最新仪表着陆系统

合集下载

nm7000b型仪表着陆系统

nm7000b型仪表着陆系统

航空知识 AVIATION KNOWLEDGE中国航班 CHINA FLIGHTS26NM7000B 型仪表着陆系统航向信标室外天线故障该如何处理文马建新NM7000B 型仪表着陆系统属于一种盲降系统,由于系统一经使用,便会处于不间断工作状态中,随着时间的推移,会出现老化情况,进而导致系统精密度严重下降,引发系统故障的产生,对飞行器的安全飞行造成了较大的影响。

仪表着陆系统被广泛应用于国际民航组织上,目前,有很大一部分民航组织上均使用该种系统,系统的应用情况直接关系到飞机的落地,由航向信标、下滑新标、指点信标三部分内容构成。

航向信标作为一项引导信号,由延长线水平方向及覆盖跑道构成,共包含十对室外天线对外辐射,当天线出现故障后,将会对仪表着陆系统的正常使用造成较大的影响。

为了防止航班延误事件的产生,及时寻找及排除故障成为现阶段一项亟待解决的问题。

NM7000B 型仪表着陆系统工作原理航向信标工作原理。

航向信标主要是指为飞行器提供跑道及跑道延长线水平引导信号,信号由两个辐射磁场构成,辐射场中所调制出来的幅度具有一致性,一般我们将其称为是航道。

当飞机处于航道上时,机载设备会提供正确指示信息,若飞机偏离跑道,会接收到纠正信息。

由遥控单元、天线阵系统、航向主机及远程监控维护系统共同来组成航向信标。

下滑信标原理。

下滑信标的主要作用是为着陆飞机提供下滑道信息,将此角度称之为是下滑角,为飞行器提供跑道及其延长线垂直方向的引导信号,由两个磁场来组成此信号。

飞机处于下滑道上,会接收到来自于机载设备中的信号。

若飞机偏离于下滑道上方位置时,会接收到“向下纠正”信号。

当飞机偏离于下滑道下方时,会接收到“向上纠正”信号。

由天线系统、下滑主机、远程监控维护系统、遥控单元及电源共同来组成下滑信标系统。

NM7000B 型仪表着陆系统航向信标室外天线故障排查机房至天线阵电缆。

将ILS航空知识AVIATION KNOWLEDGECHINA FLIGHTS 中国航班27机柜内的输入输出电缆断开,使用万用表对ADU 及MCU 中的电缆电阻进行测试,经测量可知电阻值为无限大。

中国民用航空仪表着陆系统 二类

中国民用航空仪表着陆系统 二类

中国民用航空仪表着陆系统Ⅱ类运行规定第一章总则第一条为了保障民用航空仪表着陆系统Ⅱ类运行安全和有秩序地实施,制定本规定。

第二条本规定适用于民用机场实施的仪表着陆系统Ⅱ类运行(以下简称Ⅱ类运行)。

第三条凡从事民用航空活动的单位均应依据本规定制订Ⅱ类运行实施细则和工作程序。

第四条本规定中下列用语的含义为:(一)精密进近:使用仪表着陆系统(ILS)、微波着陆系统(MLS)或精密进近雷达(PAR)提供方位和下滑引导的仪表进近。

(二)非精密进近:使用全向信标台(VOR)、导航台(NDB)或航向台(LLZ,或ILS下滑台不工作)等地面导航设施,只提供方位引导,不具备下滑引导的仪表进近。

(三)机场运行最低标准:机场适用于起飞或着陆的限制,对于起飞,用能见度(VIS)或跑道视程(RVR)表示,如果需要应包括云高;对于精密进近着陆,用能见度(VIS)或/和跑道视程(RVR)和决断高(DH)表示;对于非精密进近着陆,用能见度(VIS)、最低下降高(MDH)和云高表示。

