电磁学总复习
2025高考物理总复习法拉第电磁感应定律自感和涡流
ΔΦ
面积随时间变化(动生)
ΔΦ=B·ΔS
E=nB
磁场随时间变化(感生)
ΔΦ=ΔB·S
Δ
E=nS
Δ
ΔΦ=Φ末-Φ初
2 2 −1 1
E=n
Δ
面积和磁场同时随时间变化
E
Δ
Δ
返回目录
第2讲
法拉第电磁感应定律、自感和涡流
(2)应用法拉第电磁感应定律的注意事项
Δ
①公式E=n
Δ
求解的是一个回路中某段时间内的平均感应电动势,只有在磁通量均
Δ
(
√
(2)穿过线圈的磁通量变化越大,感应电动势也越大.
(
✕ )
(3)穿过线圈的磁通量变化越快,感应电动势越大.
(
√
(4)线圈匝数n越多,磁通量越大,感应电动势也越大.
(
✕ )
)
)
返回目录
第2讲
法拉第电磁感应定律、自感和涡流
2如图,电流表与螺线管组成闭合回路.判断下列说法的正误.
(1)磁铁快速插入螺线管时比慢速插入螺线管时电流表指针偏转大.
返回目录
第2讲
法拉第电磁感应定律、自感和涡流
命题点1 平均电动势与瞬时电动势的计算
1. 如图所示,可绕固定轴OO'转动的正方形单匝金属线框的边长为L,线框从水平位
置由静止释放,经过时间t到达竖直位置,此时ab边的速率为v.设线框始终处在方向
竖直向下、磁感应强度为B的匀强磁场中,求:
(1)这个过程中线框中的平均感应电动势;
驱动.
2.科学思维:通过类比法,理解感生电场和静电场的区别;应用法拉第电磁感应定
律计算感应电动势的大小.
3.科学探究:通过对法拉第电磁感应定律、自感现象和涡流现象的探究,掌握对实
高中物理复习电磁学知识高考前必看总结
高中物理电磁学公式、规律汇总稳恒电流 1、电流:(电荷的定向移动形成电流) 定义式: I =Qt微观式: I = nesv ,(n 为单位体积内的电荷数,v 为自由电荷定向移动的速率。
) (说明:将正电荷定向移动的方向规定为电流方向。
在电源外部,电流从正极流向负极;在电源内部,电流从负极流向正极。
)2、电阻:定义式:R UI=(电阻R 的大小与U 和I 无关) 决定式:R = ρSL(电阻率ρ只与材料性质和温度有关,与横截面积和长度无关) 电阻串联、并联的等效电阻:串联:R =R 1+R 2+R 3 +……+R n并联:121111nR R R R =++L 4、欧姆定律:(1)部分电路欧姆定律(只适用于纯电阻电路):I UR=(2)闭合电路欧姆定律:I =ER r+ ①路端电压: U = E -I r = IR ②有关电源的问题: 总功率: P 总= EI输出功率: P 总= EI -I 2r = I R 2(当R =r 时,P 出取最大值,为24E r)损耗功率: P I r r =2电源效率: η=P P 出总=U E= RR+r5、电功和电功率:电功:W =UIt 电功率:P =UI 电热:Q=I Rt 2热功率:P 热=2I R对于纯电阻电路: W= Q UIt=2I Rt U =IR对于非纯电阻电路: W >Q UIt >I Rt 2 U >IR (欧姆定律不成立) 电场1、电场的力的性质:电场强度:(定义式) E =qF(q 为试探电荷,场强的大小与q 无关) 点电荷电场的场强: E =2r kQ(Q 为场源电荷) 匀强电场的场强:E = dU(d 为沿场强方向的距离) 2、电场的能的性质:电势差: U =qW(或 W = U q ) U AB = φA −φB电场力做功与电势能变化的关系:W = − ∆E P(说明:建议应用以上公式进行计算时,只代入绝对值,方向或者正负单独判断。
大学物理电磁学综合复习试题2
2.用力F 把电容器中的电介质拉出,在图(a )和图(b )两种情况下,电容
器中储存的静电能量将:
A .均减少;
B .均增加;
C .(a )中减少,(b )中增加;
D .(a )中增加,(b )中减少。
3.在静电场中,高斯定理告诉我们:
A .高斯面内不包围电荷,则面上各点E 的大小处处为零;
B .高斯面上各点的E 只与面内电荷有关,与面外电荷无关;
C .穿过高斯面的E 通量,仅与面内电荷有关,但与面内电荷如何分布
无关;
D .穿过高斯面的
E 通量为零,则面上各点的E 必为零。
4.下列说法中,正确的是:
A .初速度为零的点电荷置于静电场中,将一定沿一条电场线运动;
(a)
(b)
F
充电后仍与 电源连接
充电后与 电源断开
第2题图。
初中物理总复习电磁学[可修改版ppt]
极性与电
流的关系可用 安培定则判定
N
S
电与磁
3、电磁铁: ①影响电磁铁磁性强弱的因素
电流越大,磁性越强 匝数越多,磁性越强 ②应用:
电铃、电磁起重机、 电磁继电器、磁悬浮列车
电与磁
继电器是用低电压弱电流电路 来控制高电压强电流电路的装置
电磁继
电器是利用 电磁铁控制 工作电路的 一种开关
高压工作电路 低压控制电路
电与磁
2、发电机:
交 变 电 流 50Hz
电与磁
③磁感线的方向:从N极指向S极
电与磁
④条形、蹄形磁体和同名、异名 磁极的磁感线分布
⑤地磁场:与条形 磁体的磁场相似
电与磁
地理北极
地磁南北极 在地理北南极附 近
地理南极
4、磁化:物体获得磁性的电导体周围存在磁场
电与磁
2、通电螺线管的磁场 与条形磁体的磁场相似
初中物理总复习
初中物理总复习电 磁学
电与磁
• 磁场 • 电生磁 • 电动机 • 磁生电
电与磁
1、磁极:磁性最强的部位 北极(N极):指北的磁极 南极(S极):指南的磁极
2、磁极的相互作用:
同名磁极相互排斥 异名磁极相互吸引
电与磁
3、磁场:
①磁体周围存在磁场
A
②磁场方向的规定:
N
三个方向一致 小磁针静止时北极所指 的方向定为该点的磁场方向
S N
电与磁
S
S
N
N
S
N
N
S
S
N
N
N
电与磁
1、通电导体在磁场中受到力的作用 受力方向跟电流方向和磁感
线方向有关
电与磁
2、电动机: ①原理:根据通电线圈在磁场中 受力转动制成 ②换向器的作用
高中物理复习电磁学部分
高中物理复习电磁学部分电磁学是高中物理中的重要内容之一,也是学生们较为困惑的部分之一。
本文将对电磁学的相关知识进行复习和总结,帮助学生们更好地理解和掌握这一内容。
一、电磁学基础知识1. 电荷和电场在电磁学中,电荷是基本粒子,可以带正电荷或负电荷。
同性电荷相斥,异性电荷相吸。
电场是电荷周围产生的一个物理场,描述了电荷之间相互作用的规律。
2. 静电场和静电力静电场是指电荷静止时产生的电场。
静电力是指电荷之间由于电场作用而产生的力。
根据库仑定律,两个电荷之间的电力与电荷的大小和距离的平方成正比。
3. 电场线电场线是描述电场分布形态的一种图示方法。
电场线的特点是从正电荷出发,指向负电荷,密集区域代表电场强,稀疏区域代表电场弱。
电场线不会相交,且垂直于导体表面。
二、电磁感应和法拉第电磁感应定律1. 磁感线和磁感应强度磁感线是描述磁场分布形态的一种图示方法。
磁感应强度是磁场对单位面积垂直于磁力线方向的力的大小。
2. 法拉第电磁感应定律法拉第电磁感应定律是指导体中的磁感应强度变化会诱导出感应电动势的规律。
根据法拉第电磁感应定律,感应电动势的大小与磁感应强度变化速率成正比。
3. 感应电流和楞次定律根据楞次定律,感应电流的方向总是阻碍引起它产生的因素,如磁感应强度的变化。
感应电流具有闭合电路的特点。
三、电磁波和麦克斯韦方程组1. 电磁波的特点电磁波是由电场和磁场交替变化产生的一种波动现象。
电磁波可以传播在真空中和介质中,具有波长、频率和速度等特性。
2. 麦克斯韦方程组麦克斯韦方程组是描述电场和磁场相互作用的基本定律。
包括麦克斯韦第一和第二个定律、高斯定律和法拉第定律。
3. 电磁波的分类根据频率的不同,电磁波可以分为射线、微波、红外线、可见光、紫外线、X射线和γ射线等。
四、电磁学的应用1. 电磁感应的应用电磁感应在发电机、变压器等电器设备中有广泛应用。
电磁感应还可以用于磁悬浮列车、无线充电等领域。
2. 电磁波的应用电磁波在通信、雷达、医学影像等方面有重要应用。
高考物理电磁学部分如何复习
高考物理电磁学部分如何复习高考物理中的电磁学部分一直是重点和难点,对于很多考生来说,想要在这部分取得高分并非易事。
