2020 中考数学复习解析:9一线三等角(二)

合集下载

中考数学二轮复习《一线三等角模型》知识梳理及典例讲解课件

中考数学二轮复习《一线三等角模型》知识梳理及典例讲解课件
∠CAD=45°.∴ DE=CD-CE=3.∵ F为AD的中点,∴ AF=

DF= AD=2.∵

∠ADC=90°,∴ ∠EDM=180°-∠ADC=
90°.∵ ∠M=45°,∴


DM=
=3,EM=
=3


.∴ MF=
DF+DM=5.∵ ∠PFE=45°,∴ ∠AFG+∠EFM=180°-
∠PFE=135°.∵ ∠FAG=45°,∴ ∠AFG+∠FGA=180°-
∠FAG=135°.∴ ∠FGA=∠EFM.又∵ ∠FAG=∠M=45°,
∴ △AFG∽△MEF.∴




= ,即 = .∴




AG= .

典例5图答案
强化练习
1. 如图,在△ABC中,AB=AC,点D,E,F分别在边AB,BC,AC上.
典例4图答案
典例5 如图,正方形ABCD的边长为4,E是边CD上一点,且CE=1,F
是AD的中点,对角线AC交BE于点N,P是线段BE上一点,连接EF,
PF,PF与AC相交于点G.若∠PFE=45°,求AG的长.
解:如图,延长AD至点M,连接EM,使∠M=45°.
∵ 四边形ABCD是正方形,∴ AD=CD=4,∠ADC=90°,

=CE.在Rt△ABC中,BC=
=2

,∴ BD=BC-DC=2 -2.∴ CE
=2 -2.∴ AE=AC-CE=4-2 .③ 当AE=DE时,∠EAD=∠ADE
=45°,∴ ∠AED=90°.∴ DE⊥AC.∵ ∠CAD=∠C=45°,∴ AD=CD.∴

AE= AC=1.综上所述,当△ADE是等腰三角形时,AE的长为2或4-2

一线三等角相似、三垂直模型--2024年中考数学压轴题专题及参考答案

一线三等角相似、三垂直模型--2024年中考数学压轴题专题及参考答案

一线三等角相似、三垂直模型压轴题专题一线三等角概念1“一线三等角”是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。

不同地区对此有不同的称呼,“K 形图”,“三垂直”,“弦图”等,以下称为“一线三等角”。

“一线三等角”的两种基本类型1.三等角都在直线的同侧2.三等角分居直线的两侧3.在初三各学校的考试和中考试题中,一线三等角的相似属于压轴题的热点题型之一,本专题从中考试题和初三各名校的试题中,精选一线三等角相似模型的经典好体,并根据角度区别把一线三等角模型细分为三类题型:三垂直模型、一线三锐角、一线三钝角,适合于初三学生进行压轴题专项突破时使用。

类型一:三垂直模型1(雅礼)如图,点A是双曲线y=8xx<0上一动点,连接OA,作OB⊥OA,使OA=2OB,当点A在双曲线y=8xx<0上运动时,点B在双曲线y=kx上移动,则k的值为.2(青竹湖)如图,∠AOB=90°,反比例函数y=−4xx<0的图象过点A−1,a,反比例函数y=k xk>0,x>0的图象过点B,且AB⎳x轴,过点B作MN⎳OA,交x轴于点M,交y轴于点N,交双曲线y=kx于另一点,则ΔOBC的面积为.3(广益)如图,点A,B在反比例函数y=kx(k>0)的图象上,点A的横坐标为2,点B的纵坐标为1,OA⊥AB,则k的值为.4(长沙中考2020)在矩形ABCD中,E为DC上的一点,把ΔADE沿AE翻折,使点D恰好落在BC 边上的点F.(1)求证:ΔABF∼ΔFCE(2)若AB=23,AD=4,求EC的长;(3)若AE-DE=2EC,记∠BAF=α,∠FAE=β,求tanα+tanβ的值.5(广益)矩形ABCD中,AB=8,AD=12,将矩形折叠,使点A落在点P处,折痕为DE.(1)如图1,若点P恰好在边BC上.①求证:△EBP∽△PCD;②求AE的长;(2)如图2,若E是AB的中点,EP的延长线交BC于点F,求BF的长.图1图26(长郡)如图,在平面直角坐标系中,O为原点,已知点Q是射线OC上一点,OQ=182,点P是x轴正半轴上一点,tan∠POC=1,连接PQ,⊙A经过点O且与QP相切于点P,与边OC相交于另一点D.(1)若圆心A在x轴上,求⊙A的半径;(2)若圆心A在x轴的上方,且圆心A到x轴的距离为2,求⊙A的半径;(3)在(2)的条件下,若OP<10,点M是经过点O,D,P的抛物线上的一个动点,点F为x轴上的一个动点,若满足tan∠OFM=12的点M共有4个,求点F的横坐标的取值范围.7(麓山国际)有一边是另一边的2倍的三角形叫做智慧三角形,这两边中较长边称为智慧边,这两边的夹角叫做智慧角.(1)已知Rt△ABC为智慧三角形,且Rt△ABC的一边长为2,则该智慧三角形的面积为;(2)如图①,在△ABC中,∠C=105°,∠B=30°,求证:△ABC是智慧三角形;(3)如图②,△ABC是智慧三角形,BC为智慧边,∠B为智慧角,A(3,0),点B,C在函数y=kx上(x>0)的图象上,点C在点B的上方,且点B的纵坐标为2.当△ABC是直角三角形时,求k的值.类型二:一线三锐角8(师大梅溪湖)如图,在△ABC中,∠ABC=45°,AB=22,AD=AE,∠DAE=90°,CE=5,则CD的长为.(提示,作辅助线构造一线三等角的相似)9(青竹湖)如图,在△ABC中,∠B=∠ACB=45°,AB=62,点D是BC上一点,作DE⊥AD交射线AC于E,DF平分∠ADE交AC于F.(1)求证:AB•CF=BD•CD;(2)如图2,当∠AED=75°时,求CF的长;(3)若CD=3BD,求AFEF.10(广益)如图1,已知直线y=kx+2k(k为常数,k≠0)与x轴相交于点A,点B与点A关于y轴对称,点C在y轴的正半轴上,OC=3OA,连接AC,BC。

中考数学相似三角形重要模型一线三等角模型

中考数学相似三角形重要模型一线三等角模型

相似三角形重要模型-一线三等角模型相似三角形在中考数学几何模块中占据着重要地位。

相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。

如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就一线三等角模型进行梳理及对应试题分析,方便掌握。

模型1.一线三等角模型(相似模型)【模型解读与图示】“一线三等角”型的图形,因为一条直线上有三个相等的角,一般就会有两个三角形的“一对角相等”,再利用平角为180°,三角形的内角和为180°,就可以得到两个三角形的另外一对角也相等,从而得到两个三角形相似.1)一线三等角模型(同侧型)(锐角型)(直角型)(钝角型)条件:如图,∠1=∠2=∠3,结论:△ACE∽△BED.2)一线三等角模型(异侧型)条件:如图,∠1=∠2=∠3,结论:△ADE∽△BEC.3)一线三等角模型(变异型)图1 图2 图3①特殊中点型:条件:如图1,若C为AB的中点,结论:△ACE∽△BED∽△ECD.②一线三直角变异型1:条件:如图2,∠ABD=∠AFE=∠BDE=90°.结论:△ABC∽△BDE∽△BFC∽△AFB.③一线三直角变异型2:条件:如图3,∠ABD=∠ACE=∠BDE=90°.结论:△ABM∽△NDE∽△NCM.例1.(2023·山东东营·统考中考真题)如图,A B C为等边三角形,点D,E分别在边B C,A B上,60A D E∠=︒,若4B D D C=, 2.4D E=,则A D的长为()A.1.8B.2.4C.3D.3.2例2.(2023·湖南·统考中考真题)如图,,C A ADE D A D⊥⊥,点B是线段A D上的一点,且C B B E⊥.已知8,6,4A B A C D E===.(1)证明:A B C D E B∽△△.(2)求线段B D的长.例3.(2022·河南新乡·九年级期中)某学习小组在探究三角形相似时,发现了下面这种典型的基本图形.(1)如图1,在ABC中,∠BAC=90°,A BA C=k,直线l经过点A,BD⊥直线I,CE上直线l,垂足分别为D、E.求证:B DA E=k.(2)组员小刘想,如果三个角都不是直角,那么结论是否仍然成立呢?如图2,将(1)中的条件做以下修改:在ABC中,A BA C=k,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问(1)中的结论还成立吗?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,在ABC中,沿ABC的边AB、AC向外作矩形ABDE和矩形ACFG,A BA E =A CA G=12,AH是BC边上的高,延长HA交EG于点I.①求证:I是EG的中点.②直接写出线段BC与AI之间的数量关系:.例4.(2022·四川·一模)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:(1)如图1,已知:在△ABC 中,A B A C=,D 、A 、E 三点都在直线m 上,并且有B D AA E CB AC α∠=∠=∠=.试猜想DE 、BD 、CE 有怎样的数量关系,请证明你的结论;(2)老师鼓励学习小组继续探索相似的情形.于是,学习小组又研究以下问题:如图2,△ABC 中,(060)B C αα∠=∠=<<︒.将一把三角尺中30°角顶点P 放在BC 边上,当P 在BC 边上移动时,三角尺中30°角的一条边始终过点A ,另一条边交AC 边于点Q ,P 、Q 不与三角形顶点重合.设C P Qβ∠=.当β在许可范围内变化时,α取何值总有△ABP ∽△PCQ ?当α在许可范围内变化时,β取何值总有△ABP ∽△QCP ?(3)试探索有无可能使△ABP 、△QPC 、△ABC 两两相似?若可能,写出所有α、β的值(不写过程);若不可能,请说明理由.例5.(2022·山西晋中·一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①,在A B C中,90A C B ∠=︒,A C B C=,分别过A 、B 向经过点C 直线作垂线,垂足分别为D 、E ,我们很容易发现结论:A D C C E B△≌△.(1)探究问题:如果A CB C≠,其他条件不变,如图②,可得到结论;A D CC E B△∽△.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线12y x=与直线C D 交于点()2,1M ,且两直线夹角为α,且3ta n 2α=,请你求出直线C D 的解析式.(3)拓展应用:如图④,在矩形A B C D 中,3A B=,5B C=,点E为B C 边上—个动点,连接A E ,将线段A E 绕点E 顺时针旋转90︒,点A 落在点P 处,当点P 在矩形A B C D外部时,连接P C ,P D .若D P C △为直角三角形时,请你探究并直接写出B E 的长.Rt ABD中,上一动点,连接折叠得H E F,延长②B E M H E M≅;③当M2B,则正确的有(九年级校考阶段练习)已知A B C是等边三角形,E F和B D F∠,将B C E沿B则A F=P C D△;九年级校考阶段练习)如图,在A B C中,12.(2022·山东济宁·二模)情境观察:将含45°角的三角板的直角顶点R放在直线l上,分别过两锐角的顶点M,N作l的垂线,垂足分别为P,Q,(1)如图1.观察图1可知:与NQ相等的线段是______________,与N R Q∠相等的角是_____(2)问题探究直角A B C中,90B∠=︒,在AB边上任取一点D,连接CD,分别以AC,DC为边作正方形ACEF 和正方形CDGH,如图2,过E,H分别作BC所在直线的垂线,垂足分别为K,L.试探究EK与HL之间的数量关系,并证明你的结论.(3)拓展延伸:直角A B C中,90B∠=︒,在AB边上任取一点D,连接CD,分别以AC,DC为边作矩形ACEF和矩形CDGH,连接EH交BC所在的直线于点T,如图3.如果A C kC E=,试探究TE与TH=,C D kC H之间的数量关系,并证明你的结论.将.A B P沿着这样的点P,使得点问题解决(3)15.(2023春·四川广安·九年级校考阶段练习)如图1和图2,在平面直角坐标系中,点C的坐标为(0,4),A是x轴上的一个动点,M是线段AC的中点.把线段AM以A为旋转中心、按顺时针方向旋转90°得到AB.过B作x轴的垂线、过点C作y轴的垂线,两直线交于点D,直线DB交x轴于点E.设A点的横坐标为m.(1)求证:△AOC∽△BEA;(2)若m=3,则点B的坐标为;若m=﹣3,则点B的坐标为;(3)若m>0,△BCD的面积为S,则m为何值时,S=6?(4)是否存在m,使得以B、C、D为顶点的三角形与△AOC相似?若存在,求此时m的值;若不存在,请说明理由.16.(2020·四川雅安·中考真题)如图,已知边长为10的正方形A B C D E、不重,是B C边上一动点(与B C 合),连结A E G,是B C延长线上的点,过点E作A E的垂线交D C G∠的角平分线于点F,若F G B G⊥.(1)求证:A B E E G FE C=,求C E F△△;(2)若2∽△的△的面积;(3)请直接写出E C为何值时,C E F面积最大.的何位置时有B E H B A E∽?B C。