(四)超障高(OCH):以跑道入口的标高平面为测算高的基准,按照适当的超障准则确定的最低高。

(五)决断高(DH):在精密进近中,以跑道入口的标高平面为基准规定的高,航空器下降至这个高,如果不能取得继续进近所需的目视参考,必须开始复飞。

(六)能见度(VIS):白天能看到和辨别出明显的不发光物体或晚上能看到明显的发光物体的距离。

(七)跑道视程(RVR):航空器在跑道中线上,驾驶员能看到跑道道面标志或跑道边灯或中线灯的最大距离。

(八)精密进近和着陆运行类别Ⅰ类(CATI)运行:决断高不低于60米(200英尺),能见度不小于800米或跑道视程不小于550米的精密进近和着陆。

Ⅱ类(CATⅡ)运行:决断高低于60米(200英尺),但不低于30米(100英尺),跑道视程不小于350米的精密进近和着陆。

ⅢA类(CATⅢA)运行:决断高低于30米(100英尺),或无决断高,跑道视程不小于200米的精密进近和着陆。

仪表着陆系统 ILS 说明

仪表着陆系统 ILS 说明

ⅢC类无决断高和无跑道视程的限制,也就是说“伸手不见五指”的情况下,凭借盲降引导可自动驾驶安全着陆滑行。目前ICAO还没有批准ⅢC类运行。
盲降是仪表着陆系统 ILS (Instrument Landing System)的俗称。因为仪表着陆系统能在低天气标准或飞行员看不到任何目视参考的天气下,引导飞机进近着陆,所以人们就把仪表着陆系统称为盲降。 仪表着陆系统是飞机进近和着陆引导的国际标准系统,它是二战后于1947年由国际民航组织ICAO确认的国际标准着陆设备。全世界的仪表着陆系统都采用ICAO的技术性能要求,因此任何配备盲降的飞机在全世界任何装有盲降设备的机场都能得到统一的技术服务。 仪表着陆系统通常由一个甚高频(VHF)航向信标台、一个特高频(UHF)下滑信标台和几个甚高频(VHF)指点标组成。航向信标台给出与跑道中心线对准的航向面,下滑信标给出仰角2.5°—3.5°的下滑面,这两个面的交线即是仪表着陆系统给出的飞机进近着陆的准确路线。指点标沿进近路线提供键控校准点即距离跑道入口一定距离处的高度校验,以及距离入口的距离。飞机从建立盲降到最后着陆阶段,若飞机低于盲降提供的下滑线,盲降系统就会发出告警。 盲降的作用在天气恶劣、能见度低的情况下显得尤为突出。它可以在飞行员肉眼难以发现跑道或标志时,给飞机提供一个可靠的进近着陆通道,以便让飞行员掌握位置、方位、下降高度,从而安全着陆。根据盲降的精密度,盲降给飞机提供的进近着陆标准不一样,因此盲降可分为ⅠⅡⅢ类标准。 Ⅰ类盲降的天气标准是前方能见度不低于800米(半英里)或跑道视程不小于550米,着陆最低标准的决断高不低于60米(200英尺),也就是说,Ⅰ类盲降系统可引导飞机在下滑道上,自动驾驶下降至机轮距跑道标高高度60米的高度。若在此高度飞行员看清跑道即可实施落地,否则就得复飞。 Ⅱ类盲降标准是前方能见ቤተ መጻሕፍቲ ባይዱ为400米(1/4英里)或跑道视程不小于350米,着陆最低标准的决断高不低于30米(100英尺)。同Ⅰ类一样,自动驾驶下降至决断高度30米,若飞行员目视到跑道,即可实施着陆,否则就得复飞。

ILS仪表着陆系统

ILS仪表着陆系统
在飞机飞越各指点信标台上空时,对应 的指点信标指示灯亮,且可听道各指点 信标台所发射的不同的音频编码键控调 制。
END
航向偏离指示原理
地面航向台沿跑道中心线两侧发射两束水平交叉的辐射波瓣, 跑道左边的甚高频载波辐射波瓣被90Hz低频信号调幅,跑道 右边的甚高频载波辐射波瓣被150Hz低频信号调幅。 当飞机在航向道上时,90Hz调制信号等于150Hz调制信号。 若飞机偏离到航向道的左边,90Hz调制信号大于150Hz调制信 号 反之,150Hz调制信号大于90Hz调制信号
3.3.5 下滑指示的基本原理
下滑接收机的通过对90Hz和150Hz调制音频下 滑的比较,引导飞机对准下滑道。
如所接收的90Hz信号等于150Hz信号,下滑偏 离指针指在中心零位(C飞机)。
若飞机在下滑道的上面,90 Hz音频大于150Hz 音频,偏离指针向下指(A飞机),表示下滑 道在飞机的下面。
反之,飞机在下滑道下面时, 150Hz音频大于 90Hz音频,指针向上指( B飞机),表场和偏离指示
3.3.6 指点信标系统
指点信标台发射频率均为75MHz。而调制 频率和台识别码各不相同,以便使飞行 员识别飞机在哪个信标台上空。
航道指点信标台安装在沿着着陆方向的 跑道中心线延长线上。
仪表着陆系统的功用
一、功用 二、着陆标准等级
一、功用
在恶劣气象条件和能见度不良条件下 给驾驶员提供引导信息,保证飞机安全 进近和着陆。
二、着陆标准等级
Ⅰ类设施的运用性能:在跑道视距不小于800m的条件下, 以高的进场成功概率,能将飞机引导至60m的决断高度。 Ⅱ类设施的运用性能:在跑道视距不小于400m的条件下, 以高的进场成功概率,能将飞机引导至30m的决断高度。 Ⅲ类设施的运用性能:没有决断高度限制,在跑道视距 不小于200m的条件下,着陆的最后阶段凭外界目视参考, 引导飞机至跑道表面。因此目叫“看着着陆”(see to land)。 Ⅲ类设施运用性能:没有决断高度限制和不依赖外界目 视参考,一直运用到跑道表面,接着在跑道视距50m的 条件下,凭外界目视参考滑行,因此目叫“看着滑行” (see toxi)。 Ⅲc类设施的运用性能:无决断高度限制,不依靠外界 目视参考,能沿着跑道表面着陆和滑行。

