2018年浙江省初高中数学衔接教材

合集下载

2018年初高中数学衔接教学材料(已整理)

2018年初高中数学衔接教学材料(已整理)

WORD格式.整理版2017初高中数学衔接教材现有初高中数学教材存在以下“脱节”:1、绝对值型方程和不等式,初中没有讲,高中没有专门的内容却在使用;2、立方和与差的公式在初中已经删去不讲,而高中还在使用;3、因式分解中,初中主要是限于二次项系数为1的二次三项式的分解,对系数不为1的涉及不多,而且对三次或高次多项式的分解几乎不作要求;高中教材中许多化简求值都要用到它,如解方程、不等式等;4、二次根式中对分子、分母有理化初中不作要求,而分子、分母有理化是高中数学中函数、不等式常用的解题技巧;5初中教材对二次函数的要求较低,学生处于了解水平。

而高中则是贯穿整个数学教材的始终的重要内容;配方、作简图、求值域(取值范围)、解二次不等式、判断单调区间、求最大最小值、研究闭区间上的函数最值等等是高中数学所必须掌握的基本题型和常用方法;6、二次函数、二次不等式与二次方程之间的联系,根与系数的关系(韦达定理)初中不作要求,此类题目仅限于简单的常规运算,和难度不大的应用题,而在高中数学中,它们的相互转化屡屡频繁,且教材没有专门讲授,因此也脱节;7、图像的对称、平移变换初中只作简单介绍,而在高中讲授函数时,则作为必备的基本知识要领;8、含有参数的函数、方程、不等式初中只是定量介绍了解,高中则作为重点,并无专题内容在教材中出现,是高考必须考的综合题型之一;9、几何中很多概念(如三角形的五心:重心、内心、外心、垂心、旁心)和定理(平行线等分线段定理、平行线分线段成比例定理、射影定理、相交弦定理)初中早就已经删除,大都没有去学习;10、圆中四点共圆的性质和判定初中没有学习。

高中则在使用。

另外,象配方法、换元法、待定系数法、双十字相乘法分解因式等等等等初中大大淡化,甚至老师根本没有去延伸发掘,不利于高中数学的学习。

新的课程改革,难免会导致很多知识的脱节和漏洞。

本书当然也没有详尽列举出来。

我们会不断的研究新课程及其体系。

将不遗余力地找到新的初高中数学教材体系中存在的不足,加以补充和完善。

2018高中数学初高中衔接读本专题2.2根与系数的关系韦达定理高效演练学案_1103

2018高中数学初高中衔接读本专题2.2根与系数的关系韦达定理高效演练学案_1103

第2讲 根与系数的关系(韦达定理)现行初中数学教材主要要求学生掌握一元二次方程的概念、解法及应用,而一元二次方程的根的判断式及根与系数的关系,在高中教材中的二次函数、不等式及解析几何等章节有着重要应用、本专题将对一元二次方程根的判别式、根与系数的关系等进行讲述。

【知识梳理】一元二次方程的根与系数的关系(韦达定理)一元二次方程20 (0)ax bx c a ++=≠的两个根为:x x ==所以:1222b b b x x a a a-+--+=+=-,221222()422(2)4b b b ac cx x a a a a a-+----⋅=⋅=== 定理:如果一元二次方程20 (0)ax bx c a ++=≠的两个根为12,x x ,那么:1212,b cx x x x a a+=-=说明:一元二次方程根与系数的关系由十六世纪的法国数学家韦达发现,所以通常把此定理称为”韦达定理”、上述定理成立的前提是0∆≥、 【高效演练】1.若12x x , 是一元二次方程2230x x -=- 的两个根,则12·x x 的值是( ) A 、2 B 、-2 C 、4 D 、-3【解析】:方程的两根为1x ,2x ,根据题意得123cx x a==-、故选D 、 【答案】D 、2、若α,β是方程x2﹣2x﹣3=0的两个实数根,则α2+β2的值为()A. 5B. 7C. 9D.10【解析】∵α,β是方程x2﹣2x﹣3=0的两个实数根,∴α+β=2,αβ=﹣3,∴α2+β2=(α+β)2﹣2αβ=22﹣2×(﹣3)=10、故选D、【答案】D3、关于x的一元二次方程x2+px+q=0的两根同为负数,则( )A. p>0且q>0B. p>0且q<0C. p<0且q>0D. p<0且q<0【解析】试题解析:设x1,x2是该方程的两个负数根,则有x1+x2<0,x1x2>0,∵x1+x2=-p,x1x2=q∴-p<0,q>0∴p>0,q>0、故选A、【答案】A4.方程x2-(m+6)x+m2=0有两个相等的实数根,且满足x1+x2=x1x2,则m的值是( )A. -2或3B. 3C. -2D. -3或25.规定:如果关于x 的一元二次方程20ax bx c ++=(a ≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”、现有下列结论: ①方程2280x x +-=是倍根方程;②若关于x 的方程220x ax ++=是倍根方程,则a =±3;③若关于x 的方程260ax ax c -+=(a ≠0)是倍根方程,则抛物线26y ax ax c =-+与x 轴的公共点的坐标是(2,0)和(4,0);④若点(m ,n )在反比例函数4y x=的图象上,则关于x 的方程250mx x n ++=是倍根方程、上述结论中正确的有( )A 、①②B 、③④C 、②③D 、②④ 【解析】③关于x 的方程260ax ax c -+=(a ≠0)是倍根方程,∴x 2=2x 1,∵抛物线26y ax ax c =-+的对称轴是直线x =3,∴抛物线26y ax ax c =-+与x 轴的交点的坐标是(2,0)和(4,0),故③正确;④∵点(m ,n )在反比例函数4y x =的图象上,∴mn =4,解250mx x n ++=得x 1=﹣2m,x 2=﹣8m,∴x 2=4x 1,∴关于x 的方程250mx x n ++=不是倍根方程;故选C 、 【答案】C 、6.已知关于x 的一元二次方程230x x --=的两个实数根分别为,αβ,则()()11αβ--=__________.【解析】∵关于x 的方程: 230x x --=的两个实数根分别为αβ、, ∴13αβαβ+==-,,∴()()()1113113αβαβαβ--=-++=--+=-. 【答案】-37.若方程210x x --=的两实根为a 、b ,则11ab+的值为_______。

2018年初升高中衔接教材教案讲义大全(含答案)

2018年初升高中衔接教材教案讲义大全(含答案)

2018年初高中衔接数学教材亲爱的高一的同学们:祝贺你们步入高中时代,下面有一个摆在我们面前的棘手问题急需我们师生共同努力才能解决,即“初高中衔接问题”。

由于课程改革,目前我区初中是新课标,而高中也是新课程的学习,初高中不衔接问题现在显得比较突出。

面对教学中将存在的问题,我们高一数学组的老师们假期里加班加点,赶制了一份校本衔接教材,意在培养大家自学能力,同时降低同学们初高中衔接中的不适应度,希望大家将假期利用起来,一开学对这篇自学教材的学习将有相应的检测,愿大家为新学期做好准备。

