运用Matlab进行线性规划求解实例
运用Matlab进行线性规划求解(实例)
8.2 线性规划线性规划是处理线性目标函数和线性约束的一种较为成熟的方法,目前已经广泛应用于军事、经济、工业、农业、教育、商业和社会科学等许多方面。
8.2.1 基本数学原理线性规划问题的标准形式是:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥=+++=+++=++++++=0,,,min 21221122222121112121112211n m n mn m m n n n n n n x x x b x a x a x a b x a x a x a b x a x a x a x c x c x c z 或⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥===∑∑==n j x m i b x a x c z j n j i j ij n j jj ,,2,1,0,,2,1,min 11写成矩阵形式为:⎪⎩⎪⎨⎧≥==O X b AX CX z min线性规划的标准形式要求使目标函数最小化,约束条件取等式,变量b 非负。
不符合这几个条件的线性模型可以转化成标准形式。
MATLAB 采用投影法求解线性规划问题,该方法是单纯形法的变种。
8.2.2 有关函数介绍在MATLAB 工具箱中,可用linprog 函数求解线性规划问题。
linprog 函数的调用格式如下:●x=linprog(f,A,b):求解问题minf'*x ,约束条件为A*x<=b 。
●x=linprog(f,A,b,Aeq,beq):求解上面的问题,但增加等式约束,即Aeq*x=beq 。
若没有不等式约束,则令A=[ ],b=[ ]。
●x=linprog(f,A,b,Aeq,beq,lb,ub):定义设计x 的下界lb 和上界ub ,使得x 始终在该范围内。
若没有等式约束,令Aeq=[ ],beq=[ ]。
●x=linprog(f,A,b,Aeq,beq,lb,ub,x0):设置初值为x0。
该选项只适用于中型问题,默认时大型算法将忽略初值。
●x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options):用options 指定的优化参数进行最小化。
2-使用MATLAB求解线性规划问题
应用Matlab 优化工具箱中的linprog 函数求解线性规划时模型要求为如下形式: ⎪⎩⎪⎨⎧≤≤=≤⋅M x x m x dx C b Ax .t .s xc min 其中:M x ,x ,m x 均为列向量,C ,A 为常数矩阵,d ,b ,c '为常数列向量。
函数调用格式如下:);xM ,xm ,d ,C ,b ,A ,c (linprog ]z ,x [= %决策变量有上下界,默认变量非负。
例1-38 用Matlab 求解下面线性规划问题1212121212max 1502102310034120..55150,0z x x x x x x s t x x x x =++≤⎧⎪+≤⎪⎨+≤⎪⎪≥⎩令z1= -zMATLAB 求解程序存为liti2.mc=[-150,-210];A=[2,3;3,4;5,5];b=[100;120;150];C=[];d=[];xm=[0;0];xM=10^10*[1;1];[x,z1]=linprog(c,A,b,C,d,xm,xM)Optimization terminated.在命令窗口键入liti2.m,按回车得最优解和最优值x =0.000030.0000z1 =-6.3000e+003故最优解为 x 1=0,x 2=30; 最优值为z=-z1=6300.通常在LINGO 中建立优化模型由MODEL 语句开始,由END 语句结束。
模型中包含四部分(即四段):集合(SETS )、数据段(DATA )、初始段(INIT )、目标和约束段。
(1) 集合段: 它是以 SETS 开始,ENDSETS 结束,其作用是定义所用集合变量及元素(数组的下标),以及相应的属性(数组)。
(2) 数据段:它是以 DA TA 开始,ENDDATA 结束,其作用是对集合段中定义的属性(数组)赋值(常数)。
数据之间用逗号分开或用空格分开。
(3) 初始段:它是以INIT 开始,ENDINTI 结束,其作用是对集合段中定义的属性(变量数组)赋迭代初值。
用Matlab解法求解线性规划问题
实验目的:用Matlab解法求解线性规划问题
实验一:
题目:求解线性规划问题:
方法一:Matlab解法
算法设计:
1、先求Z的最小值,再取相反数即为所求的最大值。
2、将第一个约束条件改为 。以便与另外两个约束条件保持不等号方向的一致。
3、根据所给的约束条件,利用x=linprog(c,a,b)求解
求值程序:
c=[-3,-1];
a=[-1,1;1,-2;3,2];
b=[2;2;14];
[x,fval]=linprog(c,a,b)
运行结果:
x =
4.0000
1.0000
fval=-13.0000
结果处理及分析:当x1=4 , x2=1时,(-Z)取最小值-13,Z取最大值13.