一线三等角模型(原卷版)-2023年中考数学重难点解题大招复习讲义-几何模型篇

一线三等角模型(原卷版)-2023年中考数学重难点解题大招复习讲义-几何模型篇

一线三等角:两个三角形中相等的两个角落在同一条直线上,另外两条边所构成的角与这两个角相等,这三个相等的角落在同一直线上,故称“一线三等角” 如下图所示,一线三等角包括一线三直角、一线三锐角、一线三钝角类型一:一线三直角模型如图,若∠1、∠2、∠3都为直角,则有△ACP ∽△BP D .321DBPAC 模型介绍类型二:一线三锐角与一线三钝角模型如图,若∠1、∠2、∠3都为锐角,则有△ACP∽△BP D.证明:∵∠DPB=180°-∠3-∠CP A,∠C=180°-∠1-∠CP A,而∠1=∠3∴∠C=∠DPB,∵∠1=∠2,∴△ACP∽△BPD如图,若∠1、∠2、∠3都为钝角,则有△ACP∽△BP D.(证明同锐角)【解题关键】构造相似或全等三角形.考点一:一线三等角直角模型【例1】.如图,四边形ABCD中,∠ABC=∠ACD=90°,AC=CD,BC=4cm,则△BCD的面积为cm2.3CDBPA231DBPAC例题精讲➢变式训练【变式1-1】.如图,A在线段BG上,ABCD和DEFG都是正方形,面积分别为7平方厘米和11平方厘米,则△CDE的面积等于平方厘米.【变式1-2】.如图,一块含45°的三角板的一个顶点A与矩形ABCD的顶点重合,直角顶点E落在边BC上,另一顶点F恰好落在边CD的中点处,若BC=12,则AB的长为.【变式1-3】.如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B,C两点的坐标分别是()A.(,3),(﹣,4)B.(,3),(﹣,4)C.(,),(﹣,4)D.(,),(﹣,4)【变式1-4】.如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x >0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为()A.B.C.D.考点二:一线三等角锐角或钝角模型【例2】.如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于()A.1B.2C.3D.4➢变式训练【变式2-1】.如图,在△ABC中,AB=AC,AB>BC,点D在边BC上,CD=3BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为12,则△ACF与△BDE的面积之和为.【变式2-2】.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连接OP,以O为圆心,OP长为半径画弧交BC于点D,连接PD,如果PO=PD,那么AP的长是.【变式2-3】.如图1,在正方形ABCD中,E是边BC的中点,F是CD上一点,已知∠AEF =90°.(1)求证:=;(2)平行四边形ABCD中,E是边BC上一点,F是边CD上一点,∠AFE=∠ADC,∠AEF=90°.如图2,若∠AFE=45°,求的值.实战演练1.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=7cm,BE=3cm,则DE的长是()A.3cm B.3.5cm C.4cm D.4.5cm2.如图,在矩形ABCD中,AB=4,,E为CD边上一点,将△BCE沿BE折叠,使得C落到矩形内点F的位置,连接AF,若,则CE=()A.B.C.D.3.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个顶点分别在这三条平行直线上,则sinα的值是()A.13B.617C.√55D.√10104.如图,在△ABC中,∠C=90°,∠B=30°,点D、E、F分别为边AC、AB、CB上的点,且△DEF为等边三角形,若AD=CD.则的值为()A.B.C.D.5.如图,在等边三角形ABC中,AB=4,P是边AB上一点,BP=,D是边BC上一点(点D不与端点重合),作∠PDQ=60°,DQ交边AC于点Q.若CQ=a,满足条件的点D有且只有一个,则a的值为()A.B.C.2D.36.△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC 内.若求五边形DECHF的面积,则只需知道()A.△ABC的面积B.△BFG的面积C.四边形AFGH的周长D.△BDE的面积7.如图,在正方形ABCD中,AB=4,E为AB边上一点,点F在BC边上,且BF=1,将点E绕着点F顺时针旋转90°得到点G,连接DG,则DG的长的最小值为()A.2B.2C.3D.8.设O为坐标原点,点A、B为抛物线y=4x2上的两个动点,且OA⊥OB.连接点A、B,过O作OC⊥AB于点C,则点C到y轴距离的最大值为()A.B.C.D.19.如图,在△ABC中,AC=3,BC=4,∠C=90°,过CB的中点D作DE⊥AD,交AB 于点E,则EB的长为.10.如图,在平面直角坐标系中,点A(6,0),点B(0,2),点P是直线y=﹣x﹣1上一点,且∠ABP=45°,则点P的坐标为.11.已知反比例函数y=,经过点E(3,4),现请你在反比例函数y=上找出一点P,使∠POE=45°,则此点P的坐标为.12.如图,四边形ABCD中,∠B=∠C=90°,点E是BC边上一点,△ADE是等边三角形,若,=.13.如图,在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC =∠BAC=α,若DE=10,BD=3,求CE的长.14.如图所示,边长为2的等边三角形ABC中,D点在边BC上运动(不与B,C重合),点E在边AB的延长线上,点F在边AC的延长线上,AD=DE=DF.(1)若∠AED=30°,则∠ADB=°.(2)求证:△BED≌△CDF.(3)点D在BC边上从B至C的运动过程中,△BED周长变化规律为.A.不变B.一直变小C.先变大后变小D.先变小后变大15.如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC 重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)当线段BE为何值时,线段AM最短,最短是多少?(3)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由.16.如图①,正方形ABCD中,点A,B的坐标分别为(0,10),(8,4),点C在第一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D→A匀速运动,同时动点Q以相同的速度在x轴正半轴上运动,当点P到达A点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中,设△OPQ的面积为S,求S与t的函数关系式并写出自变量的取值范围.(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等?若能,写出所有符合条件的t的值;若不能,请说明理由.17.在平面直角坐标系xOy中,抛物线y=x2+(1﹣m)x﹣m(m>0)与x轴交于A,B两点(点A在点B的左边),与y轴交于点C.(1)求线段AB的长(用含m的代数式表示);(2)当2≤m≤4时,抛物线过点(a,b)和(a+5,b),求a的取值范围;(3)如图,在y轴上有一点P(0,3),当∠APB=∠ABC时,求m的值.。

2023年中考数学常见几何模型归纳(全国通用版):一线三等角模型(从全等到相似)(解析版)

2023年中考数学常见几何模型归纳(全国通用版):一线三等角模型(从全等到相似)(解析版)

