混凝土重力坝设计定稿zjy解析
混凝土重力坝设计方案secret[]
2018 届本科毕业设计<论文)题目: 混凝土重力坝班级:考籍号:911010105307姓名:李中亚指导教师:2018年月混凝土重力坝学生姓名:李中亚考籍号:911010105307班级:指导教师:完成日期:年月前言通过所学的课程《水工建筑物》,掌握了混凝土重力坝的工作原理、工作特点,以及各种工况下荷载计算及其组合,强度分析的可靠度计算方法,重力坝消能形式及适用条件和岩石地基的处理措施了解了重力坝构造和混凝土分区的依据。
根据这些所学到的理论知识和设计指导书中所提供的工程资料,结合自己的实际情况和工作经验,在设计指导老师的讲解和引导下,完成了此次混凝土重力坝的设计,通过本次设计,真正体验了学以致用,和培养了我独立分析问题和解决问题的能力。
摘要本设计主要是针对枢纽工程的推荐方案Ⅰ83坝线混凝土坝方案进行的初步设计。
本设计共分五章内容,其中非溢流坝剖面设计和溢流坝剖面设计和细部构造都附有CAD图,非溢流坝段,验算坝体强度和稳定承载能力极限状态等。
溢流坝段,进行水力计算,坝体强度和稳定承载能力极限状态验算等,对细部构造进行了简略的描述。
目录第1章基本资料--------------------------------------------------1 1.1水库的基本资料-------------------------------------------------1第2章枢纽布置--------------------------------------------------7 1.1坝轴线选择-----------------------------------------------------7 1.2坝型确定-------------------------------------------------------9 1.3枢纽布置-------------------------------------------------------9第3章坝体剖面设计----------------------------------------------11 1.1坝顶高程设计--------------------------------------------------11 1.2挡水坝结构设计------------------------------------------------15第4章溢流坝剖面设计-------------------------------------------20 1.1溢流坝剖面设计------------------------------------------------20 1.2溢流坝结构设计------------------------------------------------25第5章细部结构设计---------------------------------------------29第1章基本资料1.1 水库的基本资料T水库位于QL河上,控制流域面积5060平方千M,占全流域的80%。
电站混凝土重力坝方案设计
电站混凝土重力坝方案设计- 水利施工1.1基本概况高鸟桥电站位于榕江县西北面、平永河上游,距榕江县城35公里,地处县内平江乡与平永镇交界。
距平永镇所在地4公里,平江乡所在地15公里。
坝址以上集雨面积为240Km2,多年平均年径流量为1.832亿m3,多年平均径流5.81m3/S,多年最枯日平均流量0.7m3/S。
由于流域植被较好,两岸大部分都是基岩,故除短暂洪水期外,河水清澈,含泥量较少。
高鸟桥电站工程设计水头为15米,拦河坝高28.77 m,工程等别为四等,拦河坝为Ⅳ级建筑物。
1.2水文气象资料1.2.1水库特性本方案电站坝址选在上轴线。
按电站工程洪水计算规范,校核洪水取200年一遇,设计洪水取30年一遇进行计算。
坝址下游无防洪要求,溢流坝堰顶不设闸门,故取正常蓄水位与堰顶高程一致。
经计算,其特征水位及相应下泄流量见表1。
表1水库特性表指标名称上游水位(m)下游水位(m)相应下泄流量(m3/s)校核洪水位(0.5%)355.21345.76设计洪水位(3.33%)353.77343.29683.8正常蓄水位336.000(堰顶高程)死水位343.311.2.2气象资料本流域位于雷公山暴雨中心边缘,系黔东南地区稳定多雨区,年平均降雨量约为1345.6㎜,多年平均径流深655㎜,年平均气温16.4℃,极端最低气温-7.6℃,极端最高气温37.5℃,年平均相对湿度80%,无霜期282天。
全年气候温和,雨量充沛,属中亚热带湿润季风气候。
1.3坝址地质条件拟建坝址为陡立型横向河谷,岩层倾向上游,持力层岩石坚硬,强度高,基岩节理裂隙虽然比较发育,但倾角都比较大,未发现缓倾裂隙的存在,对大坝稳定影响不大;坝址下游虽然存在一小断层F4,但未发现其贯穿库区,对水库的影响不大;此外,河床比较狭窄,覆盖层较薄。
根据提供的地质报告资料,坝址岩石摩擦系数f为0.5~0.65,内聚力C为0.25~0.3㎏/㎝2。
不足之处是坝肩岩体卸荷裂隙比较发育,风化程度较深,开挖量较大;断层F4延伸至坝址左岸山体,若建拱坝对左坝肩的稳定可能有一定影响。
水利重力坝设计参数及分析
水利重力坝设计参数及分析摘要:重力坝是由砼或浆砌石修筑的大体积档水建筑物,其基本剖面是直角三角形,整体是由若干坝段组成。
重力坝在水压力及其他荷载作用下,主要依靠坝体自重产生的抗滑力来满足稳定要求;同时依靠坝体自重产生的压力来抵消由于水压力所引起的拉应力以满足强度要求。
本文根据实际对其进行了简要的分析,仅供参考。
关键词:水利工程,重力坝,应力分析0、概述重力坝之所以得到广泛应用,是由于有以下优点:①相对安全可靠,耐久性好,抵抗渗漏、洪水漫溢、地震和战争破坏能力都比较强;②设计、施工技术简单,易于机械化施工;③对不同的地形和地质条件适应性强,任何形状河谷都能修建重力坝,对地基条件要求相对地说不太高;④在坝体中可布置引水、泄水孔口,解决发电、泄洪和施工导流等问题。
重力坝的缺点是:①坝体应力较低,材料强度不能充分发挥;②坝体体积大,耗用水泥多;③施工期混凝土温度应力和收缩应力大,对温度控制要求高。
1、设计参数及分析方法某水坝的截面及其尺寸示意图见图。
坝体由混凝土浇筑,其材料的弹性模量为21.4GPa,泊松比为0.25,密度为2400kg/m3。
坝体挡水面承受静水压力作用,假设最危险状态为水平面刚好平坝顶。
实际的混凝土重力坝坝轴线往往较长,对于离开坝肩较远的坝段,按平面应变问题进行分析计算,得出的结果与实际情况很接近。