仪表着陆系统

仪表着陆系统

航向信标:航向信标天线产生的辐射场,在通过跑道中心延 长线的垂直平面内,形成航向面或叫航向道。如下图所示,用 来提供飞机偏离航向道的横向引导信号。 下滑信标:下滑信标台天线产生的辐射场形成下滑面(见下 图),下滑面和跑道水平平面的夹角,根据机场的净空条件, 0 0 可在2 4 之间选择。
指点信标:指点信标台为2个或3个,装在顺着着陆方向的跑道中心延长线的 规定距离上,分别叫内、中、外指点信标(见下图1)。每个指点信标台发射垂 直向上的扇形波束。只有在飞机飞越指点信标台上空的不大范围时,机载接 收机才能收到发射信号。由于各指点信标台发射信号的调制频率和识别码不 同,机载接收机就分别使驾驶舱仪表板上不同颜色的识别灯亮,同时驾驶员 耳机中也可以听到不同音调的频率和识别码。驾驶员就可以判断飞机在那个 信标台的上空,即知道飞机离跑道头的距离。 图2表示飞机进场的示意图。航向信标和下滑信标发射信号组合的结果, 在空间形成一个矩形延长的角锥形进场航道。其中航向道宽度为40,下滑道 宽度为1.40(指示器满刻度偏转的角度)。
一、着陆标准等级
国际民航组织根据在不同气象条件下的着陆能力,规定 了三类着陆标准,使用跑道视距(RVR)和决断高度(DH)两个量 来表示。其规定如下表所示。
类别 Ⅰ Ⅱ Ⅲa Ⅲb Ⅲc
跑道视距(RVR) 800m(2600ft) 400m(1200ft) 200m(700ft) 50m(150ft) 0
航道扇区:DDM等于0.155的射线所包含的角度θ,称航道扇 区(如下图所示)。θ随着航向信标台与跑道入口之间的距离不 同而变。
标准的航道偏离指示器满刻度偏转对应于0.155 DDM,即飞 机偏离航道中心线20—30。并在ILS基准数据点横向偏转灵敏度 等于0.00145DDM/m。

仪表着陆系统工作原理

仪表着陆系统工作原理

仪表着陆系统工作原理仪表着陆系统(Instrument Landing System,简称ILS)是一种基于雷达和无线电导航技术的自动着陆辅助系统,用于帮助飞行员在恶劣天气条件下进行精确的着陆。

ILS由三个主要组件组成:1. 放导航信号的地面设备:这个设备通常被称为“局部器”(Localizer),它通过无线电信号发射和导航系统通信。

局部器发射两个信号,水平信号和垂直信号,协助飞行员控制飞机的水平和垂直位置。

飞行员可以通过接收这些信号来确保飞机在正确的航向和下降路径上。

2. 安装在飞机上的接收设备:在飞机上安装了称为接收局部器信号的接收设备。

接收设备接收地面发出的信号,并将其显示在驾驶舱的显示器上。

飞行员通过这个显示器来确定飞机的位置和航向,以便进行准确的着陆。

3. 自动着陆系统(Autoland System):许多现代飞机可以配备自动着陆系统,它使用ILS技术并结合自动驾驶系统,可以在没有飞行员干预的情况下完成整个着陆过程。

自动着陆系统监测ILS信号,并通过控制飞机的引导系统和动力系统来自动调整飞机的飞行姿态和速度,确保精确地着陆。

ILS的工作原理是基于地面设备发射的无线电信号和飞机上的接收设备接收信号。

地面设备发射水平和垂直信号,飞机上的接收设备接收这些信号,并将其显示在驾驶舱的显示器上。

飞行员使用这些信号来导航飞机,以确保飞机安全地降落在目标跑道上。

ILS是民用和军用飞机着陆过程中一项重要的辅助技术,可以大大提高飞行员在恶劣天气条件下的着陆能力。

除了上述提到的基本工作原理外,仪表着陆系统还有其他一些相关的技术和功能。

首先,仪表着陆系统通常配备了仪表陀螺系统,用于提供飞机的姿态和水平信息。

这些信息对于飞行员来说至关重要,因为在低能见度条件下,他们无法依赖外界视觉进行导航和操控。

仪表陀螺系统可以通过加速度计和陀螺仪测量飞机的滚转、俯仰和偏航信息,并将其显示在仪表板上,帮助飞行员保持飞机的平稳飞行。

仪表着陆系统

仪表着陆系统

仪表着陆系统(ILS)简介ILS的原理ILS的作用和历史仪表着陆系统ILS(Instrument Landing System)是“非目视”进近和着陆的标准助航系统。