方法二:图像法
程序代码:
b=[180;200];
aeq=[];
beq=[];
vlb=[0;0;0];
vub=[];
[x,fval]=linprog(c,a,b,aeq,beq,vlb,vub)
maxz=-fval
运行结果:
x =
34.0000
0.0000
44.0000
fval =
-584.0000
maxz =
584.0000
x=-4:1:4;
y1=x-2;
y2=2*x+2;
y3=1/3*(14-2*x);
y4=1/3*(13-x);
plot(x,y1,x,y2,x,y3,x,y4,’:’)
经过对直线的适度调整后,得到图像为:
结果处理及分析:根据约束条件,星型图案所在的闭合三角形为可行域,易知,蓝色虚线代表的目标函数过A(1,4)时,Z取最大值13。
应用MATLAB求解线性规划
在Matlab优化工具箱(Optimization Toolbox)中,求解(1.5.1)的程序如下:[x,fval,exitflag,output,lambda] = linprog (c,A,b,Aeq,beq,lb,ub,x0,options)注意关键标识符意义:1)x0是线性规划的初始解,这种设计仅对中规模算法有效,通常可以缺省。
2)输出是最优解,fval是最优值3)输出exitflag描述了程序的运行情况,若其值大于零,表示程序收敛到最优解;若其值等于零,表示计算达到了最大次数;若其值小于零,表示问题无可行解,或程序运行失败。
4)输出output表示程序运行的某些信息,如迭代次数(iterations)、所用算法(algorithm)、共轭梯度(cgiterations)等。
5)lambda表示解处的拉格朗日乘子,其中lower,upper,ineqlin,eqlin分别对应于下界、上界、不等式约束与等式约束。
解 Matlab 程序如下:c=[-2,-1,1]; 求解目标函数的系数矩阵 A=[1,4,-1;2,-2,1]; A 是不等式约束的系数矩阵 b=[4;12]; b 是不等式约束相应的常数列向量Aeq=[1,1,2]; Aeq 是等式约束的系数矩阵beq=6; beq 是等式约束相应的常数列向量,若没有等式约束,则均用[]代替;lb=[0,0,-inf];ub=[inf,inf,5]; 如果某个变量无下界,则用-inf 表示;如果某个变量无上界,则用inf 表示,若决策变量 无下界,则lb 用[]代替;若决策变量 无上界,则ub 用[]代替;[x,z]=linprog(c,A,b,Aeq,beq,lb,ub) 123123123123123226442212005min z x x x x x x x x x s.t.x x x x ,x ,x =--+++=⎧⎪+-≤⎪⎨-+≤⎪⎪≥≥≤⎩运行后得到输出Optimization terminated successfully. x=4.66670.00000.6667z=-8.6667。
Matlab求解线性规划和整数规划问题
Matlab求解线性规划和整数规划问题线性规划和整数规划是数学规划中常见的两种优化问题。
Matlab作为一种强大的数值计算软件,提供了丰富的工具和函数来解决这些问题。
本文将介绍如何使用Matlab求解线性规划和整数规划问题,并提供详细的步骤和示例代码。
一、线性规划问题的求解线性规划问题可以表示为如下形式的数学模型:```minimize c'*xsubject to A*x <= blb <= x <= ub```其中,c是目标函数的系数向量,x是决策变量向量,A是不等式约束矩阵,b 是不等式约束向量,lb和ub分别是决策变量的下界和上界。
Matlab中求解线性规划问题可以使用`linprog`函数。
下面是一个示例:```matlabc = [1; 2; 3]; % 目标函数的系数向量A = [1, -1, 2; 3, 1, 0]; % 不等式约束矩阵b = [4; 5]; % 不等式约束向量lb = zeros(3, 1); % 决策变量的下界ub = [Inf; Inf; 10]; % 决策变量的上界[x, fval] = linprog(c, A, b, [], [], lb, ub);```在上面的示例中,我们定义了目标函数的系数向量c,不等式约束矩阵A,不等式约束向量b,以及决策变量的下界lb和上界ub。
然后使用`linprog`函数求解线性规划问题,得到最优解x和最优目标函数值fval。
二、整数规划问题的求解整数规划问题是线性规划问题的一个扩展,要求决策变量取整数值。
Matlab中求解整数规划问题可以使用`intlinprog`函数。
下面是一个示例:```matlabc = [1; 2; 3]; % 目标函数的系数向量A = [1, -1, 2; 3, 1, 0]; % 不等式约束矩阵b = [4; 5]; % 不等式约束向量lb = zeros(3, 1); % 决策变量的下界ub = [Inf; Inf; 10]; % 决策变量的上界intcon = [1; 2]; % 决策变量的整数约束[x, fval] = intlinprog(c, intcon, A, b, [], [], lb, ub);```在上面的示例中,我们除了定义了线性规划问题的参数外,还定义了决策变量的整数约束intcon。
用Matlab软件求线性规划
Matlab软件
Matlab软件
结果输出如下: Optimization terminated successfully. x= 0.0000 50.0000 0.0000 f = -100.0000 当A、B、C产品的日产量分别为0件,50件,0件时, 总收益为100元/件
Matlab软件
例1
3 4
2
6 5
3
150h 200kg
每天供应原材料200kg,每天可供使用的劳动力为150h, 求各种产品的日产量为多少时,总收益最大?