一、数与式的运算一)、必会的乘法公式【公式1】ca bc ab c b a c b a 222)(2222+++++=++ 证明:2222)(2)(])[()(c c b a b a c b a c b a ++++=++=++ca bc ab c b a c bc ac b ab a 222222222222+++++=+++++=∴等式成立【例1】计算:22)312(+-x x解:原式=22]31)2([+-+x x913223822)2(312312)2(2)31()2()(234222222+-+-=-⨯⨯+⨯+-++-+=x x x x x x x x x x说明:多项式乘法的结果一般是按某个字母的降幂或升幂排列. 【公式2】3322))((b a b ab a b a +=+-+(立方和公式)证明: 3332222322))((b a b ab b a ab b a a b ab a b a +=+-++-=+-+ 说明:请同学用文字语言表述公式2.【例2】计算: (2a+b )(4a 2-2ab+b 2)=8 a 3+b 3【公式3】3322))((b a b ab a b a -=++-(立方差公式)1.计算(1)(3x+2y )(9x 2-6xy+4y 2)= (2)(2x-3)(4x 2+6xy+9)=(3))916141(31212++⎪⎭⎫ ⎝⎛-m m m =(4)(a+b )(a 2-ab+b 2)(a-b )(a 2+ab+b 2)=2.利用立方和、立方差公式进行因式分解 (1)27m 3-n 3=(2)27m 3-81n 3=(3)x 3-125= (4) m 6-n 6=【公式4】33322()33a b a b a b ab +=+++ 【公式5】33223()33a b a a b ab b -=-+- 【例3】计算:(1))416)(4(2m m m +-+(2))41101251)(2151(22n mn m n m ++-(3))164)(2)(2(24++-+a a a a (4)22222))(2(y xy x y xy x +-++ 解:(1)原式=333644m m +=+ (2)原式=3333811251)21()51(n m n m -=- (3)原式=644)()44)(4(63322242-=-=++-a a a a a (4)原式=2222222)])([()()(y xy x y x y xy x y x +-+=+-+63362332)(y y x x y x ++=+=说明:(1)在进行代数式的乘法、除法运算时,要观察代数式的结构是否满足乘法公式的结构.(2)为了更好地使用乘法公式,记住1、2、3、4、…、20的平方数和1、2、3、4、…、10的立方数,是非常有好处的.【例4】已知2310x x -+=,求331x x +的值. 解:2310x x -+= 0≠∴x 31=+∴xx原式=18)33(3]3)1)[(1()11)(1(2222=-=-++=+-+x x x x xx x x说明:本题若先从方程2310x x -+=中解出x 的值后,再代入代数式求值,则计算较烦琐.本题是根据条件式与求值式的联系,用整体代换的方法计算,简化了计算.请注意整体代换法.本题的解法,体现了“正难则反”的解题策略,根据题求利用题知,是明智之举.【例5】已知0=++c b a ,求111111()()()a b c b c c a a b+++++的值. 解:b a c a c b c b a c b a -=+-=+-=+∴=++,,,0∴原式=abba c ac c ab bc c b a +⋅++⋅++⋅333()()()a a b b c c a b c bc ac ab abc---++=++=- ①abc c ab c c ab b a b a b a 3)3(]3))[((32233+-=--=-++=+abc c b a 3333=++∴ ②,把②代入①得原式=33-=-abcabc说明:注意字母的整体代换技巧的应用.二)、根式0)a ≥叫做二次根式,其性质如下:【例6】化简下列各式:(1)(2)1)x ≥解:(1) 原式=2|1|211-+==*(2) 原式=(1)(2)2 3 (2)|1||2|(1)(2) 1 (1x 2)x x x x x x x x -+-=->⎧-+-=⎨---=≤≤⎩说明||a =的使用:当化去绝对值符号但字母的范围未知时,要对字母的取值分类讨论.【例7】计算(没有特殊说明,本节中出现的字母均为正数):(1)83(2)(3)(4) -+解:(1)83=46282383=⨯⨯=(2) 原式623==--(3) 原式=(4) 原式==说明:(1)二次根式的化简结果应满足:①被开方数的因数是整数,因式是整式; ②被开方数不含能开得尽方的因数或因式. (2)二次根式的化简常见类型有下列两种:①被开方数是整数或整式.化简时,先将它分解因数或因式,然后把开得尽方的因数或因式开出来;②分母中有根式(或被开方数有分母(.(化为) ,转化为 “分母中有根式”的情况.化简时,要把分母中的根式化为有理式,采取分子、分母同乘以一个根式进行化简.(,其中2+2-).有理化因式和分母有理化有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个代数式叫做有理化因式。

2018初高中数学衔接

2018初高中数学衔接

2018初高中数学衔接2018初高中数学衔接春天的菠菜2018初高中数学衔接初中数学与高中数学在知识内容上存在一些空缺或者是衔接上的不当,这已是中学老师们人人皆知并习以为常的事.所以,在讲授高中新课(集合,函数等)之前,应当补充一些衔接知识,以使初三学生能顺利地过渡到高中数学的学习中来.笔者以为,不做任何衔接的教学行为是不负责任的.当然也有部分老师(顶着压力)做衔接,但衔接的内容多少有些盲目,讲了几节后为赶教学进度(发现比别的老师落下好多课呢)而又放弃或草草了事,似乎只是为了衔接而衔接.对于中学老师,一提到初高中衔接,大概就是因式分解解一元二次不等式解分式不等式,却很少去思考:还有哪些衔接内容?为什么要衔接这些?初高中数学到底存在哪些差异?新高一学生在数学学习上最欠缺什么?……总体来讲,初中内容浅、少、易,贴近生活,简单、形象、具体;高中内容深、多、难,有些稍远离生活,复杂、深奥、抽象.从初中到高中,教材在逻辑性、抽象性、概括性以及空间想象等方面对学生的要求都大大提高.具体地讲,因式分解解一元二次不等式、分式不等式需要衔接:一方面,集合一章中有大量的不等式的解集问题,涉及到不等式的求解;其次,求函数的(自然)定义域就是求使解析式有意义的x的取值范围,最终也化为不等式(组)的求解;而求解不等式又往往需要因式分解.这样一想(理顺)就自然了.必要性弄清楚,讲解时就坦荡了(不必顾虑耽误课时,磨刀不误砍柴工,这是为后面的学习打基础呢).这里所说的衔接主要指初中数学与高中数学必修1的衔接,以帮助初三学生尽快适应高中数学学习,找到适合自己的学习方法,初步形成应对高中数学学习的能力为目的.至于初中数学与必修2(立体几何,解析几何)、必修4(三角函数,向量)的衔接自然也是存在的,但可暂时缓一缓.只要一开始衔接好了,后面的衔接多数可以自我应对,没必要再集中处理,用到时现场解决即可.需要衔接的内容还有函数(这对绝大多数新高一学生来说是道坎儿):高中所讲函数十分抽象(用集合与对应的语言所描述),学生还没完全弄明白符号f(x)的含义,函数这块各种各样的新名词、新问题、新方法就劈头盖脸地袭来——求定义域、求解析式、求值域、分段函数、复合函数、抽象函数、单调性、最大(小)值、奇偶性、换元法、分离常数法、赋值法……,让你(高一新生)猝不及防,无力招架,结局只能是——高中数学太难,我太笨,学不会!于是,亦有必要在衔接部分通过一些简单函数(如y|x|,y1/x等)让学生在复习初中所学知识的过程中提前感知高中所和研究的函数问题.另外,二次函数也是个难题.初中数学里,二次函数是重点内容,是(河南省)中考的压轴题,是热点;高中数学里,二次函数是基础内容,相关知识要求熟练掌握.这本没有什么毛病,但问题在于初高中数学对二次函数的着力点不同:中考不要求记忆顶点坐标公式,不要求掌握两根式(解析式的一种形式),不常求解二次函数在给定范围上的最值问题(绝不是重点),殃及的还有一元二次方程的韦达定理(不要求记忆)……而这些在高中老师眼里统统都是常识,必须熟练,熟练,再熟练!二次函数虽是中考压轴题,但也只是一个载体(仅提供点的坐标关系),在此基础上讨论几何图形的相关问题,最终还是几何,二次函数也就是个空壳儿.突然想起了一个笑话——数学中的两不讲.初中老师说:这个知识点,到高中老师会讲,我们就不讲了;高中老师说:这个知识点,你们初中老师讲过的,我们就不讲了.笑话归笑话,却真实反映了初高中数学存在的断层.近几年,全国多数省份将面临新一轮的课程改革,教材也推翻重来,有较大变动.史宁中教授在谈到十年课改的突出问题时列出的第四点就是初高中内容不衔接,应对之策是新教材必修1中加入了常用逻辑用语相等关系与不等关系二次函数与一元二次方程、不等式(网传目录)等衔接内容,但显然力度不够.以上种种,促使笔者决心自主编写一本初高中数学衔接的教案,初步设想如下:以数学思想(化与化归,函数与方程,分类与讨论,数形结合)引领衔接内容的展开,重点内容(如十字相乘法分解因式,一元二次不等式的解法,二次函数等)精讲,讲透,多练;拓展内容(如解高次方程、高次不等式、含参不等式等)一定要把握好度,让学生留下印象,点到为止.衔接内容重在渗透思想与方法,切忌贪多求快,一下子塞给学生很多结论(毕竟还是衔接,而不是机械的知识前移;衔接可以为后续内容助力分压,但也无法承载太多的内容与压力).具体目录见下表一级目录二级目录重要程度主要内容与意图思想方法1.数与式1.1代数变形与求值复习过渡梳理常见变形公式.这是代数学习的基础内容,是高中学习方程、不等式、函数等数学知识的基础,与分数指数幂一节相衔接化与化归1.2分母有理化与分子有理化选讲算作代数变形的一部分.分母有理化是复习初中所学,分子有理化是适度拓展,为后续单调性的证明埋下伏笔1.3因式分解重点着重训练十字相乘法,为求解一元二次不等式打牢基础1.4解高次方程选讲作为因式分解的巩固练习.可先猜根再分解,亦可直接大除法2.常见不等式的解法2.1一元二次不等式的解法重点十字相乘法,配方法,求根公式法都要讲解,各有特点,为后续集合化简,求函数的定义域打基础函数与方程化与化归分类讨论数形结合2.2分式不等式的解法分类讨论法,等价化法都要讲,交由学生自主评价分类讨论化与化归2.3高次不等式的解法选讲穿针引线法要讲清楚原理数形结合化与化归2.4含参不等式的解法选讲只涉及最简单的例子,巩固分类讨论思想分类讨论3.几类简单函数的图象3.1绝对值型函数复习过渡以函数y|x|串联分段函数,图象平移,解绝对值方程、不等式等内容数形结合3.2分式型函数重点讲分离常数法,图象平移,回过头来用图象解分式不等式数形结合3.3取整函数选讲高考鲜有涉及,却是训练巩固数形结合思想的绝佳素材数形结合4.二次函数4.1基础知识点,公式重点初中不要求记忆的相关知识点与公式函数与方程4.2配方法重点算作代数变形的一部分4.3给定范围求最值重点为利用单调性求函数值域埋下伏笔数形结合4.4动轴定区间,定轴动区间问题选讲也可放在单调性之后讲数形结合分类讨论4.5简单的恒成立与存在成立问题选讲也可放在函数综合问题中讲一些老师看了这个目录后坦言:新学期时间紧,任务重,哪有那么多的时间衔接?按笔者的设计,除去选讲内容,仍需6-7个课时,约一周时间.目前的教学环境下谁敢花一周时间只讲初高中衔接呢?进度就在那里,像一只无形的大手样约束着你,还有月考范围,期中考试范围……这些都是(无奈的)实情.也有部分老师认为集中讲解不如在正常课程的安排下逐步渗透的好,这属于不同教学方式的比较,我们自当另论.对于初高中衔接,学校里若要集中讲解,必须各校区、全年级统一进行(这需要领导的魄力),否则只能是个别(负责任,有想法的)老师结合自己所教班级情况的个人行为.不管哪种形式,做了总比不做的好.接下来的正文里,笔者将尽可能详细地阐释想法,希望能引发你的讨论与共鸣;将尽可能多地提供例题和练习,希望你能择优录取,进行再加工与整合.接下来的正文像是论文,但又会夹杂诸多不成熟的个人观点,仅供参考;笔者更愿意它是一份教案,一份详案,让每一位想上并且有条件上初高中衔接的数学老师直接拿来主义.愿笔者梦想成真!。

