波形发生电路 实验报告
波形发生电路实验报告总结.docx
专业:实验报告姓名:学号:日期:课程名称:电路与模拟电子技术实验指导老师:张冶沁成绩:实验名称:波形发生器电路分析与设计实验类型:电路实验同组学生姓名:一、实验目的和要求:桥式正弦振荡电路设计1.正弦波振荡电路的起振条件。
2.正弦波振荡电路稳幅环节的作用以及稳幅环节参数变化对输出波形的影响。
3.选频电路参数变化对输出波形频率的影响。
4.学习正弦振荡电路的仿真分析与调试方法。
B.用集成运放构成的方波、三角波发生电路设计1.掌握方波和三角波发生电路的设计方法。
2.主要性能指标的测试。
3.学习方波和三角波的仿真与调试方法。
二、实验设备:示波器、万用表模电实验箱三、实验须知:1. RC桥式正弦波振荡电路,起振时应满足的条件是:闭环放大倍数大于3,即 R f >2R1,引入正反馈3. RC桥式正弦波振荡电路的振荡频率:RC桥式正弦波振荡电路,稳定振荡时应满足的条件是:电路中有非线性元件起自动稳幅的作用4. RC桥式正弦波振荡电路里C的大小:f01/(2π RC)C5. RC桥式正弦波振荡电路R1 的大小:6. RC桥式正弦波振荡电路 R2 的大小:R1=15kΩR2=Ω7.RC桥式正弦波振荡电路是通过哪几个8.波形发生器电路里 A1的输出会不会元器件来实现稳幅作用的随电源电压的变化而变化答:配对选用硅二极管,使两只二极答:A1输出不会改变,电源电压的变管的特性相同,上下对称,根据振荡化通过选频网络调节,不影响放大和幅度的变化,采用非线性元件来自动稳幅环节改变放大电路中负反馈的强弱,以实现稳幅目的8.波形发生器电路里v01的输出主要由谁9.波形发生器电路里, R 和 C的参数大决定,当电源电压发生变化时,它会小会不会影响 v0的输出波形答:发生变化吗会影响,而且 v o的频率和幅值都由答:由两只二极管决定,电源电压变RC决定,因为 R和 C的回路构成选频化时, V 不会变化网络o1四、实验步骤:A. RC桥式正弦波振荡电路:原理图:1.PSpice 仿真波形:示波器测量的波形:T=616us,v pp,v RMS667mV根据实际波形,比较实际数据和理论数据之间的差异:理论周期为650us,略大于试验数据,但非常接近,由于实际电阻和二极管的线性或非线性特性与理想状态有所不同,在误差允许范围内认为符合要求2.改变R2的参数(减小或增大R2),使输出v0从无到有,从正弦波直至削顶,分析出现这三种情况的原因和条件。
波形产生电路实验报告
波形产生电路实验报告一、实验目的本实验旨在探究波形产生电路的基本原理和实现方法,并通过实验操作,了解不同电路参数对波形产生的影响。
二、实验器材1.示波器2.函数信号发生器3.电阻、电容等元器件4.万用表三、实验原理1.基本原理:波形产生电路是指能够产生各种规定形状的周期性信号的电路。
其中,常见的信号有正弦波、方波、三角波等。
2.具体实现:通过改变元器件参数或改变连接方式,可以得到不同形状和频率的周期性信号。
例如,正弦波可以通过RC滤波电路产生;方波可以通过比较器电路和反相放大器电路产生;三角波可以通过积分放大器电路和反相放大器电路产生。
四、实验步骤及结果分析1.正弦波产生电路:(1)将函数信号发生器输出连接至RC滤波电路输入端;(2)调节函数信号发生器输出频率为1000Hz;(3)调节RC滤波电路中的R值和C值,观察示波器上输出的正弦波形状,并记录下所使用的元器件参数;(4)重复以上步骤,改变RC电路中的R和C值,观察输出波形的变化情况。
实验结果:通过调节RC电路中的R和C值,可以得到不同频率和振幅的正弦波。
2.方波产生电路:(1)将函数信号发生器输出连接至比较器电路输入端;(2)设置比较器电路阈值电压为0V;(3)调节函数信号发生器输出频率为1000Hz;(4)观察示波器上输出的方波形状,并记录下所使用的元器件参数;(5)重复以上步骤,改变比较器电路阈值电压和函数信号发生器输出频率,观察输出波形的变化情况。
实验结果:通过调节比较器电路阈值电压和函数信号发生器输出频率,可以得到不同占空比和频率的方波。
3.三角波产生电路:(1)将函数信号发生器输出连接至积分放大器电路输入端;(2)将积分放大器电路输出连接至反相放大器输入端;(3)调节函数信号发生器输出频率为1000Hz;(4)观察示波器上输出的三角波形状,并记录下所使用的元器件参数;(5)重复以上步骤,改变积分放大器电路中的R和C值,观察输出波形的变化情况。
波形发生电路实验报告总结
波形发生电路实验报告总结[object Object]本次实验主要目的是研究和掌握波形发生电路的基本原理和调节方法。
通过实验,我对波形发生电路的工作原理和参数调节有了更深入的了解。
在实验中,我们使用了两种常见的波形发生电路:多谐振荡电路和综合波形电路。
通过对多谐振荡电路的实验,我了解到多谐振荡电路是通过反馈网络产生多个频率的正弦波信号。
我们使用了电容、电感和电阻来构建反馈网络,并通过调节这些元件的数值来控制输出信号的频率和幅值。
实验中,我观察到当调节电容和电感的数值时,输出信号的频率和幅值会产生相应的变化。
这说明了通过调节反馈网络的元件数值可以实现对波形发生电路输出信号的调节。
在综合波形电路的实验中,我了解到综合波形电路可以通过适当的组合和调节,产生各种复杂的波形信号,如方波、三角波和锯齿波等。
我们通过将多个正弦波信号相加,并调节它们的幅值和相位差,可以合成出所需的复杂波形信号。
实验中,我观察到当改变正弦波信号的幅值和相位差时,输出信号的波形会发生相应的变化。