它为飞机提供对准跑道的航向信号和指导飞机下降的下滑道信号,再加上适当的距离指示信号,使飞机能在低的能见度和恶劣天气条件下借助这些仪表提供的信号指示就可以安全着陆。

随着新技术和新器件在ILS上的应用,ILS所提供的精确导航信号使得全天候的着陆成为可能。

为了着陆飞机的安全,在目视着陆飞行条例(VFR)中规定,目视着陆的水平能见度必须大于4.8Km,云底高不小于300M。

在很大一部分机场的气象条件都不能满足这一要求,这时着陆的飞机必须依靠ILS提供的引导进行着陆。

ILS是采用“等信号”原理来实现的,即通过比较两个信号的幅度差来给出左右和上下指示,当飞行器处于指定航线时,两个信号幅度相等,差值为零。

最早的ILS雏形出现在上个世纪三十年代,那时有一种叫“AN系统”的设备来帮助飞机着陆。

如图一所示。

它将“A”和“N”两个字母的MORSE码分开发射,当飞机偏离跑道中心线时,飞行员只能听到其中一个字母的MORSE 码,“A”或“N”,只有飞机对准跑道时,才能同时听到两个字母。

而飞机下滑的角度是这样形成的:飞机沿着一个固定信号强度(比如100uA)降落。

后来这两个MORSE 码被两个音频所代替(90Hz 和150Hz ),并且载波提高,航向为VHF ,下滑为UHF 。

如图二所示。

但上述两种系统的缺点是显而易见的,就是误差大,波瓣宽度十分大,容易受干扰。

现代的ILS 通过采用多个对数周期天线,并添加其它技术元素,如采用双频系统、分离辐射和空间调制、信号频谱精确控制和变换等措施来提高ILS 的精度和可靠性。

图一:AN 系统图二:双音频系统ILS的有关述语决断高度(DH):ILS引导飞机到达飞行员能看见跑道的最低允许高度,在这个高度上,驾驶员必须做出继续着陆还是复飞的决定。

仪表着陆系统

仪表着陆系统
CAT ⅢC类无决断高和跑道视程的限制,也就是说凭借盲降引导可 自动驾驶安全着陆滑行。目前ICAO还没有批准ⅢC类运行。
仪表着陆等级 第一类仪表降落系统(CAT Ⅰ)
决断高(Decision Height) 不低于60m
跑道视程(RVR) 550米以上或能见度800米以上
第二类仪表降落系统(CAT Ⅱ) 低于60m但不低于30m
在进近阶段,飞机 降落难度大
天气的能见度多变
安全可行的辅助着陆系统来 减轻飞行员的操纵负荷,提
高飞行的安全性
在1938年1月26日,从华顿飞往宾夕 法尼亚中部航空的波音247-D第一次使 用仪表着陆系统在暴风雨中降落。
定义
• 仪表着陆系统 (Instrument Landing System, ILS),俗 称盲降,是目前应用最为 广泛的飞机精密进近和着 陆引导系统。
现状:很多先进的飞机直接将ILS 的信号输入自动驾驶系统,使得
飞机能够自动进近。
• 组成:外指点标;中指点标;内指点标 • 形式:飞机飞越伴随灯光以及音响的提醒 • 功能:提供在下滑道上的高度检查
安装位置
音讯 频率
外指标 距离跑道入口 400MHz

6.5-11.1千米
闪烁灯 颜色
标示高度
作用
• 由地面发射的两束无线电 信号实现航向道和下滑道 指引,建立一条由跑道指 向空中的虚拟路径;
• 飞机通过机载接收设备, 确定自身与该路径相对位 置,使飞机沿正确方向飞 向跑道并且平稳下降高度, 安全着陆。
在天气恶劣、能见度低的情况下,它可
以在飞行员肉眼难以发现跑道或标志时,给飞 机提供一个可靠的进近着陆通道,以便让飞行 员掌握位置、方位、下降高度,从而安全着陆。

仪表着陆系统三类标准

仪表着陆系统三类标准

仪表着陆系统三类标准
仪表着陆系统(ILS)的三类标准如下:
一类盲降:这是最低标准的盲降方式,适用于前方能见度不低于800米或跑道视程不小于550米的情况,此时着陆决断高度不应低于60米。