但只要掌握了正确的复习方法,就能够提高复习效率,取得理想的成绩。
接下来,我将为大家详细介绍高考物理电磁学部分的复习方法。
一、夯实基础概念和公式电磁学部分涉及到众多的概念和公式,如电场强度、电势、电容、磁感应强度、安培力、洛伦兹力等等。
首先,要对这些概念有清晰、准确的理解。
不能仅仅死记硬背,而是要通过实际例子和物理现象来深入理解其内涵。
例如,对于电场强度的概念,可以想象一个带正电的点电荷周围的电场分布,越靠近电荷,电场强度越大,电场线越密集。
对于公式,不仅要记住公式的形式,更要理解其推导过程和适用条件。
比如库仑定律,要知道它是在真空中两个静止的点电荷之间的作用力规律。
二、构建知识体系电磁学的知识点繁多且相互关联,构建一个完整的知识体系有助于我们更好地理解和记忆。
可以从静电场、恒定电流、磁场、电磁感应等几个大的板块入手,将每个板块中的知识点串联起来。
比如,在静电场中,从电荷的产生、电场的性质、电场中的导体,到电容器的相关知识,形成一个连贯的知识链条。
在磁场部分,从磁感应强度的定义,到安培力、洛伦兹力的计算,再到带电粒子在磁场中的运动,要清晰地理解各个知识点之间的逻辑关系。
三、多做典型例题通过做典型例题,可以加深对知识点的理解和应用能力。
在选择例题时,要注重其代表性和综合性。
可以选择历年高考真题或者权威辅导书中的经典例题。
做题时,不要急于看答案,要先自己思考,尝试运用所学的知识和方法去解决问题。
做完后,对照答案认真分析自己的解题思路和方法是否正确,找出存在的问题和不足之处。
对于做错的题目,要重点分析错误原因,是概念理解不清,还是公式运用不当,或者是计算错误。
然后,针对问题进行有针对性的复习和强化训练。
四、注重实验复习实验是物理学科的重要组成部分,电磁学部分也有很多重要的实验,如测量电源电动势和内阻、描绘小灯泡的伏安特性曲线、探究电磁感应现象等。
电磁学复习
B
感生电动势:由B发生变化引起感生电场而 产生的电动势
d i d t B dS
i Ek dl
l
d i Ek dl B dS l dt S
这里,S是以l为边界的,当环路不变时,运 算对易: B l Ek dl S t dS
心O点的磁感应强度。
解: B 0
I
a
O
b
4、 在磁感应强度为B的均匀磁场中,有一圆形 载流导线, a、b、c、是其上三个长度相等的 电流元,则它们所受安培力大小的关系为
A)Fa Fb Fc
a
B
B)Fa Fb Fc C)Fb Fc Fa √
D)Fa Fc Fb
解:
稳恒磁场小结
一、 毕萨定律:
o Idl r dB 3 4 r
B dB
1、载流长直导线的磁场 0 I B (sin 2 sin 1 ) 4r0
2、载流圆线圈其轴上的磁场
IR 2 B 2 ( R 2 x 2 )3 / 2
I
1 P
r
2
0
圆心:
4和 1 2
15、如图,A和B为长直导线,电流为I, 垂直纸面向外,p点是AB的中点
0 (1) B p ? 0 I ( 2) B dl ?
L
Y
l
P
A
a
B
X
16、如图,半圆环MeN 以速度 v 向上平移, 求半圆环的 和 U M U N 。
I M a
2
r
23、一线圈由半径为0.2m的1/4圆弧和两直
线组成,I=2A,放在匀强磁场中, B 0.5T
电磁学总结复习
Mmf = S = H l = N I
Material Material
a
Sa
b
Sb
a
r o Aa
b
r o Ab
0.45104 80103
1300 4 107 50106 44.1At
的端点的电动势εab。 解:B = oI / 2x
v B= vB i = voI/2x i
εab= ( v B ) dl
Bv
= v oI / 2x i dl
I
R
= v oI / 2x dx = voI l n[(l+R)/(l-R)]/2
aob
ab 方向:a b
均为a,中心相距为 d, l通过大小相等而方向相
反的电流。若忽略两导线内的磁通量,求:
(1)两直线间单位长度的自
感系数;
(2)若将直导线 分开到原
来距离的两倍,磁场对单 I
I
位长度直导线所作的功;
(3)在分开时单位长度的磁
能改变了多少 ? 是增加还
是减少 ? 为什么 ?
d
解:(1)两直线间单位长度的自感系数;
and I 181.8 45.4103 A 45.4mA 4000
Leakages and fringing of flux
leakage
fringing
图3.
Magnetic circuit Leakages and fringing
with air-gap
of flux
Some fluxes are leakage via paths a, b and c. Path d is shown to be expanded due to fringing. Thus the usable flux is less than the total flux produced, hence
电磁学复习资料
《电磁学》资料一 、填空题1、在MKSA 制中,电极化强度矢量的单位为 C.m -2 ,电场强度的量纲式为13--I LMT。
2、在MKSA 制中,磁矩单位为2m A ⋅ ,其量纲表达式为 M 0T 0L 2I 1 ;3、一电偶极子处在外电场中,其电偶极距为l q p =,其所在处的电场强度为E ,则偶极子在该处的电位能=W ;E p ⋅-,当=θ;π时,电位能最大;4、麦克斯韦对电磁场理论的两个重要假设是 涡旋电场 和 位移电流 ;5、如图(a )所示,两块无限大平板的电荷面密度分别为σ和σ2-,则I 区:E 的大小为02εσ,方向为 向右 (不考虑边缘效应); 6、在带正电的导体A 附近有一不接地的中性导体B ,则A 离B 越近,A 的电位越 低 ,B 的电位越 高 ;7、一面积为S 、间距为d 的平行板电容器,若在其中插入厚度为2d的导体板,则其电容为d S /20ε;8、无论将磁棒分成多少段,每小段仍有N 、S 两个极,这表明 无磁单极 ,按照分子环流的观点,磁现象起源于 电荷的运动(或电流) ; 9、有两个相同的线圈相互紧邻,各自自感系数均为L.现将它们串联起来,并使一个线圈在另一个线圈中产生的磁场与该线圈本身产生的磁场方向相同,设无磁漏,则系统的总自感量是 4L ;10、完整的电磁理论是麦克斯韦在总结前人工作的基础上于 19 世纪完成的,并预言了电磁波 存在。
22题图图(a ) σσ2-Ⅰ Ⅱ Ⅲ11、感应电场和感应磁场都是涡旋场,但感应电场是变化磁场以 左 旋方式形成,而感应磁场是变化电场以 右 旋方式形成。
12.动生电动势的非静电力是-洛伦兹力,感生电动势的非静电力是--涡旋电场力。
13.导体静电平衡的条件是导体内场强处处为零。
14、一半径为R 的薄金属球壳,带有电量为q ,壳内外均为真空,设无穷远处为电势零点,则球壳的电势U =R q 04/πε。
15、由一根绝缘细线围成的边长为L 的正方形线框,使它均匀带电,其电荷线密度为λ,则在正方形中心处的电场强度的大小为 0 。
电磁学复习提纲 赵凯华
E感 E q
q
dq’
O
q
q r0
d
R
E 、u
P
qr0 4 0 d
2
电荷守恒
O
q感 0
dq ' 40 R Q '感
P
感应电荷在O处的u u
40 R
0
12
⑵ 腔内任一点的 E 、u
0
B
4 r
(cos 1 cos 2 ) B
0
B
B
0 I 2a
2( R x )
0 I
2R
2
2
3 2
2
2
B
有限长的载流导线、 无限长的载流导线
载流圆环轴线上的 磁场、载流圆环圆 心处的磁场
无限大的载流平面、 及其两载流平面的 任意放置情况
21
★ 圆形螺绕环的磁场分布及无限长 螺线管的磁场分布。
平行板电容器 球形电容器 圆柱形电容器 电容器的储能公式
We 1 Q 2 C
C0
0S
d
C0
C
40 R A RB RB R A
q 20 L ln RB RA
u A uB
2
1 2
CU
2
1 2
QU
15
思考
1、若保持总电量Q不变,在电容器1中插入电介质, 则W2和U2如何变化?