这说明了通过合成和调节多个正弦波信号可以实现对综合波形电路输出信号的调节。
通过本次实验,我不仅学习到了波形发生电路的工作原理和调节方法,还掌握了使用示波器进行波形观测和测量的基本技巧。
在实验中,我通过示波器对实验电路的输入和输出信号进行了观测和测量,并记录了相应的数据。
这对于分析实验结果和验证实验原理起到了重要的作用。
总体而言,本次实验使我对波形发生电路有了更深入的了解。
通过实验,我熟悉了波形发生电路的工作原理和调节方法,并学会了使用示波器进行波形观测和测量。
这对于我今后的学习和研究工作都具有重要的意义。
波形发生电路实验报告
波形发生电路实验报告班级姓名学号一、实验目的1. 掌握由集成运放构成的正弦波振荡电路的原理与设计方法。
2. 学习电压比较器的组成及电压传输特性的测试方法。
3. 掌握由集成运放构成的矩形波和三角波振荡电路的原理与设计方法。
二、实验内容1. 正弦波发生电路(1)实验参考电路见图1。
(2)缓慢调节电位器R W,观察电路输出波形的变化,完成以下测试:①R W为0Ω 时的u O的波形;②调整R W使电路刚好起振,记录u O的幅值、频率及R W的阻值;③调整R W使输出为不失真的正弦波且幅值最大,记录u O幅值、频率及R W的阻值;④将两个二极管断开,观察R W从小到大变化时输出波形的变化情况。
2. 方波- 三角波发生电路(1)实验参考电路见图2。
(2)测试滞回比较电路的电压传输特性将图2 电路的第一级改造为滞回比较电路,在输入端输入合适的测试信号,用示波器X-Y模式观测电压传输特性曲线并记录阈值电压和u O1的幅值。
(3)测量图2电路u O1、u O2波形的幅值、周期及u O1波形的上升和下降时间。
3.矩形波- 锯齿波发生电路修改电路图2,使之成为矩形波- 锯齿波发生电路。
要求锯齿波的逆程(电压下降)时间大约是正程时间的20%,记录u O1、u O2的幅值、周期。
三、实验要求1. 实验课上搭建硬件电路,记录各项测试数据。
2. 完成正弦波电路的实验后在面包板上保留其电路,并使其输出电压U o在1-3V范围内连续可调。
四、预习计算1.正弦波振荡电路起振条件为|A|略大于3,刚起振时幅值较小,认为二极管还未导通,即R4+R WR2+1略大于3,即R W略大于10kΩ时刚好起振,随着R W的增大,振幅会增大,当R W过大时波形会出现失真。
振荡频率由RC串并联选频网络决定,f0=12πR1C1≈106.1Hz2.方波- 三角波发生电路滞回比较器的阈值电压±U T=±R2R1U Z=±2.9V,测试滞回比较电路时将R2与运放A2的输出端断开,改接输入信号(三角波为宜)。
方波-三角波发生电路实验报告
河西学院物理与机电工程学院综合设计实验方波-三角波产生电路实验报告学院:物理与机电工程学院专业:电子信息科学与技术姓名:侯涛日期:2016年 4月 26日方波-三角波发生电路要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波的波形发生器。
指标:输出频率分别为:102HZ、103HZ和104Hz;方波的输出电压峰峰值VPP≥20V一、方案的提出方案一:1、由文氏桥振荡产生一个正弦波信号。
2、把文氏桥产生的正弦波通过一个过零比较器从而把正弦波转换成方波。
3、把方波信号通过一个积分器。
转换成三角波。
方案二:1、由滞回比较器和积分器构成方波三角波产生电路。
2、然后通过低通滤波把三角波转换成正弦波信号。
方案三:1、由比较器和积分器构成方波三角波产生电路。
2、用折线法把三角波转换成正弦波。
二、方案的比较与确定方案一:文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。
当R1=R2、C1=C2。
即f=f0时,F=1/3、Au=3。
然而,起振条件为Au略大于3。
实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。
如果R4/R3大于2时,正弦波信号顶部失真。
调试困难。
RC串、并联选频电路的幅频特性不对称,且选择性较差。
因此放弃方案一。
方案二:把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。
比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。
通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化范围很小的情况下使用。
然而,指标要求输出频率分别为102HZ、103HZ和104Hz 。
因此不满足使用低通滤波的条件。
放弃方案二。
方案三:方波、三角波发生器原理如同方案二。
比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大即零附近的差别最小,峰值附近差别最大。
波形产生电路实验报告
波形产生电路实验报告波形产生电路实验报告引言:波形产生电路是电子工程领域中的重要实验之一,它可以产生不同形式的电信号,用于各种电子设备和系统的测试和调试。
本实验旨在通过搭建和调试波形产生电路,了解其工作原理和应用。
实验目的:1. 理解波形产生电路的基本原理和工作方式。
2. 学会使用电子元器件搭建波形产生电路。
3. 掌握波形产生电路的调试方法和技巧。