1
二类盲降:在这种条件下,能见度为400米或跑道视程不小于350米时,着陆决断高度不应低于30米。

三类盲降:这是一种更高级别的盲降方式,分为三个子类别:
IIIA类:在这种情况下,能见度为200米,且云比高不超过15米;决断高度为15米。

如果飞行员能够清晰看到跑道并确认可以降落,则可以进行降落;如果不确定,则需要复飞。

IIIB类:能见度降至50米,且云比为零;这种情况下没有固定的决断高度,飞行员需要根据实际情况判断是否能降落,同样需要复飞。

IIIC类:这是最极端的一种情况,能见度和云比都为零,
意味着在任何情况下都不能进行降落,只能复飞。

仪表着陆系统

仪表着陆系统

仪表着陆系统(ILS )简介ILS 的原理ILS 的作用和历史仪表着陆系统ILS (Instrument Landing System )是“非目视”进近和着陆的标准助航系统。

它为飞机提供对准跑道的航向信号和指导飞机下降的下滑道信号,再加上适当的距离指示信号,使飞机能在低的能见度和恶劣天气条件下借助这些仪表提供的信号指示就可以安全着陆。

随着新技术和新器件在ILS 上的应用,ILS 所提供的精确导航信号使得全天候的着陆成为可能。

为了着陆飞机的安全,在目视着陆飞行条例(VFR )中规定,目视着陆的水平能见度必须大于4.8Km ,云底高不小于300M 。

在很大一部分机场的气象条件都不能满足这一要求,这时着陆的飞机必须依靠ILS 提供的引导进行着陆。

ILS 是采用“等信号”原理来实现的,即通过比较两个信号的幅度差来给出左右和上下指示,当飞行器处于指定航线时,两个信号幅度相等,差值为零。

最早的ILS 雏形出现在上个世纪三十年代,那时有一种叫“AN 系统”的设备来帮助飞机着陆。

如图一所示。

它将“A ”和“N ”两个字母的MORSE 码分开发射,当飞机偏离跑道中心线时,飞行员只能听到其中一个字母的MORSE 码,“A ”或“N ”,只有飞机对准跑道时,才能同时听到两个字母。

而飞机下滑的角度是这样形成的:飞机沿着一个固定信号强度(比如100uA )降落。

后来这两个MORSE 码被两个音频所代替(90Hz 和150Hz ),并且载波提高,航向为VHF ,下滑为UHF 。

如图二所示。

但上述两种系统的缺点是显而易见的,就是误差大,波瓣宽度十分大,容易受干扰。

现代的ILS 通过采用多个对数周期天线,并添加其它技术元素,如采用双频系统、分离辐射和空间调制、信号频谱精确控制和变换等措施来提高ILS 的精度和可靠性。

图一:AN 系统图二:双音频系统ILS的有关述语决断高度(DH):ILS引导飞机到达飞行员能看见跑道的最低允许高度,在这个高度上,驾驶员必须做出继续着陆还是复飞的决定。

仪器降落系统ILS

仪器降落系统ILS
下滑道信息:下滑道信息用于指示飞机应在哪个高度下滑 以对准跑道。它通过辅助发射机发送一个垂直信号,该信 号在飞机上产生一个表示下滑道高度的指示。
03 ILS系统的分类
I类ILS
跑道视程(RVR)范围
通常为550至800米,允许飞机在较低的能见度条件下着陆。
系统组成
包括航向台、下滑台和外指点标。
导航精度
仪器降落系统ILS(仪表着陆系统)
目录
• 引言 • ILS系统概述 • ILS系统的分类 • ILS系统的应用 • ILS系统的优势与局限性 • ILS系统的未来发展 • 结论
01 引言
主题简介
• 仪器降落系统ILS(仪表着陆系统):一种用于引导飞机着陆的 电子系统,通过地面发射的无线电信号提供方向、下滑道和距 离信息,使飞机在视觉条件不佳或完全看不见的情况下安全着 陆。
ILS系统通过精确的引导信息,帮助飞行员在低能见度条 件下安全着陆,降低了着陆过程中的风险。
全天候工作能力
ILS不受光照、云层和天气条件的影响,可以在任何时间 、任何天气条件下为飞行员提供准确的着陆引导信息。
提高机场运行效率
ILS系统允许飞机在复杂的天气条件下连续进场着陆,提 高了机场的运行效率,减少了航班延误和取消的情况。
未来发展趋势与展望
01
02
03
集成化与模块化
未来ILS系统将朝着集成化 和模块化方向发展,实现 更高效的系统集成和灵活 的扩展升级。
Hale Waihona Puke 智能化与自动化随着人工智能和自动化技 术的发展,ILS系统将更加 智能化和自动化,提高系 统的自主性和适应性。
绿色环保
未来ILS系统将更加注重环 保和节能设计,减少对环 境的影响,促进可持续发 展。