专题05一线三等角(K 型图)模型(从全等到相似)全等三角形与相似三角形在中考数学几何模块中占据着重要地位。

相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。

如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就一线三等角模型进行梳理及对应试题分析,方便掌握。

模型1.一线三等角(K 型图)模型(全等模型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。

【常见模型及证法】同侧型一线三等角(常见):锐角一线三等角直角一线三等角(“K 型图”)钝角一线三等角条件:A CED B +CE=DE证明思路:,A B C BED +任一边相等BED ACE异侧型一线三等角:锐角一线三等角直角一线三等角钝角一线三等角条件:FAC ABD CED +任意一边相等证明思路:,A B C BED +任一边相等BED ACE1.(2022·湖南湘潭·中考真题)在ABC 中,90BAC ,AB AC ,直线l 经过点A ,过点B 、C 分别作l 的垂线,垂足分别为点D 、E .(1)特例体验:如图①,若直线l BC ∥,AB AC BD 、CE 和DE 的长;(2)规律探究:①如图②,若直线l 从图①状态开始绕点A 旋转 045 ,请探究线段BD 、CE 和DE 的数量关系并说明理由;②如图③,若直线l 从图①状态开始绕点A 顺时针旋转 4590 ,与线段BC 相交于点H ,请再探线段BD 、CE 和DE 的数量关系并说明理由;(3)尝试应用:在图③中,延长线段BD 交线段AC 于点F ,若3CE ,1DE ,求BFC S △.【答案】(1)BD =1;CE =1;DE =2(2)①DE =CE +BD ;理由见解析;②BD =CE +DE ;理由见解析(3)258BFC S【分析】(1)先根据得出90452ABC ACB ,根据l BC ∥,得出45DAB ABC ,45EAC ACE ,再根据90BDA CEA ,求出45ABD ,45ACE ,即可得出45DAB ABD EAC ACE ,最后根据三角函数得出1AD BD ,1AE CE ,即可求出2DE AD AE ;(2)①DE =CE +BD ;根据题意,利用“AAS”证明ABD CAE ≌,得出AD =CE ,BD =AE ,即可得出结论;②BD =CE +DE ;根据题意,利用“AAS”证明ABD CAE ≌,得出AD =CE ,BD =AE ,即可得出结论;(3)在Rt △AEC 中,根据勾股定理求出5AC ,根据DF CE ∥,得出AD AF AE CF ,代入数据求出AF ,根据AC =5,算出CF ,即可求出三角形的面积.(1)解:∵90BAC ,AB AC ,∴90452ABC ACB ,∵l BC ∥,∴45DAB ABC ,45EAC ACE ,∵BD ⊥AE ,CE ⊥DE ,∴90BDA CEA ,∴904545ABD ,904545ACE ,∴45DAB ABD EAC ACE ,∴sin 12AD BD AB DAB ,sin 1AE CE AC EAC ,∴2DE AD AE .(2)①DE =CE +BD ;理由如下:∵BD ⊥AE ,CE ⊥DE ,∴90BDA CEA ,∴90DAB DBA ,∵90BAC ,∴90DAB CAE ,∴DBA CAE ,∵AB =AC ,∴ABD CAE ≌,∴AD =CE ,BD =AE ,∴DE =AD +AE =CE +BD ,即DE =CE +BD ;②BD =CE +DE ,理由如下:∵BD ⊥AE ,CE ⊥DE ,∴90BDA CEA ,∴90DAB DBA ,∵90BAC ,∴90DAB CAE ,∴DBA CAE ,∵AB =AC ,∴ABD CAE ≌,∴AD =CE ,BD =AE ,∴BD =AE =AD +DE =CE +DE ,即BD =CE +DE .(3)根据解析(2)可知,AD =CE=3,∴314AE AD DE ,在Rt △AEC 中,根据勾股定理可得:5AC ,∵BD ⊥AE ,CE ⊥AE ,∴DF CE ∥,∴AD AF AE CF ,即345AF ,解得:154 AF ,∴155544CF AC AF ,∵AB =AC =5,∴1152552248BFC S CF AB .【点睛】本题主要考查了三角形全等的判定和性质,等腰三角形的判定和性质,勾股定理,平行线的性质,解直角三角形,根据题意证明ABD CAE ≌,是解题的关键.2.(2022·黑龙江·九年级期末)(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .证明∶DE =BD +CE .(2)如图(2),将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC = ,其中 为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA =∠AEC =∠BAC ,试判断△DEF 的形状.【答案】(1)见解析(2)成立,证明见解析(3)△DEF为等边三角形,证明见解析【分析】(1)因为DE=DA+AE,故由全等三角形的判定AAS证△ADB≌△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE;(2)成立,仍然通过证明△ADB≌△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD;(3)由△ADB≌△CEA得BD=AE,∠DBA=∠CAE,由△ABF和△ACF均等边三角形,得∠ABF=∠CAF=60°,FB=FA,所以∠DBA+∠ABF=∠CAE+∠CAF,即∠DBF=∠FAE,所以△DBF≌△EAF,所以FD=FE,∠BFD=∠AFE,再根据∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600得到△DEF是等边三角形.【详解】解:(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°.∵∠BAC=90°,∴∠BAD+∠CAE=90°.∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD.又AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE;(2)成立.证明如下:∵∠BDA=∠BAC= ,∴∠DBA+∠BAD=∠BAD+∠CAE=180°- .∴∠DBA=∠CAE.∵∠BDA=∠AEC= ,AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE;(3)△DEF为等边三角形.理由如下:由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°.∴∠DBA+∠ABF=∠CAE+∠CAF.∴∠DBF=∠FAE.∵BF=AF,∴△DBF≌△EAF(SAS).∴DF=EF,∠BFD=∠AFE.∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°.∴△DEF为等边三角形.【点睛】此题考查了全等三角形的性质和判定、等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定,等边三角形的性质和判定.3.(2022·江苏·九年级专题练习)【感知模型】“一线三等角”模型是平面几何图形中的重要模型之一,请根据以下问题,把你的感知填写出来:①如图1,ABC 是等腰直角三角形,90C ,AE =BD ,则AED ≌_______;②如图2,ABC 为正三角形,,60BD CF EDF ,则BDE ≌________;③如图3,正方形ABCD 的顶点B 在直线l 上,分别过点A 、C 作AE l 于E ,CF l 于F .若1AE ,2CF ,则EF 的长为________.【模型应用】(2)如图4,将正方形OABC 放在平面直角坐标系中,点O 为原点,点A 的坐标为,则点C 的坐标为________.【模型变式】(3)如图5所示,在ABC 中,90ACB ,AC BC ,BE CE 于E ,AD ⊥CE 于D ,4cm DE ,6cm AD ,求BE 的长.∵∠EDF =45゜∴∠ADE +∠BDF =180゜−∠EDF =135゜∴∠ADE =∠BFD在△AED 和△BDF 中A B ADE BFD AE BD ∴△AED ≌△BDF (AAS )答案为:△BDF ;②∵△ABC 是等边三角形∴∠B =∠C =60゜∴∠BDE +∠BED =180゜−∠B =120゜∵∠EDF =60゜∴∠BDE +∠CDF =180゜−∠EDF =120゜∴∠BED =∠CDF在△BDE 和△CFD 中B C BED CDF BD CF∴△BDE ≌△CFD (AAS )故答案为:△CFD ;③∵四边形ABCD 是正方形∴∠ABC =90゜,AB =BC∴∠ABE +∠CBF =180゜−∠ABC =90゜∵AE ⊥l ,CF ⊥l ∴∠AEB =∠CFB =90゜∴∠ABE +∠EAB =90゜∴∠EAB =∠CBF在△ABE 和△BCF 中AEB CFB EAB CBF AB BC∴△ABE ≌△BCF (AAS )∴AE =BF =1,BE =CF =2∴EF =BE +BF =2+1=3故答案为:3;(2)分别过A 、C 作x 轴的垂线,垂足分别为点D 、E ,如图所示∵四边形OABC 是正方形∴∠AOC =90゜,AO =OC∴∠COE +∠AOD =180゜−∠ACO =90゜∵AD ⊥x 轴,CE ⊥x 轴∴∠CEO =∠ADO =90゜模型2.一线三等角模型(相似模型)【模型解读与图示】“一线三等角”型的图形,因为一条直线上有三个相等的角,一般就会有两个三角形的“一对角相等”,再利用平角为180°,三角形的内角和为180°,就可以得到两个三角形的另外一对角也相等,从而得到两个三角形相似.1.(2022·四川·一模)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形:(1)如图1,已知:在△ABC 中,AB AC ,D 、A 、E 三点都在直线m 上,并且有BDA AEC BAC .试猜想DE 、BD 、CE 有怎样的数量关系,请证明你的结论;(2)老师鼓励学习小组继续探索相似的情形.于是,学习小组又研究以下问题:如图2,△ABC 中,(060)B C .将一把三角尺中30°角顶点P 放在BC 边上,当P 在BC 边上移动时,三角尺中30°角的一条边始终过点A ,另一条边交AC 边于点Q ,P 、Q 不与三角形顶点重合.设CPQ .当 在许可范围内变化时, 取何值总有△ABP ∽△PCQ ?当 在许可范围内变化时, 取何值总有△ABP ∽△QCP ?(3)试探索有无可能使△ABP 、△QPC 、△ABC 两两相似?若可能,写出所有 、 的值(不写过程);若不可能,请说明理由.【答案】(1)DE AE AD BD CE ;证明见解析;(2)30 ;75 ;(3)可能;30 ,30 或52.5 ,75 .【分析】(1)证明△ADB ≌△CEA (AAS ),由全等三角形的性质得出AE =BD ,AD =CE ,则可得出结论;(2)由β=∠2或∠1=∠CQP ,即∠2=30°+β-α=β,解得α=30°,即可求解;由β=∠1或∠2=∠CQP ,同理可得:β=75°,即可求解;(3)①当α=30°,β=30°时,则∠2=∠B =α=30°,即可求解;②当β=75°,α=52.5°时,同理可解.【详解】解:(1)如图1,∵BDA BAC ,∴180DBA BAD BAD CAE ,∴DBA CAE ,在△ADB 和△CEA 中,DBA EAC BDA AEC BA AC,∴△ADB ≌△CEA (AAS ),∴AE BD ,AD CE ,∴DE AE AD BD CE ;(2)在△ABP 中,2230APC B ,∴1150 ,同理可得:230 ;由2 或1CQP ,即230 ,解得30 ,则△ABP ∽△PCQ ;∴当 在许可范围内变化时,30 时,总有△ABP ∽△PCQ ;由1 或2CQP ,同理可得:75 .∴当 在许可范围内变化时,75 总有△ABP ∽△QCP ;(3)可能.①当30 ,30 时,则230B ,则△ABP ∽△PCQ ∽△BCA ;②当75 ,52.5 时,同理可得:115075 ,23052.5 ,∴△ABP ∽△CQP ∽△BCA .【点睛】本题是相似形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,熟练掌握相似三角形的性质是解本题的关键.2.(2022·河南新乡·二模)如图,△ABC 和△ADE 是有公共顶点A 的两个等腰直角三角形,∠DAE =∠BAC =90°,AD =AE ,AB =AC =6,D 在线段BC 上,从B 到C 运动,点M 和点N 分别是边BC ,DE 的中点.(1)【问题发现】若点D 是BC 边的中点时,BD MN =,直线BD 与MN 相交所成的锐角的度数为(请直接写出结果)(2)【解决问题]若点D 是BC 边上任意一点时,上述结论是否成立,请说明理由.(3)【拓展探究】在整个运动过程中,请直接写出N 点运动的路径长,及CN 的最小值.,3.(2022·山东菏泽·三模)(1)问题:如图1,在四边形ABCD 中,点P 为AB 上一点,当90DPC A B 时,求证:AD BC AP BP .(2)探究:若将90°角改为锐角或钝角(如图2),其他条件不变,上述结论还成立吗?说明理由.(3)应用:如图3,在ABC 中,AB ,45B ,以点A 为直角顶点作等腰Rt ADE △.点D 在BC上,点E 在AC 上,点F 在BC 上,且45EFD ,若CE CD 的长.模型3.