2018年初升高衔接教材--数学

2018年初升高衔接教材--数学

例1 计算:x 2 y 3 例2 化简: x 3

x 2 y 3
2x 12 2 2 x 6 x 9 4 x 4 x 1 x 2 x 1(1 x 3) 例3 化简:
例4 计算下列各题: ①
8 2 15 8 2 15
y x2 1 x2 1 1 x2 x 1

三数和的平方公式: a b c
2
a 2 b 2 c 2 2ab 2ac 2bc
二.分式
A 我们在初中学过形如 B 的式子(A,B是整式,B 不为0 且B中含有字母 )叫做分式,分是有意义的条件是分 母不能为零,这也是进行分式运算;讨论分式相关 问题的基本出发点。 而掌握分式的基本性质(分式的分子和分母都乘以或 除以相同的整式分式的值不变)和运算法则是我们 深入学习高中知识的一个基础。
三.二次根式
1.二次根式的定义:形如 a a 0 的代数式叫做二 次根式. 2.二次根式的重要性质: (1)双重非负性即,即 a 中的a 0, a 0

(2)
a
2
2
a a 0
(3)
a a

a a 0 a a 0
3.最简二次根式应满足的条件 ①被开方数中不含能开得尽方得因数或因式 ②被开方数不含分母 4. 二次根式的运算 ①二次根式相加减,先化为最简二次根式,然后合并同 类二次根式; ②二次根式相乘除,把被开方数相乘除,根指数不变 分式和根式的运算在高中学习中经常会碰到,要求学生 非常熟练,灵活的掌握,下面统一些内容。 分母(分子)有理化:把分母(分子)中的根号化去, 叫做分母(分子)有理化。 常见类型一:b b a b a

2018年初高中数学衔接教材含答案60

2018年初高中数学衔接教材含答案60

初高中数学衔接教材{新课标人教A版}典型试题举一反三理解记忆成功衔接第一部分如何做好初高中衔接 1-3页第二部分现有初高中数学知识存在的“脱节” 4页第三部分初中数学与高中数学衔接紧密的知识点 5-9页第四部分分章节讲解 10-66页第五部分衔接知识点的专题强化训练 67-100页第一部分,如何做好高、初中数学的衔接● 第一讲如何学好高中数学●初中生经过中考的奋力拼搏,刚跨入高中,都有十足的信心、旺盛的求知欲,都有把高中课程学好的愿望。

但经过一段时间,他们普遍感觉高中数学并非想象中那么简单易学,而是太枯燥、乏味、抽象、晦涩,有些章节如听天书。

在做习题、课外练习时,又是磕磕碰碰、跌跌撞撞,常常感到茫然一片,不知从何下手。

相当部分学生进入数学学习的“困难期”,数学成绩出现严重的滑坡现象。

渐渐地他们认为数学神秘莫测,从而产生畏惧感,动摇了学好数学的信心,甚至失去了学习数学的兴趣。

造成这种现象的原因是多方面的,但最主要的根源还在于初、高中数学教学上的衔接问题。

下面就对造成这种现象的一些原因加以分析、总结。

希望同学们认真吸取前人的经验教训,搞好自己的数学学习。

一高中数学与初中数学特点的变化1 数学语言在抽象程度上突变。

不少学生反映,集合、映射等概念难以理解,觉得离生活很远,似乎很“玄”。

确实,初、高中的数学语言有着显著的区别。

初中的数学主要是以形象、通俗的语言方式进行表达。

而高一数学一下子就触及抽象的集合语言、逻辑运算语言以及以后要学习到的函数语言、空间立体几何等。

2 思维方法向理性层次跃迁。

高中数学思维方法与初中阶段大不相同。

初中阶段,很多老师为学生将各种题建立了统一的思维模式,如解分式方程分几步;因式分解先看什么,再看什么。

即使是思维非常灵活的平面几何问题,也对线段相等、角相等,分别确定了各自的思维套路。

因此,初中学习中习惯于这种机械的、便于操作的定势方式。

高中数学在思维形式上产生了很大的变化,数学语言的抽象化对思维能力提出了高要求。

(完整版)初高中数学衔接教材(已整理)

(完整版)初高中数学衔接教材(已整理)