Matlab软件
问题的求解:
产品A 劳动力(h/件) 7 原材料(kg/件) 4 利润 (元/kg) 4 产品B 3 4 2 产品C 资源限量 6 150h 5 200kg 3
目标函数:max(min)z=c1x1+c2x2+c3x3+…+cnxn 约束条件:a11x1+a12x2+a13x3+…+a1nxn ≤(= ≥)b1 a21x1+a22x2+a23x3+…+a2nxn ≤(=≥)b2 … … … … am1x1+am2x2+am3x3+…+amnxn ≤(= ≥)bn 非负性约束:x1 ≥0,x2 ≥0,…,xn ≥0
车床 类 型 甲 乙 单位工件所需加工台时 数 可用台 时数 800 900 单位工件的加工费用
工件1
0.4 0.5
工件2
1.1 1.2
工件3
1.0 1.3
工件1
13 11
工件2
9 12
工件3
10 8
Matlab软件
解
设在甲车床上加工工件1、2、3的数量分别为
7.1 用MATLAB求解线性规划
b=zeros(m,n) c=ones(m,n) d=eye(m,n)
产生一个m行、n列的零矩阵 产生一个m行、n列的元素 全为1的矩阵 产生一个m行、n列的单位矩阵
MATLAB (matrix1)
Page 35
2、矩阵中元素的操作
(1)矩阵A的第r行:A(r,:) (2)矩阵A的第r列:A(:,r) (3)取矩阵A的第i1~i2行、第j1~j2列构成新矩阵:A(i1:i2, j1:j2) (4)以逆序提取矩阵A的第i1~i2行,构成新矩阵:A(i2:-1:i1,:) (5)删除A的第i1~i2行,构成新矩阵:A(i1:i2,:)=[ ] (6)删除A的第j1~j2列,构成新矩阵:A(:, j1:j2)=[ ] (7)将矩阵A和B拼接成新矩阵:[A B];[A;B]
a.\b=[b1/a1,b2/a2,…,bn/an] a.^b=[a1^b1,a2^b2,…,an^bn]
Page 32
1、矩阵的建立 ( 1)将矩阵的元素用方括号括起来,按矩阵行的 顺序输入各元素,同一行的各元素之间用空格或逗 号分隔,不同行的元素之间用分号分隔。在输入矩 阵时,按Enter键也表示开始一新行. 例:键入命令: A=[1 2 3;4 5 6;7 8 9] A=[1,2,3;4,5,6;7,8,9] 输出结果: A = 1 2 3 4 5 6 7 8 9
主要内容
一、 变量与函数 二、 数组与矩阵 三、 举例 四、 线性规划求解
Page 14
一、变量与函数
Page 15
Matlab是以矩阵为基本运算单元的,它的大部分 运算或命令都是在矩阵运算的意义下执行的。而构
成矩阵的基本单元是数字。
258×369
一、变量与函数
1、变量 命名规则是:
matlab解线性规划
约束条件
沙质土地400亩,粘质土地600亩,中性土地1000亩
x1 + x4 + x7 <= 400 x2 + x5 + x8 <= 600 x3 + x6 + x9 <= 1000
设定三种作物种植面积的最高限额分别为1000、500、 500亩 。
x1 + x2 + x3 <= 1000 x4 + x5 + x6 <= 500 x7 + x8 + x9 <= 500
返回目录
建立数学模型
目标函数 目标函数Z取总收益,要求极大化。由表 , 目标函数 取总收益,要求极大化。由表2-1,得 取总收益
max
Z = 300( x1 + x 2 + x3 ) + 500( x4 + x5 + x6 ) + 450( x7 + x8 + x 9 ) 200 x1 160 x2 150 x3 300 x4 290 x5 280 x6 260 x7 260 x8 240 x9 = 100 x1 + 140 x2 + 150 x3 + 200 x4 + 210 x5 + 220 x6 + 190 x7 + 190 x8 + 210 x9
基变量
x10 x11 x12 x13 x6 x15
bi
400
x1
1
x2
0
x3
0
x4
1
x5
0
x6
0
x7
1
x8
0
x9
0
Matlab求解线性规划和整数规划问题
Matlab求解线性规划和整数规划问题Matlab是一种强大的数学计算工具,可以用于求解各种数学问题,包括线性规划和整数规划问题。
本文将详细介绍如何使用Matlab求解线性规划和整数规划问题,并提供相应的代码示例和结果分析。
一、线性规划问题的求解线性规划问题是一类常见的数学优化问题,其目标是在一组线性约束条件下,找到使目标函数最优化的变量值。
在Matlab中,可以使用线性规划函数“linprog”来求解线性规划问题。
下面以一个简单的线性规划问题为例进行说明。
假设有如下线性规划问题:目标函数:maximize 2x1 + 3x2约束条件:x1 + x2 ≤ 5x1 - x2 ≤ 2x1, x2 ≥ 0首先,我们需要定义目标函数的系数矩阵和约束条件的系数矩阵。