为方便计算,可将三维坝体模型简化成二维平面应变模型。
坝体的上、下游地基和坝底坝基各取为100m。
2、有限元模型的建立坝体及坝基有限元分析采用ANSYS单元库中PLANE42单元,它可用作平面应变单元,有4个节点,每个节点有两个自由度(x和y向位移,坐标系x轴正向指向下游,y轴正向指向坝顶)。
在ANSYS中建立模型并选用四边形映射网格划分。
对模型施加边界条件,并施加水压力及重力荷载。
坝体截面示意图图3、重力坝应力分析为了分析地基弹性模量对坝体应力的影响,分别取上述5种具有不同弹性模量的岩体作为地基材料,对模型进行有限元求解。
[混凝土重力坝毕业设计计算书]混凝土重力坝毕业设计
[混凝土重力坝毕业设计计算书]混凝土重力坝毕业设计混凝土重力坝毕业设计计算书目录目录1第1章非溢流坝设计21.1坝基而高程de确定21. 2坝顶高程计算21. 2. 1基木组合情况下:21.2.2特殊组合情况下:31. 3坝宽计算41. 4坝而坡度41. 5坝基de防渗与排水设施拟定5第二章非溢流坝段荷载计算52.1计算情况de选择52. 2荷载计算52. 2. 1自重62. 2. 2静水压力及其推力62. 2. 3扬压力de计算72. 2. 4淤沙压力及其推力102. 2. 5波浪压力112. 2. 6 土压力12第3章坝体抗滑稳定性分析133. 2抗滑稳定计算153. 3抗剪断强度计算16第4章应力分析174. 1总则174. 1. 1大坝垂直应力分析174. 1. 2大坝垂直应力满足要求184. 2计算截而为建基面de情况194. 2.1荷载计算194. 2. 2运用期(计入扬压力de情况)204. 2. 3运用期(不计入扬压力de情况)214. 2. 4施工期21第5章溢流坝段设计225. 1泄流方式选择225. 2洪水标准de确定235. 3流量de确定235. 4单宽流量de选择235. 5孔口净宽de拟定235. 6溢流坝段总长度de确定245. 7堰顶高程de确定245. 8闸门高度de确定255. 9定型水头de确定255. 10泄流能力de校核265.11.1溢流坝段剖面图265.11. 2溢流坝段稳定性分析27 (1)正常蓄水情况27 (2)设计洪水情况27 (3)校核洪水情况28第6章消能防冲设计286.1洪水标准和相关参数de 选定296. 2反弧半径de确定296. 3坎顶水深de确定306. 4水舌抛距计算316. 5最大冲坑水垫厚度及最大冲坑厚度32第7章泄水孔DE设计337.1有压泄水孔de设计347. 11孔径Dde拟定347. 12进水口体形设计347. 13 闸门与门槽357. 14渐宽段357. 15出水口357. 15通气孔和平压管35参考文献36毕业设计(论文)任务书题目车家坝河水利枢纽(碾压重力坝设计)(任务起止日期20XX年3月29 ET20XX年6月18 H)院水利水电专业班学生姓名学号指导教师教研室主任院领导第一章非溢流坝设计1. 1坝基而高程de确定由《混凝土重力坝设计规范》可知,坝高100~50米时,重力坝可建在微风化至弱风化中部基岩上,本工程坝高为50~100m,由于本坝址岩层分布主要为石英砂岩,故可确定坝基面高程为832.0m。
混凝土重力坝设计
混凝土重力坝设计
1.坝址选择与地质条件评价:选择坝址是重力坝设计的首要任务,需
要考虑坝型适应性、地质条件、地形地貌、坝地基稳定性等因素。
地质条
件评价包括勘察地质、地下水位、地震烈度等因素的分析。
2.坝型选择:重力坝的坝型有直坝、弧坝、斜坝等多种形式。
根据坝
址地质条件、水流情况、工程需求等选择最适合的坝型。
3.坝体结构设计:重力坝的坝体是通过其自重来抵抗水压力的,设计
时需要确定材料的体积、高度、宽度等参数。
坝体的断面形状、坝顶宽度、坝底宽度等也需要根据地质条件和工程需求来确定。
4.导流设施设计:重力坝施工期间需要设计导流隧道或导流渠道来控
制水流。
导流设施的设计需要考虑水流量、水流速度、压力等因素。
5.坝基与坝体接触界面处理:坝基与坝体的接触界面处理对重力坝的
稳定性非常重要。
需要考虑界面的摩擦力、过渡带的设置等。
6.抗震设计:重力坝施工后需要能够承受地震力的作用,因此需要进
行抗震设计,包括抗震设防烈度的确定、地震力计算等。
7.渗流分析与防渗设计:重力坝在长期运行中可能会出现渗漏问题,
需要进行渗流分析,确定渗流路径和渗流量,并设计相应的防渗措施。
8.安全监测与管理:为了保证重力坝的安全运行,需要进行定期的安
全监测与管理,包括监测坝体变形、渗流情况、地震活动等。
总之,混凝土重力坝设计需要综合考虑地质条件、水流情况、工程需
求等多个因素,确保坝体的稳定性和安全性。
通过科学合理的设计,可以
建造出坚固耐用的混凝土重力坝。
水利枢纽碾压混凝土重力坝施工设计[详细]
第一章金河金水水利枢纽1.1 流域概况及枢纽任务万江是我国大河流之一,其干流全长1200公里,流域面积25400平方公里,上游95%为山地,河床狭窄,水流湍急;中游大部分为丘陵地带,河床较宽;下游岸为冲积平原,人口最密,农产丰富,为重要农业区域,且有一个中等工XX市,但下游河床淤高,主要靠堤防挡水,每当汛期,常受洪水威胁。
万江流域内物产以农产为主,有稻谷、小麦、玉米、甘薯等,矿产较少,燃料很缺乏。
金河是万江的重要支流,流经万江的上、中游地带,全长250公里,平均坡降为0.0009,流域面积为9200平方公里,河道两岸为山地丘陵,河道狭窄,水流较急,能量蕴藏甚大,但洪水涨落迅速,对万江中下游防洪相当不利。
金河开发计划是配合万江而制定的,为减轻金河洪水对万江中下游农田的威胁,且开发金河能够供应万江中下游工农业日益增长的动力需要,拟在金河与万江汇流处的金水兴建水利枢纽。
本枢纽的主要任务是防洪、发电等综合利用效益。
1.2 坝址地形在本坝址地区,河床狭窄,仅一百多米宽,但随着高程之增高两岸便趋于平坦。
两岸高度在200米以上,海拔高程在400米以上,在坝址处右岸较左岸为陡,右岸平均坡度为0.5左右,左岸为0.4左右。
坝址位于河湾的下游,在坝址上游十余公里有一开阔地带,为形成水库的良好条件。
1.3 坝址地质该区地质构造比较简单,主要岩层为黑色硅质页岩和燧石,上有3-9米左右的覆盖层,系河沙卵石,近风化泥土层及崩石。
其岩层性质为:黑色硅质页岩:属沉积岩,为硅质胶结物之页岩,根据勘测结果,该岩层性质坚硬致密,仅岩石上层10-18米深度存在有裂缝和节理,不很严重,但须加以处理,经过压水试验,岩石之单位吸水量为0.1公升/分钟。
燧石:其岩层不宽,分布于左岸,岩性较黑色硅质页岩为弱。
岩层走向:左岸为南300西,右岸为南50东,倾角为500-700,倾向正向上游:在坝址处,据目前资料尚未发现断层。