目录第一章数与式1.1数与式的运算1.1.1 1.1.2 1.1.3 1.1.4绝对值乘法公式二次根式分式1.2分解因式第二章二次方程与二次不等式2.1 一元二次方程2.1.1根的判别式2.1.2根与系数的关系2.2 二次函数2.2.1二次函数y二ax2+bx+c的图像和性质2.2.2二次函数的三种表达方式2.2.3二次函数的应用2.3方程与不等式2.3.1二元二次方程组的解法第三章相似形、三角形、圆3.1相似形3.1.1平行线分线段成比例定理3.1.2相似三角形形的性质与判定3.2三角形3.2.1三角形的五心3.2.2解三角形:钝角三角函数、正弦定理和余弦定理及其应用3.3圆3.3.1直线与圆、圆与圆的位置关系:圆幕定理3.3.2点的轨迹3.3.3四点共圆的性质与判定3.3.4直线和圆的方程(选学)1.1数与式的运算1.1.1 .绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零.即a, a 0,|a| 0, a 0,a, a 0.绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离. 两个数的差的绝对值的几何意义:|a b表示在数轴上,数a和数b之间的距离.例1解不等式:|x 1 x 3 >4.解法一:由x 1 0 ,得x 1 ;由x 3 0,得x 3 ;①若x 1,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得X V0,又x v 1 ,二x v 0;②若1 x 2,不等式可变为(x 1) (x 3) 4 ,即1> 4,二不存在满足条件的x;③若x 3,不等式可变为(x 1) (x 3) 4 ,即2x 4 >4,解得x>4.又x>3二x>4.综上所述,原不等式的解为x V0, 或x>4.解法二:如图1. 1- 1, x 1表示x轴上坐标为x的点P到坐标为1的点A之间的距离|RA|,即|RA| = |x- 1|; |x-3|表示x轴上点P到坐标为2的点B之间的距离|PB|,即|PB|= |x- 3|.所以,不等式x 1 x 3 >4的几何意义即为|RA| + |PB|> 4.由|AB|= 2,可知点P在点C(坐标为0)的左侧、或点P在点D(坐标为4)的右侧.x V0,或x>4.P 丄CL A 丄BLDL---- x0134x V|x-3||x- 1|图1. 1-12.2练 1. 2.3. 习 填空: (1) 若 x (2) 如果|a b 选择题: 下 )(A )(C )化简: 5,贝y x= 5,且a _若x 则b =4,贝y x= _____ ;若 1 c 2,则 C =若a 若a|x — 5|—|2X — 13| (x >5). 1.1.2.乘法公式 我们在初中已经学习过了下列一些乘法公式: (1) 平方差公式 (a b)(a b) a 2 b 2 ; (2) 完全平方公式 (a b)2 a 2 2ab b 2.我们还可以通过证明得到下列一些乘法公式:b , b ,则 a b (B) (D) 若a b ,贝S a 若a b ,则a解法 :原式= (x 2 1) (x 21)2 x 2 = (x 2 1)(x4 2x1)= 6x 1 .解法 *■.原式=(x 1)(x 2 x 2 1)(x 1)(x x 1)=(x 3 1)(x 3 1)= 6 x 1 .例2 已知a b c 4 , ab bc ac 4,求 a 2 b 2 c 2 的值解: 2 a .2 2b c (a b c)2 2(ab bc ac) 8 . 练 习1. 填空: (1) 1 2 a 1.2 b ( 4 b ;a)( );9 4 2 3(2) (4 m)2 16m 24m ( );(3 ) (a 2b c)2 a 2 4b 2 c 2 ( ). 1). 选择题:有兴趣的同学可以自己去证明. 例 1 计算:(x 1)(x 1)( x 2x 1)(x 2 x (1 )x 2 Imx k平方式,(1) 立方和公式 (a b)(a 2 ab b 2) 3 a .3 b ; (2) 立方差公式 (a b)(a 2 ab b 2) 3 a 3b ;(3) 三数和平方公式 (a b c)2 a 2 b 2 2 c 2(ab bc(4) 两数和立方公式 (a b)3 a 3 3a 2b 3ab 2 b 3;(5) 两数差立方公式 (a b)3 a 3 3a 2b3ab 2 b 3 .ac);对上面列出的五个公式,(A) m2(B) - m2(C) - m2(D)丄m24 3 16((2 ) 不论a , b为何实数,a2 b2 2a 4b 8 的值((A )总是正数(B )总是负数(C)可以是零(D)可以是正数也可以是负数1.1.3.二次根式一般地,形如,a(a 0)的代数式叫做二次根式.根号下含有字母、且不能够开得尽方的式子称为无理式.例如3a「a?—b 2b , . a^b2等是无理式,而.2x2彳x 1 , x2、2x y , ■■ a2等是有理式.1.分母(子)有理化把分母(子)中的根号化去,叫做分母(子)有理化.为了进行分母(子)有理化,需要引入有理化因式的概念.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为—有理化因式,例如J2与.2 , 3'、a 与,-. 3 .6 与方.6 , 2-. 3 3',2 与 2.3 3-2,等等. 一般地,ax与x , a、、x b. y与a、、x b y , a、、x b与a、、x b互为有理化因式.分母有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中的根号的过程;而分子有理化则是分母和分子都乘以分母的有理化因式,化去分子中的根号的过程在二次根式的化简与运算过程中,二次根式的乘法可参照多项式乘法进行,运算中要运用公式. ab(a 0,b 0);而对于二次根式的除法,通常先写成分式的形式,然后通过分母有理化进行运算;二次根式的加减法与多项式的加减法类似,应在化简的基础上去括号与合并同类二次根式.2 .二次根式-a2的意义a, a 0, aa, a 0.例1将下歹J式子化为最简一次根式:(1) 両; (2) VOb(a0);(3) J4x6y(x 0).解:(1) ^A2b2顶;(2) Ja2b a 7b aVb(a 0);(3) 』4x6y 2 x^/y 2X3TT(X0).例2计算:暑(3 73).解法- -.73 (33 V3初中升高中数学教材变化分析解法二:解:=-3 (3 . 3)(3 . 3)(3、、3)=3^3 39 3=3(、、3 1)6=.3 12.3 (3、、3)=—3 V3试比较下列各组数的大小: (1) ..12 '.诃禾口、、仃110 ;(1) V J2.1112 11111 1011 -101= 丽3^3 1)_ 1 = _______________ = .3 1(.3 1)C 3 1)J 2)_ 6^ _ 、石)(.12 ;11)和 2.2— 6 . .12 ,11(、石 *10)(、11 ”10) 、石;10又. .12、一 11 5^ ,10 ,••• .,12 ,11 v .11.(2).. 2运—庇 2屁苗212-46)(242+46)又 4>2 2, _• ° •号 6 + 4 > . 6 + 2 习 2,• 一2 v 2、、2—•、6..6 4化简:C.3 , 2)2004 ( -.. 3 . 2) 2005解:(、、3 , 2)2004 ( .3、、2严=,2)2004 ( -.3 ,2)2004 (-. 3= C3、、2 C3 =12004(4 2、2+ 6 ,3 11 .12 11 ' __ 1 ___ 11 '一 10 '2,2+「6’.2 ) 2004 (「3.2)5化简:2) = .3、、2 .(1) .9 4*5 ;(2)x 2解: (1)原式(2)原式={(x *).(5)2 2 2 -5 221 x••• 06 已知xx 1 ,-丄3 2 、3 2 ,y1 22(0 x 1).x7(2 V5)2 2 71 x ,所以,原式=-x密茫,求3x 2 5xy 3y 2的值.、3 <2解:「X y :3 : ;〕2 (―2)2do , 32 3 2Xy.3, 2 , 3 . 2 1,2 2 2 2…3X 5xy 3y 3(X y) 11xy 3 1011 289 .练 习1.1.4 .分式1.分式的意义 形如A 的式子,若B 中含有字母,且B 0,则称A 为分式.当MHO 时,分BB式A 具有下列性质:BA A MA A MB B M 'B B M *上述性质被称为分式的基本性质. 2.繁分式a像_^ , m n p 这样,分子或分母中又含有分式的分式叫做 繁分式. c d _2m_n P例1若空匕 A —,求常数A,B 的值.X (X 2) X X 21. 填空:1 (1)(2) (3) (4) 13若.、(5 x)(x 3)2 (X 3)、、亍,则X 的取值范围是4.24 6,54 3 .96 2. 150 若X 巨,则、厂 ''厂22. 选择题:.立3. 4.(B )1U ,求 a a 1比较大小:2— 3 _______ ; 5— 4 (填b 的值. (C )N”.(D )0X 2解:~A B• ____ _x x 2.A B 5,2A 4,(1)试证: A(x 2) Bx (A B)x 2A 5x 4 x(x 2) 解得 x(x 2) x(x 2) 2,B 1.2. 3.4.(1) (2) (2)(3) 证明:1 n 12 3证明:对任意大于 计算: 1 n(n 1) 1 1 2(其中n 是正整数);1 9 10 '的正整数n ,有二 —2 3 3 41n(n 1)解:由 1 2(3)证明:..1 1• -------n n 1. 1n(n 1)(1)可知丄L2 31 12 3 3 41 n(n 1), (其中n 是正整数)成立.n n(n 1) 1 n 1 (n 1)19 10 1 1 1 -)( )1 2 2 31 1 1 1— _ (― 一)(— n(n 1) 2 3 31又n 》2且n 是正整数,二.11, 1 1 • • LV2 3 3 4 n(n 1)2且 e >1, 2c 2 — 5ac + 2a 2_0, 解:在2c 2— 5ac + 2a 2_0两边同除以a 2,得2呂—5e + 2_ 0,• (2e — 1)(e — 2)_ 0,1• e _ 2 V 1,舍去; •- e _ 2.或 e = 2. 一定为正数,求e 的值.丄 10910_丄_ 2习填空题: 选择题: 若) (A)对任意的正整数 2x yx正数x,y 满足 x 2 n ,1n(n 2)(丄n(B)2xy ,求 54x yx的值.y(C ) 4(D)计算丄- 99 100习题1. 1 A 组1.解不等式:(1) (3) 2 .已知x y 1 , x 1 3;(2) x 3x 27 ;x 1 x 1 6 .3xy 的值. 求 x 3 y 3 3. 填空:(1) (2) (3)(2 .3)18(2若,(T 1 .2a)21,(1 a)22 , 1__ ?则a 的取值范围是1 4「51.填空:(1) a2.1.(2)若 x 2xy 2y 2已知:x 1 2,y3a 2 2 3a 5ab 2b2小0,则—xy yx y _x . y ab 2 _________________22 _ __ ---------y」y _的值.x yC 组选择题: ((A ) a b(B ) a b(C ) a b 0 (D ) b a 0( 2)计算a :等于( )(A) < ~(B ) ■- a (C )-(D ) 、、a2.解方程2(x 2丄)13(x -)1 0 .x x3.计算:-——-1 L 1.132 43 59 114.试证:对任意的正整数 n ,有1L -1 1 —<-.b 2 一 ab 、、b a若 则)a () n(n 1)(n2) 2 3 41 2 3 1.2因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解 法,另外还应了解求根法及待定系数法. 1.十字相乘法例1分解因式: (1) x 2-3x + 2;(2) x 2 + 4x —(3) x 2 (a b )xy aby 2 ; (4) xy 1 x y .解:(1)如图1. 1- 1,将二次项x 2分解成图中的两个x 的积,再将常数项 2分解成一1与一2的乘积,而图中的对角线上的两个数乘积的和为一 3x ,就是 x 2-3x + 2中的一次项,所以,有x 2- 3x + 2 = (x - 1)(x - 2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1. 1- 1中的两个x 用1来表示(如图1. 1-2所示).(2) 由图1. 1-3,得x 2 + 4x - 12 = (x - 2)(x + 6).(3) 由图1. 1-4,得2 2x (a b)xy aby = (x ay)(x by) x―1(4) xy 1 x y = xy + (x - y) — 1y ”1=(x - 1) (y+1)(如图 1. 1-5 所示).图 1. 1-5课堂练习一、填空题:1、把下列各式分解因式: (1) 2 x 5x 6 。