一线三直角模型(相似模型)【模型解读与图示】“一线三直角”模型的图形,实则是“一线三等角”型的图形的特例,因为这种图形在正方形和矩形中出现的比较多,对它做一专门研究,这样的图形,因为有三个角是直角,就有两个角相等,再根据“等角的余角相等”可以得到另外一对角相等,从而判定两个三角形相似.1.(2022·湖南郴州·中考真题)如图1,在矩形ABCD 中,4AB ,6BC .点E 是线段AD 上的动点(点E 不与点A ,D 重合),连接CE ,过点E 作EF CE ,交AB 于点F .(1)求证:AEF DCE ∽;(2)如图2,连接CF ,过点B 作BG CF ⊥,垂足为G ,连接AG .点M 是线段BC 的中点,连接GM .①求AG GM 的最小值;②当AG GM 取最小值时,求线段DE 的长.【答案】(1)见解析(2)①5;②3DE或3DE 【分析】(1)证明出DCE AEF 即可求解;(2)①连接AM .先证明132BM CM GM BC .确定出点G 在以点M 为圆心,3为半径的圆上.当A ,G ,M 三点共线时,AG GM AM .此时,AG GM 取最小值.在Rt ABM 中利用勾股定理即可求出AM ,则问题得解.②先求出AF ,求AF 的第一种方法:过点M 作∥MN AB 交FC 于点N ,即有CMN CBF ∽△△,进而有12MN CM BF CB .设AF x ,则4BF x , 142MN x .再根据∥MN AB ,得到AFG MNG ∽△△,得到AF AG MN GM ,则有 21342x x ,解方程即可求出AF ;求AF 的第二种方法:过点G 作GH AB ∥交BC 于点H .即有MHG MBA ∽△△.则有GM GH MH AM AB MB,根据5AM ,可得3543GH MH ,进而求出125GH ,95MH .由GH AB ∥得CHG CBF ∽△△,即可求出AF .求出AF 之后,由(1)的结论可得AF AE DE DC=.设DE y ,则6AE y ,即有164y y ,解得解方程即可求出DE .(1)证明:如图1,∵四边形ABCD 是矩形,∴90A D ,∴90CED DCE .∵EF CE ,∴90CED AEF ,∴DCE AEF ,∴AEF DCE ∽;(2)①解:如图2-1,连接AM .∵BG CF ⊥,∴BGC 是直角二角形.∴132BM CM GM.∴点G 在以点M 为圆心,3为半径的圆上.当A ,G ,M 三点不共线时,由三角形两边之和大于箒三边得:AG GM AM ,当A ,G ,M 三点共线时,AG GM AM .此时,AG GM 取最小值.在Rt ABM中,5AM .∴AG GM 的最小值为5.②(求AF 的方法一)如图2-2,过点M 作∥MN AB 交FC 于点N ,∴CMN CBF ∽△△.∴12MN CM BF CB .设AF x ,则4BF x ,∴ 11422MN BF x .∵∥MN AB ,∴AFG MNG ∽△△,∴AF AG MN GM ,由①知AG GM 的最小值为5、即5AM,又∵3GM ,∴2AG .∴ 21342x x ,解得1x ,即1AF .(求AF 的方法二)如图2-3,过点G 作GH AB ∥交BC 于点H .∴MHG MBA ∽△△.∴GM GH MH AM AB MB,由①知AG GM 的最小值为5,即5AM ,又∵3GM ,∴3543GH MH .∴125GH ,95MH .由GH AB ∥得CHG CBF ∽△△,∴GH CH FB CB ,即1293556FB ,解得3FB .∴1AF AB FB .由(1)的结论可得AF AE DE DC =.设DE y ,则6AE y ,∴164y y,解得3y或3.∵036,036 ,∴3DE或3DE 【点睛】本题主要考查了相似三角形的判定与性质、平行的性质、勾股定理以及一元二次方程的应用等知识,掌握相似三角形的判定与性质是解答本题的关键.2.(2022·山东济宁·二模)情境观察:将含45°角的三角板的直角顶点R 放在直线l 上,分别过两锐角的顶点M ,N 作l 的垂线,垂足分别为P ,Q ,(1)如图1.观察图1可知:与NQ 相等的线段是______________,与NRQ 相等的角是_____(2)问题探究直角ABC 中,90B ,在AB 边上任取一点D ,连接CD ,分别以AC ,DC 为边作正方形ACEF 和正方形CDGH ,如图2,过E ,H 分别作BC 所在直线的垂线,垂足分别为K ,L .试探究EK 与HL 之间的数量关系,并证明你的结论.(3)拓展延伸:直角ABC 中,90B ,在AB 边上任取一点D ,连接CD ,分别以AC ,DC 为边作矩形ACEF 和矩形CDGH ,连接EH 交BC 所在的直线于点T ,如图3.如果AC kCE ,CD kCH ,试探究TE 与TH 之间的数量关系,并证明你的结论.【答案】(1)PR ,PMR ,(2)EK LH ,证明见解析;(3)ET HT ,证明见解析.【分析】(1)根据等腰直角三角形的性质得到,=MR RN ,90MRN ,根据余角性质得到PMR NRQ ,再证明MPR NRQ ≌△△,即可得到QN PR ,NRQ PMR ;(2)证明ABC CEK ≌△△,得到EK BC ,再证明DCB CHL ≌△△,得到BC HL ,可得到EK LH ;(3)证明ACB ECM ∽△△,得到BC kEM ,证明BCD NHC ∽△△,得到BC kHN ,得到EM HN ,证明NHT EMT ≌△△即可得到ET HT .(1)解:∵MRN △是等腰直角三角形,∴=MR RN ,90MRN ,∵MP PQ ,NQ PQ ,∴90MPR NQR ,∴90PMR MRP MRP NRQ ,∴PMR NRQ ,在MPR △和NRQ △中,PMR NRQ MPR NRQ MR NR∴MPR NRQ ≌△△,∴QN PR ,NRQ PMR ,故答案为:PR ,PMR ;(2)解:∵四边形ACEF 是正方形,∴AC CE ,90ACE ,∵EK BK ∴90B EKC ,∴90BAC ACB ACB ECK ,∴BAC ECK ,∵四边形ACEF 是矩形,∴∴BAC ECM ,∴ACB △同理:BCD NHC ∽△△,∴在NHT △和EMT △中, 3.(2022·浙江·嘉兴一中一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①:在△ABC 中,∠ACB =90°,AC =BC ,分别过A 、B 向经过点C 直线作垂线,垂足分别为D 、E ,我们很容易发现结论:△ADC ≌△CEB .(1)探究问题:如果AC ≠BC ,其他条件不变,如图②,可得到结论;△ADC ∽△CEB .请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线y =12x 与直线CD 交于点M (2,1),且两直线夹角为α,且tanα=32,请你求出直线CD 的解析式.(3)拓展应用:如图④,在矩形ABCD 中,AB =4,BC =5,点E 为BC 边上一个动点,连接AE ,将线段AE 绕点E 顺时针旋转90°,点A 落在点P 处,当点P 在矩形ABCD 外部时,连接PC ,PD .若△DPC 为直角三角形时,请你探究并直接写出BE 的长.由(1)可得:△NFO ∽△OEM ,∴NF OF NO OE ME MO∵点M (2,1),∴OE 1,∵tanα=ON OM =32,∴3NF OF ,∴NF =3,OF =33 ,3课后专项训练:1.(2022·贵州铜仁·三模)(1)探索发现:如图1,已知Rt ABC 中,90ACB ,AC BC ,直线l 过点C ,过点A 作AD l ,过点B 作BE l ,垂足分别为D 、E .求证:CD BE .(2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点N 的坐标为 4,2,求点M 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线44y x 与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45 后,所得的直线交x 轴于点R .求点R 的坐标.由已知得OM=ON,且∠OMN=∴由(1)得△OFM≌△MGN,∴MF=NG,OF=MG,设M(∴MF=m,OF=n,∴MG=n,,∵点N的坐标为(4,2)∴42m nn m解得13mn∴点M的坐标为(1,3);(3)如图3,过点Q作QS⊥PQ PR于S,过点S作SH⊥x轴于H,对于直线y=﹣4x+4,由x=0得∴P(0,4),∴OP=4,由y=1,∴Q(1,0),OQ=1,∵∠QPR=45°,∴∠PSQ=45°.∴PQ=SQ.∴由(1)得SH2.(2022·广东·汕头市潮阳区教师发展中心教学研究室一模)(1)模型建立,如图1,等腰直角三角形ABC 中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;(2)模型应用:①已知直线AB与y轴交于A点,与x轴交于B点,sin∠ABO=35,OB=4,将线段AB绕点B逆时针旋转90度,得到线段BC,过点A,C作直线,求直线AC的解析式;②如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A,C分别在坐标轴上,P是线段BC上动点,已知点D在第一象限,且是直线y=2x 5上的一点,若△APD是以D为直角顶点的等腰直角三角形,请求出所有符合条件的点D的坐标.当D在AB的下方时,过D作DE⊥轴于E,交BC于F,同(1)可证得△ADE≌△DPF,∴=AE=6-(2x-5)=11-2x,DE=x,3.(2022·黑龙江·桦南县九年级期中)如图1,在ABC 中,90ACB ,AC BC ,直线MN 经过点C ,且AD MN 于D ,BE MN 于E .(1)由图1,证明:DE AD BE ;(2)当直线MN 绕点C 旋转到图2的位置时,请猜想出DE ,AD ,BE 的等量关系并说明理由;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE ,AD ,BE 又具有怎样的等量关系?请直接写出这个等量关系(不必说明理由).【答案】(1)证明见解析;(2)DE AD BE ,证明过程见解析;(3)DE BE AD ,证明过程见解析【分析】(1)先证明△ADC ≌△CEB ,得到AD=CE ,DC=BE ,进而得到DE=CE+DC=AD+BE 即可;(2)同(1)中思路,证明△ADC ≌△CEB ,进而得到DE=CE -DC=AD -BE 即可;(3)同(1)中思路,证明△ADC ≌△CEB ,进而得到DE=DC -CE=BE -AD 即可.【详解】解:(1)证明:在ABC 中,∵90ACB ,∴90ACD BCE ,∵AD MN ,∴90ACD CAD ,∴BCE ∠∠CA D ,又∵AC BC ,90ADC CEB ,∴() ≌ADC CEB AAS ,∴AD CE ,DC BE ,∵直线MN 经过点C ,∴DE CE DC AD BE ;(2)DE ,AD ,BE 的等量关系为:DE AD BE ,理由如下:∵AD MN 于D ,BE MN 于E ∴90ADC BEC ACB ,∴90CAD ACD ,90ACD BCE ,∴CAD BCE ,在ADC 和CEB △中90CAD BCE ADC BEC AC CB,∴ ADC CEB AAS △≌△∴CE AD ,CD BE ,∴DE CE CD AD BE ;(3)当MN 旋转到图3的位置时,DE 、AD 、BE 所满足的等量关系是DE BE AD ,理由如下:∵AD MN 于D ,BE MN 于E ∴90ADC BEC ACB ,∴90CAD ACD ,90ACD BCE ,∴CAD BCE ,在ADC 和CEB △中90CAD BCE ADC BEC AC CB,∴ ADC CEB AAS △≌△∴CE AD ,CD BE ,∴DE CD CE BE AD .【点睛】本题考查了全等三角形的判定方法、等腰直角三角形的性质及等角的余角相等等知识点,熟练掌握三角形全等的判定方法是求解的关键.4.(2022·山东·九年级课时练习)(1)课本习题回放:“如图①,90ACB ,AC BC ,AD CE ,BE CE ,垂足分别为D ,E , 2.5cm AD , 1.7cm DE .求BE 的长”,请直接写出此题答案:BE 的长为________.(2)探索证明:如图②,点B ,C 在MAN 的边AM 、AN 上,AB AC ,点E ,F 在MAN 内部的射线AD 上,且BED CFD BAC .求证:ABE CAF ≌.(3)拓展应用:如图③,在ABC 中,AB AC ,AB BC .点D 在边BC 上,2CD BD ,点E 、F 在线段AD 上,BED CFD BAC .若ABC 的面积为15,则ACF 与BDE 的面积之和为________.(直接填写结果,不需要写解答过程)【答案】(1)0.8cm ;(2)见解析(3)5【分析】(1)利用AAS 定理证明△CEB ≌△ADC ,根据全等三角形的性质解答即可;(2)由条件可得∠BEA =∠AFC ,∠4=∠ABE ,根据AAS 可证明△ABE ≌△CAF ;(3)先证明△ABE ≌△CAF ,得到ACF 与BDE 的面积之和为△ABD 的面积,再根据2CD BD 故可求解.【详解】解:(1)∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,E ADC EBC DCA BC AC∴△CEB≌△ADC(AAS),∴BE=DC,CE=AD=2.5cm.∵DC=CE−DE,DE=1.7cm,∴DC=2.5−1.7=0.8cm,∴BE=0.8cm故答案为:0.8cm;(2)证明:∵∠1=∠2,∴∠BEA=∠AFC.∵∠1=∠ABE+∠3,∠3+∠4=∠BAC,∠1=∠BAC,∴∠BAC=∠ABE+∠3,∴∠4=∠ABE.∵∠AEB=∠AFC,∠ABE=∠4,AB=AC,∴△ABE≌△CAF(AAS).