人教版垂径定理
2024版人教版九年级上册《垂径定理》教案
人教版九年级上册《垂径定理》教案目录•课程介绍与目标•知识回顾与铺垫•垂径定理的引入与证明•垂径定理在几何问题中的应用•垂径定理在生活中的实际应用•课堂练习与巩固提高•总结回顾与拓展延伸01课程介绍与目标教材版本及内容概述教材版本人教版九年级上册内容概述本节课主要学习垂径定理及其推论,包括圆的性质、直径与弦的关系等。
垂径定理是圆的重要性质之一,在解决与圆有关的问题时具有广泛的应用。
知识与技能过程与方法情感态度与价值观教学目标与要求掌握垂径定理及其推论,理解圆的性质,能够运用垂径定理解决与圆有关的问题。
通过观察、实验、推理等活动,培养学生的探究能力和数学思维能力。
感受数学之美,体会数学在解决实际问题中的应用价值,培养学生的数学兴趣和自信心。
教学方法与手段教学方法采用启发式教学法,引导学生通过观察、实验、推理等活动主动探究垂径定理及其推论。
教学手段利用多媒体课件、几何画板等辅助教学工具,帮助学生更好地理解垂径定理及其推论。
同时,鼓励学生动手实践,通过实验操作验证垂径定理的正确性。
02知识回顾与铺垫圆的性质及定义圆是平面上所有与定点(圆心)距离等于定长(半径)的点的集合。
圆的性质包括圆心到圆上任意一点的距离都相等,即半径相等;圆上任意两点间的部分叫做圆弧,简称弧;连接圆上任意两点的线段叫做弦;经过圆心的弦叫做直径。
经过圆心的弦叫做直径。
直径是最长的弦,且一个圆有无数条直径。
直径半径弦连接圆心和圆上任意一点的线段叫做半径。
在同一个圆中,所有的半径都相等。
连接圆上任意两点的线段叫做弦。
弦的长度可能等于直径,也可能小于直径。
030201直径、半径、弦等概念顶点在圆心的角叫做圆心角。
圆心角的度数等于它所对的弧的度数。
圆心角圆上任意两点间的部分叫做圆弧,简称弧。
弧的长度与圆心角的度数成正比。
弧在同一个圆或等圆中,如果两个圆心角相等,那么它们所对的弧相等,所对的弦也相等。
弦与弧的关系圆心角、弧、弦之间的关系03垂径定理的引入与证明垂径定理的表述垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
新人教版九年级上24.1.2垂径定理(第一课时)
活动二
如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E. (1)圆是轴对称图形吗?如果是,它的对称轴是什么? (2)你能发现图中有那些相等的线段和弧?为什么?
(1)是轴对称图形.直径CD所在的 直线是它的对称轴 (2) 线段: AE=BE 弧:AC=BC,AD=BD
A
C
⌒ ⌒⌒ ⌒
·
O
C
A
M└
●
B O
你可以写出相应的命题吗? 相信自己是最棒的!
D
C
垂径定理及推论
条件 ①② ①③ 结论 命题
A
M└
●
B
O
③④⑤ 垂直于弦的直径平分弦,并且平分弦所的两条弧. D ②④⑤ 平分弦(不是直径)的直径垂直于弦,并且平 分弦所对的两条弧.
①④
①⑤ ②③ ②④ ②⑤
②③⑤ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的 ②③④ 另一条弧.
⌒ 在直径是20cm的⊙O中,AB的度数是60˙,
那么弦AB的弦心距是_____
5 3cm
O D A B
弓形的弦长为6cm,弓形的高为2cm,则 这弓形所在的圆的半径为
13 cm . 4
C A D O B
已知P为⊙O内一点,且OP=2cm,如果⊙O 的半径是3cm,那么过P点的最短的弦等 于_______ 2 5cm
E
B D
把圆沿着直径CD折叠时,CD两侧的两个 半圆重合,点A与点B重合,AE与BE重合, ⌒ ⌒ AC , ⌒ ⌒ AD分别与BC 、BD重合.
C
即直径CD垂直于弦AB,平分弦AB, ⌒ ⌒ 并且平分AB及ACB
·
O
E A B D
垂径定理:垂直于弦的直径平分 弦,并且平分弦所对的两条弧.
人教版九年级数学上册24.垂径定理课件
方法归纳:
解决有关弦的问题时,
经常连结半径;过圆心
作一条与弦垂直的线段
等辅助线,为应用垂径
E
定理创造条件。
2m
垂径定理经常和勾股定 理结合使用。
在⊙O中,若⊙O的半径r、圆心到弦的
距离d、弦长a、弓形高h中,任意知道
两个量,可根据 垂径定理 构造直角
三角形求出其余两个量。
C
(a)2 d 2 r2
• 学习目标: 1.理解圆的轴对称性,会运用垂径定理解决有 关的证明、计算和作图问题; 2.感受类比、转化、数形结合、方程等数学思 想和方法,在实验、视察、猜想、抽象、概括、 推理的过程中发展逻辑思维能力和识图能力.
• 学习重点: 垂径定理及其推论.
实践探究 把一个圆沿着它的任意一条直径对折,
重复几次,你发现了什么?由此你能得到什 么结论?
r
2
O
或( a )2 (r h)2 r 2 2
rd A ha
B
D
例2.如图,在⊙O中,AB、AC为互相垂直且相 等的两条弦,OD⊥AB于D,OE⊥AC于E,求证: 四边形ADOE是正方形.
C
E
·O
A
D
B
小结评学
1、圆是轴对称图形,任何一条直径所在直线都 是它的对称轴.
2、垂径定理及其推论:
直径平分弦
于点E,则AE=BE( √ )
4则、AE如=图BE(4,),A︵D⊙=O中B︵,D弦(AB√⊥半) 径OD于点E,
C
C
C
O
O
E A
ห้องสมุดไป่ตู้
BA E
BA
D 如图(1)
D 如图(2)
O E BA
D如图(3)
24.垂径定理的应用PPT课件(人教版)
经过圆心O作弦AB的垂线OD,D为垂足,与 AB 相交于点C.根
据垂径定理,D是AB的中点,C是 由题设得
AB 7.2,CD
AB 的中点,CD就是拱高.
2.4, HN 1 MN 1.5.
AD
1
AB
1 7.2
2 3.6,
2
2
OD OC DC R 2.4.
在Rt△OAD中,由勾股定理,得
①④ ②③⑤ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的 ①⑤ ②③④ 另一条弧.
②③ ①④⑤ 弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧.
②④ ②⑤ ③④ ③⑤
①③⑤ 垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且
①③④ 平分弦和所对的另一条弧.
①②⑤ 平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于 ①②④ 弦,并且平分弦所对的另一条弧.
O
A
B
P
2、如图,⊙O的直径AB和弦CD相交于点E,
AE=1厘米,EB=5厘米,∠BED=30°,
求CD的长。
D
No 在Rt△OEF中,OE=3-1=2,
∠BED=30°则OF=1
B
Image 又在Rt△DOF中
F OE
A C
DF= OD2 OF2 32 12 2 2
∴CD=2DF= 4 2
2、通过作出弦心距后,可构造直角三角形,然 后用直角三角形的边角关系或勾股定理来求解.