2018年浙江初高中数学衔接教材

2018年浙江初高中数学衔接教材

2018年浙江省初高中数学衔接教材乘法公式我们在初中已经学习过了下列一些乘法公式: (a + b )(a — b ) = a 2 — b 2 ;(a ± b)2 = a 2 ± 2ab + b 2. 我们还可以通过证明得到下列一些乘法公式:第一讲因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1 .十字相乘法例1分解因式:(1) %2—3%+2;(2) %2+4x —12;(3) x 2 — (a + b )xy + aby 2 ; (4) %y — 1 + % — y .解:(1)如图1. 1 — 1,将二次项%2分解成图中的两个%的积,再将常数项2分解成一1与一2的乘积,而图中的对角线上的两个数乘积的和为一3%,就是%2—3%+2中的一次项,所以,有%2一3 %+2 = (% 一 1)(% 一2).(1)平方差公式(2)完全平方公式 (1) 立方和公式 (a + b )(a 2 — ab + b 2) = a 3 + b 3 ; (2) 立方差公式 (a — b )(a 2 + ab + b 2) = a 3 — b 3 ;(3) 三数和平方公式 (a + b + c )2 = a 2 + b 2 + c 2 + 2(ab + bc + ac ); (4) 两数和立方公式 (a + b)3 = a 3 + 3a 2b + 3ab 2 + b 3 ; (5) 两数差立方公式(a — b)3 = a 3 — 3a 2b + 3ab 2 — b 3.对上面列出的五个公式, 有兴趣的同学可以自己去证明.1/—2%/ - ay 1图;I %图:1;1X12 图 1. 1—2说明:今后在分解与本例类似的二次三项式时,可以直接将图1. 1-1中的两个%用1来表示(如图1. 1-2所示).(2)由图1. 1-3,得x2+4x—12 = (x—2)(x+6).(3)由图1. 1—4,得x 2 —(a + b) xy + aby 2 = (x - ay)(x - by)(4)xy — 1 + x — y = xy+(x—y) —1=(x—1) (y+1)(如图1. 1—5 所示).一、填空题:1、把下列各式分解因式:(1)x 2 + 5 x—6 =。

初高中数学衔接课(高一)PPT课件图文(2024)

初高中数学衔接课(高一)PPT课件图文(2024)

02
展示正弦函数、余弦函数、正切函数的图像,分析三角函数的
周期性、奇偶性、单调性等性质。
三角恒等变换
03
介绍三角恒等式,如和差化积、积化和差等公式,以及它们在
三角函数计算中的应用。
13
数列与数学归纳法
2024/1/29
数列的概念及表示方法
阐述数列的定义、数列的通项公式及递推公式等基础知识 。
等差数列与等比数列
详细讲解等差数列和等比数列的定义、性质及求和公式。
数学归纳法及其应用
介绍数学归纳法的原理及步骤,通过实例演示数学归纳法 在证明数列问题中的应用。
14
04
初高中数学衔接关键点分析
2024/1/29
15
思维方式转变
从具象到抽象
初中数学以具象思维为主,而高 中数学则更强调抽象思维,需要 学生逐渐适应并培养抽象思维能
力。
从静态到动态
初中数学问题多为静态的,而高 中数学则涉及更多动态变化的问 题,需要学生理解并掌握变量之
间的关系。
从单一到多元
初中数学知识点相对单一,而高 中数学知识点更加多元化,需要 学生建立多元化的知识体系和思
维方式。
2024/1/29
16
学习方法调整
2024/1/29
课前预习与课后复习
高中数学内容相对复杂,需要学生做好课前预习和课后复习,加 深对知识点的理解和记忆。
教材内容
涵盖初中数学与高中数学衔接部 分的核心知识点,包括函数、方 程、不等式、数列、概率统计等