(3)∵BED CFD BAC∴∠ABE+∠BAE=∠FAC+∠BAE=∠FAC+∠ACF∴∠ABE=∠CAF,∠BAE=∠ACF又AB AC∴△ABE≌△CAF,∴ABE CAFS S∴ACF与BDE的面积之和等于ABE与BDE的面积之和,即为△ABD的面积,∵2CD BD,△ABD与△ACD的高相同则13ABD ABCS S△△=5故ACF与BDE的面积之和为5故答案为:5.【点睛】本题考查的是全等三角形的判定和性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.5.(2022·无锡市九年级月考)(1)如图1,直线m经过等腰直角△ABC的直角顶点A,过点B、C分别作BD⊥m,CE⊥m,垂足分别是D、E.求证:BD+CE=DE;(2)如图2,直线m经过△ABC的顶点A,AB=AC,在直线m上取两点D、E,使∠ADB=∠AEC=α,补充∠BAC=(用α表示),线段BD、CE与DE之间满足BD+CE=DE,补充条件后并证明;(3)在(2)的条件中,将直线m绕着点A逆时针方向旋转一个角度到如图3的位置,并改变条件∠ADB =∠AEC=(用α表示).通过观察或测量,猜想线段BD、CE与DE之间满足的数量关系,并予以证明.【答案】(1)证明见详解,(2)∠BAC= ,证法见详解,(3)180º- ,DE=EC-BD,证明见详解.【分析】(1)根据已知首先证明∠DAB=∠ECA,再利用AAS即可得出△ADB≌△CEA;(2)补充∠BAC=α.利用△ADB≌△CAE,即可得出三角形对应边之间的关系,即可得出答案;(3)180º-α,DE=CE-BD,根据已知首先证明∠DAB=∠ECA,再利用AAS即可得出△ADB≌△CEA,即可得出三角形对应边之间的关系,即可得出答案.【详解】证明:(1)∵BD⊥m,CE⊥m,∠ABC=90°,AC=BC,∴△ADB和△AEC都是直角三角形,∴∠DBA+∠DAB=90°,∴∠ECA+∠EAC=90°,∵∠BAC=90°,∠DAB+∠EAC=90º,∴∠DAB=∠ECA,又∵∠ADB=∠CEA=90°,AB=BC,所以△ADB≌△CEA(AAS),BD=AE,DA=EC,DE=DA+AE=EC+BD,BD+CE=DE.(2)∵等腰△ABC中,AC=CB,∠ADB=∠BAC=∠CEA=α,∴∠DAB+∠EAC=180°-α,∠ECA+∠CAE=180º-α,∴∠DAB=∠ECA,∵∠ADB=∠CEA=α,AC=CB,∴△ADB≌△CEA(AAS),∴CE=AD,BD=AE,∴AD+BE=CE+CD,所以BD+CE=DE.(3)180º-α,数量关系为DE=CE-BD,∵∠ADB=∠AEC=180º-α,∠BAC=α,∴∠ABD+∠BAD=α,∠BAD+∠EAC=α,∴∠ABD=∠CAE,∵AB=AC,∴△BAD≌△ACE(AAS),∴AD=CE,BD=AE,∴DE=AD-AE=EC-BD.【点睛】点评:此题主要考查了三角形全等的证明,根据已知得出∠DAB=∠ECA,再利用全等三角形的判定方法得出是解决问题的关键.6.(2022·河南新乡·九年级期中)某学习小组在探究三角形相似时,发现了下面这种典型的基本图形.(1)如图1,在 ABC中,∠BAC=90°,ABAC=k,直线l经过点A,BD⊥直线I,CE上直线l,垂足分别为D、E.求证:BDAE=k.(2)组员小刘想,如果三个角都不是直角,那么结论是否仍然成立呢?如图2,将(1)中的条件做以下修改:在 ABC中,ABAC=k,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问(1)中的结论还成立吗?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,在 ABC中,沿 ABC的边AB、AC向外作矩形ABDE和矩形ACFG,ABAE=ACAG=12,AH是BC边上的高,延长HA交EG于点I.①求证:I是EG的中点.②直接写出线段BC与AI之间的数量关系:.∠CAE=90°∵∠BAD+∠ABD=∴线段BC 与AI 之间的数量关系为【点睛】此题主要考查相似三角形的判断与性质综合,解题的关键是根据题意找到相似三角形,列出比例式求解.7.(2022·湖北武汉·模拟预测)[问题背景](1)如图1,ABC 是等腰直角三角形,AC BC ,直线l 过点C ,AM l ,BN l ,垂足分别为M ,N .求证:AMC CNB △≌△;[尝试应用](2)如图2,AC BC ,90ACB ,N ,B ,E 三点共线,CN NE ,45E ,1CN ,2BN .求AE 的长;[拓展创新](3)如图3,在DCE 中,45CDE ,点A ,B 分别在DE ,CE 上,AC BC ,90ACB ,若1tan 2DCA ,直接写出AE AD 的值为.8.(2022·黑龙江齐齐哈尔·三模)数学实践课堂上,张老师带领学生们从一道题入手,开始研究,并对此题做适当变式,尝试举一反三,开阔学生思维.(1)原型题:如图1,AB BD 于点B ,CD BD 于点D ,P 是BD 上一点,AP PC ,AP PC ,则ABP △≌△________,请你说明理由.(2)利用结论,直接应用:①如图2,四边形ABCD 、EFGH 、NHMC 都是正方形,边长分别为a 、b 、c ,A 、B 、N 、E ,F 五点在同一条直线上,则CBN △≌△________,c ________(用含a 、b 的式子表示).②如图3,四边形ABCD 中,AB DC ,AB BC ,2AB ,4CD ,以BC 上一点O 为圆心的圆经过A 、D 两点,且90AOD ,则圆心O 到弦AD 的距离为________.(3)弱化条件,变化引申:如图4,M 为线段AB 的中点,AE 与BD 交于点C ,45DME A B ,且DM交AC 于点F ,ME 交BC 于点G ,连接FG ,则AMF 与BGM 的关系为:________,若AB 3AF ,则FG ________.9.(2022•郑州一模)如图,在平面直角坐标系xOy中.边长为4的等边△OAB的边OA在x轴上,C、D、E分别是AB、OB、OA上的动点,且满足BD=2AC,DE∥AB,连接CD、CE,当点E坐标为时,△CDE与△ACE相似.【分析】因为DE ∥AB 得到∠DEC =∠ACE ,所以△CDE 与△ACE 相似分两种情况分类讨论.【解答】解:∵DE ∥AB ,∴∠DEC =∠ACE ,△ODE ∽△OBA ,∴△ODE 也是等边三角形,则OD =OE =DE ,设E (a ,0),则OE =OD =DE =a ,BD =AE =4﹣a .∵△CDE 与△ACE 相似,分两种情况讨论:①当△CDE ∽△EAC 时,则∠DCE =∠CEA ,∴CD ∥AE ,∴四边形AEDC 是平行四边形,∴AC =a ,,∵BD =2AC ,∴4﹣a =2a ,∴a =.∴E ;②当△CDE ∽△AEC 时,∠DCE =∠EAC =60°=∠B ,∴∠BCD +∠ECA =180°﹣60°=120°,又∵∠BDC +∠BCD =180°﹣∠B =120°,∴∠BCD +∠ECA =∠BDC +∠BCD ,∴∠ECA =∠BDC ,∴△BDC ∽△ACE ,∴,∴BC =2AE =2(4﹣a )=8﹣2a ,∴8﹣2a +2=4,∴a =.∴.综上所述,点E 的坐标为或.【点评】本题主要考查相似三角形,考虑分类讨论是本题的关键.10.(2022•广东中考模拟)(1)模型探究:如图1,D 、E 、F 分别为ABC 三边BC 、AB 、AC 上的点,且B C EDF ,BDE 与CFD 相似吗?请说明理由.(2)模型应用:ABC 为等边三角形,其边长为8,E 为边AB 上一点,F 为射线AC 上一点,将AEF 沿EF 翻折,使点A 落在射线CB 上的点D 处,且2BD .①如图2,当点D 在线段BC 上时,求AE AF的值;②如图3,当点D 落在线段CB 的延长线上时,求BDE 与CFD 的周长之比.【答案】(1)~ BDE CFD ,见解析;(2)①57AE AF ;②BDE 与CFD 的周长之比为13.【分析】(1)根据三角形的内角和得到BED CDF ,即可证明;(2)①设AE x ,AF y ,根据等边三角形的性质与折叠可知DE AE x ,DF AF y ,60EDF A ,根据三角形的内角和定理得BED CDF ,即可证明~ BDE CFD ,故BD BE DE CF CD FD ,再根据比例关系求出AE AF的值;②同理可证~ BDE CFD ,得BD BE DE CF CD FD,得28810x x y y ,再得到13x y ,再根据相似三角形的性质即可求解.【详解】解(1)~ BDE CFD ,理由:B C EDF ,在BDE 中,180B BDE BED ,180180BDE BED B ,180BDE EDF CDF ∵,180180BDE CDF EDF ,BED CDF ,B C ∵,~BDE CFD ;(2)①设AE x ,AF y ,ABC ∵是等边三角形,60A B C ,8AB BC AC ,由折叠知,DE AE x ,DF AF y ,60EDF A ,在BDE 中,180B BDE BED ,180120BDE BED B ,180120BDE BED B ∵,180BDE EDF CDF ∵,180120BDE CDF EDF ,BED CDF ,60B C ∵,~BDE CFD ,BD BE DE CF CD FD,8BE AB AE x ∵,8CF AC AF y ,6CD BC BD 2886x x y y , 2868y x y x y x ,105147x y ,57AE AF ;②设AE x ,AF y ,ABC ∵是等边三角形,60A ABC ACB ,8AB BC AC ,由折叠知,DE AE x ,DF AF y ,60EDF A ,在BDE 中,180ABC BDE BED ,180120BDE BED ABC ,180BDE EDF CDF ∵,180120BDE CDF EDF ,BED CDF ,60ABC ACB ∵,120DBE DCF ,~BDE CFD ,BD BE DE CF CD FD8BE AB AE x ∵,8CF AF AC y ,10CD BC BD ,28810x x y y ,2(8)10(8)y x y x y x ,13x y .~BDE CFD ∵.BDE 与CFD 的周长之比为13DE x DF y .【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知等边三角形的性质及相似三角形的判定与性质.11.(2022·山西晋中·一模)阅读材料:我们知道:一条直线经过等腰直角三角形的直角顶点,过另外两个顶点分别向该直线作垂线,即可得三垂直模型”如图①,在ABC 中,90ACB ,AC BC ,分别过A 、B 向经过点C 直线作垂线,垂足分别为D 、E ,我们很容易发现结论:ADC CEB △≌△.(1)探究问题:如果AC BC ,其他条件不变,如图②,可得到结论;ADC CEB △∽△.请你说明理由.(2)学以致用:如图③,在平面直角坐标系中,直线12y x与直线CD 交于点 2,1M ,且两直线夹角为 ,且3tan 2,请你求出直线CD 的解析式.(3)拓展应用:如图④,在矩形ABCD 中,3AB ,5BC ,点E 为BC 边上—个动点,连接AE ,将线段AE 绕点E 顺时针旋转90 ,点A 落在点P 处,当点P 在矩形ABCD 外部时,连接PC ,PD .若DPC △为直角三角形时,请你探究并直接写出BE 的长.由(1)得NFO OEM △∽△∵M 坐标 2,1∴2OE ,ME ∵3tan 2 ∴32ON OM 解得:12.(2022·山东青岛·九年级期中)【模型引入】我们在全等学习中所总结的“一线三等角、K型全等”这一基本图形,可以使得我们在观察新问题的时候很迅速地联想,从而借助已有经验,迅速解决问题.【模型探究】如图,正方形ABCD中,E是对角线BD上一点,连接AE,过点E作EF⊥AE,交直线CB于点F.(1)如图1,若点F在线段BC上,写出EA与EF的数量关系并加以证明;(2)如图2,若点F在线段CB的延长线上,请直接写出线段BC,BE和BF的数量关系.【模型应用】(3)如图3,正方形ABCD中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE 于F,过H作HG⊥BD于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH的周长为8.正确的结论有个.(4)如图4,点E是正方形ABCD对角线BD上一点,连接AE,过点E作EF⊥AE,交线段BC于点F,交线段AC于点M,连接AF交线段BD于点H.给出下列四个结论,①AE=EF;DE=CF;③S△AEM=S△MCF;④BE=DE BF;正确的结论有个.【模型变式】(5)如图5,在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB 延长线上一点,M是线段OB上一动点(不包括点O、B),作MN⊥DM,垂足为M,交∠CBE的平分线与点N,求证:MD=MN(6)如图6,在上一问的条件下,连接DN交BC于点F,连接FM,则∠FMN和∠NMB之间有怎样的数量关系?请给出证明.【拓展延伸】(7)已知∠MON=90°,点A是射线ON上的一个定点,点B是射线OM上的一个动点,且满足OB>OA.点C在线段OA的延长线上,且AC=OB.如图7,在线段BO上截取BE,使BE=OA,连接CE.若∠OBA+∠OCE=β,当点B在射线OM上运动时,β的大小是否会发生变化?如果不变,请求出这个定值;如果变化,请说明理由.(8)如图8,正方形ABCD中,AD=6,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB 于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB边的中点,则△EDM的面积是.。