B
AD AB 37.4 18.7,
2
2
R
R-7.2
OD OC DC R 7.2.
在Rt⊿AOD中,由勾股定理,得
O
OA2 AD2 OD 2 ,
即R2 18.72 (R 7.2)2.
人教版九年级数学24.1.2:垂径定理(教案)
在今天的教学中,我发现学生们对垂径定理的理解普遍较好,他们能够通过观察和实验操作,发现直径与弦的关系。但在定理的证明部分,有些学生显得有些吃力,需要我通过图示和步骤分解来逐步引导。这让我意识到,在今后的教学中,我应该更加注重培养学生的逻辑推理能力和几何直观。
在讲授垂径定理的应用时,我尽量用生活中的实例来说明,让学生感受到数学知识在实际生活中的重要性。这一点从学生的反馈来看,效果还是不错的,他们能够主动思考定理在生活中的应用。但我也注意到,部分学生在解决综合性较强的题目时,还是显得有些力不从心。这说明在今后的教学中,我需要进一步加强学生对知识综合运用能力的培养。
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《垂径定理》这一章节。在开始之前,我想先问大家一个问题:“你们在画圆或者观察圆的时候,有没有注意过直径与弦的关系?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索垂径定理的奥秘。
(二)新课讲授(用时10分钟)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了垂径定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对垂径定理的理解。我希望大家能够掌握这些知识点,并在解决与圆相关的几何问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调垂径定的证明,我会通过图示和步骤分解来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与垂径定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过实际画圆和测量,学生可以直观地看到直径和弦的关系。
三垂径定理
三垂径定理一、垂径定理的内容1. 定理表述- 垂直于弦的直径平分弦且平分这条弦所对的两条弧。
- 用几何语言表示:- 已知圆O,直径CD⊥弦AB于点E,则AE = BE,widehat{AD}=widehat{BD},widehat{AC}=widehat{BC}。
2. 定理的证明(以人教版教材思路为例)- 连接OA,OB。
- 因为OA = OB(同圆半径相等),OE⊥ AB,根据等腰三角形三线合一的性质,可得AE=BE。
- 再根据圆的对称性,可得widehat{AD}=widehat{BD},widehat{AC}=widehat{BC}。
3. 相关概念理解- 弦:连接圆上任意两点的线段。
如在圆O中,AB就是一条弦。
- 直径:经过圆心的弦。
例如CD是圆O的直径。
- 弧:圆上任意两点间的部分。
圆O中的widehat{AD}、widehat{BD}、widehat{AC}、widehat{BC}等都是弧。
二、垂径定理的推论1. 推论内容- 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
- 用几何语言表示:- 已知圆O,直径CD平分弦AB(AB不是直径)于点E,则CD⊥ AB,widehat{AD}=widehat{BD},widehat{AC}=widehat{BC}。
2. 推论的证明- 连接OA,OB。
- 因为OA = OB,AE = BE,所以 OAB是等腰三角形,根据等腰三角形三线合一的性质,可得OE⊥ AB,即CD⊥ AB。
- 再根据圆的对称性,可得widehat{AD}=widehat{BD},widehat{AC}=widehat{BC}。
- 这里要注意弦不能是直径,因为任意一条直径都可以平分另一条直径,但不一定垂直。
三、垂径定理及其推论的应用1. 计算类应用- 例1:已知圆O的半径为5,弦AB = 8,求圆心O到弦AB的距离。
- 解:设圆心O到弦AB的距离为d。
- 连接OA,因为OA = 5,AB = 8,根据垂径定理,OE⊥ AB时AE=(1)/(2)AB = 4。
人教版初中数学垂径定理知识点总结
人教版初中数学垂径定理知识点总结一、垂径定理的定义垂径定理是关于直径和过该直径的直线(或圆)交于圆内两点之间的线段长度和关系的重要定理。
如果一个直径和一条过该直径的直线交于圆内两点,那么这条直径平分过这两点的线段,并且这条直径垂直于过这两点的直线。
二、垂径定理的表述1.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
2.垂直于弦的直径平分弦(不是直径),并且平分弦所对的两条弧。
3.垂直于弦的直径平分过弦的两条直线,并且平分弦所对的两条弧。
三、垂径定理的应用垂径定理在几何学中有着广泛的应用,特别是在解决与圆和直径相关的问题时。
例如,可以利用垂径定理来证明圆的性质,如圆的对称性、圆的周长和面积等。
此外,垂径定理还可以用于解决与圆和直线相关的问题,如求圆的半径、确定圆的中心等。
四、垂径定理的推论1.从圆心到弦的垂线是弦的中垂线。
2.圆内一条弦的两端到圆心的距离相等。
3.圆内一条过圆心的弦最短,其长度为圆的直径。
4.圆内一条不过圆心的弦最短,其长度等于从圆心到弦中点的线段长。
五、垂径定理的证明垂径定理可以通过以下两种方法证明:1.直接证明法:通过作图和推理,直接证明垂径定理。
这种方法比较直观和简洁,但需要一定的几何知识和推理能力。
2.代数法:利用圆的性质和代数运算,证明垂径定理。
这种方法比较抽象,但具有普适性,可以用于证明其他类似的定理。
六、注意事项1.在使用垂径定理时,要注意区分直径和其他弦的区别,避免混淆。
2.在作图时,要确保所作的线段是垂直于弦的直径,否则将无法使用垂径定理。
3.在解决实际问题时,要根据具体情况选择合适的方法来应用垂径定理。
七、垂径定理的应用场景1.确定圆的形状和大小:垂径定理可以用于确定圆的形状和大小。
例如,通过测量圆的直径或半径,可以确定圆的大小;通过观察垂径定理的各种表现,可以判断圆的状态和形状。
2.计算圆的周长和面积:垂径定理可以用于计算圆的周长和面积。
例如,通过已知的直径或半径,可以计算出圆的周长和面积。
人教版数学九年级上册24.1.2《垂径定理》说课稿1
人教版数学九年级上册24.1.2《垂径定理》说课稿1一. 教材分析《垂径定理》是人教版数学九年级上册第24章圆的一部分,它是圆的性质中的重要定理之一。
本节课的主要内容是引导学生探究并证明圆中垂径定理,即圆中垂直于弦的直径平分弦,并且平分弦所对的弧。
这个定理在解决圆的相关问题时具有重要作用,为学生进一步学习圆的性质和圆的方程打下基础。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对图形的性质和证明有一定的理解。
他们对圆的概念和性质有一定的了解,但可能对垂径定理的理解还不够深入。
在学习本节课时,学生需要通过观察、思考、探究、证明等过程,理解和掌握垂径定理。