硅质页岩的力学性质:(1)天然含水量时的平均容重: 2600公斤/立方米(2)基岩抗压强度: 1000-1200公斤/平方厘米(3)牢固系数 12~15(4)岩石与混凝土之间的的抗剪断摩擦系数为f’=0.85,抗剪断凝聚力系数c’=7.0kg/cm2;抗剪摩擦系数f=0.65。
混凝土重力坝设计设计说明23页
混凝土重力坝设计设计说明23页混凝土重力坝设计说明书学生:宋文海指导老师:张萍三峡大学水利与环境学院1. 工程等级、建筑物级别及防洪标准确定1.1工程等级确定根据工程基本资料和《水利水电工程等级划分及洪水标准》SL252—2000(表1—1),确定:1)根据水库总库容1.042亿m3和供水保证率为95%判定,工程属于Ⅱ等工程,大(2)型规模;2)根据电站装机1.5万KW判定,工程属于Ⅳ等工程,小(1)型规模;3)根据水库设计灌溉面积24.28万亩,工程属于Ⅲ等工程,中型规模。
综合以上数据,确定水利枢纽工程为Ⅱ等工程,大(2)型规模。
表1-1 水利水电工程分等指标工程等别工程规模水库总库容(3810m)防洪治涝灌溉供水发电保护城镇及工矿企业的重要性保护农田(410亩)治涝面积(410亩)灌溉面积(410亩)供水对象重要性装机容量(410KW)Ⅰ大(1)型≥10 特别重要≥500≥200≥150特别重要≥120Ⅱ大(2)型10~1.0 重要500~100200~60150~50重要120~30Ⅲ中型 1.0~0.10 中等100~30 60~15 50~5 中等30~5 Ⅳ小(1)型0.10~0.01 一般30~5 15~3 5~0.5 一般5~1Ⅴ小(2)型0.01~0.001<5 <3 <0.5 <1注: ①水库总库容指水库最高水位以下的静库容;②治涝面积和灌溉面积均指设计面积。
1.2 建筑物级别确定表 1-2 水工建筑物级别工程等别永久性建筑物级别临时性建筑物级别主要建筑物次要建筑物Ⅰ 1 3 4Ⅱ 2 3 4Ⅲ 3 4 5Ⅳ 4 5 5Ⅴ 5 5根据工程基本资料和《水利水电工程等级划分及洪水标准》SL252—2000(表1—2),确定:鲤鱼塘水库水工建筑物级别工程等别永久性建筑物级别临时性建筑物级别主要建筑物次要建筑物Ⅱ 2 3 41.3 工程洪水标准确定根据《水利水电工程等级划分及洪水标准》SL252—2000规定:表1-3山区、丘陵区水利水电工程永久性水工建筑物的洪水标准[重现期(年)]项目水工建筑物级别1 2 3 4 5设计1000~500 500~100 100~50 50~30 30~20 校土石坝可能最大洪水5000~2000 2000~1000 1000~300 300~200 核(PMF )或10000~5000混凝土坝、浆砌石坝5000~20002000~10001000~500500~200200~100表1-4 临时性水工建筑物洪水标准[重现期(年)临时性建筑物类型临时性水工建筑物级别34 5 土石结构 50~20 20~10 10~5 混凝土、浆砌石结构20~1010~55~3根据表1—3、表1—4确定,有:鲤鱼塘水库工程的洪水标准水工建筑物类型永久性水工建筑物级别临时性建筑物重现期(年)设计500~10010~5 校核2000~1000 所以,永久性水工建筑物的洪水标准:正常运用情况下为500年一遇(%2.0=P ),非常运用情况下为2000年一遇(%05.0=P );临时性建筑物的洪水标准:5年一遇(%20=P )。
2 重力坝设计(参考教材)解析
2 重力坝设计2.1 重力坝设计的基本内容重力坝设计是在全面掌握和认真分析坝址地区的水文、泥沙、地形、地质、地震资料和综合利用要求、运用要求、水库淹没情况、施工条件以及所在河段上下游河流规划要求的基础上,在认真研究渡讯方案的基础上,进行枢纽布置,以及确定枢纽中各种建筑物(非溢流坝、溢流坝、泄水孔、水电站、通航建筑物、取水建筑物、过木建筑物、过鱼建筑物的型式、尺寸、结构等,通过详细的稳定和应力分析,确定出既满足安全要求,经济实用,并且便于施工的建筑物。
2.1.1 枢纽布置2.1.1.1 坝型、坝轴线选择坝型坝址选择是水利枢纽设计的重要内容。
不同的坝址可以选用不同的坝型,同一个坝址也可考虑几种不同的枢纽布置方案。
坝址和坝型的选择主要是根据地形、地质和河势等条件,并结合考虑施工、建材等因素而确定,在枢纽规划阶段、可行性研究阶段、技术设计与施工详图设计阶段,由于工作的深度的要求不同,应是一个反复比较和论证的过程。
(1)地质条件重力坝一般应建在岩基上,且坝址必须是稳定的。
坝址地基要力求完整、坚硬,地质构造简单,尽量避开裂隙、节理密集区,特别是要避开可有倾向下游的缓倾角,且又含有夹泥的裂隙节理区。
(2)地形条件重力坝的坝轴线一般是直线,与河流流向近于正交,既使由于要避开不利的地质条件需要斜交时,交角也不易太小,以免下泄洪水不畅。
若坝址有横河向断裂,则坝轴线易放在断裂下游。
横河断面上。
对于高山峡谷区,坝址选在峡谷地段,坝轴线短,坝体工程量小。
(3)筑坝材料坝址附近应有足够的符合要求的建筑材料(4)施工条件坝址附近应有开阔地形,便于布置施工场地,距离交通干线近,便于交通运输。
(5)综合效益选择坝址应综合考虑防洪、发电、航运、旅游、环境等各部门的经济效益。
一般地,混凝土重力坝应选择河谷宽阔,地质条件较好,当地有充足的砂卵石或碎石料场。
坝轴线宜采用直线。
2.1.1.2 枢纽的总体布置拦河坝在水利枢纽中占主要地位。
在确定枢纽工程位置时,一般先确定建坝河段,进一步确定坝轴线,同时还要考虑拟采用的坝型和枢纽中建筑物的总体布置,合理解决综合利用要求。
基于ANSYS的混凝土重力坝实例分析
基于ANSYS的混凝土重力坝实例分析王艺;殷祥杰【摘要】采用大型通用有限元分析软件ANSYS,对重庆市潼南县大石桥水库工程非溢流坝段进行静力分析,通过研究非溢流坝段的变形、位移和应力情况,为综合判断大坝的安全性能提供了理论依据.【期刊名称】《黑龙江水利科技》【年(卷),期】2018(046)004【总页数】2页(P67-68)【关键词】ANSYS;重力坝;非溢流坝段;静力分析【作者】王艺;殷祥杰【作者单位】重庆市水利电力建筑勘测设计研究院,重庆 401121;重庆市水利电力建筑勘测设计研究院,重庆 401121【正文语种】中文【中图分类】TV642.31 工程概况重力坝是一种古老的坝型,主要靠自身的重力维持坝身的稳定,岩基上重力坝的基本剖面呈三角形,上游面通常是垂直的或者稍微倾向下游的三角形断面。
随着岩土力学与数值计算方法的相互促进与发展,有限元法能够有效解决复杂结构的应力分析及渗流分析等问题,在当前坝工设计、定量研究中,成为一种重要的手段[1]。