实验器材:1. 功率放大器电路板2. 信号发生器3. 示波器4. 电阻、电容、电感等基本电子元器件实验步骤:1. 将信号发生器的输出端连接到功率放大器电路板的输入端。
2. 根据实验要求选择合适的电阻、电容和电感,并将其连接到电路板上。
3. 将示波器的探头连接到电路板的输出端。
4. 打开信号发生器和示波器,设置合适的频率和幅度。
5. 通过调整电阻、电容和电感的数值,观察并记录波形的变化。
6. 根据实验结果分析波形产生电路的特点和性能。
实验结果与分析:在实验过程中,我们通过调整电阻、电容和电感的数值,成功产生了不同形式的电信号。
当电容和电感的数值较小时,输出信号呈现出较为平缓的正弦波形。
随着电容和电感数值的增大,输出信号的频率也相应增加,呈现出更加复杂的波形,如方波、三角波等。
此外,通过调整信号发生器的频率和幅度,我们还可以实现信号的调制和变换。
在实验过程中,我们还观察到了一些现象和问题。
例如,当电容或电感的数值过大时,输出信号可能会失真或产生幅度不稳定的情况。
此时,我们可以通过适当调整电路参数或增加补偿电路来解决问题。
同时,我们还发现在实验中,电子元器件的质量和连接方式对波形产生电路的性能有着重要影响,因此在实际应用中需要选择合适的元器件和搭建方式。
实验总结:通过本次实验,我们深入了解了波形产生电路的原理和应用。
通过调试和观察波形的变化,我们掌握了波形产生电路的调试方法和技巧。
同时,我们也意识到了电子元器件的选择和搭建方式对电路性能的影响,这对于我们今后的电子工程实践具有重要意义。
波形发生电路实验报告
波形发生电路实验报告波形发生电路实验报告摘要:本实验旨在研究和分析波形发生电路的工作原理和性能特点。
通过实验测量和观察,我们对波形发生电路的输出波形、频率范围、失真程度等进行了详细的分析和评估。
实验结果表明,波形发生电路在一定条件下能够产生稳定且准确的波形输出,具有广泛的应用前景。
引言:波形发生电路是电子技术领域中常用的一种电路,它能够产生各种不同形状的波形信号,如正弦波、方波、三角波等。
波形发生电路在通信、音频处理、测试测量等领域都有广泛的应用。
本实验旨在通过实际操作和测量,深入了解波形发生电路的工作原理和性能特点。
实验步骤:1. 准备实验所需的电路元件和仪器设备,包括电源、信号发生器、示波器等。
2. 搭建波形发生电路,根据实验要求选择合适的电路拓扑结构和元器件数值。
3. 连接电路并接通电源,调节信号发生器的频率和幅度,观察并记录示波器上的波形输出。
实验结果与分析:通过实验观察和测量,我们得到了不同频率下的波形输出结果。
首先,我们观察到在正弦波发生电路中,输出的波形基本上是一个周期性的正弦曲线。
随着频率的增加,波形的周期变短,频率越高。
接下来,我们研究了方波发生电路。
方波波形具有快速上升和下降的边沿,以及相对较长的高电平和低电平时间。
通过调节电路参数,我们可以改变方波的占空比,即高电平和低电平时间的比例。
除了正弦波和方波,我们还研究了三角波发生电路。
三角波的波形呈线性变化,具有快速上升和下降的边沿。
通过调节电路参数,我们可以改变三角波的上升和下降时间,从而改变波形的斜率。
通过对不同类型波形发生电路的实验观察和测量,我们发现波形发生电路在一定条件下能够产生稳定且准确的波形输出。
然而,在实际应用中,波形发生电路可能会受到电源噪声、元器件非线性等因素的影响,导致输出波形出现失真。
因此,在设计和应用波形发生电路时,需要考虑这些因素并采取相应的措施进行补偿和校正。
结论:本实验通过实际操作和测量,深入研究了波形发生电路的工作原理和性能特点。
DAC0832波形发生器课程设计实验报告
DAC0832波形发生器课程设计实验报告目录第1章系统设计方案 (2)1.1 设计思路 (2)1.2 方案比较与选择 (2)第2章系统硬件设计..................................................................................2. 2.1 主控制器电路 (2)2.2 数模转换电路 (3)第3章系统软件设计................................................................................ .6 3.1 系统整体流程...................................................................................... .6 3.2 数模转换程序...................................................................................... .6 第4章系统调试 (8)4.1 proteus的调试 (8)第5章结论与总结 (11)5.1 结论 (11)(系统总体设计与完成做一个总结,是客观的,主要包括:设计思路,设计过程,测试结果及完善改进的方向。
)5.2 总结 (11)(这是一个主观的总结,谈谈自己收获和不足等方面的内容。
)第1章系统设计方案1.1 设计思路(一)、课设需要各个波形的基本输出。
如输出矩形波、锯齿波,正弦波。
这些波形的实现的具体步骤:正弦波的实现是非常麻烦的。
它的实现过程是通过定义一些数据,然后执行时直接输出定义的数据就可以了。
然而为了实现100HZ的频率,终于发现,将总时间除了总步数,根据每步执行时间,算出延时时间,最终达到要求,然后建一个表通过查表来进行输出,这样主要工作任务就落到了建表的过程中。