三. 说教学目标1.知识与技能目标:学生能够理解垂径定理的内容,并能够运用垂径定理解决相关问题。
2.过程与方法目标:学生通过观察、思考、探究、证明等过程,培养逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:学生通过对垂径定理的学习,增强对数学的兴趣和自信心,培养坚持不懈、严谨治学的态度。
四. 说教学重难点1.教学重点:学生能够理解并掌握垂径定理的内容。
2.教学难点:学生能够通过证明过程,理解并掌握垂径定理的证明方法。
五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,引导学生观察、思考、探究、证明。
2.教学手段:利用多媒体演示和实物模型,帮助学生直观地理解垂径定理。
六. 说教学过程1.导入:通过展示一些与圆相关的实际问题,引发学生对圆的性质的思考,激发学生的学习兴趣。
2.新课引入:介绍垂径定理的概念,引导学生观察和思考垂径定理的性质。
3.探究与证明:学生分组进行探究,通过观察、实验、推理等方法,引导学生自己发现并证明垂径定理。
4.讲解与解释:教师对学生的探究结果进行讲解和解释,帮助学生理解和掌握垂径定理。
5.练习与巩固:学生进行一些相关的练习题,巩固对垂径定理的理解和运用。
6.总结与拓展:学生总结垂径定理的内容和证明方法,并进行一些拓展问题的讨论。
人教版数学九年级上册24.1.2《垂径定理》教案2
人教版数学九年级上册24.1.2《垂径定理》教案2一. 教材分析《垂径定理》是人教版数学九年级上册第24章第一节的一部分,主要介绍了圆中垂径定理的内容。
垂径定理是指:圆中,如果一条直径的两端点分别连接圆上两点,那么这条直径垂直于连接这两点的弦。
这一定理是九年级学生学习圆的基础知识,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念和性质,如圆的周长、直径等。
但是,对于垂径定理的理解和运用还需要进一步引导。
此外,学生对于几何图形的观察和分析能力有待提高,因此需要通过实例讲解和动手操作来帮助学生理解和掌握垂径定理。
三. 教学目标1.让学生理解垂径定理的内容,并能够运用垂径定理解决实际问题。
2.培养学生的空间想象能力和逻辑思维能力。
3.提高学生的观察和分析能力,培养学生的合作意识和解决问题的能力。
四. 教学重难点1.重点:理解并掌握垂径定理的内容。
2.难点:如何运用垂径定理解决实际问题。
五. 教学方法1.实例讲解:通过具体的图形和实例,讲解垂径定理的内容和运用。
2.动手操作:让学生亲自动手画图和验证垂径定理,提高学生的实践能力。
3.小组讨论:学生进行小组讨论,分享学习心得和解决问题的方法。
4.问题解决:引导学生运用垂径定理解决实际问题,培养学生的解决问题的能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示垂径定理的图形和实例。
2.教学素材:准备一些相关的几何图形和题目,用于讲解和练习。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾圆的基本概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过PPT展示垂径定理的图形和实例,引导学生观察和分析,然后讲解垂径定理的内容和证明过程。
3.操练(10分钟)教师给出一些相关的题目,让学生亲自动手画图和验证垂径定理,提高学生的实践能力。
人教版九年级上册数学课件24.2.2垂径定理
答:⊙O的半径为5cm.
2m,你能求出赵洲桥主桥拱的半径吗?
与你一起分享!!! 答:⊙O的半径为5cm.
即
R2=18.
4m, 拱高(弧的中点到弦的距离)为7.
把圆沿着直径CD折叠时,CD两侧的两个半圆重合,
把圆沿着直径CD折叠时,CD两侧的两个半圆重合,
O E A 9 0 E A D 9 0 O D A 9 0
∴四边形ADOE为矩形,
AE1AC, AD1AB
2
2
又 ∵AC=AB
C
∴ AE=AD
E
·O
∴ 四边形ADOE为正方形.
A
D
B
某地有一座圆弧形拱桥圆心为O,桥下水面宽度为7、2 m ,过O 作OC ⊥ AB 于D, 交圆弧于C,CD=2、4m, 现有一艘宽3m,船舱顶部为方形并高出水面(AB)2m的 货船要经过拱桥,此货船能否顺利通过这座拱桥?
②平分弦的直线必垂直弦
你(能2)①发现线③图段中:有A②哪E=些④B等E量⑤关系平?与同分伴弦说说(你不的是想法直和理径由).的直径垂直于弦,并且平 分弦所对的两D 条弧.
垂弧就直:可①于 A 推弦C出④的=其直B余径C三②平个分结,③弦论A,D.⑤并=且B平D平分弦分所的弦两所条弧对. 的一条弧的直径,垂直平分弦,并且平分弦所对的 平直分径①弦 C所D⑤对平的分两弦②条A弧B③的,直并④线且经过另圆一心,并条且弧垂直. 平分弦.
过点M作直径CD.
下图是轴对称图形吗?如果是,其对称轴是什么?
你能发现图中有哪些等量关系?与同伴说说 你的想法和理由.
C
A
┗●
B 由 CD是直径
M
●O
人教版九年级数学上册24.-垂径定理的应用(用)1课件(共39张)
经过圆心O作弦AB的垂线OD,D为垂足,与 AB 相交于点C.根
AD 据由1垂题A径设B定得 理1A,BD7是.2A7.B2的3,C.6中D, 点,2C.是4, HANB的中12点M,CND就1.是5.拱高.
2
2
OD OC DC R 2.4.
在Rt△OAD中,由勾股定理,得
OA2 AD2 OD 2 , 即R2 3.62 (R 2.4)2.
中点,EF过圆心O,CDAB为什么?
C F D 分析: CD AB
.O
CFE= BEF
A
E
B CFE=90
BEF=90
OFCD
OE AB
OF过圆心
OE过圆心
点F是CD中点 点E是AB中点
2. 在我们生活中处处存在数学问题,比如:
某村在村口建一个如图形状的门楼,半圆拱 的圆心距地面2米,半径1.5米。现有一辆 高2.9米,宽2.5米的集装箱卡车,问能通 过这个门楼吗?要解决这个问题,必须运用 圆的有关知识,
你是第一 个告知同 学们解题 方法和结 果的吗?
随堂练习P92 4
赵州石拱桥
驶向胜利 的彼岸
解:如图,用 AB 表示桥拱,AB 所在圆的圆心为O,半径为Rm,
经过圆心O作弦AB的垂线OD,D为垂足,与 AB 相交于点C.根
据垂径定理,D是AB的中点,C是AB 的中点,CD就是拱高.
由题设 AB 37.4,CD 7.2,
圆的线段问题转化
O
为直角三角形问题
变式1:如上图,若以O为圆心再画一 个圆交弦AB于C,D,则AC与BD间可 能存在什么关系?
A C E DB O
(1)
AC
DB
O
(2)
人教版九年级上册数学课件:24.垂径垂径定理
O B
O ●C
垂径定理的应用:
1.在⊙O中,若CD ⊥AB于M,AB为直径,则
下列结论不正确的是( C )
A、A⌒C=A⌒D B、⌒BC=⌒BD
C、AM=OM D、CM=DM
2.已知⊙O的直径AB=10,弦CD
A
C M└
D
●O
⊥AB,垂足为M,OM=3,则
CD= 8 .
B
3.在⊙O中,CD ⊥AB于M,AB为直径,若CD=10, AM=1,则⊙O的半径是 13 .