通过有限元的计算,可以求得坝基不同部位的应力分布及变位场。
文章以重庆市潼南县大石桥水库工程非溢流坝段为例,了解坝体在设计条件下的工作形态,对混凝土重力坝方案的可靠性进行评价。
大石桥水库工程是一座具有农业灌溉、县城应急水源、场镇供水及农村人畜饮水等综合效益的中型骨干水利工程。
本大坝址位于潼南县桂林街道高何村,古溪河矮子桥上游约600m的果园处,距县城约4.0km,至重庆市约90km。
工程为Ⅲ等中型工程。
坝址区基本地震烈度6°,设计地震烈度采用6°。
该混凝土重力坝,主要建筑物级别为3级,挡水建筑物为常态混凝土重力坝,最大坝高为29.40m,坝顶全长112.0m,分为左、右岸非溢流坝段和河床溢流坝段。
混凝土弹性模量为22GPa,泊松比为0.2,容重为24kN/m3[2]。
2 有限元计算假设大坝基础是嵌入到基岩中,地基是刚性的。
水的质量密度为1000kg/ m3;大坝设防烈度为6,水平方向地震加速度值为0.2g。
二学位混凝土重力坝设计
二学位混凝土重力坝设计混凝土重力坝是一种常用的大坝类型,以其结构简单、施工方便、经济性好等特点,在水利工程中得到广泛应用。
本文将对混凝土重力坝的设计进行详细介绍。
一、设计原则混凝土重力坝的主要设计原则包括:安全性、稳定性、经济性和可持续性。
1.安全性:重力坝必须具备足够的抵御洪水和地震等力量的能力,保证坝体的完整性和稳定性,从而保障下游地区的人民生命财产安全。
2.稳定性:重力坝在正常工作状态下应具备稳定性,不会发生渗漏或坝体破裂等问题。
此外,重力坝还需要经受住荷载变化、冲刷和渗透等因素的影响。
3.经济性:设计中应尽量减少工程造价,降低材料和施工成本。
同时,还需考虑坝址地质条件、水库容量和设计寿命等因素。
4.可持续性:设计中应采用环保材料和技术,减少对环境的影响,同时也要考虑到水库的可持续发展和管理。
二、设计步骤混凝土重力坝的设计一般包括以下步骤:确定坝址、地质勘察、计算荷载、坝型选择、施工方案、计算坝体参数、计算坝顶宽度、抗震设计、坝体稳定性和渗流计算等。
1.确定坝址:选取合适的坝址是设计的首要任务,需要考虑坝址的地形、地质、水力条件等因素。
2.地质勘察:进行详细的地质勘察,了解坝址周围的地质情况和地下水位情况,为后续的设计提供依据。
3.计算荷载:根据水库的设计洪水、正常蓄水位和降雨条件等,计算出坝体所受到的水压力和流体压力。
4.坝型选择:根据地质条件和工程要求,选择合适的坝型,一般有重力坝、拱坝等。
5.施工方案:制定施工方案,确定施工的具体步骤和施工时间。
6.计算坝体参数:根据荷载计算结果,计算出坝体所需的参数,如坝体高度、自重、弹性模量等。
7.计算坝顶宽度:根据坝体参数和水位高差等,计算出坝顶的宽度,以确保坝体的稳定性。
8.抗震设计:考虑到地震对坝体的影响,进行抗震设计,提高坝体的抗震能力。
9.坝体稳定性计算:根据坝体参数和地质条件等,进行坝体稳定性计算,确保坝体在不同工况下的稳定性。
10.渗流计算:根据地下水位和坝体材料的渗透性等参数,计算坝体的渗流情况,确保坝体不受渗漏和渗透的影响。
综合性水库碾压混凝土重力坝布置方案及结构优化计算分析
综合性水库碾压混凝土重力坝布置方案及结构优化计算分析某Ⅳ等小(1)型综合性水库,大坝为混凝土重力坝,其筑坝材料采用C15四级配常态混凝土,坝顶宽5.0m,坝高67m。
由于工程区地形地貌、地质水文等条件较复杂,为确保工程安全可靠、节能优质的施工建设,需要对其枢纽布置方案进行详细分析计算。
文章在对该综合性水库的首部枢纽进行优化布置后,结合大坝抗滑稳定性计算和结构应力计算等论证复核成果,获得了技术上可行、经济上优越的混凝土重力坝方案。
标签:水库;集水面积;混凝土重力坝;应力计算1 工程概况贵州某水库工程任务为城镇供水。
水库坝址以上流域集水面积为19.13km2,主河道长为6.89km,主河道坡降为46.9‰。
多年平均径流量981.0万m3,水库正常蓄水位610.0m,校核洪水位613.33m,正常蓄水位以下库容372万m3,兴利调节库容360.2万m3。
根据《水利水电工程等级划分及洪水标准》(SL252-2000)第2.1.1款的规定,水库总库容447万m3,属于0.01~0.1亿m3范畴,本工程等别为Ⅳ等,工程规模属小(1)型。
工程静态总投资16785.99万元,工程总工期25月。
2 工程区地形地质概况库盆河谷基本为峡谷型,坝址正常蓄水位610m时抬高水头最大约50m。
坝址河谷基本为横向谷,横断面呈窄“V”型,岸坡地形坡度45~55°。
河床高程558~565m,宽3~10m,正常蓄水位高程608m处对应河谷宽75~80m,宽高比为1.5~1.9。
地质勘探结果表明:大坝开挖至建基面,坝基整体处于弱风化带上,岩体完整性较好,有利于大坝的施工建设。
3 碾压混凝土重力坝首部枢纽优化布置为了获得技术上可行,经济上优越的首部枢纽方案,结合地质和水文分析资料,综合考虑施工技术、筑坝材料等方面的因素,推荐采用混凝土重力坝方案[1],其首部枢纽布置设计方案为:混凝土重力坝+坝顶泄洪表孔+右坝身放空底孔+左坝身取水管+左岸导流隧洞。
混凝土重力坝设计
XXXXXX继续教育学院毕业论文题目 XXX水库混凝土重力坝枢纽设计专业水工层次专升本姓名学号前言关键词:重力坝剖面稳定应力细部构造地基处理本次设计内容为河南南潘家口水利枢纽,坝型选择为混凝土重力坝,坝轴线选择和枢纽布置见1号图SG-01潘家口水库平面图所示。
整座重力坝共分53个坝段,主要有非溢流挡水坝段、溢流表孔坝段、溢流底孔坝段和电站厂房坝段。
其中非溢流挡水坝段每坝段宽15米,分布于大坝两端;厂房坝段每段宽16米,布置在靠近右岸的主河床上,装机3台机组;底孔坝段每段宽22米,布置在厂房坝段左侧的主河床上;溢流坝段每段宽18米,布置在滦河主河床上。
详见1号图SG-02下游立视图。
挡水坝段最大断面的底面高程为128米,坝顶高程为228米,防浪墙高1.2米,最大坝高为101.2m,属高坝类型。
坝顶宽12米,最优断面的上游坝坡坡率为1:0.2,上游折坡点高程为181米,下游坝坡坡率为1:0.7,下游折坡点高程688.98英尺,详细情况参见1号图SG-03挡水坝剖面图。
溢流坝段最大断面的底面高程为126米,堰顶高程210米,溢流堰采用WES曲线设计,直线段坡率为1:0.7,反弧段半径取25.0米,鼻坎高程取159米,上游坝坡坡率取1:0.2,折坡点高程为181米,上游坝面与WES曲面用1/4椭圆相连,详细情况见1号图SG-02溢流堰标准横断面图所示。
本枢纽溢流堰采用挑流方式消能,挑角取250。
止水采用两道紫铜中间加沥青井的形式。