模拟电子技术实验-波形发生电路
实验: 波形发生电路一、 实验目的1.掌握RC 桥式正弦波振荡电路的原理与设计方法;2.加深理解矩形波和方波-三角波发生电路的工作原理与设计方法;3.了解运放转换速率对振荡波形跳变沿的影响。
二、实验仪器名称及型号KeySight E36313A 型直流稳压电源,KeySight DSOX3014T 型示波器/信号源一体机。
模块化实验装置。
本实验将使用三种集成运放:µA741、LM324和TL084,它们的引脚如图1所示,LM324和TL084的引脚排列完全相同。
87654321µA741+Vcc -VccOUT OA2NC 141312114321LM324(TL084)1098765V-4OUT 4IN-4IN+3OUT3IN-3IN+图1 741A 、LM324和TL084的引脚图三、实验内容1.RC 桥式正弦波振荡电路(SPOC 实验)(1)设计RC 桥式正弦波振荡电路,要求振荡频率为1.6kHz ,输出波形稳定并且无失真。
其中集成运放可采用µA741、LM324或TL084,简要写出设计过程,绘制或截取电路原理图。
电阻R1.R2与电容C1、C2构成串并联选频网络,电阻R3、R4、RP 构成负反馈网络,VD1和VD2用于限幅作用稳定波形,当R1=R2=R,C1=C2=C 时,串并联选频网络的相频特性和幅频特性分别为,相频特性为,,根据,题目要求f=1.6kHz,取参数R1=R2=10kΩ,C1=C2=0.01μF,R3=R4=5.1kΩ,R p=10kΩ。
(2)学习SPOC实验操作视频,将示波器的两个通道分别接在u o端和u f端,缓慢调节电位器R W,使电路产生正弦振荡,在确保两个通道的正弦波不失真的前提下将输出幅度调得尽量大些,记录输出u o的峰-峰值U opp和输入u f的峰-峰值U fpp。
U opp= 18.1V ;U opp= 6.1V ;(3)正反馈系数F u的测定。
电子电路实验四 实验报告
实验四波形发生电路实验报告一、理论计算1.正弦振荡电路实验电路如图1所示,电源电压为±12V。
分析图1电路的工作原理,根据图中的元件参数,计算符合振荡条件的Rw值以及振荡频率f0。
该正弦振荡电路采用RC串并联选频网络,选频网络的示意图如下:当输入信号的频率足够低时,,超前,且当频率趋近于零时,相位超前趋近于+90°;当输入信号的频率足够高时,,滞后,且当频率趋近于无穷大时,相位滞后趋近于-90°。
因此,当信号频率从零逐渐变化到无穷大时,的相位将从+90°逐渐变化到-90°,故必定存在一个频率f0,当f= f0时,与同相。
RC串并联选频网络的反馈系数整理可得令,则代入上式,得出当f=f0时,,由正弦振荡电路的起振条件知,。
对于图1的正弦振荡电路,有将R3、R4代入上式,令之大于3,得Rw>10kΩ。
将R1=R2=16kΩ、C1=C2=0.01μF代入f0式,得f0=994.7Hz。
2.多谐振荡电路实验电路如图2所示。
深入分析图2所示电路的工作原理,画出Vo1、Vo2的波形,推导Vo1、Vo2波形的周期(频率)和幅度的计算公式。
再按图2中给出的元件参数计算Vo1、Vo2波形的周期(频率)、幅度,以备与实验实测值进行比较。
该电路为三角波发生电路,原理图如下:虚线左边为滞回电路,故Vo1为方波。
根据叠加原理,集成运放A1同相输入端的电位令,则阈值电压对于虚线右边的积分电路,其输入电压不是+U Z,就是-U Z,故积分电路的输出电压的波形为三角波。
设输出电压的初始值为-U T,终了值为+U T,则可解得T为矩形波、三角波共同的周期。
矩形波的幅度的理论值即为UZ,等于6V;将实验电路图中的各个参数代入各式,得UT=0.5*6=3V,故三角波的幅度理论值为3V,矩形波、三角波的周期 。
3.锯齿波发生电路锯齿波发生电路的原理图见仿真实验电路图。
设二极管导通时的等效电阻可忽略不计,当u o1=+U Z时,D3导通,D4截止,输出电压的表达式为uo随时间线性下降。
模拟电路实验报告——波形发生器
模拟电路实验报告RC波形发生器电路一.实验设计1.首先需要一个可以产生方波、矩形波、锯齿波、三角波四种波形的电路,分析后可以得知mooc中给出的锯齿波电路(右图)便可以产生这四种波形。
2.根据公式T=2(R PN+R)R/R,可知欲改变信号的频率,可以得到三412种改变信号频率的方法。
{1>①在AB两点间串联一个滑动变阻器②在CD两点间串联一个滑动变阻器③在B点添加一个滑动变阻器改变分压2>①由公式η=(R PP+R)/(R PN+R)可知若在AB两点间添加滑动变阻44器,则会在改变信号的频率的同时改变信号的占空比,所以不可以在AB两点间串联一个滑动变阻器。
②由公式V OM=(R*V)/R可知若在CD两点间添加一个滑动变阻器,1Z2则会在改变信号的频率的同时改变信号的幅值。
所以也不可以在CD 两点间串联一个滑动变阻器。
③所以只有在B点添加一个滑动变阻器改变分压以此来改变信号的频率是可行的,由此改动电路如下。
3>为保证分压只与滑动变阻器有关,故在在R7后连接一个电压跟随器,并将R和R减小以提高信号的频率,最终电路图如下。
84O二.实验步骤1 2 3 >严格按照最终电路连接好。
>示波器 A 通道两端接在 A 点与地,B 通道两端接在 O 点与地。
>分别将 R 和 R 调整到 0%与 100%,记录下四组照片,这便是锯79齿波与矩形波的图像。