0 Il 2
2
dΦ dt
r l1
0 I
2 x
b
l2 dx
l1
c
l2
高三物理电磁学知识点复习
高三物理电磁学知识点复习1.基本概念电场、电荷、点电荷、电荷量、电场力(静电力、库仑力)、电场强度、电场线、匀强电场、电势、电势差、电势能、电功、等势面、静电屏蔽、电容器、电容、电流强度、电压、电阻、电阻率、电热、电功率、热功率、纯电阻电路、非纯电阻电路、电动势、内电压、路端电压、内电阻、磁场、磁感应强度、安培力、洛伦兹力、磁感线、电磁感应现象、磁通量、感应电动势、自感现象、自感电动势、正弦交流电的周期、频率、瞬时值、最大值、有效值、感抗、容抗、电磁场、电磁波的周期、频率、波长、波速2、基本规律电量平分原理(电荷守恒)库伦定律(注意条件、比较-两个近距离的带电球体间的电场力)电场强度的三个表达式及其适用条件(定义式、点电荷电场、匀强电场)电场力做功的特点及与电势能变化的关系电容的定义式及平行板电容器的决定式部分电路欧姆定律(适用条件)电阻定律串并联电路的基本特点(总电阻;电流、电压、电功率及其分配关系)焦耳定律、电功(电功率)三个表达式的适用范围闭合电路欧姆定律基本电路的动态分析(串反并同)电场线(磁感线)的特点等量同种(异种)电荷连线及中垂线上的场强和电势的分布特点常见电场(磁场)的电场线(磁感线)形状(点电荷电场、等量同种电荷电场、等量异种电荷电场、点电荷与带电金属板间的电场、匀强电场、条形磁铁、蹄形磁铁、通电直导线、环形电流、通电螺线管)电源的三个功率(总功率、损耗功率、输出功率;电源输出功率的最大值、效率)电动机的三个功率(输入功率、损耗功率、输出功率)电阻的伏安特性曲线、电源的伏安特性曲线(图像及其应用;注意点、线、面、斜率、截距的物理意义)安培定则、左手定则、楞次定律(三条表述)、右手定则电磁感应想象的判定条件感应电动势大小的计算:法拉第电磁感应定律、导线垂直切割磁感线通电自感现象和断电自感现象正弦交流电的产生原理电阻、感抗、容抗对交变电流的作用变压器原理(变压比、变流比、功率关系、多股线圈问题、原线圈串、并联用电器问题)3、常见仪器:示波器、示波管、电流计、电流表(磁电式电流表的工作原理)、电压表、定值电阻、电阻箱、滑动变阻器、电动机、电解槽、多用电表、速度选择器、质普仪、回旋加速器、磁流体发电机、电磁流量计、日光灯、变压器、自耦变压器。
(完整版)高中物理电磁学总复习
高三物理总复习电磁学复习内容:高二物理(第十三章 电场、第十四章 恒定电流、第十五章 磁场、第十六章 电磁感应、第十七章 变交电流、第十八章 电磁场与电磁波)复习范围:第十三章~第十八章电磁学§.1 第十三章 电场1. (1)电荷守恒定律:电荷既不能创造,也不能消灭,只能从一个物体转移给另一个物体或者从物体的一部分转移到另一部分.(2)应用起电的三种方式:摩擦起电(前提是两种不同的物质发生摩擦)、感应起电(把电荷移近不带电的导体(不接触导体),使导体带电)、接触带电.注意:①电荷量e 称为元电荷电荷量C 1060.119-⨯=e ;②电子的电荷量e 和电子的质量m 的比叫做电子的比荷C/kg 1076.111⨯=em e. ③两个完全相同的带电金属小球接触时................电荷量分配规律:原带异种电荷的先中和后平分;原带同种电荷的总电荷量平分.2. 库仑定律.⑴适用对象:点电荷.注意:①带电球壳可等效点电荷. 当带电球壳均匀带电时,我们可等效在球心处有一个点电荷;球壳不均匀带电荷时,则等效点电荷就靠近电荷多的一侧.②库仑力也是电场力,它只是电场力的一种.⑵公式:221r Q Q k F ⋅=(k 为静电力常量等于229/c m N 109.9⋅⨯).3.(1)电场:只要有电荷存在,电荷周围就存在电场(电场是描述自身的物理量...........),电场的基本性质是它对放入其中的电荷有力的作用,这种力叫做电场力. (2)ⅰ. 电场强度(描述自身的物理量........): E = F / q 这个公式适用于一切电场,电场强度E 是矢量,物理学中规定电场中某点的场强方向跟正电荷在该点的电场力的方向相同,即正电荷受的电场力方向,即E 的方向为负电荷受的电场力的方向的反向. 此外F = Eq 与221r Q Q k F ⋅=不同就在于前者适用任何电场,后者只适用于点电荷.注意:①对检验电荷(可正可负)的要求:一是电荷量应当充分小;二是体积也要小. ②E = F / q 中F 是检验电荷所受电场力,q 为检验电荷的电量③凡是“描述自身的物理量”统统不能说××正此,××反比(下同).ⅱ. 点电荷的电场场强2r kQ E =对象就必须是以点电荷Q 为场源电荷的电量,因此它只适用于点电荷形成的电场.注意:若两个点电荷相距为r ,将两个点电荷移近至r 趋近于零,由2r kQ E =知,这时的E 为无穷大.(×)(这时的两个点电荷不能看作质点了,不符和2r kQ E =的适用条件)4. 电场线:电场线上每一点的切线方向与该点的场强方向一致(与电场线的走向方向相同的那一个方向). ①电场线的疏密程度表示场强的大小,电场线越密(疏)场强越大(小). ②电场线的分布情况可用实验来摸拟,而电场线都是假想的线.相等的平行直线.附:若电场线平行,但间距不等,则这样的电场不存在.[简证:假设存在,W AB = qES =U AB q ,因为E 不同(由于间距不同造成)且S 相同,所以S E U S E q q U AB AB ⋅=⇒⋅⋅=⋅]④点电荷的电场线分布是直线型(如图).⑤电场线不可能相交,也不可能闭合.(不同于磁感线)⑥电场线不是带电粒子的在电场中的运动轨迹,但可能重合.(例如:匀强电场中粒子沿电场线运动). ⑦电场线从正电荷出来终止于负电荷(包括从正电荷出发终止于无穷远处或来自无穷远终止于负电荷). ⑧等势体永远不会有电场线(如果有电场线,必定有电势降低,这与等势体矛盾).5. 静电屏敞:导体内的自由电子在外电场的作用下重新分布的现象,叫做静电感应.当导体内的自由电子不再做定向移动时,此时导体处于静电平衡.注意:处于静电平衡的导体内部场强处处为零,但导体表面的场强不为零,场强方向垂直于外表面(等势面). 6. 电势差、电势、电势能、等势面. (一) 电势差(电势差是标量).①Uq W =(电场力做功与路径无关,只和初未位置的电势差有关,q 的“十,一”一同代入计算)②电势差跟带电量q 无关,只跟电场中的两点之间的位置有关. 这表示电势差是反映电场自身的物理量............... ③电势差单位:V ,1V=1J / c ,电势差的绝对值表示的就是电压. ④Ed U =(只适用于匀强电场,d 为等势面间的距离),E 的方向是电势降低最快的方向.(二)电势(特殊的电势差,同样是标量“+,—”之分表示的是大小,B A AB U ϕϕ-=初电势减去未电势). ①零电势的选取:大地或大地相连的物体或无穷远处.注:大地不能看作电源,大地可当作导体处理. 例如:→AVAV,得A 、V 表读数相同.②电势与零电势选取有关,电势差与零电势选取无关.③电势的高低仍然由电场自身来决定→反映电场自身的物理量........... ④沿着电场线的方向,电势越来越低.⑤电势为零是人为选取的.例如电场强度为零的区域电势一定为零(×)(电场强度为零是客观的,它一般是在等势体内)注意:①电荷只在电场力作用下就一定由高电势向低电势运动.(×)(若初速度不为零,就由低电势向高电势运动)②带电粒子是在电场力作用下,可以做匀速圆周运动.③初速度为零的正、负电荷一定朝着电势能低的地方运动.(因为初速度为零,所以电荷的运动是电场力的方向,如图. 若不知初速度是否为零,则正、负电荷不一定朝着电势能低的地方运动,可能向电势能高的地方运动)④在正点电荷形成的电场中任意一点,电势总是大于零的(选了无穷远为零电势)同理在负点电荷形成的电场中任意一点,电势总是小于零的→往往就使负电荷在这个电场中的电势能大于正电荷的电势能.⑤一带电粒子在电场中只受电场力作用时,可能出现的运动状态是匀速圆周运动或是匀变速曲线运动或匀加或匀减速直线运动.(三)电势能.①q ⋅=ϕε q U ⋅=∆ε(q 的“+,—”一同代入计算,它表大小) 注:q εϕ=,J 10εA =和J 10εB -=,则A ε>B ε,这与重力势能类似.②电势能由电荷性质与电势差共同决定................. ③电场力做正功,电势能减小;电场力做负功,电势能增大.④电势能与机械能守恒的形式是:未未末初初初ϕϕq mgh mv q mgh mv ++=++222121(条件是:只受电场力和重力) 注意:放在电场中某一定点的正电荷,其电量越多,只有电势能不一定越多.