B
。圆的任意一条直径的两个端
O
点把圆分成两条弧,每一条
A
弧叫做半圆.
大于半圆的弧(用三个点表示,如:ACB 或 BCA ), 叫做优弧;
小于半圆的弧叫做劣弧. 如: AB BC
3、等圆:能够重合的两个圆叫做等圆A, 半径相等的两个圆也是等圆;反过来, 同圆或等圆的半径相等。
B
M
●O
C
4、等弧:在同圆或等圆中,能够互相重合的弧。
解这个方程,得R 545.
这段弯路的半径约为545m .
小结: 垂径定理
解决有关弦的问题,经常是
过圆心作弦的垂线,
A
或作垂直于弦的直径,
连结半径等辅助线,
B
.
O
构成直角三角形,为应用垂径定理创 造条件。
挑 战自我
1、要把实际问题转变成一个数学问题来解决.
2、熟练地运用垂径定理及其推论、勾股定理,并用 方程的思想来解决问题.
37.4m
7.2m
C
A
E
B
O
赵州石拱桥
解:如图,用 A表B 示桥拱,A所B在圆的圆心为O,半径为Rm,
过圆心O作弦AB的垂线OD,与 A相B 交于点C. CD就是拱高. 根据垂径定理得:AD=BD。
垂径定理PPT课件(人教版)
7.2m
A
C
D
B
R
O
ห้องสมุดไป่ตู้广探索 二
⊙O半径为10,弦AB=12,CD=16, 且AB∥CD.求AB与CD之间的距离.
A C
B D
.
A
B
.
C
D
课堂小结
C
O
A
A
E
B
D
A
O
D
B
D
B
O
C
A
C
CB
D
A
O
O
C
B
• 两条辅助线:
半径 弦心距
A
• 一个Rt△:半径 半弦 弦心距
r2 d 2 (a)2 2
在⊙O中,直径CD⊥弦AB
A
① AB是直径 ② CD⊥AB
C
P
┗
D
③ CP=DP
可推得
④
⌒ AC
=
⌒ AD
O
⑤
⌒⌒ BC = BD
B
垂径定理的变式图形一
在⊙O中,半径 OB⊥弦CD
C
① OB是半径 可推得 ② OB⊥CD
③CP=DP,
④ ⌒BC=⌒BD.
O P
D
B
垂径定理的变式图形二
在⊙O中,OP⊥弦CD于P点 C
O P
D
① OP过圆心 ② OP⊥CD
可推得
③CP=DP,
在下列图形中,你能否利用垂径定理找到相等的线 段或相等的圆弧
C
C
B
E
A
O
A
E
B
D C
O
A
E
B
D
A
人教版九年级数学上册课件:24.1.2垂径定理
变式1 如图,若将 AB 向下平移,当移到过圆心时,结论 AC=BD 还成立吗?
AC O
DB
6.利用新知 解决问题
变式2 如图,连接 OA,OB,设 AO=BO, 求证:AC=BD.
O
AC
DB
五.归纳小结
内容: 垂径定理:垂直于弦的直径平分弦,并且平分弦所
对的两条弧. ①构造直角三角形,垂径定理和勾股定理有机结合
是计算弦长、半径和弦心距等问题的方法. ②技巧:重要辅助线是过圆心作弦的垂线. 重要思路:(由)垂径定理—构造直角三角形—
(结合)勾股定理—建立方程.
六.布置作业 教科书P83 第 2 题.P89 第8题
垂径定理:
垂直于弦的直径平分弦,并且平分弦所对的 两条弧.
A
O
E
C
D
B
知二推三
三.新知应用
下列哪些图形可以用垂径定理?你能说明理由吗?
A
图1
O E
C
D
O 图2
AE
B
B
D
图3 A E O B C
A C
E 图4 B
ODBiblioteka 四.利用新知 问题回解1. 赵州桥问题
C
A
D
B
O
2. 如图,已知在两同心圆⊙O 中,大圆弦 AB 交小圆 于 C,D,则 AC 与 BD 间可能存在什么关系?
24.1.2 垂直于弦的直径
一.创设情境,
如图,1 400 多年前,我国隋代建造的赵州石拱桥 主桥拱是圆弧形,它的跨度(弧所对的弦长)是 37 m, 拱高(弧的中点到弦的距离)为 7.23 m,求赵州桥主桥 拱的半径(精确到 0.1 m).
二.探究新知
部编数学九年级上册24.3垂直于弦的直径垂径定理(知识讲解)(人教版)含答案
专题24.3 垂直于弦的直径-垂径定理(知识讲解)【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.利用垂径定理及其推论进行简单的计算和证明.【要点梳理】知识点一、垂径定理1.垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.特别说明: (1)垂径定理是由两个条件推出两个结论,即 (2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的推论根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.特别说明:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、利用垂径定理求圆的半径、弦心距、角度、弦1.如图,AB 是O e 的直径,弦CD AB ^于点E ,点M 在O e 上,MD 恰好经过圆心O ,连接MB .(1)若16CD =,4BE =,求O e 的直径;(2)若M D Ð=Ð,求D Ð的度数.【答案】(1)20;(2)30°【分析】(1)由CD =16,BE =4,根据垂径定理得出CE =DE =8,设⊙O 的半径为r ,则4OE r =-,根据勾股定理即可求得结果;(2)由OM =OB 得到∠B =∠M ,根据三角形外角性质得∠DOB =∠B +∠M =2∠B ,则2∠B +∠D =90°,加上∠B =∠D ,所以2∠D +∠D =90°,然后解方程即可得∠D 的度数.解:(1)∵AB ⊥CD ,CD =16,∴CE =DE =8,设OB r =,又∵BE =4,∴4OE r =-∴222(4)8r r =-+,解得:10r =,∴⊙O 的直径是20.(2)∵OM =OB ,∴∠B =∠M ,∴∠DOB =∠B +∠M =2∠B ,∵∠DOB +∠D =90°,∴2∠B +∠D =90°,∵M DÐ=Ð,∴∠B=∠D,∴2∠D+∠D=90°,∴∠D=30°;【点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.举一反三:e中,弦AB长50mm.求:【变式1】如图,在半径为50mm的OÐ的度数;(1)AOB(2)点O到AB的距离.【答案】(1)60°;(2)【分析】V是等边三角形,从而可得结论;(1)证明AOBAC BC再利用勾股定理可(2)过点O作OC⊥AB,垂足为点C,利用垂径定理求解,,得答案.解:(1)∵OA,OB是⊙O的半径,∴OA=OB=50mm,又∵AB=50mm,∴OA=OB=AB,∴△AOB是等边三角形,∴∠AOB=60°. (2)过点O作OC⊥AB,垂足为点C,如图所示,由垂径定理得AC =CB =12AB =25mm ,在Rt △OAC 中OC 2=OA 2-AC 2=502-252=252×3,∴OC mm ),即点O 到AB 的距离是.