坝基防渗处理(主要依据上堵下排的原则),上游帷幕灌浆(两道),下游侧设置排水管。
以非溢流挡水坝段为计算选择断面,进行了抗滑稳定分析和应力分析,分别采用抗剪断计算法和材料力学法计算法进行计算,最终验算满足抗滑稳定,上游坝踵没有出现拉应力,设计剖面合理可行。
本次设计只是部分结构物设计,考虑问题较单一,采用基础资料一般以书本为主,跟实际情况难免有出入,敬请读者批评指正。
编者2008.9目录第一部分设计说明书第一章潘家口混凝土重力坝枢纽基本资料 (2)一、枢纽概况及工程目的 (2)二、设计基本资料(参见附录一)………………………………………………………………………2附录一 (3)附录二水市库规划及建筑特性指标 (12)第二章坝轴线、坝型选择和枢纽布置方案比较.............................................14第一节、坝轴线选择 (14)第二节、坝型选择 (17)第三节、枢纽布置方案 (20)第三章坝工设计 (26)第一节、挡水坝剖面设计 (26)第二节、挡水坝剖面设计 (28)第三节、溢流坝剖面拟定 (33)第四节、挡水坝稳定计算 (43)第四章细部构造设计 (56)第一节、坝顶构造 (56)第二节、分缝止水 (56)第三节、混凝土标号分区 (58)第四节、排水 (60)第五节、廊道系统 (61)第五章地基处理 (63)第一节、清基开挖 (63)第二节、防渗措施 (64)第三节、断层破碎带的处理 (66)第四节、软弱夹层处理 (67)第二部分计算书表 1 设计水位作用情况设计值计算表 (69)表2 荷载计算表(设计水位情况) (70)表3校核水位作用情况设计值计算表 (71)表4 荷载计算表(校核洪水位情况) (72)第一部分设计说明书第一章潘家口混凝土重力坝枢纽基本资料一、枢纽概况及工程目的:潘家口水库位于河北省唐山市和承德市两地区交界处,坝址位于迁西县洒河桥上游十公里扬查子村的栾河干流上。
混凝土重力坝研究
混凝土重力坝研究混凝土重力坝是一种常见的大型水利工程结构,其主要由混凝土建筑物形成,利用重力作用来抵抗水压力和其他荷载的结构。
混凝土重力坝的研究对于水利工程的设计和建造具有重要意义。
本文将重点介绍混凝土重力坝的研究内容和相关案例。
首先,混凝土重力坝的研究内容包括坝体结构稳定性、抗震性能、渗流分析和开发坝基的研究。
坝体结构稳定性是混凝土重力坝设计的基础,包括对坝体内力、应力和变形的分析,以及对不同荷载条件下的破坏机制研究。
抗震性能是指在地震作用下,坝体能够保持稳定和安全。
渗流分析是指对坝体内部渗流和渗漏情况的分析和控制,以确保坝体的稳定性和坝后的安全。
开发坝基的研究是指对坝基地质条件的调查和分析,以确定合适的坝基处理措施。
其次,混凝土重力坝的研究还包括坝体材料的研究和结构施工技术的研究。
坝体材料的研究包括混凝土的强度、抗裂性能和耐久性等方面的研究,以确定合适的材料配合比和混凝土浇筑工艺。
结构施工技术的研究包括坝体的施工方法、浇筑工艺和施工过程的控制等方面的研究,以确保坝体的质量和施工进度。
最后,混凝土重力坝的研究还可以借助数值模拟和实验模型来进行。
数值模拟可以采用有限元方法或其他数学模型,模拟坝体的结构行为和荷载响应,以评估坝体的安全性和稳定性。
实验模型可以建立小比例的物理模型,通过加载实际荷载和观测变形来研究坝体的行为和响应。
下面以中国的七曲重力坝为例介绍混凝土重力坝的研究和实践。
七曲重力坝位于云南省澜沧江上游,是中国最大的重力坝之一、该坝的研究充分考虑了坝体的稳定性、抗震性能和渗流分析等方面。
通过数值模拟和实验模型的研究,确定了坝体的设计参数和施工方法,确保了坝体的稳定和安全。
总之,混凝土重力坝的研究是水利工程设计和建造的重要内容。
通过对坝体结构稳定性、抗震性能、渗流分析和开发坝基的研究,可以确保混凝土重力坝的稳定和安全。
数值模拟和实验模型可以为混凝土重力坝的设计和施工提供重要的技术支持。
混凝土重力坝基础知识及设计要点
混凝土重力坝基础知识及设计要点混凝土重力坝基础知识及设计要点【定义】在水压力及其他外荷载作用下,主要依靠坝体自重来维持稳定的坝。
重力坝的断面基本呈三角形,筑坝材料为混凝土或浆砌石。
据统计,在各国修建的大坝中,重力坝在各种坝型中往往占有较大的比重。
在中国的坝工建设中,混凝土重力坝也占有较大的比重,在20座高100m以上的高坝中,混凝土重力坝就有10座。
重力坝之所以得到广泛应用,是由于有以下优点:①相对安全可靠,耐久性好,抵抗渗漏、洪水漫溢、地震和战争破坏能力都比较强;②设计、施工技术简单,易于机械化施工;③对不同的地形和地质条件适应性强,任何形状河谷都能修建重力坝,对地基条件要求相对地说不太高;④在坝体中可布置引水、泄水孔口,解决发电、泄洪和施工导流等问题。
重力坝的缺点是:①坝体应力较低,材料强度不能充分发挥;②坝体体积大,耗用水泥多;③施工期混凝土温度应力和收缩应力大,对温度控制要求高。
【历史】重力坝是最早出现的一种坝型。
公元前2900年埃及美尼斯王朝在首都孟斐斯城附近的尼罗河上,建造了一座高15m、长240m的挡水坝。
中国于公元前3世纪,在连通长江与珠江流域的灵渠工程上,修建了一座高5m的砌石溢流坝,迄今已运行2000多年,是世界上现存的,使用历史最久的一座重力坝。
18世纪,在法国和西班牙用浆砌石修建了早期的重力坝,横断面都很大,接近于梯形。
1853年以后,在筑坝实践中,设计理论逐步发展,法国工程师们开始拟出一些重力坝的设计准则,如抗滑稳定、坝基应力三分点准则等,出现了以三角形断面为基础的重力坝断面。
20世纪初,由于混凝土工艺和施工机械的迅速发展,在美国建造了阿罗罗克坝和象山坝等第一批混凝土重力坝。
1930年以后,美国修建了高183m的沙斯塔坝和高168m的大古力坝以后,重力坝的设计理论和施工技术有了一个飞跃。
在应力计算方面,提出了重力法和弹性理论法,包括考虑空间影响的试荷载法;在构造方面,建立了完整的分缝、排水和廊道系统,以及温度、变形、应力等观测系统;在施工方面,机械化程度有了显著增长,发展了柱状浇筑法和混凝土散热冷却以及纵缝灌浆等一整套施工工艺。
混凝土重力坝施工组织设计
混凝土重力坝施工组织设计1. 前言嘿,大家好!今天咱们聊聊混凝土重力坝的施工组织设计,这可不是个小事儿哦。
想象一下,咱们要在一个大水库旁边建一座能抵挡水流的坚固大坝,这可真是个技术活儿。
但别担心,咱们来一步步分析,保证让你听得明白又轻松。
2. 项目概述2.1 施工目的首先,咱们得明确干这个活的目的。
混凝土重力坝可不是简单的水泥堆成的墙,它的作用可大了,既可以蓄水,又能防洪,简直是“水中卫士”!在这个项目中,我们要确保大坝的强度和稳定性,毕竟万一出现什么问题,那可就麻烦大了。