例如:把电荷放在零电势上. (四)等势面.①电场线与等势面垂直(由 900cos =⇒=⋅⋅=θθs f w 得)并且电场线由高电势的等势面指向低电势的等势面. ②任意两个等势面不可能相交.③初未位置在同一等势面的电荷所受的电场力对电荷不做功.空间上则是一个球.⑤发生静电平衡的导体是等势体,等势体无电场线. ⑥等差等势面间的距离越小的地方,场强越大(如图).常用判断方法:赋值法等差等势面的分布[附]:常见的等势面分布.Ⅰ. 等量的异种电荷的等势面.l 线是等势线,且选无穷远处为零电势,则l 的电势为零. 电场强度E 是向两边递减. 电场线分布(越稀疏),放在O 点E 合为最大(与L 线上的E 合相比较,若与L '线上E 相比较,0点的电势是最小的)Ⅱ. 等量的同种电荷的等势面.l 线是电场线,l 线上的电势自O. 在O 点E 合=0. 电场强度是自O 点向两边是先增后减, 当33arccos=α时,E 合为最大.(同为负电荷,则亦一样)注:在L 线上放上负电荷,则负电荷是往负运动的;在L '线上放上正电荷,则正电荷是往负运动的.简证:令33cos (cos 1cos 2)32(212)cos 1)(cos1(cos2sin cos22322222=-=⇒⋅≤--=⇒=αααααααα当y y Ⅲ. 匀强电场的等势面.7. 电容:描述电容器容纳电荷本领的物理量.①i. 使电容器的两个极板带上等量的异种电荷的过程叫做充电,这可以用灵敏电流计观察到短暂电流充电稳定后,电路中就无电流了,但两极板的电势差就等于电源的电动势.其它形势的能转化为电场能.ii. 把充电后的极板接通电荷互相中和(电荷没有消失,只是失去了电量而已),电容器就不再带电,这个过程是放电,这可形成短暂的放电电流,电场能转化为其它形式的能.共同判断方法可简记为充电时,电流从电源正极流向电容器正极板(负极同理). 放电时,则电流从电源正极流向电容器负极板(负极同理).②kd S C U Q U Q C πε4,⋅=∆∆==(k 为静电力常量,ε为介电常数空气的介电常数最小,S 为正对面积)电容是电容器本身........的性质...,这与电势差、场强是相同道理. 例如:C-U 图像应为图1,而不是UQ C ∆∆=得图2 注:在一个电容器充电稳定后,若突然使极板间距离减小,则极板电势大于 电动势(C↓U 不变→Q↓→电荷返回电源→必有电势差→ϕ极板>ϕ电动势). ③电容是标量,单位是法拉简称法符号F. pF 10μF 101F 126==④静电计是检验电势差的,电势差越大,静电计的偏角越大,那么电容就越小(假设Q 不变). 验电器是检验物体是否带电,原理是库仑定律.⑤ⅰ. 容器保持与电源连接,则U 不变.U kdSCU Q πε4==→d 增加,Q 减小(减小的Q 返回电源);d 减小,Q 增加(继续充电).注:插入原为L 且与极板同面积的金属板A (如图). 由于静电平衡A 极内场强为零→相当于平行板电容器两极板缩短L 距离,故C 是增加(ε是空气为最小,故也是增加的)同时dU E =同样E 是增加的.ⅱ. 电容器充电后与电源断开,则Q 不变dUE =→d 增加,E 减小;d 减小,E 增大. SkdQ d U E ⋅==επ4→无论d 怎样变化,E 恒定不变.注:仅插入原为L 且与两极板面积相同的金属板A ,则同样是d 减小c 增大,U 减小,E 同样不变. ⑥电容器的击穿电压和工作电压:击穿电压是电容器的极限电压.额定电压是电容器最大工作电压.αEEE++d dE 合COS αsin kQd 2α=28.带电粒子在电场中的运动.(一)加速电场(设q 的初速为零).mqU U qU mv 2212=⇒=注:不考虑重力的有电子,质子H 11,β粒子,α粒子(He 42);考虑重力的有宏观带电粒子(如带电小球,带电液滴). (二)偏转电场(既使粒子发生偏转同时也被加速). 偏转量dmv qUL y 2022=偏转角Lymdv qUL 2tan 20==θ推论:①荷质比相同的粒子以相同的初速度,以相同的方式进入同一电场,则偏转量和偏转角相同 ②动能相同的带电粒子,电量相同时,以相同方式进入同一电场,偏转量偏转角相同(荷质比相同) ③动量相同的粒子,电量与质量乘积相同时,以相同方式进入同一电场偏转量偏转角相同(荷质比相同) (三)加速电场与偏转电场综合.①dU LU y 1224=(由dm q U m Eq a m qU Lt at y 212,2,21====得),则d U L U y 1224=叫示波器的灵敏度.②带同种电荷,但电荷量不同的n 个带电粒子由静止先经过加速电场,然后经过偏转电场,则这n 个粒子的轨迹是一样的(简证:dU L U qU m L md qU y m qU v 122122114221,2=⋅⋅==与电荷量无关).§.2 第十四章 恒定电流1. (一)电源、电流、电阻.电荷的定向移动形成电流,正电荷定向移动的方向为电流方向(电流强度是标量)电源的正极电势高,负极的电势低.因此电源的电压叫做电动势.电动势E (标量)是由电源本身性质决定........的,表示电源把其它形式的能转化电能本领大小的物理量.若是理想电源即内阻为零E=U 内+U 路.①在外电路中电流是从高电势流向低电势.②在内电路中,电流是从低电势(负极)流向高电势(正极)③tqI =(与通过导体横截面积的大小无关),I=nqSv (S 横截面积,v 定向移动速率,n 单位体积的自由电荷个数) 注: 1自由电子定向移动的速率<自由电子热运动的平均速率<电流速率.2如果正、负两种电荷往相反方向定向通过横截面积而形成电流,这时对应q 为两种电荷的电荷量之和(负电荷等效反方向过来的正电荷)若是同种电荷,则是电荷量之差④欧姆定律:RU I =适用对象:金属,电解质溶液(对气态导体和半导体不适用)或者是伏安特性曲是直线即纯电阻.⑤电阻定律:SL R ⋅=ρ,R .是反映自身的物理量.........,ρ是反映材料导电性能的物理量,称为材料电阻率.纯金属的电阻率小,而合金的电阻率大.各种材料的电阻率都是随温度变化,有的随温度增高而增大.有的随温度增高而减小,而有的随温度增高而不变化. 例如:在灯泡(“220,100W”)工作时电阻为484Ω,则不工作时的电阻是小于484Ω(随工作而升高的温度使R 变大).附:①半导体材料的导电性受温度、光照、掺入微量杂质影响.②大多数金属在温度降到某一数值时,都会出现电阻突然为的现象,这个现象叫做超导,共温度称为超导转变温度(或临界温度)零.③rR E I +=(只适用于纯电阻电路)④EI= U 路I+ U 内I,,U 路I 叫做外电路的消耗功率或者电源输出功率, U 内I 叫做内电路的发热功率.U 路=E —Ir (适用于一切电路),EI 叫做电源功率或者电路总功率.注:①当电源两端短路时,R 外=0,此时路端电压为零. ②路端电压与电流的图象: (二)电功和电功率.dAL +++++(短路电流)闭合电路的欧姆定律图象部分欧姆定律图象电功率单位:瓦特w, 电功单位:J 常用单位:kwh 千瓦时又称“度“1kwh = 3.6×610J ①W=UIt(适用于一切电路) t RU Rt I W 22==(适用于纯电阻电路)②UI tWP ==(适用于一切电路) RU R I P 22==(只适用于纯电阻电路)③焦耳定律:Rt I Q 2=(适用于一切电路) W 总=RtI t RURt I 222==(只适用于纯电阻电路电功等于电热)W 总=W 机+W 热=UIt=+Rt I 2W 机=UIt (适用于非纯电阻电路)④热功率P=R I 2(适用于一切电路) P=UI=P 热+P 机=R I 2+P 机(适用于非纯电阻电路) 注:①电动机在正常工作的情况下,W 总=W 机+W 热 而在电动机被卡住的情况下,W 总= W 热等效于纯电阻电路,电动机在因电压不足而不能转时,也同样可等效纯电阻电路,亦可用欧姆定律.②在纯电路电路中,电路上消耗的总功率等于各个电阻上消耗的功率之和(无论是串联,还是并联).③电源输出功率曲线: 1当R 外= r 时,此时电源输出功率为最大.简证:P 输=⇒+'+='+RR r EI ),R (R I 2P 输2rRR rR R E )R (R R)R (r E 2222++'++'='++'+=有最大值,则R '+R = r .2滑动变阻器的最大功率的条件同样是R+r =R '时,这时采用R 与r 等效为一个新的电源内阻.简证:P 滑=22r)(2R E 2r 2R R r)(R R E R )rR R E(R I 22222⋅+≤++'++'='++'='⋅(当r R R +='时取等) ④关于并联电路的最大电阻电路问题. 