【点拨】本题考查的是等边三角形的判定与性质,圆的性质,垂径定理的应用,勾股定理的应用,熟练垂径定理的运用是解题的关键.【变式2】如图,AB 是O e 的直径,E 为O e 上一点,EF AB ^于点F ,连接OE ,//AC OE ,OD AC ^于点D .若2,4BF EF ==,求线段AC 长.【答案】6【分析】设OE =x ,根据勾股定理求出x ,根据全等三角形的判定定理和性质定理得到AD =OF =3,根据垂径定理得到答案.解:设OE =x ,则OF =x -2,由勾股定理得,OE 2=OF 2+EF 2,即x 2=(x -2)2+42,解得,x =5,∴OF =3,∵AC ∥OE ,OD ⊥AC ,∴OD ⊥OE ,∠A =∠EOF ,∵OA =OE ,EF ⊥AB ,∴△ADO ≌△OFE ,∴AD =OF =3,∵OD ⊥AC ,∴AC=2AD=6.【点拨】本题考查的是垂径定理的应用,掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.类型二、利用垂径定理求进行证明2.如图,在⊙O中,AB、AC是互相垂直且相等的两条弦,OD^AB,OE^AC,垂足分别为D、E.(1)求证:四边形ADOE是正方形;(2)若AC=2cm,求⊙O的半径.【答案】(1)见分析【分析】(1)根据AC^AB,OD^AB,OE^AC,可得四边形ADOE是矩形,由垂径定理可得AD=AE,根据邻边相等的矩形是正方形可证;(2)连接OA,由勾股定理可得.(1)证明:∵AC^AB,OD^AB,OE^AC,∴四边形ADOE是矩形,12AD AB=,12AE AC=,又∵AB=AC,∴AD=AE,∴四边形ADOE是正方形.(2)解:如图,连接OA,∵四边形ADOE是正方形,∴112OE AE AC===cm,在Rt△OAE中,由勾股定理可得:OA==,即⊙O cm.【点拨】本题考查圆与正方形,熟练掌握正方形的判定方法、圆有关的性质,是解题的关键.举一反三:【变式1】如图,AB、CD为⊙O的两条弦,AB∥CD,经过AB中点E的直径MN与CD交于F点,求证:CF=DF【分析】根据垂径定理进行解答即可.解:∵E为AB中点,MN过圆心O,∴MN⊥AB,∴∠MEB=90°,∵AB∥CD,∴∠MFD=∠MEB=90°,即MN⊥CD,∴CF=DF.【点拨】本题考查了垂径定理的运用,垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.【变式2】已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).求证:AC=BD.【分析】过圆心O 作OE ⊥AB 于点E ,根据垂径定理得到AE=BE ,同理得到CE=DE ,又因为AE-CE=BE-DE ,进而求证出AC=BD .解:过O 作OE ⊥AB 于点E ,则CE=DE ,AE=BE ,∴BE-DE=AE-CE.即AC=BD.【点拨】本题考查垂径定理的实际应用.类型三、利用垂径定理推论求圆的半径、弦心距、角度、弦3.如图,∠AOB 按以下步骤作图:①在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作圆弧PQ ,交射线OB 于点D ;②连接CD ,分别以点C 、D 为圆心,CD 长为半径作弧,交圆弧PQ 于点M 、N ;③连接OM ,MN .根据以上作图过程及所作图形完成下列作答.(1)求证:OA 垂直平分MD .(2)若30AOB Ð=°,求∠MON 的度数.(3)若20AOB Ð=°,6OC =,求MN 的长度.【答案】(1)证明见分析;(2)90MON Ð=°;(3)6MN =.【分析】(1)由垂径定理直接证明即可得;(2)根据相等的弧所对的圆心角也相等求解即可得;(3)由(2)可得:20COM COD DON Ð=Ð=Ð=°,得出60MON Ð=°,根据等边三角形得判定可得OMN n 为等边三角形,即可得出结果.(1)证明:如图所示,连接MD ,由作图可知,CM CD =,∴»ºCM C D =,∵OA 是经过圆心的直线,∴OA 垂直平分MD ;(2)解:如图所示,连接ON ,∵CM CD DN ==,∴»º»CM C D D N ==,∴30COM COD DON Ð=Ð=Ð=°,∴90MON COM COD DON Ð=Ð+Ð+Ð=°,即90MON Ð=°;(3)解:由(2)可得:20COM COD DON Ð=Ð=Ð=°,∴60MON Ð=°,∵OM ON =,∴OMN n 为等边三角形,∴6MN OM OC ===.【点拨】题目主要考查垂径定理,等弧所对的圆心角相等,等边三角形的判定和性质等,理解题意,综合运用这些基础知识点是解题关键.举一反三:【变式1】 如图,AB 为圆O 直径,F 点在圆上,E 点为AF 中点,连接EO ,作CO ⊥EO 交圆O 于点C ,作CD ⊥AB 于点D ,已知直径为10,OE =4,求OD 的长度.【答案】3【分析】根据垂径定理的逆定理得到OE ⊥AF ,由CO ⊥EO ,得到OC ∥AF ,即可得到∠OAE =∠COD ,然后通过证得△AEO ≌△ODC ,证得CD =OE =4,然后根据勾股定理即可求得OD .解:∵E 点为AF 中点,∴OE ⊥AF ,∵CO ⊥EO ,∴OC ∥AF ,∴∠OAE =∠COD ,∵CD ⊥AB ,∴∠AEO =∠ODC ,在△AEO 和△ODC 中,OAE COD AEO ODC OA OC Ð=ÐìïÐ=Ðíï=î,∴△AEO ≌△ODC (AAS ),∴CD =OE =4,∵OC =5,∴OD=3.【点拨】本题考查垂径定理的逆定理、平行线的判定与性质、全等三角形的判定与性质、勾股定理,熟练掌握垂径定理和全等三角形的判定与性质是解答的关键.【变式2】如图所示,直线=y x 轴、y 轴分别交于A 、B 两点,直线BC 交x 轴于D ,交△ABO 的外接圆⊙M 于C ,已知∠COD =∠OBC .(1)求证:MC ⊥OA ;(2)求直线BC 的解析式.【答案】(1)见分析;(2)y=【分析】(1)利用弧弦角转化得¼¼OC AC=,由垂径定理即可得MC⊥OA;(2)由直线=y x与x轴、y轴分别交于A、B两点,求出A、B两点坐标,从而得到A、B中点M点坐标,再由勾股定理求出OM,进而求出点C坐标.由B、C两点坐标用待定系数法求直线BC解析式即可.