仪表着陆系统概述及原理

仪表着陆系统概述及原理

仪表着陆系统仪表着陆系统(Instrument Landing System, ILS) 又译为仪器降落系统,盲降系统,是应用最为广泛的飞机精密进近和着陆引导系统。

它的作用是由地面发射的两束无线电信号实现航向道和下滑道指引,建立一条由跑道指向空中的虚拟路径,飞机通过机载接收设备,确定自身与该路径的相对位置,使飞机沿正确方向飞向跑道并且平稳下降高度,最终实现安全着陆。

盲降是仪表着陆系统ILS的俗称。

因为仪表着陆系统能在低天气标准或飞行员看不到任何目视参考的天气下引导飞机进近着陆,所以人们就把仪表着陆系统称为盲降,即飞行员在肉眼无法看清机场跑道的情况下操控航班降落。

1.简介仪表着陆系统是飞机进近和着陆引导的国际标准系统,它是二战后于1947年由国际民航组织ICAO确认的国际标准着陆设备。

全世界的仪表着陆系统都采用ICAO(国际民用航空组织,国际民航组织,International Civil Aviation Organization)[1]的技术性能要求,因此任何配备盲降的飞机在全世界任何装有盲降设备的机场都能得到统一的技术服务。

“盲降”一词即使对经常坐飞机的人来说也有些陌生,它是普通旅客接触不到的航空专有名词,并非字面意思“闭着眼睛降”或“盲目降落”。

盲降是仪表着陆系统ILS的俗称,在低能见度天气时,地面导航台与机载设施建立相关后,系统可由自动驾驶仪完成对准跑道及后续着陆等行为。

有别于天气正常时的“目视进场”,此方式依靠仪表着陆系统引导飞机进近着陆,可理解为“不依赖眼睛”即称“盲降”。

仪表着陆系统通常由一个甚高频(VHF)航向信标台、一[3]个特高频(UHF)下滑信标台和几个甚高频(VHF)指点标组成。

航向信标台给出与跑道中心线对准的航向面,下滑信标给出仰角2.5°—3.5°的下滑面,这两个面的交线即是仪表着陆系统给出的飞机进近着陆的准确路线。

指点标沿进近路线提供键控校准点即距离跑道入口一定距离处的高度校验,以及距离入口的距离。

导航仪表着陆系统RMS软件操作

导航仪表着陆系统RMS软件操作
数据转换
将数据从一种格式或结构转换为另一种格式或结构, 满足不同应用场景的需求。
多项目管理与协同工作
项目管理
对多个项目进行统一管理,包括项目创建、编 辑、删除和查看等操作。
协同编辑
允许多个用户同时编辑同一份数据,实时同步 更新,提高工作效率。
权限控制
对不同用户设置不同的权限级别,确保数据的安全性和保密性。
航班数据处理
对航班数据进行处理和分析,为机场的运营和管理提供支持。
案例三:气象数据处理与分析
气象数据采集
采集气象数据,包括风向、风速、温度、湿度、气压等信 息。
气象数据处理
对采集的气象数据进行处理,包括数据清洗、格式转换等 操作。
气象数据分析
对处理后的气象数据进行统计分析,为飞行安全提供支持。
THANKS
3
根据需要添加新的仪表或设备到项目中。
打开和保存RMS项目
01
选择“打开”功能,浏览并选择已存在的RMS项目文件。
02
在编辑过程中,可随时选择“保存”功能,确 Nhomakorabea数据安全。
03
可选择“另存为”功能,以不同的名称或位置保存项目文件 。
导入和导出数据
选择“导入”功能,从其他软件或文 件中导入数据。
选择“导出”功能,将项目数据导出 为多种格式,便于分享和交流。
钮等。
数据窗口
状态栏
工具栏
展示导航数据的图表和 曲线,方便飞行员分析
和判断。
显示软件的运行状态、 故障信息和警告提示等。
包含常用的操作按钮, 如数据采集、数据处理、
数据导出等。
02
RMS软件的基本操作
创建新的RMS项目
1
打开RMS软件,选择“新建”项目,输入项目名 称和描述。