推导:22111212121R R R R R R R R ≤⇒≥+=当R 1 = R 2, R 有最大值.⑤处于开路的用电器相当于一根导线(如图). (R 1相当于一根导线)⑥串联,并联,混联特点是:其中任何一个阻值增大,则总电阻增大.2.(一)电流表的改装. ①电流表G 改装电压表V. ②电流表G 改装电流表A.(“量程”指通过电流表、电压表的满偏电流、满偏电压、电流表、电压表本身就是用电器) (二)伏安法测电阻.①伏安法测电阻原理:部份电路的欧姆定律. ②伏安法测电阻的两种接法.电流表外接法:在电压表的内阻远远大于R 时,使用(此时I 0≈0). 电流表内接法:在电流表的内阻远远小于R 时,使用(此时V 0≈0).附:如果不知道Rx ,Rv ,RA 的阻值,可用试触法,即通过不同的电表连接方式的电路,看电压表电流变化情况.如果电流表变化明显,说明电压表内阻对电路影响大,应选用电流表内接法同理,若电压表变化明显选用电流表外接法(简记为电流内接,→电流表变化大.电压外接→电压表变化大).→用百分比来判断变化大小. 例如:用内接法,A 表为1mA,V 为2V ;用外接法,A 表为2mA ,V 表为3V ,则A ϕ=(2-1)/2>V ϕ=(3-2)/3,故A 表变化大,选内接法.§.3 第十五章 磁场1. 磁场、磁感线.(1)磁场的产生. 磁极磁场磁极; 磁极磁场电流;电流磁场电流.(2)磁场的作用:①磁场法对放入其中的磁极有力的作用(同各磁极互相排斥,异各磁极互相吸引). ②磁场对放入其中的通电导线亦有力的作用,相向电流,相互吸引,异向电流互相排斥. (3)磁场的方向性,在磁场中的任一点,小磁针北极受力的方向.......,亦即小磁针静止时北极所指的方向..........,就是那一点的磁场方向(两处有着重点符号文字等价).(4)磁感线:假想的一族曲线,在磁体外部从北极出发同到南极在内部从南极到北极→闭合的曲线(电场线是非R1→→滑动变阻器的阻值III 与I 相同R ,另一部份电阻处于短路状态闭合曲线,其相同点都是不相交的曲线). 但是磁感线从磁体N 极出发,终止于磁体S 极是错误的,那是因为磁感线是回到S 极. 此外,通电螺线管内部的磁场是匀强磁场. 注:①磁感线走势的方向上的切线方向为磁场方向. 特别的,在磁场内部(如图) 则不能等效小磁针了.②磁感线虽然是假想的线但可用实验摸拟. ③磁感线的疏密表磁场或磁感应强度的大小.(5)地磁场:地球本身就是一个磁场,是地球北极是地磁场的南极,地球南极是地磁场的北极,两极的磁感线是垂直地球两极. 在赤道,磁感线是与地球表面平行的. 2. 安培力、洛伦磁力.(1)①安培力:通电导线在磁场中受到磁场对它的安培力.②F 安=IBL (L 为有效长度,如图有效长度,L 平行于B 时,F 安为0,L 垂直于B 时,F 安为最大). 注:用B = F/IL 来测量B=F 安/IL,非匀强磁场时需要L 足够短. ③B 叫磁感应强度,是描述磁场自身的物理量..........T. ④磁感应强度的方向某点磁场的方向为该点磁感应强度的方向(B 为矢量).⑤安培力的方向总是垂直于磁感线和通电导线所在的平面.注:一小段通电导体放在磁场中A 处受磁场力比放在B 处大,则A 处磁感应强度比B 处磁感应强度大.(×)[不知放入方式,即F 安=BIL 中L 是有效长度不知. 又如同一通电导体在a 、b 受力情 况,不能判断](2)①洛伦磁力:磁场对运动电荷....能够有洛伦磁力. ②F 洛 = qvB(v 为有效速度,如图有效速度,v 0平行于B 时,F 洛 = 0,v 0垂直于 B 时,F 洛为最大)③F 洛与v 有瞬时对应关系,即v 瞬对应瞬时洛伦磁力.④洛伦磁力对运动电荷不做功(f 洛垂直于v 与B 确定的平面,故f⊥v 由微元法知W f =0)⑤安培力不同于洛伦磁力,安培力可以做功. (若电荷沿等势面移动,安培力不做功) 注: F 洛 = qVB 可由F 安 = (nqSv)LB 是nLS 个运动电荷所受的合力.3. ⑴电荷在洛伦磁力作用下的圆周运动:qVB = mv 2/ r Bq mv r =→,而qB2r v 2r T ππ==. 由此可见,荷质比相同的粒子以相同速度进入同一磁场,其轨道半径相同;带电量相同的粒子以相同的动量进入同一磁场,其轨道半径相同,荷质比相同的粒子,进入同一磁场,其周期相同.注:①电场或磁场都会使运动带电粒子发生偏转.②利用质谱仪对某种元素进行测量,可以准确测出各种同位素的原子量.⑵带电粒子的初速度v 0与B 成θ角进入磁场:粒子做螺旋运动,将粒子的速度v 0分解为两个方向,一个与B 垂直分量0v v =⊥θsin ,另一个与B 平行的分量θcos 011v v =,粒子由于v 0而做匀速圆周运动,其轨道半径为θsin 0Bqmv R =另一方面,v 11在其方向上做匀速直线运动,这样的合运动就叫做螺旋运动,其螺距(粒子运转一周前进的距离)θπcos 20Bqmv S =.附:推导Bqm v S πθ2cos =附:(1)推导qBd P =∆由f=qBV 得∑∑==∆=∆ni i i ni t qvB t f 11∑∑==∆==∆=∆⇒ni ni i i P qBd P t f 11注意:①P ∆与d 必须垂直. ②在P ∆方向除有络伦磁力(或络伦磁力分力)外不能在有其他力或者其它力的合力为零. (2)应用举例.如图所示,一质量为m ,带电量为q 的带电粒子(重力不能忽略),以速度V 0从上竖直进入一宽度为d 的匀强磁场区域中,磁感应强度为B ,试求粒子飞出磁场的方向?很明显,在X 方向除洛仑磁力外无其他力的作用,所以θcos mv P x =∆qBd =,而粒子在下落过程中只有重力作功,所以有2020222121v gd v mgd mv mv +=⇒=-代入上式则得有效长度BBBS202cos vgd m qBd +=θ.⑷电荷在电场和磁场中运动—速度选择器.→=⇒=BEv qE B qv 00即满足V 0的粒子到达右端,值得一提的是,若粒子从右端射入,由于V 的方向与从左端射入v的方向发生了变化,则还需将电压变化.§4. 第十六章 电磁感应 1. 磁通量、电磁感应、感应电流. (1)磁通量:Φ= BS (B 为匀强磁场,S 为有效面积) ①Φ是标量,但有正负(不表大小)“+”表示给定的一个平面来讲,是穿入(穿出)比如穿过某面的磁通量是Φ,将面转过180°穿过该面的磁通量为Φ-②磁通量单位是韦,单位Wb.③初未Φ-Φ=∆Φ特别地当磁感应强度反向时:Φ-=Φ-Φ-=∆Φ2. ④产生感应电流图象:(互余关系)(2)感应电流.产生感应电流的条件是:一是电路闭合,二是穿过闭合电路的磁通量有变化.(3)法拉第电磁感应定律:E = n t∆∆Φ或E=BLv (L 为有效长度—垂直于磁场的长度,v为有效速度—垂直于磁场的切割速度→可归纳为“三垂线”- B 、L 、v 三者相互垂直) 附:ⅰ两种常见的有效长度.ⅱ回路构造法:可将A 、B 两端用直线相连,构成闭合回路,该闭合回路没有感生电流,说明直线AB 上的感应电动势与弧B A 上的感应电动势大小相等,方向相反而抵消,所以弧B A上的感应电动势就等于AB 线上的感应电动势,AB线长就是B A弧长的等效长度,所以对这样一类非直线导体,它的等效长度可用“回路构造”法,与安培力中等效长度用“回路构造法”类似.①对于上式,常用E = nt∆∆Φ,计算一般时间E 感的平均值,而E=BLV 常用于计算瞬时电动势. ②产生感应电动势不同于感应电流,其电路是否闭合对是否产生感应电动势没有影响. ③两种切割公式:(一)平动切割BLV E 感=.(二)转动切割中v BL w L 21BL E ⋅=⋅⋅=.SL S 21=扇 ∆Φ=22121BL B L L BS ⋅=⋅⋅⋅=∆θθ中v BL L 21BL E θΔt ⋅=⋅⋅=⇒=ωω④RQ ∆Φ=适用于电流没有反向的前提下.⑤若线框在磁场中运动,由于Φ没有变化,则不产生感应电动势,也无电流,但是当视AD 、BC 为导体做切割磁感线运动,则有A ϕ>D ϕ,B ϕ>C ϕ只是加起来就为零而已.(4)楞次定律:感应电流产生的磁场总是要阻碍引起感应应电流的磁通量的变化,可归纳为Φ是增加的,B 感与B 原反向;Φ是减小的,B 感与B 原同向.注意:①当闭合回路的部分导体做切割磁感线的运动时,一定产生感应电流.(×)[例如:线框上下平动,总之,磁通量是否发生变化是判断是否产生感应电流的充要条件]②I 感的方向是内电路的方向→常用判断感应电动势的正负极,但要得注意的是电源内部的电势高低,是由低电势(负极)流向高电势(正极).OA AB 为弧AB的有效长度AB 为弧AB的有效长度+v 0③整个闭合回路在磁场中出来时,闭合电路中一定产生电磁感应电流.