解:(1)证明:∵∠COD=∠OBC,∴¼¼OC AC=,∵点M是圆心,∴由垂径定理的推论,得MC⊥OA;(2)解:∵MC⊥OA,∴OG=GA=12OA,∵点M是圆心,∴BM=AM,∴GM是△AOB的中位线,∴GM,∵=y x轴、y轴分别交于A、B两点,∴当x=0时,y y=0时,x=3,∴B(0,A(3,0)∴OB OA=3,∴MG OG=32,连接OM,在Rt△OGM中,由勾股定理,得OM=∴GC=∵点C 在第三象限,∴C (32,).设直线BC 的解析式为:y =kx +b ,∴32k b =+解得:k b ìïíïî,直线BC的解析式为:y =【点拨】本题主要考查了弧弦角的性质,垂径定理,数形结合求出关键点坐标是解决本题的关键.类型四、利用垂径定理推论求进行证明4.如图所示,已知在⊙O 中,AB 是⊙O 的直径,弦CG ⊥AB 于D ,F 是⊙O 上的点,且»»CFCB =,BF 交CG 于点E ,求证:CE =BE .【分析】证法一:连接CB ,可证»»CFGB =,从而可证明CE =BE ;证法二:作ON ⊥BF ,垂足为N ,连接OE ,证明△ONE ≌△ODE ,可得NE =DE,再结合垂径定理可得BN=CD,再根据线段的差即可证明结论;证法三:连接OC交BF于点N,只需要证明△CNE≌△BDE即可证明结论.解:证法一:如图(1),连接BC,∵AB是⊙O的直径,弦CG⊥AB,∴»»CB GB=,∵»»CF BC=,∴»»CF GB=,∴∠C=∠CBE,∴CE=BE.证法二:如图(2),作ON⊥BF,垂足为N,连接OE.∵AB是⊙O的直径,且AB⊥CG,∴»»CB BG=,∵»»CB CF=,∴»»»CF BC BG==,∴BF=CG,ON=OD,∵∠ONE=∠ODE=90°,OE=OE,ON=OD,∴△ONE≌△ODE(HL),∴NE=DE.∵12BN BF=,12CD CG=,∴BN=CD,∴BN-EN=CD-ED,∴BE=CE.证法三:如图(3),连接OC交BF于点N.∵»»=,CF BC∴OC⊥BF,∵AB是⊙O的直径,CG⊥AB,∴»»=,BG BC∴»»»==,CF BG BC=,∴»»BF CG=,ON OD∵OC=OB,∴OC-ON=OB-OD,即CN=BD,又∠CNE=∠BDE=90°,∠CEN=∠BED,∴△CNE≌△BDE,∴CE=BE.【点拨】本题考查垂径定理、圆周角定理、全等三角形的性质和判定等.熟练掌握垂径定理及其推理是解题关键.举一反三:【变式1】如图,已知AB,CD是⊙O内非直径的两弦,求证:AB与CD不能互相平分.【分析】根据反证法的步骤进行证明:先假设AB与CD能互相平分,结合垂径定理的推论,进行推理,得到矛盾,从而肯定命题的结论正确.解:设AB,CD交于点P,连接OP,假设AB与CD能互相平分,则CP=DP,AP=BP,∵AB,CD是圆O内非直径的两弦,∴OP⊥AB,OP⊥C D,这与“过一点有且只有一条直线与已知直线垂直相矛盾”,所以假设不成立,所以AB与CD不能互相平分【点拨】本题考查了反证法,解题的关键是:掌握反证法的步骤.【变式2】如图,已知在⊙O中,»»»==,OC与AD相交于点E.求证:AB BC CD(1)AD∥BC(2)四边形BCDE为菱形.【分析】(1)连接BD,根据圆周角定理可得∠ADB=∠CBD,根据平行线的判定可得结论;(2)证明△DEF≌△BCF,得到DE=BC,证明四边形BCDE为平行四边形,再根据»»=得到BC=CD,从而证明菱形.BC CD解:(1)连接BD,∵»»»==,AB BC CD∴∠ADB=∠CBD,∴AD∥BC;(2)连接CD ,∵AD ∥BC ,∴∠EDF =∠CBF ,∵»»BCCD =,∴BC =CD ,∴BF =DF ,又∠DFE =∠BFC ,∴△DEF ≌△BCF (ASA ),∴DE =BC ,∴四边形BCDE 是平行四边形,又BC =CD ,∴四边形BCDE 是菱形.【点拨】本题考查了垂径定理,圆周角定理,弧、弦、圆心角的关系,全等三角形的判定和性质,菱形的判定,解题的关键是合理运用垂径定理得到BF =DF .类型五、垂径定理及推论解决其他问题5.如图,AB 为O e 的一条弦,连接OA 、OB ,请在O e 上作点C 使得ABC V 为以AB 为底边的等腰三角形.(尺规作图,保留作图痕迹,不写作法)【分析】分别以点A 、B 为圆心,大于AB 长的一半为半径画弧,交于两点,连接这两点,交O e 于点C ,则问题可求解.解:如图所示:【点拨】本题主要考查垂径定理及等腰三角形的性质,熟练掌握垂径定理是解题的关键.举一反三:【变式1】如图,一段圆弧与长度为1的正方形网格的交点是A、B、C,以点O为原点,建立如图所示的平面直角坐标系.(1)根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD;(2)请在(1)的基础上,完成下列填空:⊙D的半径为 ;点(6,﹣2)在⊙D (填“上”、“内”、“外”);∠ADC的度数为 .【答案】(1)见分析;(2)90°【分析】(1)根据原点所在的位置,建立平面直角坐标系即可;根据圆心D必在线段AB和线段BC的垂直平分线上进行求解即可;(2)由(1)得到D点坐标,即可得到OA,OD的长,利用勾股定理求解即可得到AD 的长;利用两点距离公式求出点(6,-2)到圆心D的距离与AD的长比较即可得到点(6,-2)与圆D的位置关系;利用勾股定理的逆定理判断△ADC是直角三角形即可得到答案.解:(1)如图所示,即为所求;(2)由(1)可知D 点坐标为(2,0),A 点坐标为(0,4)∴OD =2,OA =4,AD ==∴圆D 的半径为∵点(6,﹣2)到圆心D =∴点(6,﹣2)到圆心D 的距离等于半径的长,∴点(6,﹣2)在⊙D 上.∵D (2,0),C (6,2),A (0,4),∴CD ==,AC ==,∴222CD AD AC +=,∴∠ADC =90°,故答案为:90°.【点拨】本题主要考查了坐标与图形,两点距离公式,确定圆心位置,点与圆的位置关系,勾股定理的逆定理,解题的关键在于能够熟知相关知识.【变式2】如图,O e 中,P 是»AB 的中点,C 、D 是PA 、PB 的中点,过C 、D 的直线交O e 于E 、F .求证:EC FD =.【分析】连结OC,OD,OP交EF于G,由P是»AB的中点,可得¼¼AP BP=,根据弧等相等可得AP=BP,由C、D是PA、PB的中点,根据垂径定理可得OC⊥PA,OD⊥PB,CP=12AP,DP=12BP,可求∠PCO=∠PDO=90°,CP=DP,由勾股定理OC==OD,根据线段垂直平分线判定可得OP是CD的垂直平分线,可得CG=DG,根据垂径定理可得EG=FG即可.