在Matlab 中,可以使用矩阵来表示这些系数。
可以按照以下方式定义:c = [-2; -3]; % 目标函数的系数矩阵A = [1 1; 1 -1]; % 约束条件的系数矩阵b = [5; 2]; % 约束条件的右侧常数然后,我们可以使用“linprog”函数来求解线性规划问题。
代码如下:x = linprog(c, A, b); % 求解线性规划问题最后,我们可以输出求解结果,并进行结果分析。
代码如下:disp('最优解为:')disp(x)disp('目标函数的最优值为:')disp(-c'*x)运行以上代码,即可得到线性规划问题的最优解和目标函数的最优值。
在这个例子中,最优解为x1=2,x2=3,目标函数的最优值为-13。
二、整数规划问题的求解整数规划问题是线性规划问题的一种扩展,其变量需要取整数值。
在Matlab 中,可以使用整数规划函数“intlinprog”来求解整数规划问题。
下面以一个简单的整数规划问题为例进行说明。
假设有如下整数规划问题:目标函数:minimize 2x1 + 3x2约束条件:x1 + x2 ≥ 5x1 - x2 ≤ 2x1, x2 ≥ 0x1, x2为整数首先,我们需要定义目标函数的系数矩阵和约束条件的系数矩阵。
matlab最优化问题的经典例题
matlab最优化问题的经典例题MATLAB最优化问题的经典例题之一是线性规划问题。
线性规划是一种数学优化方法,用于寻找一组给定线性约束条件下使得目标函数达到最大或最小值的变量值。
假设有以下线性规划问题:最大化目标函数:Z = c1*x1 + c2*x2 + ... + cn*xn在满足约束条件:A*x <= bx >= 0下,求解变量x1, x2, ..., xn的最优解。
使用MATLAB求解该线性规划问题的代码如下:```% 定义目标函数系数向量cc = [c1; c2; ...; cn];% 定义不等式约束条件系数矩阵A和右侧常数向量bA = [A11, A12, ..., A1n;A21, A22, ..., A2n;...,Am1, Am2, ..., Amn];b = [b1; b2; ...; bm];% 定义变量的下界和上界lb = zeros(n, 1); % 下界为0,即 x >= 0ub = Inf(n, 1); % 上界为无穷大,即无上界% 求解线性规划问题[x, fval] = linprog(-c, A, b, [], [], lb, ub);% 输出最优解和最优值disp('最优解:')disp(x)disp('最优值:')disp(-fval)```在上述代码中,我们将目标函数系数向量c、不等式约束条件系数矩阵A和右侧常数向量b、变量的下界和上界lb、ub传递给linprog函数进行求解。
linprog函数返回最优解x和最优值-fval(由于linprog默认求解最小化问题,我们使用-c作为目标函数系数向量,将最大化问题转化为最小化问题)。
通过以上代码,我们可以求解线性规划问题的最优解和最优值,并使用MATLAB进行验证和分析。
这个例题可以帮助我们理解和掌握MATLAB中最优化问题的求解方法。
用MATLAB求解线性规划问题
用MATLAB 求解线性规划问题这里X 是问题的解向量,f 是由目标函数的系数构成的向量,A 是一个矩阵,b 是一个向量,A ,b 和变量x={x 1,x 2,…,x n }一起,表示了线性规划中不等式约束条件,A ,b 是系数矩阵和右端向量。
Aeq 和Beq 表示了线性规划中等式约束条件中的系数矩阵和右端向量。
LB 和UB 是约束变量的下界和上界向量,X0是给定的变量的初始值,options 为控制规划过程的参数系列。
返回值中fval 是优化结束后得到的目标函数值。
exitflag=0表示优化结果已经超过了函数的估计值或者已声明的最大迭代次数;exitflag>0表示优化过程中变量收敛于解X ,exitflag<0表示不收敛。
output 有3个分量,iterations 表示优化过程的迭代次数,cgiterations 表示PCG 迭代次数,algorithm 表示优化所采用的运算规则。
lambda 有4个分量,ineqlin 是线性不等式约束条件,eqlin 是线性等式约束条件,upper 是变量的上界约束条件,lower 是变量的下界约束条件。
它们的返回值分别表示相应的约束条件在约束条件在优化过程中是否有效。