(×)[线框在磁场中与磁感线平行时] 2. 自感.(1)自感现象属于电磁感应现象,它是由于通电线圈中自身电流变化而引起的电磁感应现象. (2)作用:阻碍原电流的增加,起延迟时间的作用(3)I 自的方向:原I 是增加的,自I 的方向与原I 相反;原I 是减小的,自I 的方向与原I 方向相同(4)ΔtΔI L ΔtΔΦn E 原自⋅=⋅=(L 为自感系数,描述线圈产生自感电动势大小本领的物理量其单位为享,用H 表示μH 10mH 101H 63==,它的大小是由线圈本身决定.......) 注:决定自感系数的因数-线圈的自感系数是由线圈本身决定的,与通不通电流,电流的大小无关.线圈的横截面积越大,线圈越长,匝数越密,它的自感系数就越大.实际上它与线圈上单位长度的匝数n 成正比,与线圈的体积成正比.除此外,线圈内有无铁芯起相当大的作用,有铁芯比没有铁芯,自感系数要大得多.附:至于灯泡中的电流是突然变大还是变小(也就是说灯泡是否突然变得更亮一下),就取决于2I 与1I 谁大谁小,也就是取决于R 和r 谁大谁小的问题:如果R >r ,灯泡会先更亮一下才熄灭;如果R = r ,灯泡会由原亮度渐渐熄灭;如果R <r ,灯泡会先立即暗一些,然后渐渐熄灭.〈当R >r ,则I 1<I 2 当S 断开,则灯泡的电流为I 2 RI R I P 2122 ⋅=变亮;当R = r ,则I 1=I 2,当S 断开,则灯泡电流为I 1,保持原亮;当R <r ,则I 1>I 2,当S 断开,则灯泡电流为I 2,变暗.〉可见灯泡的这种瞬间变化,取决于灯泡电阻R 与线圈直流电阻r ,而不是线圈的自感系数,线圈的自感系数决定了这种缓慢熄灭持续的时间,L 越大,持续的时间越长. 自感总是阻碍原电流的变化,即尽可能的维持原电流的大小,但是最后灯泡还是要熄灭.(5)线圈L 的3种等效状态1°通电瞬间相当于一个无穷大的电阻 2°通电稳定时,相当于一根导线3°断电时,相当于一个电源(6)自感的防止:用双线绕法——产生反向电流,使磁场相互抵消. 3. 日光灯. (1)电路图.(2)起动器和镇流器作用:①起动器实际上就是一个自动开关,一通一断,使通过镇流器的电流急剧变化,如果一直接通,则不能使水银导电. ②镇流器在日光灯起动时提供瞬时高压,而在日光灯正常工作时起降压限流的作用. §5. 第十七章 交变电流 1. 直流电,交流电 (1)直流电(DC ):电流方向不随时间变化的电流. (2)交流电(AC ):电流方向随时间变化的电流.2. 发电机原理:电磁感应原理E = nBS ωSin ωt (从与中性面垂直的时刻开始计时)若是从与中性面垂直位置开始计时,则t nBS ωBSωE ω=.附:1°中性面(B⊥S 的位置)有Φ为max 等于BS ;E=0V ;每经过一次中性面,电流改变一次,对于一个周期,则电流改变两次.2°S 与中性面垂直有0=Φ,E=BS ω,t∆∆Φ为max. (→=Φt BS ωωcos 不乘以→=t nBS E n ωωsin ,乘以n )3. 表征交变电流的物理量:最大值、有效值、平均值—根据电流热效应的定义,相同电阻,相等时间,产生相等的热量;I 、V 表就是该交流电的有效值,铭牌A 、V 表读数都是有效值,一般来说,最大值E=NBS ω;而平均值,则是E = nt∆∆Φ,当计算通过导体的电量时,用平均值. 注:对于正弦或余弦交流电有如下关系:2Imax I 有效=,2Umax/U 有效=.4. 变压器、改变交流电压的设备.原线圈副线圈输出输入。
高考物理电磁学复习方法掌握电磁学的基本理论和应用
高考物理电磁学复习方法掌握电磁学的基本理论和应用高考物理电磁学复习方法电磁学作为物理学中的重要分支,是高中物理课程中难度较大且内容较多的部分之一。
对于即将参加高考的学生来说,掌握电磁学的基本理论和应用是非常重要的。
本文将介绍一些复习电磁学的有效方法,帮助学生在高考中取得好成绩。
一、理清基本概念复习物理电磁学的第一步是理清基本概念。
电磁学的基本概念包括电场、磁场、电流等。
学生应该对这些概念有清晰的认识,并能够准确地描述它们之间的相互作用关系。
可以通过阅读教材、参考书籍以及查找相关的学习资料来加深对这些概念的理解。
二、重点掌握公式和定律电磁学有很多重要的公式和定律,学生在复习过程中应该重点掌握这些公式和定律。
例如,库仑定律、安培环路定理、法拉第电磁感应定律等。
这些公式和定律是解决电磁学问题的基础,掌握它们可以帮助学生更好地应对高考中的电磁学题目。
三、积累解题经验在复习电磁学的过程中,学生应该积累解题的经验。
可以通过做大量的电磁学习题来提高解题能力。
选择一些经典题目进行反复练习,分析解题思路,找出解题的关键点。
同时,还可以参加一些模拟考试,熟悉高考的考题形式和要求,适应考试的节奏,提高解题速度和准确性。
四、理论与实践的结合电磁学是一门理论和实践相结合的学科,学生在复习过程中应该注重理论知识与实际问题的结合。
可以通过分析和解决一些实际问题来加深对电磁学的理解。
例如,可以以电路为例,通过分析电路中电流、电压和电阻的关系,来掌握电磁学的基本原理。
五、多种学习资源的利用在复习电磁学的过程中,学生应该充分利用各种学习资源来提高学习效果。
可以参考多种教材和参考书籍,利用互联网上的学习资源进行学习。
还可以选择参加一些电磁学专题讲座和培训班,借助老师的指导和交流来提高学习水平。
六、合理安排时间复习电磁学需要一定的时间和精力,学生应该合理安排学习时间。
可以制定一个详细的学习计划,按照计划进行学习和复习。
合理安排时间可以避免学习上的压力过大,同时也可以提高学习效果。
高中物理电磁学重点知识复习
高中物理电磁学重点知识复习在高中物理学中,电磁学是一个重要的知识领域。
通过对电磁学的复习,我们可以更好地理解电磁场、电路、电磁感应等相关概念,为我们的学习打下坚实的基础。
下面将重点回顾高中物理电磁学的一些核心知识。
首先,我们需要了解电荷和电场之间的关系。
电荷是物质的基本属性之一,它分为正电荷和负电荷。
而电场则是电荷周围的力场,描述了电荷之间的相互作用。
根据库仑定律,两个点电荷之间的电场力与它们之间的距离平方成反比。
这一定律对于理解电荷间的作用力非常重要。
其次,电流和电路是电磁学中的另一个重要内容。
电流是电荷在导体中流动形成的现象,它包括直流和交流两种形式。
在电路中,电流沿着闭合回路流动,我们需要掌握欧姆定律和基本电路的分析方法,如串联、并联等。
另外,电磁感应也是电磁学的核心内容之一。
法拉第电磁感应定律指出,一个导体中的磁感应强度发生变化时,将在导体两端产生感应电动势。
此外,我们还需要了解自感和互感的概念,这对于电磁场的研究和应用至关重要。
此外,我们还需要重点复习电磁波和光学知识。
电磁波是在电磁场中传播的波动现象,包括射线、微波、激光等。
在光学领域,我们需要了解光的折射、反射、色散等现象,以及光的波粒二象性等基本概念。
总的来说,高中物理电磁学的重点知识包括电荷与电场、电流与电路、电磁感应、电磁波和光学等内容。
通过系统复习这些知识,我们可以更好地理解电磁学的基本原理和应用,为今后的学习和科研打下坚实的基础。
希望同学们能够认真对待这一部分知识,取得优异的成绩。
总复习课-电磁学-大学物理第三版公开课获奖课件百校联赛一等奖课件
电流元在轴线上产 生旳磁感应强度 dB
y
为:
dB 0 I dl sin 900
Idl
er
r
dB
4 r2
dl
er
I Ro
xP
x
dB
0Idl 4r 2
将dB 沿 x 轴和 y 轴分解。 Idl
由对称性可知,dl 和 dl’ 在 P 点产生旳 dB 在 x 方
dB
0 4
Idl sin
r2
3)求B:
Bx dBx
By dBy
B Bxi By j Bzk
Bz dBz
(5)有限长直导线
(6)无限长直导线 (7)圆电流圆心处
B
0I 4a
cos1
cos
2
B 0I
2 a
B 0I
2R
(8)安培环路定 理及其应用
B dl 0 Iint
R1
R2
Q
dr
Q
ln R2
R12 rl0
2 l0 R1
C
Q U
2
ln
l 0
R2
R1
3.球形电容器 已知R1 ,R2 ,0
球对称:E 4 r2
qi
0
R2
U E dl R1 Edr
Q
E 40 r2
R2 Q
R1 40
dr r2
Q
4 0
1 R1
1 R2
Q
-Q
C
Q U
4 0
R1R2 R2 R1
解:球对称
1、球体内(r<R)
r
球内作高斯面S,
qi
V
高中物理电磁学总复习第一章电场一、电荷1.丝绸摩擦过的玻璃棒带....