解:连结OC,OD,OP交EF于G,∵P是»AB的中点,∴¼¼AP BP=,∴AP=BP,∵C、D是PA、PB的中点,∴OC⊥PA,OD⊥PB,CP=12AP,DP=12BP,∴∠PCO=∠PDO=90°,CP=DP,∴OC=OD,∴OP是CD的垂直平分线,∴CG=DG,∵CD在EF上,EF是弦,OP为半径,OP⊥EF,∴EG=FG,∴EC=EG-CG=GF-GD=DF.∴EC= DF.【点拨】本题考查弧了垂径定理,等腰三角形判定与性质,线段垂直平分线判定与性质,线段和差,掌握垂径定理,等腰三角形判定与性质,线段垂直平分线判定与性质,线段和差是解题关键.类型六、利用垂径定理及推论的实际应用6.把一张圆形纸片按如图方式折叠两次后展开,图中的虚线表示折痕,且折痕6AB =,求O e 的半径.【答案】【分析】过点O 作OE ⊥AB 于点E ,连接OA ,根据垂径定理,可得132AE AB ==,由折叠得: 12OE OA =,然后在Rt AEO V 中,利用勾股定理即可求得结果.解:如图,过点O 作OE ⊥AB 于点E ,连接OA ,∴132AE AB ==,由折叠得:12OE OA =,设=2OE x OA x =,则,∴在Rt AEO V 中,由勾股定理得:222=OE AE OA +,即:2223=4x x +解得: x 1x 2=∴2x答:O e 的半径为【点拨】本题主要考查了折叠的性质、垂径定理和勾股定理,熟练运用相关性质和定理是解题的关键.举一反三:【变式1】某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面(要求用尺规作图,保留作图痕迹,不写作法);AB=,水面最深地方的高度(即»AB的中点(2)若这个输水管道有水部分的水面宽16cm到弦AB的距离)为4cm,求这个圆形截面所在圆的半径.【答案】(1)见分析(2)10cm【分析】(1)根据尺规作图的步骤和方法做出图即可,(2)先过圆心O作半径CO⊥AB,交AB于点D,设半径为r,得出AD、OD的长,在Rt△AOD中,根据勾股定理求出这个圆形截面的半径.(1)如图所示,⊙O为所求作的圆形截面.(2)如图,作半径OC⊥AB于D,连接OA,AB=8 cm,点C为AB n的中点,则AD=12进而,CD=4 cm.设这个圆形截面所在圆的半径为r cm,则OD=(r-4)cm.在Rt△ADO中,有82+(r-4)2=r2,解得r=10.即这个圆形截面所在圆的半径为10 cm.【点拨】此题考查了垂经定理和勾股定理,关键是根据题意画出图形,再根据勾股定理进行求解.【变式2】如图,有一座圆弧形拱桥,它的跨度AB为30m,拱高PM为9m,当洪水泛滥到跨度只有15m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有2m,即PN=2m时,试求:(1)拱桥所在的圆的半径;(2)通过计算说明是否需要采取紧急措施.【答案】(1)拱桥所在的圆的半径为17m;(2)不需要采取紧急措施,理由见分析.【分析】(1)由垂径定理可知AM=BM、A′N=B′N,再在Rt△AOM中,由勾股定理得出方程,即可求出半径;(2)求出ON=OP﹣PN=15(m),再由勾股定理可得A′N=8(m),则A′B′=2A'N=16米>15m,即可得出结论.解:(1)设圆弧所在圆的圆心为O,连接OA、OA′,设半径为xm,则OA=OA′=OP,由垂径定理可知AM=BM,A′N=B′N,∵AB=30m,AB=15(m),∴AM=12在Rt△AOM中,OM=OP﹣PM=(x﹣9)m,由勾股定理可得:AO2=OM2+AM2,即x2=(x﹣9)2+152,解得:x=17,即拱桥所在的圆的半径为17m;(2)∵OP=17m,∴ON=OP﹣PN=17﹣2=15(m),在Rt△A′ON中,由勾股定理可得A′N=8(m),∴A′B′=2A'N=16米>15m,∴不需要采取紧急措施.【点拨】本题主要考查了垂径定理的应用,勾股定理,准确计算是解题的关键.。
人教版数学九年级上册第二十四章24.1.2 垂径定理
•
1、如图1,⊙O的直径为10,圆心O到弦AB的距离OM
的长为3,则弦AB的长是( D )
A.4
B.6
C.7
D.8
2、如图2,已知⊙O的半径为13mm,弦AB=10mm,则
圆心O到AB的距离是( C )
A.3 mm B.4 mm C. 12 mm D. 5 mm
图1
图2
三 垂径定理的实际应用
问题:你知道赵州桥吗? 它的主桥是圆弧形,它的跨度(弧所对的 弦的长)为37m, 拱高(弧的中点到弦的距离)为7.23m,你能求出 赵州桥主桥拱的半径吗? 你能利用垂径定理解决求赵州桥主桥拱半径的问题吗?
⌒ ⌒ 解:如图,用AB表示主桥拱,设AB
所在圆的圆心为O,半径为R.
经过圆心O作弦AB的垂线OC垂足为
D,与弧AB交于点C,则D是AB的
中点,C是弧AB的中点,CD就是拱
高.
∴ AB=37m,CD=7.23m.
A
∴ AD= AB=18.5m,OD=OC-CD=R-7.23.
在Rt△OAD中,由勾股定理,得
C
O A
A
EB
D
是
C B
O A
不是,因为 没有垂直
C
O
O
E
BA
是
EB
不是,D因为
CD没有过圆
心
归纳总 结
垂径定理的推论
平分弦(不是直径)的直径垂直于弦,并且平分弦所
对的两条弧.
思考:“不是直径”这个条件能去掉吗?如果不能,请举
出反例.
C
➢特别说明: 圆的两条直径是互相平分的.
A
·O
B
D
一二 垂径定理及其推论的计算
人教版垂径定理
∴⌒AP=⌒BP
A⌒D=⌒BD
A
AC=BC
C
·O
E B
D
活动三
垂径定理:
①直线CD过圆心O ② CD⊥弦AB
③A⌒E=B⌒E ④A⌒D=B⌒D ⑤AC=BC
垂径定理的推论:平分弦(不是直径)的直径
垂直于弦,并且平分弦所对的两条弧。 C
? ①直线CD过圆心O
③ AE=BE
②CD⊥AB
④A⌒D=B⌒D ⑤A⌒C=B⌒C
结束寄语
C
(2)相相等等的的线弧段: :A⌒ACE=⌒B=CB,EA⌒D=⌒BD
把圆沿着直径CD折叠时,CD 两侧的 两个半圆重合,点A与点B重合,AE与 BE重合,弧AC与弧BC重合,弧AD与弧 A BD重合.
·O
E B
D
垂径定理:垂直于弦的直径平分弦,并且
平分弦所对的两条弧.
几何语言: ∵ CD过圆心O , CD⊥AB
§24.1.2 垂直于弦的直径 ·O
你知道赵州桥吗?它是1300多年前我国隋代建造的石 拱桥,是我国古代人民勤劳与智慧的结晶,它的主桥拱 是圆弧形,它的跨度(弦长)为37.4 m,拱高(弧的中点 到弦的距离)为7.2 m,你能求出赵州桥主桥拱的半径吗?
活动一
把一个圆沿着它的任意一条直径所在的直线对折,两 侧半圆会有什么关系?重复做几次,你发现了什么?由 此你能得到什么结论?
