AD ,AM ⊥CD ,∴CM =DM .又∵∠DEC =90°,∴EM =CM =DM .∴AM =CM =DM .∴点A ,C ,D 在以M 为圆心,MC 为半径的圆上. ∴α=∠CAD =90°.8.解:(1)CH =AB(2)结论成立.证明:如图,连接BE .在正方形ABCD 中,AB =BC =CD =AD ,∠A =∠BCD =∠ABC =90°. ∵DE =DF ,∴AF =CE .在△ABF 和△CBE 中,⎩⎪⎨⎪⎧AB =CB ,∠A =∠BCE ,AF =CE ,∴△ABF ≌△CBE .∴∠1=∠2.∵EH ⊥BF ,∠BCE =90°,∴H ,C 两点都在以BE 为直径的圆上. ∴∠3=∠2.∴∠3=∠1.∵∠3+∠4=90°,∠1+∠HBC =90°, ∴∠4=∠HB C.∴CH =CB.∴CH =AB. (3)3 2+3.。

相关文档
最新文档