本文档由YY198308收集整理。
高中物理电磁学总复习第一章 电场一、电荷1. 丝绸摩擦过的玻璃棒带正电荷(丝绸带负电)毛皮摩擦过的硬橡胶棒带负电荷(毛皮带正电)2. 同种电荷互相排斥,异种电荷互相吸引。
3. 电荷的多少叫电荷量,单位:库仑,符号C4. 元电荷C e 19106.1-⨯=是最小电荷量,它不是电子或质子5. 使物体带电的方式:摩擦起电:实质是电子转移接触起电(注意电量重新分配的原则);感应起电(a 靠近的一端感应异种电荷 b 先拿走,再分开,不带电;先分开再拿走,带电)*三种方式都是电子的得失和转移。
6. 电荷守恒定律:二、库仑定律(研究电荷之间的相互作用力) 122kQ Q F r = 适用条件:点电荷。
(注意:点电荷不存在,是理想化模型,这是建立物理模型的方法) (k 静电力常量,等于229/100.9c m N ⋅⨯, Q1和Q2表示两个点电荷的电荷量, r 表示两个点电荷之间的距离,F 表示两个点电荷之间的相互作用力。
作用力的方向在再电荷的连线上。
)三、电场1. 电荷周围存在电场,电场最基本的性质是对放入其中的电荷有力的作用。
这种力叫做电场力.电场是客观存在的物质。
2. 电场强度:qE E =(定义式),q 为检验电荷电量,F 为检验电荷受到的电场力。
E 由电场本身性质决定,与F 和q 无关,电场中同一点,E 是定值。
F 与q 成正比。
方向与正电荷所受电场力方向相同,与负电荷受力方向相反。
3. 点电荷电场的场强:由电场强度的定义和库仑定律可以得出点电荷的场强公式.E =KQ/r2 Q 表示产生电场的点电荷电荷量,r 表示距离Q 的位置。
4. 电场强度时矢量。
5. 电场线特点: a 每一点的切线方向表示该点场强方向b 从正电荷(或无穷远)出发,到负电荷(或无穷远)终止c 密处场强大,疏处场强小d 不相交,不闭合匀强电场的电场强度处处大小相等,方向相同,电场线是一簇平行且等间距的直线,存在于平行板电容器之间,螺线管内部,两个靠近的异名磁极之间。
电磁学复习总结(知识点)
电磁学复习总结(知识点)电磁学复总结(知识点)知识点1: 电荷和电场- 电荷是基本粒子的属性,可能为正电荷或负电荷。
- 电场是由电荷产生的力场,它描述了在某一点周围的电荷受到的力。
知识点2: 高斯定律- 高斯定律是电磁学中的重要定律,描述了电场通过一个封闭曲面的总通量与该曲面内的电荷之间的关系。
知识点3: 电势和电势能- 电势是电场在某一点的势能大小,与正电荷的势能增加和负电荷的势能减少相关。
- 电势能是电荷在电场中具有的能量,可以通过电势差来计算。
知识点4: 静电场中的电场分布- 静电场中的电场分布可通过库仑定律计算。
- 静电场中的电场线是指示电场方向的线条,其切线方向为电场的方向。
知识点5: 电容和电- 电容是描述电储存电荷能力的物理量。
- 电是由两个导体之间存在的绝缘介质隔开的装置,用于储存电荷。
知识点6: 电流和电阻- 电流是电荷在单位时间内通过导体横截面的数量。
- 电阻是导体对电流的阻碍程度,可通过欧姆定律计算。
知识点7: 磁场和磁感应强度- 磁场是由电流产生的力场,描述了电流受到的力。
- 磁感应强度是描述磁场强度的物理量,可通过安培定律计算。
知识点8: 磁场中的磁场分布- 磁场中的磁力线是指示磁场方向的线条,其切线方向为磁场的方向。
- 安培环路定律描述了磁场中磁场强度沿闭合路径的总和为零。
知识点9: 电磁感应和法拉第定律- 电磁感应是指磁场与闭合线圈之间产生的感应电动势。
- 法拉第定律描述了感应电动势与磁场变化速率和线圈导线的关系。
知识点10: 自感和互感- 自感是指电流变化时产生的感应电动势。
- 互感是指两个线圈之间产生的相互感应电势。
知识点11: 交流电路和交流电源- 交流电路是指电流方向和大小周期性变化的电路。
- 交流电源是产生交流电的电源,如发电机。
知识点12: 电磁波- 电磁波是由振动的电场和磁场沿空间传播的波动现象。
- 电磁波根据波长可分为不同的频段,如无线电波、微波、可见光等。
高二物理总结电磁学部分复习重点
高二物理总结电磁学部分复习重点在高二物理学习中,电磁学是一个非常重要的部分。
电磁学是研究电和磁现象以及它们之间的关系的学科,广泛应用于现代科学和技术领域。
在本篇文章中,我将为大家总结高二物理电磁学部分的复习重点。
一、电场1. 电荷与电场:电荷是电场的源,电场是电荷周围存在的物理场。
电场的性质由电荷的性质决定。
电场强度E的大小受电荷量和距离的影响,可以用库仑定律计算。
2. 电势与电势差:电势是描述电场性质的物理量,单位为伏特。
电势差等于单位正电荷从一个点移到另一个点所做的功。
电势差和电势之间存在着反比关系。
3. 电场的叠加原理:当存在多个电荷时,每个电荷产生的电场通过矢量加法叠加,得到最终的电场。
二、磁场1. 磁场的基本特性:磁场是磁性物体周围存在的物理场。
磁感应强度B是描述磁场性质的物理量,单位为特斯拉。
2. 磁场中力的作用:磁场中的带电粒子受到洛伦兹力的作用。
洛伦兹力的大小与带电粒子的电荷量、速度以及磁感应强度之间的关系。
3. 电流作用的磁场:通过导线的电流产生磁场,根据安培法则,电流方向与产生的磁场方向之间存在着右手螺旋定则。
三、电磁感应1. 电磁感应现象:当磁场发生变化时,穿过回路的磁通量的变化会引起感应电动势和感应电流的产生。
根据法拉第电磁感应定律,感应电动势的大小与磁通量变化率成正比。
2. 感应电动势和感应电流的产生:感应电动势和感应电流的产生可以通过导线圈匀速转动、导线与磁场的相对运动等方式实现。
3. 磁场对导线的力:当导线通过磁场时,导线中会产生感应电流,根据洛伦兹力的作用,导线会受到力的作用。
四、电磁波1. 电磁波的基本性质:电磁波是由振荡的电场和磁场组成的,具有传播性和幅度、频率、波长等特征。
2. 电磁波的分类:根据波长的不同,电磁波可以分为射线、紫外线、可见光、红外线、微波、无线电波等。
3. 光的反射与折射:光在界面上发生反射和折射。
光的反射定律描述了光的入射角和反射角之间的关系,光的折射定律描述了光的入射角和折射角以及介质折射率之间的关系。
电磁学复习资料
《电磁学》资料一 、填空题1、在MKSA 制中,电极化强度矢量的单位为 ,电场强度的量纲式为13--I LMT 。
2、在MKSA 制中,磁矩单位为2m A ⋅ ,其量纲表达式为 M 0T 0L 2I 1 ; 3、一电偶极子处在外电场中,其电偶极距为l q p ρρ=,其所在处的电场强度为E ρ,则偶极子在该处的电位能=W ;E p ρρ⋅-,当=θ;π时,电位能最大;4、麦克斯韦对电磁场理论的两个重要假设是 涡旋电场 和 位移电流 ;5、如图(a )所示,两块无限大平板的电荷面密度分别为σ和σ2-,则I 区:E 的大小为02εσ,方向为 向右 (不考虑边缘效应); 6、在带正电的导体A 附近有一不接地的中性导体B ,则A 离B 越近,A 的电位越 低 ,B 的电位越 高 ;7、一面积为S 、间距为d 的平行板电容器,若在其中插入厚度为2d的导体板,则其电容为d S /20ε;8、无论将磁棒分成多少段,每小段仍有N 、S 两个极,这表明 无磁单极 ,按照分子环流的观点,磁现象起源于 电荷的运动(或电流) ;9、有两个相同的线圈相互紧邻,各自自感系数均为L.现将它们串联起来,并使一个线圈在另一个线圈中产生的磁场与该线圈本身产生的磁场方向相同,设无磁漏,则系统的总自感量是 4L ;10、完整的电磁理论是麦克斯韦在总结前人工作的基础上于 19 世纪完成的,并预言 了 电磁波 存在。
22题图11、感应电场和感应磁场都是涡旋场,但感应电场是变化磁场以 左 旋方式形成,而感应磁场是变化电场以 右 旋方式形成。
12.动生电动势的非静电力是-洛伦兹力,感生电动势的非静电力是--涡旋电场力。
13.导体静电平衡的条件是导体内场强处处为零。
14、一半径为R 的薄金属球壳,带有电量为q ,壳内外均为真空,设无穷远处为电势零点,则球壳的电势U =R q 04/πε。
15、由一根绝缘细线围成的边长为L 的正方形线框,使它均匀带电,其电荷线密度为λ,则在正方形中心处的电场强度的大小为 0 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
B
A
A
E
A
A
[9] 有一点电荷q 及金属导体A,且A处于静电平衡状态。 下列说法正确的是:
A、导体内E = 0,q 不在导体内产生电场。 B、导体内E≠0, q 在导体内产生电场。 C、导体内E = 0,q 在导体内产生电场。 D、导体内E≠0, q 不在导体内产生电场。
[10] 在带电量为3C的导体空腔A内,放入两个带电量分别为 2C和-1C的导体B和C。则A、B两导体电势间的关系为:
A、U A UB C、U A UB
B、U A UB D、 无 法 判 定
•C
B• A
[11]两大小不相等的金属球,大球的半径是小球半径的2倍, 小球带电量为+Q,大球不带电。今用导线将两球相连, 则有:
A、两球带电量相等。B、小球带电量是大球的的两倍。 C、两球电势相等。 D、大球电势是小球的两倍。
次定律(反抗性);(2)固有属性:
C , , , L, M, v 1 , c 1 .