可以发现:
·
圆是轴对称图形,任何一条直径所在直线
(或者任何经过圆心的直线)都是它的对称轴,
所以两侧半圆折叠后完全重合.
活动二
如图,AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为E. (1)此圆是轴对称图形吗?如果是,它的对称轴是什么? (2)图中有哪些相等的线段和弧?为什么?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
·O
P
D
C
B
6. 如图,某公园的一座石拱桥是圆弧形(劣弧),其跨
度AB的长为24米,拱桥的半径为13米,则拱高
CD的长为( B)米。
C
A. 5 C. 7
B. 8 D. 5 3
D
A
B
O
巩固练习
7.如图,在⊙O中,AB、AC为互相垂直且相等的 两条弦,OD⊥AB于D,OE⊥AC于E。 求证:四边形ADOE是正方形.
教学目标:
1. 理解圆是轴对称图形.
2. 掌握垂径定理和推论的推理过程,并能解决一些简单的计算、 证明和作图问题。
3. 使学生了解垂径定理及推论在实际中的应用,培养学生把 实际问题转化成数学问题的能力。
教学重点:
1.垂直于弦的直径的性质、推论及应用。 2.利用垂径定理及推论解决实际问题。
教学难点:
·O
E
A
2.垂径定理推论:
D
平分弦(不是直径)的直径垂直于弦,并且平分 弦所对的两条弧.
rd
B
即: r2=18.72+(r-7.2)2
解得:r≈27.9(m)
因此,赵州桥的主桥拱半径约为27.9m.
O
AB=37.4m CD=7.2m
巩固练习
1. 如图,AB是⊙O的直径,弦CD⊥AB于M,下列结论不一定成
立的是( )
C
A. CM=DM
A
B.
C. AAD=C2B=DAD
O
D.∠BCD=∠BDC
证明:∵ AB⊥ AC于A, OD⊥AB于D,OE⊥AC于E
∴ OEA ODA EAD 90
∴四边形ADOE为矩形,
C
又由垂径定理:AE 1 AC AD 1 AB
2
2
E
且 AC=AB
∴ AE=AD
A
·O
D
B
∴ 四边形ADOE为正方形.
C
1.垂径定理
垂直于弦的直径平分弦,并且 平分弦所对的两条弧.
CM
D
B
2. 如图,在⊙O中,P是弦AB的中点,CD是 过点P的直径,则下列结论不正确的是( )D
C
A.CD ⊥AB
B.AC=BC
C. AD=BD D.PO=PD
·O
P
A
B
D
巩固练习
3. 如图,周长为10 的⊙O中,弦AB的弦心距OC等于3,那么
弦AB的长为( )。 A. 2 B. 4
D
A
C. 6 D. 8
(5)平分弦所对的劣弧 AD=BD
C
· 如图,若CD是直径,且CD平分弦AB (不是直径), O
是否能得到CD⊥AB,且平分弧ACB和弧
AB?为什么?
E
A
CD⊥AB AC=BC AD=BD
B
垂径定理推论:
D
平分弦(不是直径)的直径垂直于弦, 并且平分弦所对的两条弧.
思考:如果AB也是直径,
上述结论是否成立?
实践探究
用纸剪一个圆,沿着圆的任意一条直 径对折,重复几次,你发现了什么?由 此你能得到什么结论?
C
可以发现:
圆是轴对称图形,任何
·O
一条直径所在直线都是
它的对称轴.
D
如图 ,AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为E.
你能发现图中有那些相等的线段和弧?为什么?
C
相等的线段: AE=BE
相等的弧: AC=BC AD=BD
垂径定理:垂直于弦的直径平分弦, 并且平分弦所对的两条弧. A
·O
E B
符号语言:∵ CD是⊙O的直径,CD⊥AB于E,
D
∴AE=BE, AC=BC,AD=BD .
若一条直线满足:(1)过圆心 CD是直径 (2)垂直于弦 CD ⊥AB于E
则可推出(:3)平分弦 AE=BE (4)平分弦所对的优弧 AC=BC
OC
4. 如图,AB是⊙O的直径,弦CD⊥AB于E, 若B
AB=20,CD=16,则线段OE等于( )。B
A. 4 B. 6
A
C. 8 D.10
O
C ED B
巩固练习
5. 如图,⊙O的直径AB垂直弦CD于P,且 P是半径OB的中点,CD=6,则直径 A AB的长为( D)。
A. 2 3 B. 3 2
1.对垂直于弦的直径的性质、推论的说明过程的理解。 2.应用垂径定理及推论解决实际问题。
赵州桥主桥拱的半径是多少?
问题 :你知道赵州桥吗?它是1300多年前我国隋代建造的石 拱桥, 是我国古代人民勤劳与智慧的结晶.它的主桥拱是圆 弧形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到 弦的距离)为7.2m,你能求出赵州桥主桥拱的半径吗?
过圆心O作弦AB的垂线OC,D为垂足,OC与AB相交于点C,
∵半径OC⊥弦AB AB=37.4,CD=7.2,
∴ AD 1 AB 1 37.4 OD=OC-CD=r-7.2
在Rt△OAD中,由勾股定理,得 OA2=AD2+OD2
r2 =d2+(a2)2 h+d=r A
h
a/2 D
B D
5个条件中,任满足2个,剩下3个结论都成立。
由 (2)、(3),得(1)、(4)、(5)。 常用此方法来确定圆心的位置
C A
B O
例1:如图,在⊙O中,弦AB的长为8cm,圆心O 到AB的距离为3cm,求⊙O的半径.
解:过点O作OE⊥AB于E,连接OA.
OE AB
A
E
B
AE 1 AB 1 8 4 22
·
在Rt AOE中,由勾股定理得:
O
AO2 OE2 AE2
AO OE2 AE2 = 32 +42 =5cm
答:⊙O的半径为5cm.
1. 如图,在⊙O中,直径为10cm, A
E
B
弦AB的长为8cm,求圆心O到AB 的距离.
·
O
2. 如图,在⊙O中,直径为10cm, 圆心O到AB的距离为3cm,求弦 AB的长.
3. 设⊙O的半径是r,圆心到弦
的距离为d,弦长为a,这三者 间有怎样的关系式?
rd
r2 =d2+(a2)2
a
2 构造直角三角形,利用垂径定理 和勾股定理,解决问题。
解决求赵州桥拱半径的问题?
问题 :你知道赵州桥吗?它是1300多年前我国隋代建造的石 拱桥, 是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧 形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦 的距离)为7.2m,你能求出赵州桥主桥拱的半径吗? 解: 如图,用弧AB表示主桥拱,设 AB所在圆的圆心为O,半径为r.
不一定.
符号语言:
∵ CD是⊙O的直径,AB是弦(不是直径), C
AC
且AE=BE,
AO B
O
∴ CD ⊥ AB ,
,
.
D
B D
C
(1)过圆心(CD是直径);
(2)垂直于弦(CD ⊥AB于E); (3)平分弦(AE=BE);
·O
E
(4)平分弦所对的劣弧( AD=B)D ; A (5)平分弦所对的优弧( AC=BC).