例1:某工厂生产A ,B 两种产品,所用原料均为甲、乙、丙三种:生产一件产品所需原料和所获利设生产A 产品1x 件,生产B 产品2x 件,z 为所获利润,我们将问题归结为如下的线性规划问题:12min {(700010000)}x x -+s.t. 121212863804830046220x x x x x x +≤⎧⎪+≤⎨⎪+≤⎩接着写出Matlab 程序如下:clearf=-[7000,10000];A=[8,6;4,8;4,6];b=[380,300,220];[X,fval]=linprog(f,A,b)运行结果为:>> Optimization terminated successfully.X =40.000010.0000fval = -3.8000e+005例2:求解下面的线性规划问题:123min {546}x x x ---s.t. 12320x x x -+≤12332442x x x ++≤123230x x +≤10x ≤,20x ≤,30x ≤解决上述问题的Matlab 程序为:clearf=-[5,4,6];A=[1,-2,1;3,2,4;3,2,0];b=[20,42,30];LB=[0;0;0];[X,fval,exitflag,output,lambda]=linprog(f,A,b,[],[],LB)程序运行的结果为:Optimization terminated successfully.X = 0.000015.00003.0000fval = -78.0000exitflag = 1output = iterations: 6cgiterations: 0algorithm: 'lipsol' lambda = ineqlin: [3x1 double]eqlin: [0x1 double]upper: [3x1 double]lower: [3x1 double]。
用matlab求解线性规划问题
实验四 用MATLAB 求解线性规划问题一、实验目的:了解Matlab 的优化工具箱,能利用Matlab 求解线性规划问题。
二、实验内容:线性规划的数学模型有各种不同的形式,其一般形式可以写为:目标函数: n n x f x f x f z +++=Λ2211m in约束条件: s n sn s s n n b x a x a x a b x a x a x a ≤+++≤+++ΛΛΛΛΛ221111212111 s n tn t t n n d x c x c x c d x c x c x c =+++=+++ΛΛΛΛΛ2211112121110,,,21≥n x x x Λ 这里n n x f x f x f z +++=Λ2211称为目标函数,j f 称为价值系数,T n f f f f ),,,(21Λ=称为价值向量,j x 为求解的变量,由系数ij a 组成的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=mn m n a a a a A ΛΛOΛΛ1111称为不等式约束矩阵,由系数ij c 组成的矩阵 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=sn s n c c c c C ΛΛOΛΛ1111称为等式约束矩阵,列向量Tn b b b b ),,,(21Λ=和T n d d d d ),,,(21Λ=为右端向量,条件0≥j x 称为非负约束。
一个向量Tn x x x x ),,,(21Λ=,满足约束条件,称为可行解或可行点,所有可行点的集合称为可行区域,达到目标函数值最大的可行解称为该线性规划的最优解,相应的目标函数值称为最优目标函数值,简称最优值。
我们这里介绍利用Matlab 来求解线性规划问题的求解。
在Matlab 中有一个专门的函数linprog()来解决这类问题,我们知道,极值有最大和最小两种,但求z 的极大就是求z -的极小,因此在Matlab 中以求极小为标准形式,函数linprog()的具体格式如下: X=linprog(f,A,b)[X,fval,exitflag,ouyput,lamnda]=linprog(f,A,b,Aeq,Beq,LB,UB,X0,options)这里X 是问题的解向量,f 是由目标函数的系数构成的向量,A 是一个矩阵,b 是一个向量,A ,b 和变量x={x1,x2,…,xn}一起,表示了线性规划中不等式约束条件,A ,b 是系数矩阵和右端向量。
实验十四用MATLAB求解线性规划问题.-实验一矩阵的基本运算
实验十四 用MATLAB 求解线性规划问题一、实验目的:了解Matlab 的优化工具箱,能利用Matlab 求解线性规划问题。
二、相关知识线性规划是运筹学中研究得比较早,理论上已趣于成熟,在方法上非常有效,并且应用广泛的一个重要分支。