>将 R 和 R 调整到 50%,记录下这组照片,这便是三角波与方波 的图像。
三.理论分析 4 7 9 1 . 理论分析>锯齿波与矩形波(占空比最低):由公式η=(R PP +R 调整到 0%时(既 R PP =0Ω时),占空比最低。
当 R 调整到 0%时,分的电压最小,此时信号的周期最小, 频率最高。
当 R 调整到 100%时,分的电压最大,此时信号的周期最大, 频率最低。
>锯齿波与矩形波(占空比最高):由公式η=(R PP +R 调整到 100%时(既 R PN =0Ω时),占空比最高。
波形发生电路实验报告
姓名: 学号:班级:实验十波形发生电路实验目的1.掌握波形发生电路的结构特点和分析、计算、测试方法2.熟悉波形发生器的设计方法实验仪器双踪示波器数字万用表交流毫伏表直流电源预习要求1.分析下图中电路的工作原理,并根据电路参数画出输出Uo和Uc的波形。
2.图5-10-2电路如何使输出波形占空比变大?画出电路原理图。
实验原理非正弦波产生电路,一般由电子开关(电压比较器),外加反馈网络构成闭环电路形成。
常用的波形发生电路有方波、三角波、锯齿波发生器等。
1.方波发生器电路如图所示,集成运放和电阻R2、R3、R4构成滞回电压比较器,作为电子开关使用,R1、C相串联作为具有延迟作用的反馈网络,整个电路是一个闭环电路。
设电路刚加电时,Uc=0,且滞回比较器的输出电压为Uz,则集成运放同相输入端此时的电位为U﹢=R2*Uz/(R2+R3)同时Uz通过R1向C充电,Uc由零逐渐上升,当Uc﹥U+时,Uo从Uz跳变为-Uz,则U+=-R2*Uz/(R2+R3)同时,电容C通过R1放电,使Uc逐渐下降,小于U+时,Uo又跳变为Uz,回到初始状态,如此周而复始,产生振荡,输出方波。
该方波发生器输出的方波振荡周期 T=2R1*C*㏑(1+2R2/R3)2.占空比可调的矩形波发生电路通常将矩形波高电平的时间与周期时间之比称为占空比。
方波的占空比为50%。
如果需要产生占空比小于或大于50%的矩形波,则应设法使方波发生电路中电容的充电时间常数与放电时间常数不相等。
下图电路中利用二极管的单向导电性可以构成占空比可调的矩形波发生电路。
该电路发生的矩形波振荡周期 T=(Rw +2R1)C㏑(1+2R2/R3)占空比T1/T=(R′w+R1)/( Rw+2R1)调节电位器Rw可使输出矩形波的占空比变化。
3.三角波发生电路上述方波发生器中Uc的波形近似三角形,但其线性度比较差。
下图电路可以产生线性度比较高的三角波,它包含两部分电路,前一部分为滞回电压比较器,后一部分为积分电路。
波形产生电路实验报告
波形产生电路实验报告1. 背景波形产生电路是电子工程中的一种基础电路,用于产生各种形状和频率的电信号。
在实际应用中,波形产生电路常被用于信号发生器、音频设备、通信系统等。
本实验旨在通过设计和搭建一个简单的波形产生电路,掌握波形产生电路的基本原理和操作方法,并通过实验验证其性能。
2. 设计与分析2.1 电路结构本实验采用了经典的RC低通滤波器作为波形产生电路的核心部分。
该滤波器由一个电阻R和一个电容C组成,输入信号通过该滤波器后,输出信号将会被滤除高频成分,从而得到所需的波形。
2.2 参数选择为了得到稳定且正弦波形的输出信号,我们需要合理选择RC值。
根据经验公式:f c=1 2πRC其中f c表示截止频率。
我们可以根据需要选择截止频率来确定RC值。
一般情况下,我们可以选择f c为所需信号频率的十分之一。
2.3 电路实现根据以上分析,我们可以设计出以下波形产生电路:其中,R1和C1为滤波器的参数,Vin为输入信号源。
3. 实验步骤3.1 实验材料•电阻R1•电容C1•示波器•函数发生器•连接线等3.2 实验步骤1.按照电路图连接上述元件。
2.将函数发生器的输出连接到滤波器的输入端。
3.打开函数发生器和示波器,并调整函数发生器的频率和幅度。
4.观察示波器上输出信号的波形,并记录相关数据。
4. 实验结果与分析根据实验步骤得到的数据,我们可以绘制出输入信号和输出信号的波形图,并进行分析。
以下是实验结果:输入频率(Hz)输出幅度(V)1000 52000 45000 2通过观察实验结果,可以看出输出信号的幅度随着输入频率的增加而减小。
这是因为滤波器对高频成分进行了滤除,使得输出信号的幅度降低。
5. 实验建议在进行本实验时,我们可以尝试调整电阻和电容的取值,观察它们对输出信号的影响。
此外,我们还可以尝试使用不同形状的输入信号,并比较它们在滤波器中的表现。
为了得到更准确的实验结果,我们还可以提高示波器的采样率,并使用更精确的测量工具来测量电阻和电容的值。
产生波形电路实验报告
一、实验目的1. 掌握产生波形电路的基本原理和设计方法。
2. 学习使用电子仪器测量波形参数。
3. 分析不同波形电路的特性及其在实际应用中的意义。
二、实验原理产生波形电路是指利用电子元件和电路设计方法,产生不同波形(如正弦波、方波、三角波等)的电路。
常见的波形产生电路包括:1. 正弦波振荡电路:利用RC或LC振荡电路产生正弦波信号。
2. 方波振荡电路:利用555定时器、施密特触发器等产生方波信号。
3. 三角波振荡电路:利用积分电路和微分电路产生三角波信号。
三、实验仪器与设备1. 信号发生器2. 示波器3. 万用表4. 集成运算放大器5. 电阻、电容、电感等电子元件6. 连接导线四、实验内容及步骤1. 正弦波振荡电路实验(1)搭建RC振荡电路,利用电阻和电容产生正弦波信号。