专题02 全等模型-一线三等角(K字)模型(解析版)

专题02 全等模型-一线三等角(K字)模型(解析版)

专题02全等模型--一线三等角(K 字)模型全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(一线三等角(K 字)模型)进行梳理及对应试题分析,方便掌握。

模型1.一线三等角(K 型图)模型(同侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。

【常见模型及证法】同侧型一线三等角(常见):锐角一线三等角直角一线三等角(“K 型图”)钝角一线三等角条件:A CED B ∠=∠=∠+CE=DE证明思路:,A B C BED ∠=∠∠=∠+任一边相等BED ACE⇒≅ 例1.(2023·江苏·八年级假期作业)探究:如图①,在ABC 中,90BAC ∠=︒,AB AC =,直线m 经过点A ,BD m ⊥于点D ,CE m ⊥于点E ,求证:ABD CAE ≌ .应用:如图②,在ABC 中,AB AC =,,,D A E 三点都在直线m 上,并且有BDA AEC BAC ∠=∠=∠.求出,DE BD 和CE 的关系.拓展:如图①中,若10DE =,梯形BCED 的面积______.【答案】探究:证明过程见详解;应用:DE BD CE =+,理由见详解;拓展:50【分析】探究:90BAC ∠=︒,AB AC =,可知ABC 是等腰直角三角形,BD m ⊥,CE m ⊥,可知90BDA AEC ∠=∠=︒,可求出BAD ACE ∠=∠,根据角角边即可求证;应用:AB AC =,,,D A E 三点都在(1)如图①,若AB AC ⊥,则BD 与AE 的数量关系为___________,CE 与AD 的数量关系为(2)如图②,判断并说明线段BD ,CE 与DE 的数量关系;(3)如图③,若只保持7BDA AEC BD EF cm ∠=∠==,,点A 在线段DE 上以2cm/s 的速度由点例3.(2022·陕西七年级期末)(1)【问题发现】如图1,△ABC与△CDE中,∠B=∠E=∠ACD=90°,AC=CD,B、C、E三点在同一直线上,AB=3,ED=4,则BE=_____.(2)【问题提出】如图2,在Rt△ABC 中,∠ABC=90°,BC=4,过点C作CD⊥AC,且CD=AC,求△BCD的面积.(3)【问题解决】如图3,四边形ABCD中,∠ABC=∠CAB=∠ADC=45°,△ACD面积为12且CD的长为6,求△BCD的面积.【答案】(1)7;(2)S△BCD=8;(3)S△BCD=6.【分析】(1)∠B=∠E=∠ACD=90°,据同角的余角相等,可得∠ACB=∠D,由已知条件可证△ABC≌△CED,运动(D 不与B 、C 重合),连接AD ,作40ADE ∠=︒,DE 交线段AC 于E .(1)当115BDA ∠=︒时,EDC ∠=_____︒,BAD ∠=_____︒,AED =∠_____︒;点D 从B 向C 运动时,BDA ∠逐渐变_____(填“大”或“小”);(2)当DC 等于多少时,ABD DCE ≌△△,请说明理由;(3)在点D 的运动过程中,ADE V 的形状可以是等腰三角形吗?若可以,请直接写出BDA ∠的度数,若不可以,请说明理由.【答案】(1)25,25,65,小(2)当2DC =时,ABD DCE ≌△△,理由见解析;(3)当BDA ∠的度数为110︒或80︒时,ADE V 的形状是等腰三角形.【分析】(1)先求出ADC ∠的度数,即可求出EDC ∠的度数,再利用三角形的外角性质即可求出AED ∠的度数,根据点D 从B 向C 运动时,BAD ∠逐渐增大,而B ∠不变化,180B BAD BDA ∠+∠+∠=︒,即可得到答案;(2)根据全等三角形的判定条件求解即可;(3)先证明当ADE V 时等腰三角形,只存在AD ED =或AE DE =两种情况,然后分这两种情况讨论求解即可;【详解】(1)解:∵115BDA ∠=︒,∴18011565ADC ∠=︒-︒=︒,∵40ADE ∠=︒,∴25EDC ADC ADE ∠︒=∠-∠=,∵ADC ADE EDC B BAD ∠=∠+∠=∠+∠,∴25BAD EDC ∠=∠=︒,∴65AED EDC C ︒∠=∠+∠=;∵点D 从B 向C 运动时,BAD ∠逐渐增大,而B ∠不变化,180B BAD BDA ∠+∠+∠=︒,∴点D 从B 向C 运动时,BDA ∠逐渐变小,故答案为:25,25,65,小;(2)解:当2DC =时,ABD DCE ≌△△,理由:∵40B C ∠=∠=︒,∴140DEC EDC ∠+∠=︒,又∵40ADE ∠=︒,∴140ADB EDC ∠+∠=︒,∴ADB DEC ∠=∠,又∵2AB AC ==,∴()AAS ABD DCE ≌△△;(3)解:当BDA ∠的度数为110°或80°时,ADE V 的形状是等腰三角形,理由:∵40C ADE ∠=∠=︒,AED C EDC ∠=∠+∠,∴AED ADE ∠>∠,∴当ADE V 时等腰三角形,只存在AD ED =或AE DE =两种情况,模型2.一线三等角(K 型图)模型(异侧型)【模型解读】在某条直线上有三个角相等,利用平角为180°与三角形内角和为180°,证得两个三角形全等。