线性规划的数学模型有各种不同的形式,其一般形式可以写为:目标函数: n n x f x f x f z +++= 2211m i n约束条件: s n sn s s n n b x a x a x a b x a x a x a ≤+++≤+++221111212111s n tn t t n n d x c x c x c d x c x c x c =+++=+++2211112121110,,,21≥n x x x这里n n x f x f x f z +++= 2211称为目标函数,j f 称为价值系数,T n f f f f ),,,(21 =称为价值向量,j x 为求解的变量,由系数ij a 组成的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=mn m n a a a a A 1111称为不等式约束矩阵,由系数ij c 组成的矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=sn s n c c c c C 1111称为等式约束矩阵,列向量T n b b b b ),,,(21 =和T n d d d d ),,,(21 =为右端向量,条件0≥jx 称为非负约束。
一个向量T n x x x x ),,,(21 =,满足约束条件,称为可行解或可行点,所有可行点的集合称为可行区域,达到目标函数值最大的可行解称为该线性规划的最优解,相应的目标函数值称为最优目标函数值,简称最优值。
求解线性规划问题已有一些成熟的方法,我们这里介绍利用Matlab 来求解线性规划问题的求解。
在Matlab 中有一个专门的函数linprog()来解决这类问题,我们知道,极值有最大和最小两种,但求z 的极大就是求z -的极小,因此在Matlab 中以求极小为标准形式,函数linprog()的具体格式如下: X=linprog(f,A,b)[X,fval,exitflag,ouyput,lamnda]=linprog(f,A,b,Aeq,Beq,LB,UB,X0,options)这里X 是问题的解向量,f 是由目标函数的系数构成的向量,A 是一个矩阵,b 是一个向量,A ,b 和变量x={x 1,x 2,…,x n }一起,表示了线性规划中不等式约束条件,A ,b 是系数矩阵和右端向量。
线性规划模型及matlab程序求解
§1 线性规划模型一、线性规划课题:实例1:生产计划问题假设某厂计划生产甲、乙两种产品,现库存主要材料有A类3600公斤,B类2000公斤,C类3000公斤。
每件甲产品需用材料A类9公斤,B类4公斤,C类3公斤。
每件乙产品,需用材料A类4公斤,B类5公斤,C类10公斤。
甲单位产品的利润70元,乙单位产品的利润120元。
问如何安排生产,才能使该厂所获的利润最大。
建立数学模型:设x1、x2分别为生产甲、乙产品的件数。
f为该厂所获总润。
max f=70x1+120x2s.t 9x1+4x2≤36004x1+5x2≤20003x1+10x2≤3000x1,x2≥0归结出规划问题:目标函数和约束条件都是变量x的线性函数。
形如: (1) min f T Xs.t A X≤bAeq X =beqlb≤X≤ub其中X为n维未知向量,f T=[f1,f2,…f n]为目标函数系数向量,小于等于约束系数矩阵A为m×n矩阵,b为其右端m维列向量,Aeq为等式约束系数矩阵,beq为等式约束右端常数列向量。
lb,ub为自变量取值上界与下界约束的n维常数向量。
二.线性规划问题求最优解函数:调用格式: x=linprog(f,A,b)x=linprog(f,A,b,Aeq,beq)x=linprog(f,A,b,Aeq,beq,lb,ub)x=linprog(f,A,b,Aeq,beq,lb,ub,x0)x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options)[x,fval]=linprog(…)[x, fval, exitflag]=linprog(…)[x, fval, exitflag, outpu t]=linprog(…)[x, fval, exitflag, output, lambda]=linprog(…)说明:x=linprog(f,A,b)返回值x为最优解向量。
用MATLAB解线性规划
用MATLAB优化工具箱解线性规划1.模型:m j n z=c x sJ. AX < h命令:x=linprog (c, A, b)2、模型:minz = cXs 上AX < bAeqX = beq命令:x=linprog (c, A, b, Aeq, beq)注意:若没有不等式:AX<b存在,则令A=[ ], b=[].