(2)使用示波器观察输出波形,调整电路参数使波形稳定。
(3)测量输出波形的频率、幅值等参数。
2. 方波振荡电路实验(1)搭建555定时器振荡电路,产生方波信号。
(2)使用示波器观察输出波形,调整电路参数使波形稳定。
(3)测量输出波形的频率、幅值等参数。
3. 三角波振荡电路实验(1)搭建积分电路,利用电容和电阻产生三角波信号。
(2)使用示波器观察输出波形,调整电路参数使波形稳定。
(3)测量输出波形的频率、幅值等参数。
五、实验结果与分析1. 正弦波振荡电路通过实验,成功搭建了RC振荡电路,并观察到了稳定的正弦波信号。
根据实验数据,计算了振荡电路的频率、幅值等参数,并与理论值进行了比较。
2. 方波振荡电路通过实验,成功搭建了555定时器振荡电路,并观察到了稳定的方波信号。
根据实验数据,计算了振荡电路的频率、幅值等参数,并与理论值进行了比较。
3. 三角波振荡电路通过实验,成功搭建了积分电路,并观察到了稳定的三角波信号。
根据实验数据,计算了振荡电路的频率、幅值等参数,并与理论值进行了比较。
六、实验总结1. 通过本次实验,掌握了产生波形电路的基本原理和设计方法。
波形发生器实验报告
波形发生器实验报告波形发生器实验报告第一部分设计内容一、任务利用运算放大器设计并制作一台信号发生器,能产生正弦波、方波、三角波、锯齿波等信号,其系统框图如图所示。
二、建议1不采用单片机,同时实现以下功能:(1)至少能产生正弦波、方波、三角波、锯齿波四种周期性波形;在示波器上可以清晰地看清楚每种波形。
20分(2)输入信号的频率可以通过按钮调节;(范围越大越不好)20分后(3)输出信号的幅度可通过按钮调节;(范围越大越好)20分(4)输入信号波形并无显著杂讯;10分后(5)稳压电源自制。
10分(6)其他2种拓展功能。
20分后信号发生器系统框图第二部分方案比较与论证方案一、以555芯片为核心,分别产生方波,三角波,锯齿波,正弦波电路布局例如图1右图图1此方案较直观,但是产生的频率比较小最后输入正弦波时,信号受到阻碍小。
方案二‘由直观的分立元件产生,可以利用晶体管、lc震荡电路,积分电路的同时实现方波三角波,正弦波的产生。
此方案原理简单但是调试复杂,受干扰也严重。
方案三、使用内置图夫尔如(lm324)构建rc文氏正弦振荡器产生正弦波,正弦波的频率,幅度均调节器,再将产生的正弦波经过过零比较器,同时实现方波的输入,再由方波至三角波和锯齿波。
此方案电路简单,在集成运放的作用下,可以较容易的测到所需的波形。
通过调整参数可以得到较完美的波形。
实际设计过程使用方案三,基本原理例如图2右图基本设计原理框图(图2)第三部分:电路原理及电路设计电路的构成:1、正弦波采用rc桥式振荡器(如图3), rc 串并联网络是正反馈网络,rf 和r1为负反馈网络。
为满足用户震荡的幅度条件||=1,所以af≥3。
加入rf、r1支路,构成串联电压负反馈。
当电路达至平衡平衡状态时:由以上原理可设计出产生正弦波的电路图:图4其中r4为小电阻,只要满足r4+r5略大于2r1使||>1,电路便Eymet奋,随着输入的减小a自动降至||=1,使得输出稳定在某一值。
波形发生器设计实验报告
波形发生器设计实验报告一、实验目的(1)熟悉555型集成时基电路结构、工作原理及其特点。
(2)掌握555型集成时基电路的基本应用。
(3)掌握由555集成型时基电路组成的占空比可调的方波信号发生器。
二、实验基本原理555电路的工作原理555集成电路开始是作定时器应用的,所以叫做555定时器或555时基电路。
但后来经过开发,它除了作定时延时控制外,还可用于调光、调温、调压、调速等多种控制及计量检测。
此外,还可以组成脉冲振荡、单稳、双稳和脉冲调制电路,用于交流信号源、电源变换、频率变换、脉冲调制等。
由于它工作可靠、使用方便、价格低廉,目前被广泛用于各种电子产品中,555集成电路内部有几十个元器件,有分压器、比较器、基本R-S触发器、放电管以及缓冲器等,电路比较复杂,是模拟电路和数字电路的混合体。
555芯片管脚介绍555集成电路是8脚封装,双列直插型,如图2(A)所示,按输入输出的排列可看成如图2(B)所示。
其中6脚称阈值端(TH),是上比较器的输入;2脚称触发端(TR),是下比较器的输入;3脚是输出端(Vo),它有O和1两种状态,由输入端所加的电平决定;7脚是放电端(DIS),它是内部放电管的输出,有悬空和接地两种状态,也是由输入端的状态决定;4脚是复位端(MR),加上低电平时可使输出为低电平;5脚是控制电压端(Vc),可用它改变上下触发电平值;8脚是电源端,1脚是地端。
用555定时器组成的多谐振荡器如图所示。
接通电源后,电容C2被充电,当电容C2上端电压Vc升到2Vcc/3时使555第3脚V0为低电平,同时555内放电三极管T导通,此时电容C2通过R1放电,Vc下降。
当Vc下降到Vcc/3时,V0翻转为高电平。
电容器C2放电所需的时间为t,R1,C,ln2pL2 ( 1-1)当放电结束时,T截止,Vcc将通过R1,R2,R3向电容器C2充电,Vc由Vcc/3 上升到2Vcc/3所需的时间为t,(R1,R2,R3)Cln2,0.7(R1,R2,R3)CpH22 (1-2)当Vc上升到2Vcc/3时,电路又翻转为低电平。
ADC0832模拟波形发生器实验报告
控制基础实验——模拟波形发生器成绩________课程名称:__ ___________学院(系):专业:班级:学号:学生姓名:分工任务:一、实验题目1、设计一个波形发生器,使能输出锯齿波、三角波、正弦波等。