九年级数学浙教版上册 专题提升五 相似三角形基本图形(2)一线三等角

九年级数学浙教版上册 专题提升五 相似三角形基本图形(2)一线三等角

专题提升五 相似三角形基本图形(2)一线三等角1.如图||,等边三角形ABC 的边长为3||,P 为BC 上一点||,且BP =1||,D 为AC 上一点||,若∠APD =60°||,则CD 的长为( )A.32B.23C.12D.34第1题图2.如图||,等腰直角△ABC 的直角边长为3||,P 为斜边BC 上一点||,且BP =1||,D 为AC 上一点||,若∠APD =45°||,则CD 的长为________.第2题图3.如图||,在矩形ABCD 中||,AB =4||,AD =10.直角尺的直角顶点P 在AD 上滑动时(点P 与点A 、D 不重合)||,一直角边经过点C ||,另一直角边与AB 交于点E .我们知道||,结论“Rt △EP A ∽Rt △PCD ”成立.第3题图(1)当∠CPD =30°时||,求AE 的长;(2)设DP =x ||,AE =y ||,求y 关于x 的函数关系式.(1)“一线三等角”型相似基本图形||,通俗地讲||,当一条直线上有三个相等的角时||,总有两三角形相似.(2)一线三等角可以在直线的同侧(如图1)||,也可在直线的两侧(如图2).等角常见的有30°||,45°||,60°||,90°||,也可以是一般的角.(3)“一线三等角”+中点||,如图3||,已知∠1=∠2=∠3||,BD =DC ||,则有△BED ∽△DEF ∽△CDF .例1 在△ABC 中||,AB =AC||,∠BAC =90°||,P 为BC 上的动点||,小慧拿含45°角的透明三角板||,使45°角的顶点落在点P||,三角板可绕P 点旋转.(1)如图a ||,当三角板的两边分别交AB 、AC 于点E 、F 时||,求证:△BPE ∽△CFP ;(2)将三角板绕点P 旋转到图b 情形时||,三角板的两边分别交BA 的延长线、边AC 于点E 、F.△BPE 与△CFP 还相似吗?(只需直接写出结论)(3)在(2)的情形下||,连结EF||,△BPE 与△PFE 是否相似?若不相似||,则动点P 运动到什么位置时||,△BPE 与△PFE 相似?请说明理由.例2如图||,已知抛物线的对称轴是直线x=4||,该抛物线与x轴交于A||,B两点||,与y轴交于C点||,且A、C点的坐标分别是(2||,0)、(0||,3).(1)求抛物线的解析式;(2)抛物线上有一点P||,满足∠PBC=90°||,求点P的坐标;(3)在(2)的条件下||,问在y轴上是否存在点E||,使得以A、O、E为顶点的三角形与△PBC 相似?若存在||,求出点E的坐标;若不存在||,请说明理由.1.(连云港中考)如图||,在△ABC中||,∠BAC=60°||,∠ABC=90°||,直线l1∥l2∥l3||,l1与l2之间距离是1||,l2与l3之间距离是2||,且l1||,l2||,l3分别经过点A||,B||,C||,则边AC的长为________.第1题图2.如图||,点A在反比例函数y=-6x(x<0)的图象上||,点B在反比例函数y=1x(x>0)的图象上||,且∠AOB=90°||,则AOOB的值为( )第2题图A.6 B.3 C. 6 D.23.如图||,在△ABC中||,AB=AC||,点P、D分别是BC、AC边上的点||,且∠APD=∠B.(1)求证:AC·CD=CP·BP;(2)若AB=10||,BC=12||,当PD∥AB时||,求BP的长.第3题图4.如图||,直角梯形ABCD中||,AD∥BC||,∠A=90°||,AB=AD=6||,DE⊥DC交AB于E||,DF平分∠EDC交BC于F||,连结EF.(1)证明:EF=CF;(2)若AD=3AE||,求CF的长.第4题图专题提升五相似三角形基本图形(2)一线三等角【课前热身】1.B2.32-13 3.(1)AE =103-12;(2)y =(10-x )x 4=-14x 2+52x. 【典型例题】例1 (1)证明:∵在△ABC 中||,∠BAC =90°||,AB =AC||,∴∠B =∠C =45°.∵∠B +∠BPE +∠BEP =180°||,∴∠BPE +∠BEP =135°||,∵∠EPF =45°||,又∵∠BPE +∠EPF +∠CPF =180°||,∴∠BPE +∠CPF =135°||,∴∠BEP =∠CPF||,又∵∠B =∠C||,∴△BPE ∽△CFP(两角对应相等的两个三角形相似). (2)还相似; (3)动点P 运动到BC 中点位置时||,△BPE 与△PFE 相似||,证明:同(1)||,可证△BPE ∽△CFP||,得CP ∶BE =PF ∶PE||,而CP =BP||,因此PB ∶BE =PF ∶PE.又因为∠EBP =∠EPF||,所以△BPE ∽△PFE(两边对应成比例且夹角相等的两个三角形相似).例2 (1)设抛物线的解析式是y =a(x -4)2+b||,根据题意得:⎩⎨⎧4a +b =0,16a +b =3,解得:⎩⎪⎨⎪⎧a =14,b =-1,则函数的解析式是:y =14x 2-2x +3; (2)过P 作PF ⊥x 轴||,则△PBF ∽△BCO||,∴PF BF=OB OC =63=2||,∴设点P 的坐标为(m||,n)||,则n =2(m -6)①||,又点P 在抛物线上||,∴n =14m 2-2m +3②||,①②联立解得m 1=10||,m 2=6(舍去)||,∴n =2(10-6)=8||,∴点P 的坐标为P(10||,8). (3)∵PF ⊥x 轴||,∴在Rt △PBF 中||,PB =(10-6)2+82=45||,在Rt △OBC 中||,BC =32+62=35||,设点E 坐标为(0||,y)||,∵△AOE 与△PBC 相似||,∴①若AO 与PB 是对应边||,则245=|y|35||,解得|y|=1.5||,∴y =±1.5||,②若AO 与BC 是对应边||,则235=|y|45||,解得|y|=83||,∴y =±83||,∴在y 轴上存在点E||,使得△AOE 与△PBC 相似||,点E 坐标为E ()0,±1.5||,E(0||,±83). 【针对练习】1. 2321 2. C3. (1)∵AB =AC||,∴∠B =∠C.∵∠APD =∠B||,∴∠APD =∠B =∠C.∵∠APC =∠BAP +∠B||,∠APC =∠APD +∠DPC||,∴∠BAP =∠DPC||,∴△ABP ∽△PCD||,∴BP CD=AB CP||,∴AB ·CD =CP·BP.∵AB =AC||,∴AC ·CD =CP·BP ; (2)∵PD ∥AB||,∴∠APD =∠BAP.∵∠APD =∠C||,∴∠BAP =∠C.∵∠B =∠B||,∴△BAP ∽△BCA||,∴BA BC =BP BA.∵AB =10||,BC =12||,∴1012=BP 10||,∴BP =253. 第4题图4.(1)证明:过D 作DG ⊥BC 于G||,由已知可得四边形ABGD 为正方形||,∵DE ⊥DC||,∴∠ADE +∠EDG =90°=∠GDC +∠EDG||,∴∠ADE =∠GDC.又∵∠A =∠DGC 且AD=GD||,在△ADE 和△GDC 中||,⎩⎨⎧∠ADE =∠GDC ,AD =DG ,∠DAE =∠DGC ,∴△ADE ≌△GDC||,∴DE =DC 且AE =GC.在△EDF 和△CDF 中||,⎩⎨⎧DE =DC ,∠EDF =∠CDF DF =DF ,||,∴△EDF ≌△CDF||,∴EF =CF ; (2)∵AD =3AE||,AB =AD =6||,∴AE =GC =2||,∴BC =8||,BE =4||,设CF =EF =x||,则BF =8-CF =8-x||,在Rt △BEF 中||,由勾股定理得:x 2=(8-x)2+42||,计算得出x =5||,即CF =5.。