若没有等式约束,则令Aeq=[ ], beq二[].3、模型:minz -cXsi. AX<bAeqX = beqVLB <X< VUB命令:[1] x=linprog (c, A, b, Aeq, beq, VLB, VUB)[2] x=linprog (c, A, b, Aeq,beq, VLB, VUB, XO)注意:[11若没有等式约束,则令Aeq=[ ], beq二[]・[2]其中X0表示初始4、命令:[x, fval]=linprog(<ee)返回最优解X及X处的□标函数值fval・例 1 maxz = 0.4兀[+ 0・28兀2 + 0.32X3 + 0.72x4 + 0.64x5 + 0.6x6 si.O.OlX] + 0.0 lx2 + 0.0 lx3 + 0.03X4 + 0.03些 + 0.03x6 W 8500.02比 + 0.05X4 S 7000.02兀2 +0.05x5 < 1000.03x3 十0.08X6 V 900Xj > 0 j = 1,2, (6)解编写M文件小xxghl. m如下:c二[-0. 4 -0. 28 -0. 32 -0. 72 -0. 64 -0. 6];A二[0.01 0.01 0.01 0. 03 0. 03 0. 03;0. 02 0 0 0. 05 0 0;0 0. 02 0 0 0. 05 0;0 0 0. 03 0 0 0. 08];b二[850;700;100;900];Aeq二[];beq二[];vlb=[0;0;0;0;0;0]; vub=[];[x, fval]=linprog(c, A, b, Aeq, beq, vlb, vub)例2min z = 6x}+ 3x2 + 4x3Xj 4- x2 + x3 = 120X] >300<x2 <50兀3之20解:编写M文件xxgh2. m如下:c二[6 3 4];A 二[0 1 0];b 二[50];Aeq二[1 1 11;beq二[120];vlb二[30,0, 20];vub二[];[x, fval]=linprog (c, A, b, Aeq, beq, vlb, vub例3 (任务分配问题)某车间有屮、乙两台机床,可用于加工三种工件。
MATLAB线性规划
-1-第一章 线性规划§1 线性规划在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。
此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。
自从1947年G . B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。
特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。
1.1 线性规划的实例与定义 例1 某机床厂生产甲、乙两种机床,每台销售后的利润分别为4000元与3000元。
生产甲机床需用B A 、机器加工,加工时间分别为每台2小时和1小时;生产乙机床需用C B A 、、三种机器加工,加工时间为每台各一小时。
若每天可用于加工的机器时数分别为A 机器10小时、B 机器8小时和C 机器7小时,问该厂应生产甲、乙机床各几台,才能使总利润最大?上述问题的数学模型:设该厂生产1x 台甲机床和2x 乙机床时总利润最大,则21,x x 应满足(目标函数)2134max x x z += (1)s.t.(约束条件)⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0,781022122121x x x x x x x (2)这里变量21,x x 称之为决策变量,(1)式被称为问题的目标函数,(2)中的几个不等式是问题的约束条件,记为s.t.(即subject to)。
由于上面的目标函数及约束条件均为线性函数,故被称为线性规划问题。
总之,线性规划问题是在一组线性约束条件的限制下,求一线性目标函数最大或最小的问题。
在解决实际问题时,把问题归结成一个线性规划数学模型是很重要的一步,但往往也是困难的一步,模型建立得是否恰当,直接影响到求解。
而选适当的决策变量,是我们建立有效模型的关键之一。
用MATLAB求解线性规划
模型 1 固定风险水平,优化收益
目标函数: 约束条件:
n 1
Q=MAX (ri pi )xi
i 1
qi xi ≤a
M
(1 p )x M , ii
xi≥ 0
i=0,1,…n
b.若投资者希望总盈利至少达到水平 k 以上,在风险最小的 情况下寻找相应的投资组合。
模型 2 固定盈利水平,极小化风险
从 a=0 开始,以步长△a=0.001对下列组合投资模型求解, 并绘图表示 a 与目 标函数最优值 Q 的对应关系:
max s.t.
Q = (-0.05, -0.27, -0.19, -0.185, -0.185) (x0,x1,x2,x3,x4) T
x0 + 1.01x1 + 1.02x2 +1.045x3 +1.065x4 =1
目标函数: R= min{max{ qixi}} 约束条件:
n
(r i
p )x
i
i
≥k,
i0
(1 pi )xi M , xi≥ 0
i=0,1,…n
c.投资者在权衡资产风险和预期收益两方面时,希望选择 一个令自己满意的投资组合。
因此对风险、收益赋予权重 s(0<s≤1),s 称为投资偏好 系数.