2、在proteus仿真软件中连接单片机系统硬件图,在keil c51软件中编写并调试应用程序,使能在proteus中运行并达到预期效果。
二、实验目的1、学会DAC0832芯片的基本知识,并掌握使用方法。
2、掌握单片机最小系统的基本知识,能设计并完成一些简单应用。
3、掌握Proteus及Keil软件在51系列单片机中的使用及调试。
4、会根据实际功能,正确选择单片机功能接线,编制正确程序。
对实验结果能做出分析和解释,能写出符合规格的实验报告。
三、实验工具软件:Proteus单片机仿真软件、keil51,PC机。
四、实验内容掌握DAC0832芯片的使用方法,在Proteus仿真软件中连接好电路图,在Keil中编写程序,使得能够输出较规范的锯齿波、三角波、正弦波。
五、实验原理1、单片机工作原理:单片机是指一个集成在一块芯片上的完整计算机系统。
通过编程控制单片机的I/O端口、中断、定时器、寄存器等部件可以完成很多应用。
2、DAC0832的工作原理:DAC0832是8分辨率的D/A转换集成芯片,由8位输入锁存器、8位DAC寄存器、8位D/A转换电路及转换控制电路构成。
3、DAC0832引脚功能说明:DI0~DI7:数据输入线,TLL电平。
ILE:数据锁存允许控制信号输入线,高电平有效。
CS:片选信号输入线,低电平有效。
WR1:为输入寄存器的写选通信号。
XFER:数据传送控制信号输入线,低电平有效。
WR2:为DAC寄存器写选通输入线。
Iout1:电流输出线。
当输入全为1时Iout1最大。
Iout2: 电流输出线。
其值与Iout1之和为一常数。
Rfb:反馈信号输入线,芯片内部有反馈电阻.Vcc:电源输入线(+5v~+15v)Vref:基准电压输入线(-10v~+10v)AGND:模拟地,摸拟信号和基准电源的参考地.DGND:数字地,两种地线在基准电源处共地比较好.4、输出形式式:单极性(本实验需要)、双极性。
电子模拟波形发生器设计研究实验报告
电子模拟波形发生器设计研究实验报告摘要波形发生器是用来产生一种或多种特定波形的装置,这些波形通常有正弦波、方波、三角波、锯齿波,等等。
以前,人们常用模拟电路来产生这种波形,其缺点是电路结构复杂,所产生的波形种类有限。
随着单片机技术的发展,采用单片机电路产生各种波形的方法已变的越来越普遍。
虽然,可能产生的波形会呈微小的阶梯状,但是,只要设计得当,这一问题可以得到一定的解决。
本设计使用的是555_virtual构成的发生器,可产生三角波、方波、正弦波等多种特殊波形和任意波形,波形的频率可用程序控制改变本设计制作的波形发生器,可以输出多种标准波形,如方波、正弦波、三角波、锯齿波等。
1设计的目的及任务1.1课程设计的目的1.1.1利用所学微机的理论知识进行软硬件整体设计,锻炼学生理论联系实际、提高我们的综合应用能力。
1.1.2本次课程设计是以微机为基础,设计并开发能输出多种波形(正弦波、三角波、锯齿波、方波、梯形波等)且频率、幅度可变的函数发生器。
1.1.3掌握各个接口芯片的功能特性及接口方法,并能运用其实现一个简单的微机应用系统功能器件。
1.1.4在平时的学习中,我们所学的知识大都是课本上的,在机房的练习大家也都是分散的对各个章节的内容进行练习。
因此,缺乏一种系统的设计锻炼。
在课程所学结束以后,这样的课程设计十分有助于学生的知识系统的总结到一起。
1.1.5通过这几个波形进行组合形成了一个函数发生器,使得我对系统的整个框架的设计有了一个很好的锻炼。
这不仅有助于大家找到自己感兴趣的题目,更可以锻炼大家微机知识的应用。
1.2设计任务和要求1.2.1设计要求:设计并仿真能产生方波、三角波及正弦波等多种波形信号输出的波形发生器。
输出波形频率范围为0.02HZ~20HZ且可连续调。
各种波形幅值均连续可调。
设计电路所需的直流电源。
写出设计报告1.2.2方案论证,确定总体电路原理方框图及原理图。
1.2.3单元电路设计,元器件选择。
DAC0832波形发生器课程设计实验报告1
微机原理与接口技术课程设计报告书题目:DAC0832 波形发生器学院名称:湖南科技大学潇湘学院班级:电子信息工程001班指导老师:欧青立陈君宋芳学号: 0954030110姓名:赵翔目录一、引言 (1)二、设计目的 (2)三、原理说明 (2)四、硬件设计 (4)五、设计原理 (6)六、程序编译 (7)1、输出方波子程序 (7)2、输出三角波子程序 (8)3、输出锯齿波子程序 (8)4、输出正弦波子程序 (9)5、输出梯形波的子程序 (10)6、主程序 (11)七、调试方法与结果 (15)八、心得体会 (16)一.引言波形发生器是一种常用的信号源,广泛的应用于电子电路、自动控制系统和教学实验等领域,是现代测试领域内应用最为广泛的通用仪器之一。
在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都需要有信号源。
由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察。
测量被测仪器的输出响应,以分析确定它们的性能参数。
信号发生器是电子测量领域中最基本、应用最为广泛的一类电子仪器。
它可以产生多种波形信号,如锯齿波、三角波、梯形波等,因而广泛应用于通信、雷达、导航、宇航等领域。