2.2 施工地点接下来,咱们得说说施工地点。
选择合适的地点就像找对象,不能只看外表,得考虑环境、地质和水文条件。
要是地质不稳,咱们的坝可就不够“靠谱”了。
所以,在施工之前,咱们得做足功课,确保选个好地方。
3. 施工准备3.1 人员组织说到施工准备,首先得说说人。
一个成功的项目离不开团队合作,俗话说“一个人跑得快,一群人才能走得远”。
我们需要专业的工程师、技术人员和现场工人,大家齐心协力,才能把大坝建得稳稳当当的。
3.2 材料准备接下来,材料准备也很重要。
混凝土、钢筋、砂石这些材料都是咱们的“主力军”。
提前准备好,才能避免施工过程中出现“缺货”的尴尬。
想象一下,正忙着浇灌混凝土,结果发现材料没了,简直就是“白忙活”!4. 施工过程4.1 地基处理在正式开工之前,地基处理是重中之重。
大坝的稳定性全靠它,地基得打好,就像盖房子得先打好地基一样。
咱们得清理现场,夯实土壤,确保没有隐患。
就像给大坝穿上了“防护服”,让它在未来的岁月里抗击风雨。
4.2 混凝土浇筑然后就是混凝土浇筑啦!这可是关键一步,浇筑过程中得确保混凝土的均匀性和强度。
工作人员需要像对待自己的孩子一样小心翼翼,每一斗混凝土都得认真对待,确保它们能在水中屹立不倒。
浇筑完后,还得进行养护,保证混凝土能健康成长,不被干燥和热浪折磨。
5. 施工监测与验收5.1 监测工作施工过程中,监测工作绝对不能放松。
(精华)重力坝毕业设计模板解析
设计内容一、 确定工程等级由校核洪水位446.31 m 查水库水位———容积曲线读出库容为1.58亿3m ,属于大(2)型,永久性水工建筑物中的主要建筑物为Ⅱ级,次要建筑物和临时建筑物为3级。
一、 确定坝顶高程(1)超高值Δh 的计算Δh = h1% + hz + hcΔh —防浪墙顶与设计洪水位或校核洪水位的高差,m ; H1% —累计频率为1%时的波浪高度,m ;hz —波浪中心线至设计洪水位或校核洪水位的高差,m ; hc —安全加高,按表3-1 采内陆峡谷水库,宜按官厅水库公式计算(适用于0V <20m/s 及 D <20km ) 下面按官厅公式计算h1% , hz 。
11312022000.0076ghgD v v v -⎛⎫= ⎪⎝⎭ 11 3.752.15022000.331mgL gD v v v -⎛⎫= ⎪⎝⎭22l z h Hh cthLLππ=式中:D ——吹程,km ,按回水长度计。
m L ——波长,m z h ——壅高,mV0 ——计算风速h ——当2020250gDv = 时,为累积频率5%的波高h5%;当202501000gDv = 时, 为累积频率10%的波高h10%。
规范规定应采用累计频率为1%时的波高,对应于5%波高,应由累积频率为P (%)的波高hp 与平均波高的关系可按表B.6.3-1 进行换超高值Δh 的计算的基本数据正常蓄水位和设计洪水位时,采用重现期为50 年的最大风速,本次设计027/v m s =;校核洪水位时,采用多年平均风速,本次设计018/v m s =。
a.设计洪水位时Δh 计算: 18902.5760.62311.80m S H m B ===设设 波浪三要素计算如下: 波高:21131229.819.81524.190.0076272727h -⎛⎫⨯⨯=⨯ ⎪⎝⎭h=0.82m 波长:113.752.15229.819.81524.190.331272727mL -⎛⎫⨯⨯=⨯ ⎪⎝⎭m L =8.95m 壅高:220.823.140.378.95z mh h L π==⨯≈2209.81524.197.0527gD v ⨯=≈,故按累计频率为005计算 0.82060.62m m h H =≈,由表B.6.3-1查表换算 故000151.24 1.240.82 1.02h h m =⨯=⨯≈0.4c h m =1%z c h h h h ∆=++1.020.370.41.89m=++=b.校核洪水位时Δh 计算:19277.2561.31314.44m S H m B ===设设 波高:21131229.819.81965.340.0076181818h -⎛⎫⨯⨯=⨯ ⎪⎝⎭h=0.27m波长:113.752.15229.819.81965.340.331181818mL -⎛⎫⨯⨯=⨯ ⎪⎝⎭m L =7.03m 壅高:220.613.140.257.03z mh h L π==⨯≈2209.81965.3429.2318gD v ⨯=≈,故按频率为005计算 0.61063.31m m h H =≈,由由表B.6.3-1查表换算 故000151.24 1.240.270.34h h m =⨯=⨯≈0.3c h m =1%z c h h h h ∆=++0.340.250.30.89m=++=(2)、坝顶高程:a.设计洪水位的坝顶高程: h ∇=+∆设设设计洪水位 445 1.89446.89m=+=b.校核洪水位的坝顶高程: h ∇=+∆校校校核洪水位446.310.89447.20m=+=为了保证大坝的安全,选取较大值,所以选取坝顶高程为447.2m三、 非溢流坝实用剖面的设计和静力校核(1) 非溢流坝实用剖面的拟定拟定坝体形状为基本三角形。
水库混凝土重力坝设计书
水库混凝土重力坝设计书第1章基本资料一、枢纽工程概况:P水库位于TS和CD两地区交界处,坝址位于X河桥上游十公里干流上。
控制流域面积3.37万km2,总库容为14.39亿m3。
P水库枢纽由主坝、电站及泄水底孔等组成,水库主要任务是调节水量,供TJ和TS地区工农业用水和城市人民生活用水,结合引水发电。
并兼顾防洪,要求:尽可能使其工程提前受益,尽早建成。
根据水库的工程规模及其在国民经济中的作用,枢纽定为一等工程,主坝为Ⅰ级建筑物,其它均按Ⅱ级建筑物考虑。
二、气象:P库区年平均气温为10℃左右,一月份最低月平均气温为零下6.8℃,绝对最低气温达零下21.7℃(1969年);7月份最高月平均气温25℃,绝对最气温高达39℃(1955年),多年平均气温见下表(表五)。
表一多年平均气温、水温表单位:℃本流域无霜期较短(90—180天),冰冻期较长(120—200天),P站附近河道一般12月封冻,次年3月上旬解冻,封冻期约70—100天,冰厚0.4—0.6米,岸边可达1米。
流域冬季盛行偏北风,风速可达七、八级,有时更大些,春秋两季风向变化较大,夏季常为东南风,多年平均最大风速为21.5m/s,水库吹程D=3km。
流域多年平均降雨量约为400—700mm,多年平均降水天数及降水量见表六:表二多年月平均降水天数及降水量表单位:mm三、水文分析:1、年径流:栾河水量较充沛,多年平均年径流量为24.5亿m3,占全流域的53%。