00
1 CU 2 , 1 E 2 , 1 H 2 , 1 LI 2 ,
2
2
2
2
S1 2
E
2 m
1 2
H
2 m
.
1 2 M12I1I2 ,
对比:
1 mv 2 , 1 I 2 , 1 kx2 , 1 kA2 ,
22、磁介质有三种,用相对磁导率μr 表征它们各自的特性时,
A)顺磁质 μr > 0,抗磁质 μr < 0, 铁磁质μr > >1。
B)顺磁质 μr > 1,抗磁质 μr = 1, 铁磁质μr > >1。
C)顺磁质 μr > 1,抗磁质 μr < 1, 铁磁质μr > >1。
D)顺磁质 μr > 0,抗磁质 μr < 0, 铁磁质μr > 1。
I B
感面的.磁强则力度矩线为为圈B_的的_12_磁均__矩I匀(_R.为磁22 _场12_R_12中_I)(B_R_,22 平R行12 )
线圈所在平 ;线圈受到
a b R1c
d
29、两点电荷在真空中相距为 r1 时相互作用力等于它们在某一 “无限大”各向同性均匀电介质中相距为 r2 时的相互作用力,
p
• q0
D)F/q0 比P点处场强数值关系无法确定。
5、边长为a 的等边三角形的三个顶点上,放置着三个正的点电荷,
电量分别为q,2q,3q ,若将另一个正电荷Q从无穷远处移到三角
形的中心O处,外力所作的功为:
q
2 3qQ A)
4 0a
4 3qQ B)
4 0a
ao a •
6 3qQ C)
4 0a
8 3qQ D)
C)感应电场的电力线不是闭合曲线.
D)在感应电场中不能像对静电场那样引入电势的概念.
20.一电子以
v速度垂直进入磁感应强度为
B
的均匀磁场中,
此电子在磁场中运动轨道所围的面积内的磁通量将
(A)正比于B,反比于v2 (B) 反比于B,正比于v2 (C)正比于B,反比于v (D)反比于B,反比于v
v2 qvB m
(B)在电场中,电势为零的点,场强必为零。
(C)在电势不变的空间,场强必为零。
(D)在场强不变的空间,电势必为零。
[C ]
8、一个带负电荷的质点,在电场力作用下从A点运动到B点, 其运动轨迹 如图所示,已知质点运动的速率是增加的。下面
关于C点场强方向的四个图示中正确的是: [
]D
C
E
B
C
B E
C
B
E
则该电介质的相对电容率 εr = r12 / r2 2 。
1
4 0
q1q2 r12
1
4 0 r
电磁学 总复习
1. 麦克斯韦方程组:
D dS q0
S
B dS 0
S
L
E
dl
S
B t
dS
D
L
H
dl
(
S
j0
t
) dS
D
0
B0
E
B
t
H
j0
D t
2. 物质性能方程:
D E. B H.
j0 E.
3. 电磁感应
d
dt
b
ab (v B) d l
[D ]
17.在图(a)和(b)中各有一半径相同的圆形回路L1、L2,圆
周内有电流I1、I2,其分布相同,且均在真空中,但在(b)图中
L2回路外 有电流I3, P1、P2为两圆形回路上的对应点,则:
A.
B dl
L1
B
L2
dl
,
BP1
BP2
B.
B dl
L1
B
L2
dl
,
BP1
BP2
L1
R
R mv Bq
m
S
B dS
B R2
m 2
( q2
)
v2 B
21、一开口曲面如图所示,开口是半径为R的圆。 匀强磁场 B 与开口圆所决定平面的内法线方向的夹角
为θ ,通过这个平面的磁通量为 BR2 cos.
闭合
S
圆
0
B
S 圆 B dS
圆
(BR2 cos( ))
R
(BR2 cos ) BR2 cos
a
E感
L
d
l
s
B
t
dS
M 12 . I1
2
M
d I1 dt
.
L . I
L d I .
dt
4. 电磁波
(1) S E H
与电磁场:
1
(2) E
BvB.
c 1
0 0
(3) T 2 2 LC
1
1
(4) w DE BH
2
2
1 E2 1 H2 E2 H2
2
2
5、典型场
4 0a
2q
3q
a
6、一带电量为-q的质点垂直射入开有小孔的两带电平行板 之间,两平行板之间的电势差U,距离为d ,则此带电 质点通过电场后它的动能增量为:
A) qU B) qU C ) qU D) 1 qU
d
2
7、关于电场强度与电势之间的关系,下列说法中哪一种说法是正 确的?
(A) 在电场中,场强为零的点,电势必为零。
(B)方向垂直环形分路所在平面且指向纸外. (C)方向在环形分路所在平面,且指向b.c I a
bd
(D)方向在环形分路所在平面内,且指向a.
(E)为零.
19.在感应电场中电磁感应定律可写成
L
Ek
dl
d dt
式中 为Ek感应电场的电 场强度 。此式表明:
A)闭合曲线 l 上 处Ek处相等.
B)感应电场是保守力场.
应强度B 的大小为 30I 。
I
8a B 0 I 0 I 30 I
4a 4 (2a) 8a
a
a •P
25. 在无限长载流直导线的右侧有面积
分别为 S1 和 S2 的两个矩形线圈回路, 两回路与载流长直导线共面,且矩形回
路的一边与长直载流导线平行,则通过
面积 S1 的磁通量与通过 S2 的磁通量之 比为 1:1
I R2
B
.
2 (R2 x2 )3/2
U
1
4
(R2
q x 2 )1/ 2
(U
0).
I
B(圆 心 ) 2R .
⑤ 有限长直线段
B
4
I a
(cos 1
cos
2
).
⑥ 无限长直螺线管 B nI .
⑦ 半无限长直螺线管端轴上
B
1 2
nI .
⑧ 有限长直螺线管内
B
nI
2
(cos 2
cos 1 ).
(B) EA<EB<EC,UA<UB<UC.
CB
A
(C) EA>EB>EC,UA<UB<UC.
(D) EA<EB<EC,UA>UB>UC.
4、有一带正电荷的大导体,欲测其附近P点处的场强,将一 带电量为q0 (q0>0) 的点电荷放在P点,测得它所受的电场力 为F,若电量q0不是足够小,则
A) F/q0 比P点处场强数值大。 B) F/q0 比P点处场强数值小。 C) F/q0 与P点处场强数值相等。
[12] 将一带电导体A靠近一半径为R、带电量为Q的孤立导体
球B,则有:
A、导体球B表面处的电场处处与表面垂直。
B、导体球B的电荷均匀分布。 C、导体球B 的电势为零。
B
p 1
2 •
A
D、Q在球B内产生的场强为零。
[13]一无限大均匀带电平面,其电荷面密度为σ ,在其附近
平行地放置一无限大平面导体板,则导体板两表面上的
⑨ 螺绕环内
NI
B
.
2 r
6、物质、时空、作用、运动
生
电荷电场
dE
1
dq rˆ
4 r 2
生
动电 磁场
dB
0
Idl rˆ
4
B
0
r2 qv
rˆ
4 r 2
电场对电荷作用 F qE
磁场对动电作用
dF I dl B F qv B
M pm B
7、 介质性质 :
电场
P
pe
V
0eE
D 0E P
r
1
e
D
E
0 r