仪表着陆系统 ILS

仪表着陆系统 ILS

ILS的未来
美国最近研制了了一种先进灵活的仪表着陆系统,它比 装在机场的常规ILS可靠性高,价格低。这套以计算机 为基础的先进着陆系统(ALS=Automatic Landing System )与正在研制中的星基系统不同,ALS采用现有 的机载ILS设备。 ALS更适用于那些小型、低容量且 受地形限制的机场。
6、航向信表系统
工作频率 108.00-111.95MHZ 小数点后第一位为奇数。 a、航向信标发射工作框图
1 6
调幅电路 3
功放 uSBO(t)
右天线,fR(q) 8 9 · · · · · · +q
载波振荡 放大器
· 90° 2
150Hz、90Hz 正弦信号发生器 4 调幅电路 · 5 7 功放
ILS的发展趋势
新一代更先进的MLS一定会在将来取代ILS。根据我国研制 ML S 的状况, 目前要安装一套ML S 系统的耗资极其巨大, 我国机场规模小, 分布范围广, 所使用的跑道数量和飞行流量 之间并没有十分突出的矛盾, IL S 尚能满足要求。 IL S 在我国已经使用了几十年 。作为一种廉价可靠的着陆 设备, 未来一段时间, 在推广MLS 的同时, ILS 不可能被完全 取代, 必然是MLS与ILS结合共同来支持飞机导航及引导着陆。 飞机也必须有兼具ILS以ML S 双重功能的组合着陆系统来保 障机安全着陆的需要
混合 差端 天线 -90° 网络 和端 uCSB(t) 分配网络

跑道中心线(0°)
-q
左天线,fL(q)
模拟开关 Morse码 发生器
1020Hz正弦 信号产生器
键控识别音频 信号产生器
b、航向信标接受机
300~3000Hz BP滤波器 · 1 接收机 2 包络 3 · 检波器 150Hz BP 滤波器

仪表着陆系统

仪表着陆系统

ILS导航台精密进近程序是指利用那些导航精度高,而且既能提供方位信号,又能提供下滑道信号的导航设备设计的仪表进近程序。

目前,能够作为精密进近程序的导航设备有仪表着陆系统(ILS)、微波着陆系统(MLS)、精密进近雷达(PAR)以及由全球导航卫星系统提供垂直引导的进近(GNSS APV)。

目前我国主用的精密进近导航设备是仪表着陆系统(ILS)。

仪表着陆系统的地面系统由航向台(Localizer)、下滑台(Glide Slope)、指点信标(Marker)和灯光系统四个部分组成。

仪表着陆系统的机载系统是由无线电接收机和仪表组成,它的任务是给驾驶员指示出跑道中心线并给出按照规定的坡度降落到跑道上的路径。

1.ILS导航台的组成及其布局(1)航向台LLZ:Localizer航向台由一个甚高频发射机、调制器、分流器及天线阵组成。

航向台的天线安装在跑道末端的中心延长线上,通常距跑道末端400至500m。

航向台发射两个等强度的无线电波束,称为航向信标波束,使用的频率为108.10~111.95MHz,两个波束分布在沿跑道中心线的两侧,使用两种调幅频率,左侧是90Hz调幅,右侧是150Hz调幅。

如果飞机的接收机收到的两个电波强度相等,机上的ILS仪表指针指在正中,说明飞机飞在跑道中心线向上延伸的垂直平面上,飞机可沿着波束方向准确地在跑道中线上着陆。

􀂄在LLZ的有效范围内,驾驶员即可根据飞行仪表(HIS、ADI)的指示,使航空器切入航道对准跑道中心线飞行。

(2)下滑台GS:Glide Slope下滑台由超高频发射机、调制器和上、下天线等组成。

下滑台的天线安装在跑道入口内的一侧,一般距入口250m前后,与跑道中心线的横向距离为150m左右。

该设备能产生一个与跑道平面成一定角度的下滑面。

该下滑面与航向道相结合形成一个下滑道。

下滑道在跑道入口处的高称为ILS基准高(RDH),其数值为15±3m(标准15m)。

INSTRUMENT LANDING SYSTEM(仪表着陆系统)

INSTRUMENT LANDING SYSTEM(仪表着陆系统)

目视参考系统
精密进近轨迹指示器(Precision 精密进近轨迹指示器(Precision Approach Path Indicator, PAPI),提供 PAPI),提供 飞行器相对正确的下滑道的位置的目 视参考。
MB Tips
航路信标台通常距离飞机垂直高度比较远,接收的 信号较弱,而航道信标台距离飞机较近,信号较 强,如果接收机灵敏度设置一样,则会出现信号 接收不到或信号过强的情况,因此MB控制器上有 接收不到或信号过强的情况,因此MB控制器上有 灵敏度高低切换开关。 现代ILS系统中常用DME台代替MB台,DME可以连 现代ILS系统中常用DME台代替MB台,DME可以连 续提高距离信息,其功能强于MB台。对于安装 续提高距离信息,其功能强于MB台。对于安装 DME台的机场来说,要求实施ILS进近的飞机至少 DME台的机场来说,要求实施ILS进近的飞机至少 安装一台DME接收机设备。 安装一台DME接收机设备。
机载设备
航道指示器(左座)
下滑接收天线 航向下滑组 合接收机
航道指示器(右座)
航向接收天线 控制盒
ILS系统组成及分系统工作原理 ILS系统组成及分系统工作原理 和作用 ILS系统的组成 ILS系统的组成
ILS系统包括三个分系统:提供横向引 ILS系统包括三个分系统:提供横向引 导的航向信标(Localize)、提供垂直 导的航向信标(Localize)、提供垂直 引导的下滑道信标(Glideslope)、提 引导的下滑道信标(Glideslope)、提 供距离引导的指点信标(Marker 供距离引导的指点信标(Marker Beacon)。 Beacon)。
反航道(Back Course) 反航道(Back Course)Tips
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
_______________________
(二) 进入四转弯和转弯中的检查
___________________________ _______________________
(二) 进入四转弯和转弯中的检查
___________________________ _______________________
150赫