年分配很不均匀,主要集中汛期七、八月份。
丰水年时占全年50—60%,枯水年占30—40%,而且年际变化也很大。
2、洪水:多发生在七月下旬至八月上旬,有峰高量大涨落迅速的特点,据调查,近一百年来有六次大洪水。
其中1883年最大,由洪痕估算洪峰流量约为24400—27400 m3/s,实测的45年资料中最大洪峰流量发生在1962年为18800 m3/s。
洪峰历时三天左右,由频率分析法求得:几个重现期所对应的洪峰流量值(见下表表三、表四所示)。
混凝土宽缝重力坝设计大纲范本讲解
FJD31030 FJD水利水电工程技术设计阶段混凝土宽缝重力坝设计大纲范本水利水电勘测设计标准化信息网1997年4月1水电站技术设计阶段混凝土宽缝重力坝设计大纲主编单位:主编单位总工程师:参编单位:主要编写人员:软件开发单位:软件编写人员:勘测设计研究院年月2目次1. 引言 (4)2. 设计依据文件和规范 (4)3. 基本资料 (5)4. 坝体布置 (7)5.坝体体形设计 (9)6.坝体构造 (16)7.坝顶建筑物与结构 (17)8.坝基处理 (20)9.水工模型试验 (22)10.结构模型试验及有限元分析 (23)11.大坝观测设计 (23)12.工程量计算 (25)13.应提供的设计成果 (25)31 引言工程位于,是以为主,兼有等综合利用的水利水电枢纽工程。
挡水建筑物为混凝土宽缝重力坝,最大坝高m,水库正常蓄水位m,总库容亿m3,电站机组台, 总装机容量MW,保证出力MW,多年平均发电量亿kW h。
本工程初步设计报告于年月审查通过,选定坝址为。
2 设计依据文件和规范2.1 有关本工程的主要文件(1) 工程初步设计报告;(2) 工程初步设计审批文件;(3) 工程技术设计任务书;(4) 工程技术设计工作大纲;(5) 专题研究(含试验)报告。
2.2 主要设计规范(1) SDJ12—78 水利水电枢纽工程等级划分及设计标准(山区、丘陵区部分)(试行)及补充规定;(2) SDJ217—87 水利水电枢纽工程等级划分及设计标准(平原、滨海部分)(试行);(3) SDJ10—78 水工建筑物抗震设计规范;(4) SDJ21—78 混凝土重力坝设计规范(试行)及补充规定;(5) SDJ20—78 水工钢筋混凝土结构设计规范(试行);(6) SDJ341—89 溢洪道设计规范;(7) SDJ336—89 混凝土大坝安全监测技术规范。
2.3 主要参考文献(1) 水工设计手册(混凝土坝)华东水利学院主编水利电力出版社1987年;(2) 重力坝设计与计算潘家铮著水利电力出版社1965年。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学毕业设计(论文)题目混凝土重力坝设计专业水利水电工程班级学号学生指导教师2012-10-11摘要本次设计内容为P水利枢纽,坝型选择为混凝土重力坝,本设计的目的及意义主要在于巩固、扩大和提高所学水利水电理论知识,使其得到实际运用,并使之系统化,锻炼和培养运用所学专业基础理论知识解决工程实际,并进行设计、计算、制图的能力,提高撰写专业技术报告的水平。
,其中非溢流坝剖面设计和溢流坝剖面设计和细部构造都附有CAD图,非溢流坝段,验算坝体强度和稳定承载能力极限状态等。
溢流坝段,进行水力计算,坝体强度和稳定承载能力极限状态验算等,对细部构造进行了简略的描述。
关键词:重力坝剖面稳定应力细部构造地基处理ABSTRACTThis design content for the P project, dam type selection for the concrete gravity dam, the design of the purpose and significance mainly lies in to consolidate, expand and improve the water conservancy and hydroelectric power theory, its practical application, and make it systematic, fitness training and learn to use basic professional theoretical knowledge to solve practical engineering, and design, calculation, drawing ability, improve the professional and technical report writing level. Non overflow section, wherein the design and spillway section design and construction details are accompanied by CAD, non overflow section of check dam, strength and stability of bearing capacity limit state. Overflow dam, hydraulic calculation, the strength and stability ultimate bearing capacity checking, in details are also described briefly.Key words: profile of gravity dam stability stress detail structure foundation treatment目录第1章基本资料 (1)一、枢纽工程概况 (1)二、气象 (1)三、水文分析 (2)四、工程地质条件 (3)五、当地建筑材料 (4)六、交通条件 (4)七、施工条件 (4)八、水库规划及建筑特性指标 (5)第2章坝轴线、坝型选择和枢纽布置方案比较 (6)一、坝轴线选择 (6)二、坝型选择 (9)三、枢纽布置方案 (12)第3章坝体剖面设计 (18)一、坝顶高程确定 (18)二、挡水坝结构计算 (24)第4章溢流坝剖面设计 (28)一、溢流坝剖面设计 (28)二、溢流坝结构设计..........................................................................................-36 第5章细部结构设计 (40)第1章基本资料一、枢纽工程概况:P水库位于TS和CD两地区交界处,坝址位于X河桥上游十公里干流上。