2024/1/29
教材结构
按照知识模块进行划分,每个模块 包含知识点讲解、例题分析、练习 题等内容,便于学生理解和掌握。
辅助资源

2018年初高中数学衔接教材--数与式的运算

2018年初高中数学衔接教材--数与式的运算

3.分式
[1]分式的意义 形如 为分式.
A B
的式子,若B中含有字母,且 B 0
,则称
A B
[2]分母(子)有理化 把分母(子)中的根号化去,叫做分母(子)有理化.分母 有理化的方法是分母和分子都乘以分母的有理化因式,化去分母中 的根号的过程;而分子有理化则是分母和分子都乘以分子的有理化 因式,化去分子中的根号的过程。 两个含有二次根式的代数式相乘,如果它们的积不含有二次根式, 我们就说这两个代数式互为有理化因式,例如 , 与 2 2
3 a

a

2 3 3 2 3 , a x b 与 a x b 互为有理化因式. 与 a x b y , a x b 与
2 3 3 2 ,等等.
x
y
例3 计算(没有特殊说明,本节中出现的字母均为正数): 3 (1 )
2 3
63 3
(2 )
94 5
5 2
74 3
3 2 2
5、因式分解的主要方法有:提取公因式法、公式法、分组分解法、
十字相乘法,另外还应了解求根法。
例题1公式法:用立方和或立方差公式分解下列各多项式: (1) 8 x3 3 (2)
0.125 27b
【例2】提取公因式分解因式: (1) 3a3b 81b4 (2)
不等式的解为 1 x 3
2x 3 5
变式训练:1、 2、
x 3 5
2.乘法公式 我们在初中已经学习过了下列一些乘法公式: [1]平方差公式: a2 b2 a b a b ; 2 2 2 a b a 2 ab b 2 [2]完全平方和公式: ; 2 2 a b a 2 ab b [3]完全平方差公式: .

浙教版初高中衔接数学教案

浙教版初高中衔接数学教案

浙教版初高中衔接数学教案一、教学目标:1. 熟练掌握初中数学知识,为高中数学学习打下坚实基础。

2. 熟练运用初中数学知识解决高中数学问题。

3. 提高学生对数学的兴趣和学习动力。

二、教学内容:1. 高中数学与初中数学的联系和区别。

2. 数列与函数的基本概念和性质。

3. 逻辑与集合的基础知识。

4. 几何学习方法与技巧。

三、教学重点与难点:1. 数列、函数、逻辑与集合的基本概念和性质。

2. 高中数学中的解题方法、思维模式和技巧。

3. 如何将初中数学知识应用到高中数学中。

四、教学方法:1. 讲授结合示例、实例进行,引导学生主动思考和解决问题。

2. 组织学生进行小组讨论、合作学习。

3. 利用多媒体教学资源辅助教学。

五、教学过程:1. 导入:通过复习初中数学知识,引出高中数学的相关内容。

2. 学习:介绍数列、函数、逻辑、集合的基本概念和性质,并进行相关例题讲解。

3. 引入:讲解高中数学的解题方法和思维模式,引导学生逐步应用到具体问题中。

4. 练习:组织学生进行练习,巩固所学知识。

5. 总结:对今天学习的内容进行总结,引导学生积极思考并总结方法。

六、教学反馈:1. 学生进行作业检查,及时纠正错误。

2. 学生进行课后习题训练,巩固和拓展知识。

3. 教师进行课堂评价,及时反馈学生学习情况。

七、教学资源:1. 课本、教辅资料。

2. 多媒体教学资源。

3. 互联网资源和相关学习平台。

八、教学评价:1. 学生学习态度、表现情况。

2. 学生课堂表现、作业完成情况。

3. 教学效果评价。

以上是初高中数学衔接教案范本,可以根据具体教学内容和学生情况进行调整和完善。

希望对您有所帮助。

2018高中数学人教A版浙江一轮参考课件:2-5 指数与指

2018高中数学人教A版浙江一轮参考课件:2-5 指数与指
2 .5
指数与指数函数
-2-
考 纲 要 求 1.了解指数幂的含 义,掌握有理指数幂 的运算. 2.理解指数函数的 概念,掌握指数函数 的图象、性质及应 用. 3.了解指数函数的 变化特征. 4.能将一些简单的 实际问题转化为相 应的函数问题,并给 予解决.
考 情 概 览 2012 浙江高 考,9(选择题) 2013 浙江高 考,3(选择题) 2014 浙江高 考,7(选择题) 2015 浙江高 考,12(填空题) 2016 浙江高 考,12(填空题)
-5知识梳理 双击自测
(3)无理指数幂 一般地,无理指数幂aα(a>0,α是无理数)是一个 确定 理指数幂的运算法则 同样适用 于无理指数幂.
的实数,有
-6知识梳理 双击自测
3.指数函数的图象和性质
函数 图象 在 x 轴 上方 ,过定点 (0,1) 当 x 逐渐增大 当 x 逐渐增大 时,图象逐渐下 时,图象逐渐上 降 升 y=ax(a>0,且 a≠1) 0<a<1 a>1
备 考 定 向 高考中对指数函数的考 查,通常以考查指数的 运算以及指数函数的图 象、性质的应用为主, 多以指数函数为载体, 与函数的性质、方程、 不等式等知识综合命 题.比较大小、 简单的指 数方程、指数不等式等 都是常考内容,考查题 型以选择、填空为主.
-3知识梳理 双击自测
1.根式 (1)n次方根的定义:若 xn=a ,则x叫做a的n次方根,其中n>1, 且n∈N*.式子������ ������叫做根式,这里n叫做根指数,a叫做被开方数. (2)n次方根的性质: ①一个数a的奇次方根只有一个,即 ������ a (n为奇数,a∈R). ������ ②一个正数a的偶次方根有两个,即 ± ������ (n为非零偶数),0 0 的偶次方根为 , 负数 没有偶次方根. (3)两个重要公式 a (������为奇数), ������ a ,������ ≥ 0, ① ������������ = |������| = -a ,������ < 0 (������为偶数);

2018年暑假初高中衔接教材数学

2018年暑假初高中衔接教材数学

2018年暑假初高中衔接教材数学目录第一课: 绝对值第二课: 乘法公式第三课: 二次根式(1)第四课: 二次根式(2)第五课: 分式第六课: 分解因式(1)第七课: 分解因式(2)第八课:根的判别式第九课:根与系数的关系(韦达定理)(1)第十课:根与系数的关系(韦达定理)(2)第十一课:二次函数y=ax2+bx+c的图像和性质第十二课:二次函数的三种表示方式第十三课:二次函数的简单应用第十四课:分段函数第十五课: 二元二次方程组解法第十六课: 一元二次不等式解法(1)第十七课: 一元二次不等式解法(2)1.怎样培养好对学习的良好习惯?不要再被动的因为要学习而学习,而是要主动的需求学习的方法,怎么培养对学习的兴趣?以下几点可供参考:(一)培养良好的学习习惯现代教育倡导自主性学习和研究性学习,坚信能力是练出来的,因此我们在课程安排和教学常规中,设置有课前三分钟准备、晚修分段学习、教学三清(即堂堂清、周周清、月月清)等,这样设置的目的,就是为了培养同学们良好的修习养身习惯。

我希望同学们领会意图,配合学校的安排。

在课前三分钟,提前回到自己的座位,把课本和学习用品准备好,把自己的思想从课间活动拉回来,在科任老师和科代表的指导下,或朗读课文、定理、定律,或背诵名句、单词、公式,或做小测练……课堂上,聚精会神听老师讲课,深入思考和积极回答问题,善于做笔记,做到眼晴看、耳朵听、嘴巴说、脑筋想、手头记,充分调动和发挥各器官功能……晚修分时段学习,合理安排各科学习时间,做到复习、作业、预习三不误,照顾到当天学习及第二天学习的全部学科,做到均衡发展,要主动到走廊上请教下班辅导的老师,维护课室里面安静的晚修秩序,提高晚修的效率。

(二)抓好预习环节预习,即课前的自学。

指在教师讲课之前,自己先独立地阅读新课内容。

初步理解内容,是上课做好接受新知识的准备过程。

有些学生由于没有预习习惯,对老师一堂课要讲的内容一无所知,坐等教师讲课,老师讲什么就听什么,老师叫干什么就干什么,学习就很辛苦。

2018高中数学必修四浙江专用课件 第三章 三角恒等变换 3.1.2一 精品

2018高中数学必修四浙江专用课件 第三章 三角恒等变换 3.1.2一 精品

规律方法 化简三角函数式的标准和要求 (1)能求出值的应求出值. (2)使三角函数式的种数、项数及角的种类尽可能少. (3)使三角函数式的次数尽可能低. (4)使分母中尽量不含三角函数式和根式.
【训练 1】
化简:(tan 10°-
cos 10° 3)sin 50°.