A 调幅度差值
DDR
(一) 航向信标系统的工作原理
___________________________ _______________________
B

A
(一) 航向信标系统的工作原理
___________________________ _______________________
B
B′

A
(一) 航向信标系统的工作原理
C
___________________________ _______________________
B
B′

A
(一) 航向信标系统的工作原理
C
C′
___________________________ _______________________
___________________________ _______________________
系 统 概 述
仪表着陆系统是一种比较先进的着陆设 备,它能够形象地指示飞机与着陆航道和下 滑道的相关位置,利用这种设备着陆可以保 证飞机在最低气象条件下顺利着陆,是昼夜 复杂气象条件下进近着陆的重要方法之一。
B
A
C
___________________________ _______________________
(一) 着陆前的准备工作
(1) 经地面指挥员允许进入机场进近着陆后,申请开放 HXJ-2航向下滑系统(地面设备要提前10-15分钟开机 才能正常工作)。
(2) 先利用无线电罗盘向着陆机场导航台飞行。 (3) 做好HXJ-2准备工作: 1)接通HXJ-2的电源前,检查航道指示器下滑指针 是否停在中心位置。 2)将当天使用频率波道定在控制盒上。 3)接通系统电源,并检查“NAV”、“GS”告警旗应 收起,说明接收机工作正常。 ___________________________
(三) 五边按航向道飞行的方法
___________________________ _______________________
(四) 进入下滑道飞行的方法
___________________________ _______________________
(四) 进入下滑道飞行的方法
___________________________ _______________________
(四) 进入下滑道飞行的方法
___________________________ _______________________
(一) 转弯中方向偏差的判断及其修正
X剩-F剩
X剩 F剩
航向剩余角(X剩)
90° 60° 30° 10° 0°
大偏左 小偏右 电台相对方位角剩余角(F剩) 76° 53° 28° 10° 0°பைடு நூலகம்
___两_剩__余__角__差__(_X__剩_-_F_剩_)_______1_4° _______________________
7° 2°
0° 0°
(一) 转弯中方向偏差的判断及其修正
航向剩余角(X剩)
90° 60° 30° 10° 0°
电台相对方位角剩余角(F剩) 76° 53° 28° 10° 0°
无线电指针 (头部) 航道给定针
下滑偏差针 偏差标志
无线电指针 (尾部)
(二) 机载设备
___________________________ _______________________
(一) 航向信标系统的工作原理
90赫
___________________________ _______________________
___两_剩__余__角__差__(_X__剩_-_F_剩_)_______1_4° _______________________
航道指示器(左座)
航道指示器(右座)
航向接收天线
___________________________ _______________________
控制盒
(二) 机载设备:航道指示器与航向位置指示器结合
偏流指针 航道偏差杆 固定小飞机
___________________________ _______________________
___两_剩__余__角__差__(_X__剩_-_F_剩_)_______1_4° 7° 2°
0° 0°
_______________________
(一) 转弯中方向偏差的判断及其修正
航向剩余角(X剩)
90° 60° 30° 10° 0°
电台相对方位角剩余角(F剩) 76° 53° 28° 10° 0°
B
B′

A
(二) 下滑信标系统的工作原理
90赫
A
150赫
2°- 4°
___________________________ _______________________
(二) 下滑信标系统的工作原理
90赫
B A
150赫
2°- 4°
___________________________
_______________________
(二) 下滑信标系统的工作原理
90赫
150赫
2°- 4°
___________________________ _______________________
B A
C
A
___________________________ _______________________
B
A
___________________________ _______________________
___________________________ _______________________
(一) 地面设备
边界指点信标台近距信标台 航向信标台
远距信标台
下滑信标台
___________________________ _______________________
(二) 机载设备
下滑接收天线 航向下滑组 合接收机
相关文档
最新文档