本次课程设计使用的AT89C51单片机构成的发生器可产生三角波,波形的周期可用程序改变,并可根据需要选择单极性输出或双极性输出,具有线路简单、结构紧凑、性能优越等特点。
此设计给出了源代码,通过仿真测试,其性能指标达到了设计要求。
二、设计目的1、掌握DAC0832与PC机的接口方法。
2、掌握D/A转换应用程序设计方法。
三、原理说明◆知识简介:DAC0832当今世界在以电子信是8位分辨率的D/A转换集成芯片,与微处理器完全兼容,这个系列的芯片以其价格低廉、接口简单、转换控制容易等优点,在单片机应用系统中得到了广泛的应用。
这类D/A转换器由8位输入锁存器,8位DAC寄存器,8位DA转换电路及转换控制电路构成。
◆原理框图:◆硬件设计1、DAC0832的引脚及功能:DAC0832是8分辨率的D/A转换集成芯片。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
课程名称:电路与模拟电子技术实验 指导老师: 张冶沁 成绩: 实验名称:波形发生器电路分析与设计 实验类型: 电路实验 同组学生姓名: A.RC 桥式正弦振荡电路设计 1.正弦波振荡电路的起振条件。
2.正弦波振荡电路稳幅环节的作用以及稳幅环节参数变化对输出 波形的影响。
3.选频电路参数变化对输出波形频率的影响。
4.学习正弦振荡电路的仿真分析与调试方法。
B.用集成运放构成的方波、三角波发生电路设计 1.掌握方波和三角波发生电路的设计方法。
2.主要性能指标的测试。
3.学习方波和三角波的仿真与调试方法。
示波器、万用表 模电实验箱
1. RC 桥式正弦波振荡电路,起振时应满足的条件是: 闭环放大倍数大于3,即R f >2R 1,引入正反馈 RC 桥式正弦波振荡电路,稳定振荡时应
满足的条件是: 电路中有非线性元件起自动稳幅的作用
3.RC 桥式正弦波振荡电路的振荡频率:
=0f 1/(2πRC)
4.RC 桥式正弦波振荡电路里C 的大小:
=C 0.01uF
5.RC 桥式正弦波振荡电路R1的大小: R1= 15k Ω 6.RC 桥式正弦波振荡电路R2的大小: R2= 21.5k Ω 7.RC 桥式正弦波振荡电路是通过哪几个元器件来实现稳幅作用的? 答:配对选用硅二极管 ,使两只二极管的特性相同,上下对称,根据振荡幅度的变化,采用非线性元件来自动改变放大电路中负反馈的强弱,以实现稳幅目的
8.波形发生器电路里A1的输出会不会随电源电压的变化而变化? 答:A1输出不会改变,电源电压的变化通过选频网络调节,不影响放大和稳幅环节 专业: 姓名:
学号: 日期:
地点:
8.波形发生器电路里01v 的输出主要由谁决定,当电源电压发生变化时,它会发生变化吗?
答:由两只二极管决定,电源电压变化时,V o1不会变化 9.波形发生器电路里,R 和C 的参数大
小会不会影响0v 的输出波形? 答:会影响,而且v o 的频率和幅值都由RC 决定,因为R 和C 的回路构成选频网络
四、实验步骤:
A .RC 桥式正弦波振荡电路:
原理图:
1.
PSpice 仿真波形:
示波器测量的波形:
T=616us ,=pp v 1.88V ,=RMS v 667mV
根据实际波形,比较实际数据和理论数据之间的差异:
理论周期为650us ,略大于试验数据,但非常接近,由于实际电阻和二极管的线性或非线性特性与理想状态有所不同,在误差允许范围内认为符合要求
v从无到有,从正弦波直2.改变R2的参数(减小或增大R2),使输出
至削顶,分析出现这三种情况的原因和条件。
答:原因是电路要维持稳定的振幅需要一定的起振条件,理论计算得R2临界值约22kΩ,小于这个值无法稳幅,大于这个值幅值会不断增大,超出运放的最大输出电压后就会出现失真
实测当运放输出幅值接近13.5V时开始失真,最少要有1.54V输出幅值才能稳定
3.实验中若二极管D1和D2开路,输出波形有何变化?
答:D1和D2起到稳幅作用,缺一不可。
D1或D2其中之一开路,Vo变为RMS 3.14V,Vo1变为RMS1.05V
D1和D2同时开路,输出波形失真,Vo变为28.4V峰峰值,Vo1变为10.4V 峰峰值
4.实验中若R3开路,则输出波形有何变化?
答:输出波形发生畸变,Vo变为6.8V峰峰值,Vo1变为2.4V峰峰值,表
明R f减小,负反馈减弱了
B.方波和三角波发生电路设计:
原理图:
1.PSpice仿真波形:
示波器测量的波形:
三角波 T=1.138ms ,=pp v 14V ,=RMS v 6.46V 方波 T=1.138ms ,=pp v 24.8V ,=RMS v 7.79V
根据实际波形,比较实际数据和理论数据之间的差异: 答:实验中找不到3.3k Ω的电阻,不便与理论或仿真比较
2.分析实验中所遇到的现象。
增大R 0,方波发生畸变,三角波线性不好
实验内并未强调稳幅原理,我认为有必要了解。
为达到稳幅的目的, 通常采用两只反向并接的二极管和电阻R1并联,它们在输出电压的正负半周内分别导通。
在起振之初,由于输出电压幅度很小,不足以使二极管反向击穿。
利用二极管的非线性特性,使振荡电路能根据振荡幅度的变化,自动地改变基本放大器的负反馈的强弱,实现稳幅目的振荡过程中,两只二极管交替导通和截止,若外界因素使振幅增大, 二极管的正向导通电阻RD 减小,使RF 变小, 负反馈系数自动变大,反馈作用加强,从而稳定振幅。
六、实验心得体会:
通过本次实验我理解了信号发生电路的原理,以及振荡电路中电容、电阻的参数选择方式,而且振荡电路的起振有一个过程,在仿真的时候若设置不当就会错失波形,需要额外注意。