控制流域面积3.37万km2,总库容为14.39亿m3。
P水库枢纽由主坝、电站及泄水底孔等组成,水库主要任务是调节水量,供TJ和TS地区工农业用水和城市人民生活用水,结合引水发电。
并兼顾防洪,要求:尽可能使其工程提前受益,尽早建成。
根据水库的工程规模及其在国民经济中的作用,枢纽定为一等工程,主坝为Ⅰ级建筑物,其它均按Ⅱ级建筑物考虑。
二、气象:P库区年平均气温为10℃左右,一月份最低月平均气温为零下6.8℃,绝对最低气温达零下21.7℃(1969年);7月份最高月平均气温25℃,绝对最气温高达39℃(1955年),多年平均气温见下表(表五)。
表一多年平均气温、水温表单位:℃本流域无霜期较短(90—180天),冰冻期较长(120—200天),P站附近河道一般12月封冻,次年3月上旬解冻,封冻期约70—100天,冰厚0.4—0.6米,岸边可达1米。
流域内冬季盛行偏北风,风速可达七、八级,有时更大些,春秋两季风向变化较大,夏季常为东南风,多年平均最大风速为21.5m/s,水库吹程D=3km。
流域内多年平均降雨量约为400—700mm,多年平均降水天数及降水量见表六:表二多年月平均降水天数及降水量表单位:mm三、水文分析:1、年径流:栾河水量较充沛,多年平均年径流量为24.5亿m3,占全流域的53%。
年内分配很不均匀,主要集中汛期七、八月份。
丰水年时占全年50—60%,枯水年占30—40%,而且年际变化也很大。
2、洪水:多发生在七月下旬至八月上旬,有峰高量大涨落迅速的特点,据调查,近一百年来有六次大洪水。
其中1883年最大,由洪痕估算洪峰流量约为24400—27400 m3/s,实测的45年资料中最大洪峰流量发生在1962年为18800 m3/s。
洪峰历时三天左右,由频率分析法求得:几个重现期所对应的洪峰流量值(见下表表三、表四所示)。
表三表四枯水期洪水过程线表五时段:9月1日至次年6月30日频率:5%3、泥沙:本流域泥沙颗粒较粗,中值粒径0.0375mm,全年泥沙大部分来自汛期七、八月份,主要产于一次或几次洪峰内且年际变化很大,由计算得,多年平均悬移质输沙量为1825万t多年平均含沙量7.45kg/m3。
推移质缺乏观测资料。
可计入前者的10%,这样总入库沙量为2010万吨。
淤砂浮容重为0.9t/m3,内摩擦角为12°。
四、工程地质:1、库区地质:P水库、库区属于中高山区,河谷大都为峡谷地形,只有西城峪至北台子一带较为宽阔,沿河两岸阶地狭窄,断续出现且不对称,区域内无严重的坍岸及渗漏问题。
2、坝址地质:主要工程地质条件五、当地建筑材料:坝址附近主要砂石料场有七处,储量足以建坝,各料场的物理性质、试验指标,基本满足技术要求,可作大坝混凝土骨料使用。
且无大量的粘性土及砂壤土料,可供围堰防渗材料之用。
六、交通条件:对外交通在右岸,公路、铁路均距坝址较近,略加修改或扩建即可直通坝址,坝顶无重要交通要求。
七、效益:水库建成与下游大黑汀、邱庄、陡河等水库联合运用,承担多年调节作用,在保证率P=75%时,可调节水量20.05亿立米,计划年补给工业及城市生活用水7亿立米,并可灌溉农田一百余万亩,达到遇旱有水、电站装机3台,总容量18万千瓦,平均年发电量3.45亿度。
八、水库规划及建筑特性指标※如遇千年一遇洪水,水库最大泄量与区间同频率洪水相遇将超过大黑汀水库的千年一遇设计洪水。
为此需要控制下泄流量而不超过27500立米/秒以符合大黑汀水库设计标准。
第2章坝轴线、坝型选择和枢纽布置方案比较对枢纽布置首先当然是选择坝址,确定坝轴线。
坝址和坝轴线的选择是否适当,将在很大的程度上影响工程设计是否经济合理,甚至决定工程的成败。
所以选择时必须审慎进行。
决定坝址所考虑的条件,首先应该是地质、地形和枢纽布置上的问题,其次则为施工条件和施工后的运行条件。
一、坝轴线的选择坝址的选择要考虑:地形条件,地质条件,水能利用,枢纽布置,施工条件,交通等条件。
就地形而言,坝址一般以选在狭窄河谷处,节省工程量;但对于一个具体的枢纽来说,必须从各个方面综合考虑:是否便于布置泄洪、发电建筑物,是否便于施工导流,技术可行,经济合理等综合衡量。
坝址地质条件是水利枢纽设计的重要依据之一,对坝型的选择和枢纽的布置起着决定性作用。
坝址最好的地质条件是强度高、透水性小、不易风化、没有构造缺陷的岩基。
但理想的天然地基很少,因而在选择坝址时应从实际出发,针对不同的情况采取不同的地基处理方式,来满足工程需要。
亦可通过选择不同的坝型或将坝轴线转折以适应地质条件,同时应考虑两岸的地质因素,使库区及两岸边坡有足够的稳定性,以防止因蓄水而引起的滑坡现象。
就河势来说,坝址要选在河流顺直段,靠近坝址上、下游河流如有急湾最不利,应予避免;枢纽两岸坝肩的山体要较雄厚,并尽可能离上下游两岸的冲沟远一些;水库周缘应没有难处理的缺口。
通过对P水库坝址区域基本地质、地形等资料的研究和分析,确定要选择合理的坝轴线,必须具备以下四个原则:1、坝基全部坐落在第四大岩层上根据P水库地质基本资料知:坝区主要岩性为太古界拉马沟片麻岩,其次为第四纪松散堆积物,以及不同时期的侵入岩脉,坝区范围内片麻岩依其岩性变化情况可分为六大层,其中第一、四、六层岩性较好,但第一、六层因受地形限制建坝工程很大,而第四大岩层(ARL4)为角闪斜长片麻岩,具有粗粒至中间细粒纤状花岗岩变晶结构,主要矿物为斜长石、石英及角闪石,本层岩体呈厚层块状,质地均匀,岩性坚硬,抗风化力强,解理裂隙较少,透水性小工程地址条件好,总厚度185m左右,其特性均满足建坝要求,故坝基建在第四大岩层之上,有利于坝体稳定。
2、左岸与第三大岩层保持一定距离从“坝址河谷段构造分析图”中,可知:第四大岩层,自右岸至左岸逐步向北偏移,且宽度略变窄,若坝轴线垂直水流方向直接伸向左岸,则坝轴线将与第三大岩层相接。
由地质资料可知:第三大岩层较软弱,不宜建坝,故坝轴线需偏移,使之与第三大岩层保持一定距离。
根据地质剖面资料分析,坝轴线在左岸时向上游推移,避开软弱的第三大岩层,为以后坝体的稳定运行作好基础。
3、避开大的断层F2由坝址河谷段构造分析图可知:坝址处虽然断层裂隙较多,但大部分规模较小,对工程影响不大。
其中F2断层最大,它走向为北东85°---西北275°,倾向南,倾角70-80°,宽度2.5-12.5m,属压扭断层。
长约200m,一段靠近上游坝踵,对基础岩石力学强度及坝基完整均一性有影响,故坝轴线应该避开F2断层,并保持一定距离。
4、避开右岸不稳定岩体由坝址河谷段构造分析图可知:在右岸F2断层的上方有一块由ALI5和Qpl组成的不稳定的岩体,而库区附近历史地震活动较为频繁,近年来微繁,弱震仍不断发生。