2.当投资越分散时,投资者承担的风险越小,这与题意一致。即: 冒险的投资者会出现集中投资的情况,保守的投资者则尽量分散投资。
3.曲线上的任一点都表示该风险水平的最大可能收益和该收益要求的最 小风险。对于不同风险的承受能力,选择该风险水平下的最优投资组合。
4.在a=0.006附近有一个转折点,在这一点左边,风险增加很少时,利润增长
符号规定:
Si
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.2 线性规划
线性规划是处理线性目标函数和线性约束的一种较为成熟的方法,目前已经广泛应用于军事、经济、工业、农业、教育、商业和社会科学等许多方面。
8.2.1 基本数学原理
线性规划问题的标准形式是:
⎪⎪⎪⎪⎩
⎪⎪⎪⎪⎨⎧≥=+++=+++=++++++=0,,,min 21221122222121112
121112211n m n mn m m n n n n n n x x x b x a x a x a b x a x a x a b x a x a x a x c x c x c z ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ 或
⎪⎪⎪⎩
⎪⎪⎪⎨⎧=≥===∑∑==n j x m i b x a x c z j n j i j ij n j j
j ,,2,1,0,,2,1,min 1
1ΛΛ
写成矩阵形式为:
⎪⎩
⎪⎨⎧≥==O X b AX CX z min
线性规划的标准形式要求使目标函数最小化,约束条件取等式,变量b 非负。
不符合这几个条件的线性模型可以转化成标准形式。
MATLAB 采用投影法求解线性规划问题,该方法是单纯形法的变种。
8.2.2 有关函数介绍
在MATLAB 工具箱中,可用linprog 函数求解线性规划问题。
linprog 函数的调用格式如下:
●x=linprog(f,A,b):求解问题minf'*x ,约束条件为A*x<=b 。
●x=linprog(f,A,b,Aeq,beq):求解上面的问题,但增加等式约束,即Aeq*x=beq 。
若没有不等式约束,则令A=[ ],b=[ ]。
●x=linprog(f,A,b,Aeq,beq,lb,ub):定义设计x 的下界lb 和上界ub ,使得x 始终在该范围内。
若没有等式约束,令Aeq=[ ],beq=[ ]。
●x=linprog(f,A,b,Aeq,beq,lb,ub,x0):设置初值为x0。
该选项只适用于中型问题,默认时大型算法将忽略初值。
●x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options):用options 指定的优化参数进行最小化。
●[x,fval]=linprog(…):返回解x 处的目标函数值fval 。
●[x,lambda,exitflag]=linpro g(…):返回exitflag 值,描述函数计算的退出条件。
●[x,lambda,exitflag,output]=linprog(…):返回包含优化信息的输出参数output 。
●[x,fval,exitflag,output,lambda]=linprog(…):将解x 处的拉格朗日乘子返回到
lambda 参数中。
调用格式中,lambda 参数为解x 处包含拉格朗日乘子的结构。
它有以下一些字段:
lower —下界lb
upper —上界ub
ineqlin —线性不等式
eqlin —线性等式
exitflag 参数表示算法终止的原因,下面列出不同值对应的退出原因:
1 函数在解x 处有解
0 迭代次数超过options.MaxIter
-2 没有找到可行点
-3 问题无解
-4 执行算法时遇到NaN
-5 原问题和对偶问题都不可行
-7 搜索方向太小,不能继续前进。
8.2.3 应用实例
例8-2 某河流边有两个化工厂,流经第一个化工厂的河水流量是每天500万立方米,在两个工厂之间有一条流量为200万立方米的支流(如图8-1所示)。
第一个化工厂每天排放工业污水2万立方米,第二个化工厂每天排放工业污水1.4万立方米,从第一个化工厂排出的污水流到第二个化工厂之前,有20%可自然净化。
根据环保要求,河流中工业污水的含量应不大于0.2%,因此两个化工厂都必须各自处理净化一部分污水,第一个化工厂处理污水的成本是0.1元∕立方米,第二个化工厂处理污水的成本是0.08元∕立方米。
问在满足环保要求的条件下,各化工厂每天应处理多少污水,才能使两厂总的处理污水费用最少?
第一化工厂 第二化工厂
图8-1
解:设1x ,2x 分别表示第一个化工厂和第二个化工厂每天处理的污水量(万立方米∕天)。
则目标函数:218001000x x f +=(元∕天)
约束条件1:
%2.0500
21≤-x ,即11≥x ; 约束条件2:%2.0700
)4.1()2(8.021≤-+-x x ,即6.18.021≥+x x ; 约束条件3:⎩⎨⎧≤≤4.1221x x 。
因此,该问题的线性规划模型归结为:
218001000m in x x f +=
⎪⎪⎪⎩
⎪⎪⎪⎨⎧≥≤≤-≤---≤-0,4.12
6.18.01..2121211x x x x x x x t s 求解程序:
%线性规划问题
f=[1000 800];
A=[-1 0;-0.8 -1;1 0;0 1];
b=[-1;-1.6;2;1.4];
lb=zeros(2,1);
[x,fval,exitflag]=linprog(f,A,b,[],[],lb)
运行结果:
x =
1.0000
0.8000
fval =1.6400e+003
exitflag =1
由上可知,第一个化工厂每天处理的污水量为1万立方米∕天,第二个化工厂每天处理的污水量为0.8万立方米∕天,才能使两厂总的处理污水费用最少。