原式=(tan
10°-tan
则△ABC 是( )
A.锐角三角形
B.钝角三角形
C.直角三角形
D.等腰非直角三角形
解析 (1)∵sin Asin B<cos Acos B ∴cos Acos B-sin Asin B>0 而 cos(A+B)>0, ∴cos C=cos[π-(A+B)]=-cos(A+B)<0. ∴C 为钝角. (2)由条件 sin(A-B)cos B+cos(A-B)sin B≥1 得 sin A≥1,即 sin A=1.A 为直角.故选 C. 答案 (1)钝角三角形 (2)C
(1)sinx+π3 +2sinx-π3 - 3cos2π 3 -x;
(2)sin 14°cos 16°+sin 76°·cos 74°;
(3)sin(54°-x)cos(36°+x)+cos(54°-x)sin(36°+x);
π
π
(4)sin12- 3cos12.
π
π
π
解 (1)原式=sin xcos 3 +cos xsin 3 +2sin xcos 3 -
【训练 2】 已知π2 <β<α<3π 4 ,cos(α-β)=1123,sin(α+β)= -35,求 cos 2α与 cos 2β的值. 解 ∵π2 <β<α<3π 4 ,∴0<α-β<π4 ,π<α+β<3π 2 .

2018高中数学人教A版浙江一轮参考课件:2-8 函数与方

2018高中数学人教A版浙江一轮参考课件:2-8 函数与方
1 2
-1
1 x1- <0. ������1
-11考点一 考点二 考点三
方法总结判断函数y=f(x)在某个区间上是否存在零点,常用以下 方法: (1)解方程:当对应方程易解时,可通过解方程,观察方程是否有根 落在给定区间上; (2)利用函数零点存在性定理进行判断; (3)通过画函数图象,观察图象与x轴在给定区间上是否有交点来 判断.
2.8 Байду номын сангаас数与方程
-2-
考 纲 要 求 了解函数零点的概念, 掌握连续函数在某个区 间上存在零点的判定方 法. 结合二次函数的图象, 判断一元二次方程根的 存在性及根的个数,从 而了解函数的零点与方 程根的联系.
考 情 概 览
近五年浙江高 考无直接考查
备 考 定 向 在高考中,本节内容一 般不单独命题,通常会 将本节知识与函数的图 象、 性质结合起来考查, 这类题目综合性较强, 对综合能力的要求也较 高,着重考查函数与方 程、数形结合等数学思 想.
-7知识梳理 双击自测
3.在以下区间中,存在函数f(x)=x3+3x-3的零点的是( C ) A.[-1,0] B.[1,2] C.[0,1] D.[2,3] 解析:注意到f(-1)=-7<0,f(0)=-3<0,f(1)=1>0, f(2)=11>0,f(3)=33>0.故选C. 4.函数f(x)=x3-2x2+x的零点是 0和1 . 解析:解方程x3-2x2+x=0,得x=0或x=1,故函数f(x)的零点是0和1. 5.已知函数f(x)=ln x-x+2的一个零点所在的区间为(k,k+1)(k∈N*), 3 则k的值为 . 解析:由题意知,当x>1时,函数f(x)单调递减, 因为f(3)=ln 3-1>0,f(4)=ln 4-2<0, 所以该函数的零点在区间(3,4)内.所以k=3.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年浙江省初高中数学衔接教材乘法公式我们在初中已经学习过了下列一些乘法公式: (1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a ab b a b +-+=+; (2)立方差公式 2233()()a b a ab b a b -++=-;(3)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (4)两数和立方公式 33223()33a b a a b ab b +=+++; (5)两数差立方公式 33223()33a b a a b ab b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明.第一讲 因式分解因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.1.十字相乘法例1 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).-1 -2x x图1.1-1-1 -21 1图1.1-2 -2 61 1图1.1-3-ay -byx x图1.1-4说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个x 用1来表示(如图1.1-2所示).(2)由图1.1-3,得x 2+4x -12=(x -2)(x +6). (3)由图1.1-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.1-5所示).习 题 一一、填空题:1、把下列各式分解因式:(1)=-+652x x __________________________________________________。

(2)=+-652x x __________________________________________________。

(3)=++652x x __________________________________________________。

(4)=--652x x __________________________________________________。

(5)()=++-a x a x 12__________________________________________________。

(6)=+-18112x x __________________________________________________。

(7)=++2762x x __________________________________________________。

(8)=+-91242m m __________________________________________________。

(9)=-+2675x x __________________________________________________。

(10)=-+22612y xy x __________________________________________________。

2、()() 3 42++=+-x x x x3、若()()422-+=++x x b ax x 则 =a , =b 。

二、选择题:(每小题四个答案中只有一个是正确的)1、在多项式(1)672++x x (2)342++x x (3)862++x x (4)1072++x x (5)44152++x x 中,有相同因式的是( ) A 、只有(1)(2) B 、只有(3)(4)C 、只有(3)(5)D 、(1)和(2);(3)和(4);(3)和(5)-1 1x y图1.1-52、分解因式22338b ab a -+得( )A 、()()3 11-+a aB 、()()b a b a 3 11-+C 、()()b a b a 3 11--D 、()()b a b a 3 11+- 3、()()2082-+++b a b a 分解因式得( )A 、()()2 10-+++b a b aB 、()()4 5-+++b a b aC 、()()10 2-+++b a b aD 、()()5 4-+++b a b a4、若多项式a x x +-32可分解为()()b x x --5,则a 、b 的值是( )A 、10=a ,2=bB 、10=a ,2-=bC 、10-=a ,2-=bD 、10-=a ,2=b 5、若()()b x a x mx x ++=-+ 102其中a 、b 为整数,则m 的值为( ) A 、3或9 B 、3± C 、9± D 、3±或9± 三、把下列各式分解因式1、()()3211262+---p q q p 2、22365ab b a a +-3、6422--y y 4、8224--b b第二讲 一元二次方程若一元二次方程ax 2+bx +c =0(a ≠0)有两个实数根1x =,2x =,则有1222b bx x a a-+===-;221222(4)444b b ac ac cx x a a a--====. 所以,一元二次方程的根与系数之间存在下列关系:如果ax 2+bx +c =0(a ≠0)的两根分别是x 1,x 2,那么x 1+x 2=b a -,x 1·x 2=ca.这一关系也被称为韦达定理.特别地,对于二次项系数为1的一元二次方程x 2+px +q =0,若x 1,x 2是其两根,由韦达定理可知x 1+x 2=-p ,x 1·x 2=q ,即 p =-(x 1+x 2),q =x 1·x 2,所以,方程x 2+px +q =0可化为 x 2-(x 1+x 2)x +x 1·x 2=0,由于x 1,x 2是一元二次方程x 2+px +q =0的两根,所以,x 1,x 2也是一元二次方程x 2-(x 1+x 2)x +x 1·x 2=0.因此有以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x +x 1·x 2=0.例1 已知方程2560xkx +-=的一个根是2,求它的另一个根及k 的值.分析:由于已知了方程的一个根,可以直接将这一根代入,求出k 的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k 的值.解法一:∵2是方程的一个根,∴5×22+k ×2-6=0, ∴k =-7.所以,方程就为5x 2-7x -6=0,解得x 1=2,x 2=-35. 所以,方程的另一个根为-35,k 的值为-7. 解法二:设方程的另一个根为x 1,则 2x 1=-65,∴x 1=-35. 由 (-35)+2=-5k,得 k =-7. 所以,方程的另一个根为-35,k 的值为-7.例2 已知关于x 的方程x 2+2(m -2)x +m 2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m 的值.分析: 本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于m 的方程,从而解得m 的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零.解:设x1,x2是方程的两根,由韦达定理,得x1+x2=-2(m-2),x1·x2=m2+4.∵x12+x22-x1·x2=21,∴(x1+x2)2-3 x1·x2=21,即[-2(m-2)]2-3(m2+4)=21,化简,得m2-16m-17=0,解得m=-1,或m=17.当m=-1时,方程为x2+6x+5=0,Δ>0,满足题意;当m=17时,方程为x2+30x+293=0,Δ=302-4×1×293<0,不合题意,舍去.综上,m=17.说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m的值,取满足条件的m的值即可.(1)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或大于零.因为,韦达定理成立的前提是一元二次方程有实数根.例3 已知两个数的和为4,积为-12,求这两个数.分析:我们可以设出这两个数分别为x,y,利用二元方程求解出这两个数.也可以利用韦达定理转化出一元二次方程来求解.解法一:设这两个数分别是x,y,则x+y=4,①xy=-12.②由①,得y=4-x,代入②,得x(4-x)=-12,即x2-4x-12=0,∴x1=-2,x2=6.∴112, 6,x y =-⎧⎨=⎩或226,2.xy=⎧⎨=-⎩因此,这两个数是-2和6.解法二:由韦达定理可知,这两个数是方程x2-4x-12=0的两个根.解这个方程,得x1=-2,x2=6.所以,这两个数是-2和6.说明:从上面的两种解法我们不难发现,解法二(直接利用韦达定理来解题)要比解法一简捷.习题二A 组1.选择题:(1)已知关于x的方程x2+kx-2=0的一个根是1,则它的另一个根是()(A)-3 (B)3 (C)-2 (D)2(2)下列四个说法:①方程x2+2x-7=0的两根之和为-2,两根之积为-7;②方程x2-2x+7=0的两根之和为-2,两根之积为7;③方程3 x2-7=0的两根之和为0,两根之积为73 ;④方程3 x2+2x=0的两根之和为-2,两根之积为0.其中正确说法的个数是()(A)1个(B)2个(C)3个(D)4个(3)关于x的一元二次方程ax2-5x+a2+a=0的一个根是0,则a的值是()(A)0 (B)1 (C)-1 (D)0,或-12.填空:(1)方程kx2+4x-1=0的两根之和为-2,则k=.(2)方程2x2-x-4=0的两根为α,β,则α2+β2=.(3)已知关于x的方程x2-ax-3a=0的一个根是-2,则它的另一个根是.(4)方程2x2+2x-1=0的两根为x1和x2,则| x1-x2|=.3.试判定当m取何值时,关于x的一元二次方程m2x2-(2m+1) x+1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?4.求一个一元二次方程,使它的两根分别是方程x2-7x-1=0各根的相反数.B 组1.选择题:若关于x的方程x2+(k2-1)x+k+1=0的两根互为相反数,则k的值为()(A)1,或-1 (B)1 (C)-1 (D)02.填空:(1)若m,n是方程x2+2005x-1=0的两个实数根,则m2n+mn2-mn的值等于.(2)如果a,b是方程x2+x-1=0的两个实数根,那么代数式a3+a2b+ab2+b3的值是.3.已知关于x的方程x2-kx-2=0.(1)求证:方程有两个不相等的实数根;(2)设方程的两根为x1和x2,如果2(x1+x2)>x1x2,求实数k的取值范围.C 组1.选择题:(1)已知一个直角三角形的两条直角边长恰好是方程2x 2-8x +7=0的两根,则这个直角三角形的斜边长等于( )(A(B )3 (C )6 (D )9 (2)若x 1,x 2是方程2x 2-4x +1=0的两个根,则1221x x x x +的值为 ( ) (A )6 (B )4 (C )3 (D )32(3)如果关于x 的方程x 2-2(1-m )x +m 2=0有两实数根α,β,则α+β的取值范围为( )(A )α+β≥12 (B )α+β≤12(C )α+β≥1 (D )α+β≤1 (4)已知a ,b ,c 是ΔABC 的三边长,那么方程cx 2+(a +b )x +4c=0的根的情况是 ( )(A )没有实数根 (B )有两个不相等的实数根 (C )有两个相等的实数根 (D )有两个异号实数根 2.填空:若方程x 2-8x +m =0的两根为x 1,x 2,且3x 1+2x 2=18,则m = . 3. 已知x 1,x 2是关于x 的一元二次方程4kx 2-4kx +k +1=0的两个实数根.(1)是否存在实数k ,使(2x 1-x 2)( x 1-2 x 2)=-32成立?若存在,求出k 的值;若不存在,说明理由; (2)求使1221x x x x +-2的值为整数的实数k 的整数值; (3)若k =-2,12x x λ=,试求λ的值.第三讲 三角形的“四心”三角形是最重要的基本平面图形,很多较复杂的图形问题可以化归为三角形的问题.三角形的三条中线相交于一点,这个交点称为三角形的重心.三角形的重心在三角形的内部,恰好是每条中线的三等分点. 例1 求证三角形的三条中线交于一点,且被该交点分成的两段长度之比为2:1. 已知 D 、E 、F 分别为△ABC 三边BC 、CA 、AB 的中点,求证 AD 、BE 、CF 交于一点,且都被该点分成2:1. 证明 连结DE ,设AD 、BE 交于点G ,Q D 、E 分别为BC 、AE 的中点,则DE //AB ,且12D E A B =,GDE \V ∽GAB V ,且相似比为1:2,2,2AG GD BG GE \==.设AD 、CF交于点'G ,同理可得,'2','2'.AG G D CG G F ==则G 与'G 重合,\ AD 、BE 、CF 交于一点,且都被该点分成2:1.三角形的三条角平分线相交于一点,是三角形的内心. 三角形的内心在三角形的内部,它到三角形的三边的距离相等.例2 已知ABC V 的三边长分别为,,BC a AC b AB c ===,I 为ABC V 的内心,且I 在ABC V 的边BC AC AB 、、上的射影分别为D E F 、、,求证:2b c aAE AF +-==.证明 作ABC V 的内切圆,则D E F 、、分别为内切圆在三边上的切点,AE AF \=,,AE AF Q 为圆的从同一点作的两条切线,同理,BD =BF ,CD =CE .22b c a AF BF AE CE BD CD AF AE AF AE\+-=+++--=+==即2b c aAE AF +-==. 例3 若三角形的内心与重心为同一点,求证:这个三角形为正三角形. 已知 O 为三角形ABC 的重心和内心. 求证 三角形ABC 为等边三角形.证明 如图,连AO 并延长交BC 于D .Q O 为三角形的内心,故AD 平分BAC Ð,AB BDAC DC\=(角平分线性质定理) Q O 为三角形的重心,D 为BC 的中点,即BD =DC . 1ABAC\=,即AB AC =. 同理可得,AB =BC .ABC \V 为等边三角形.三角形的三条高所在直线相交于一点,该点称为三角形的垂心.锐角三角形的垂心一定在三角形的内部,直角三角形的垂心为他的直角顶点,钝角三角形的垂心在三角形的外部.过不共线的三点A、B、C有且只有一个圆,该圆是三角形ABC的外接圆,圆心O为三角形的外心.三角形的外心到三个顶点的距离相等,是各边的垂直平分线的交点.习题三1.求证:若三角形的垂心和重心重合,求证:该三角形为正三角形.、、,则三角形的内切圆的半径是___________;2.(1)若三角形ABC的面积为S,且三边长分别为a b c、、(其中c为斜边长),则三角形的内切圆的半径是___________. 并请说明理由.(2)若直角三角形的三边长分别为a b c。

相关文档
最新文档