中考复习相似三角形---一线三等角型

中考复习相似三角形---一线三等角型

相似三角形——“一线三等角型”教学目标:1、掌握相似三角形的判定和性质,并能熟练运用其解决重要类型“一线三等角”的类型题.2、经历运用相似三角形知识解决问题的过程,体验图形运动、分类讨论、方程与函数等数学思想.3、通过问题的解决,体验探究问题成功的乐趣,积极探索,提高学习几何的兴趣.重点:相似三角形的判定性质及其应用.难点:与相似、函数有关的综合性问题的解决技巧和方法.教学方法:启发式教学方法,尝试指导教学法.一、知识梳理:(图1)(图2)(1)如图1,已知三角形ABC中,AB=AC,∠ADE=∠B,那么一定存在的相似三角形有;(2)如图2,已知三角形ABC中,AB=AC,∠DEF=∠B,那么一定存在的相似三角形有.二、【例题解析】【例1】如图,等边△ABC中,边长为4,D是BC上动点,∠EDF=60°,(1)求证:△BDE∽△CFD;(2)当BD=1,FC=52时,求BE.【变式1】在边长为4的等边ABC∆中,D是BC的中点,点E、F分别在AB、AC上,且保持ABCEDF∠=∠,连接EF.(1) 已知BE=1,DF=2,求DE的值; (2) 求证:∠BED=∠DEF.【变式2】在边长为4的等边ABC ∆中,若BD =1时,当△DEF 与△AEF 相似,求BE 的值.【变式3】如图,已知边长为3的等边ABC ∆,点F 在边BC 上,CF =1,点E 是射线BA 上一动点,以线段EF 为边向右侧作等边EFG ∆,直线EG ,FG 交直线AC 于点M ,N ,(1)写出图中与BEF ∆相似的三角形;(2)证明其中一对三角形相似;(3)设BE =x ,MN =y ,,求y 与x 之间的函数关系式,并写出自变量x 的取值范围.【例2】在ABC ∆中,O BC AC C ,3,4,90===∠o 是AB 上的一点,且52=AB AO ,点P 是AC 上的一个动点,OP PQ ⊥交线段BC 于点Q (不与点B ,C 重合),已知AP =2,求CQ .【变式1】 如图,在△ABC 中,8==AC AB ,10=BC ,D 是BC 边上的一个动点,点E 在AC 边上,且C ADE ∠=∠.(1) 求证:△ABD ∽△DCE ;(2) 如果x BD =,y AE =,求y 与x 的函数解析式,并写出自变量x 的定义域;(3) 当点D 是BC 的中点时,试说明△ADE 是什么三角形,并说明理由.QC P【变式2】在直角三角形ABC 中,D BC AB C ,,90==∠o 是AB 边上的一点,E 是在AC 边上的一个动点(与A ,C 不重合),DF DE DF ,⊥与射线BC 相交于点F .(1) 如图1,当点D 是边AB 的中点时,求证:DF DE =;(2) 如图2,当m DB AD =,求DF DE 的值.图(2)图(1)F CF C A BB A D E D E【例3】已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AD =5,AB =DC =2,P 为AD 上的一点,满足∠BPC =∠A . ① 求证;△ABP ∽△DPC ; ② 求AP 的长.【变式1】如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE =∠A ,PE 交直线BC 于点E ,同时交直线DC 于点Q ,那么①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当CE =1时,写出AP 的长.C B AD C B A D【变式2】在梯形ABCD 中,AD ∥BC ,6AB CD BC ===,3AD =.点M 为边BC 的中点,以M 为顶点作EMF B ∠=∠,射线ME 交腰AB 于点E ,射线MF 交腰CD 于点F ,联结EF .(1)求证:△MEF ∽△BEM ;(2)若△BEM 是以BM 为腰的等腰三角形,求EF 的长;(3)若EF CD ⊥,求BE 的长.【作业】1、如图,在ABC ∆中,90C ∠=︒,6AC =,43=BC AC ,D 是BC 边的中点,E 为AB 边上的一个动点,作90DEF ∠=︒,EF 交射线BC 于点F .设BE x =,BED ∆的面积为y .(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)如果以B 、E 、F 为顶点的三角形与BED ∆相似,求BED ∆的面积.2、如图,已知在△ABC 中, AB =AC =6,BC =5,D 是AB 上一点,BD =2,E 是BC 上一动点,连结DE ,并作DEF B ∠=∠,射线EF 交线段AC 于F .(1)求证:△DBE ∽△ECF ;(2)当F 是线段AC 中点时,求线段BE 的长;(3)联结DF ,如果△DEF 与△DBE 相似,求FC 的长.3、已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且BC =6,AB =DC =4,点E 是AB 的中点.(1)如图,P 为BC 上的一点,且BP =2.求证:△BEP ∽△CPD ;(2)如果点P 在BC 边上移动(点P 与点B 、C 不重合),且满足∠EPF =∠C ,PF 交直线CD 于点F ,同时交直线AD 于点M ,那么:①当点F 在线段CD 的延长线上时,设BP =x ,DF =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当BEP DMF S S ∆∆=49时,求BP 的长.。

中考数学“一线三等角”模型解析

中考数学“一线三等角”模型解析

中考数学“一线三等角”模型解析一、“一线三等角”模型定义两个相等的角一边在同一直线上,另一边在该直线的同侧或异侧,第三个与之相等的角的顶点在前一组等角的顶点所确定的线段上或线段的延长线上,该角的两边分别位于一直线的同侧或异侧,并与两等角两边相交,就会形成一组相似三角形,习惯上把该组相似三角形称为“一线三等角型”相似三角形 .二、“一线三等角”模型类型(1)点P 在线段AB 上,则有△ACP∽△BPD .①锐角一线三等角锐角一线三等角模型②直角一线三等角直角一线三等角模型③钝角一线三等角钝角一线三等角模型(2)点P 在线段AB 的延长线上,则有△ACP∽△BPD .①锐角一线三等角锐角一线三等角模型②直角一线三等角直角一线三等角模型③钝角一线三等角钝角一线三等角模型三、“一线三等角”模型常出现的题型1、等腰三角形中,在底边上作一角与底角相等;2、等腰梯形中上(下)底作一角与上(下)底角相等;3、矩形(正方形);4、矩形和正方形的翻折(简称:一线三直角);5、等边三角形的翻折;6、坐标系中的一线三直角包括已知相似比求点的坐标或直角三角形的讨论性问题 .四、典例解析(一)一线三等角模型——等腰三角形【例题1】如图,已知:在Rt△ABC 中,∠ACB = 90°,AC = BC = 4 , 点M 是边AB 的中点,点E 、G 分别是边AC 、BC 上的一点,∠EMG = 45°,AC 与MG 的延长线相交于点F,(1)在不添加字母和线段的情况下写出图中一定相似的三角形,并证明其中的一对;(2)连接EG,当AE = 3 时,求EG 的长 .解析:(1)△AEM∽△BMG(一线三等角型);△FEM∽△FMA(共角共边型). (2)AE = 3 , CE = 1 ,由△AEM∽△BMG 可计算出BG = 8/3 ,则CG = 4/3 .在Rt△CEG 中,由勾股定理可得EG = 5/3 .另解:点M 是AB 的中点,恰好是“中点型一线三等角”,则有△AEM∽△BMG∽△MEG .对可解△AEM 由余弦定理可计算出ME = √5 ,由△AEM∽△MEG,可得AE/ME = ME/EG ,即3/√5 = √5/EG ,解得EG = 5/3 .(二)一线三等角模型——等腰梯形【例题2】已知在梯形ABCD 中,AD∥BC,AD < BC,且AD = 5 , AB = DC = 2 . (1)如图,点P 为AD 上的一点,且满足∠BPC = ∠A .①求证:△ABP∽△DPC;②求AP 的长 .(2)如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE = ∠A ,PE 交直线BC 于点E , 同时交直线DC 于点Q ,那么①当点Q 在线段DC 的延长线上时,设AP = x , CQ = y , 求y 关于x 的函数解析式,并写出函数的定义域;②当CE = 1 时,写出AP 的长 .解析:(1)①由等腰梯形同一底上两个底角相等+ 三角形内角和及平角(∠APD)等于180°,可证△ABP∽△DPC .②∵△ABP∽△DPC ,∴AP/DC = AB/PD ,∴AP/2 = 2/(5 - AP),解得AP = 1 或AP = 4 .(2)①建立y 关于x 的函数解析式,AP = x , DP = 5 - x , CQ = y , 则DQ = 2 = y , 易证:△ABP∽△DPQ,∴AB/PD = AP/DQ ,即2/(5 - x)= x/(2 + y),∴y = -1/2 x^2 + 5x/2 - 2 ,定义域:由于点Q 在线段DC 的延长线上,故DQ > 2 , 即y + 2 > 2 ,∴y = -1/2 x^2 + 5x/2 - 2 > 0 , 即1 < x < 4 .②分类讨论点E 的位置如下:1、当点E 在线段BC 上时,CE = 1 , 过C 点作PQ 的平行线交AD 于点H ,由△ABP∽△DHC,∴AB/DH = AP/DC ,∴2/(5 - 1 - x)= x/2 ,解得x = 2 .2、当点E 在线段BC 的延长线上时,CE = 1 , 过点E 作CD 的平行线交AD 的延长线于点M ,由△ABP∽△MPE,∴AB/MP = AP/ME ,∴2/(5 + 1 - x)= x/2 ,解得x1 = 3 - √5 , x2 = 3 + √5 > 5 (舍去).五、小结1、此次课程展示了相似模型“一线三等角型”在初中数学范围内常见的两种考题形式;2、从压轴题中的复杂图形提炼出基本图形、快速灵活运用基本结论、反思、拓展提高,通过知识间的串联,找出一些通性通法,来提高解题效率 .。

初中数学解题模型专题讲解9---一线三等角模型

初中数学解题模型专题讲解9---一线三等角模型

初中数学解题模型专题讲解专题9 一线三等角模型“一线三等角”是一个常见的相似模型,指的是有三个等角的顶点在同一条直线上构成的相似图形。

这个角可以是直角,也可以是锐角或者钝角。

对于“一线三等角”,有的地区叫“K型图”,也有的地区叫“M型图”。

的起源“一线三等角”的起源一线三等角”DE 绕 A 点旋转,从外到内,从一般位置到特殊位置.下面分几种类型讨论:——““一线三直角一线三直角”””——一、直角形一线三等角”直角形““一线三等角ADB ∽△CEACEA结论:△ADB“一线三等角锐角形“二、锐角形结论结论::△ADB ∽△CEA ∽△CAB三、钝角形钝角形““一线三等角结论结论::△ADB ∽△CEA ∽△CAB下面总结几种常考类型下面总结几种常考类型::类型一 三角齐见三角齐见,,模型自现类型一概述以上两例都是典型的建,因此降低了试题的起法本质一 致,均为利用考查学生在图形变换过学能力和思想.典型的“一线三等角”试 题,由于模型的题的起 点. 两道题虽涉及不同的图形变为利用模型构建比例式解决问题. 两道题变换过程中的观察理解、直观感知、推理模型的框架已搭图形变换,但解两道题都 着重推理转化等数类型二 隐藏局部隐藏局部,,小修小补类型二概述上述两道题虽分别以四明显: 均将原有 “一线要求学生理性地从图形征,挖掘蕴含在图中的几的综合考查, 提升了学类型三 一角独处一角独处,别以四边形和一次函数为命题背景,但图形一线三等角”模型中的一角进行了隐藏从图形的角度进行思考与联想,发现其中最中的几何模 型.两道题均较好地体现了对升了学生思维的层次性和灵活性. ,两侧添补但图形的共性较隐藏,而这就其中最本质的特现了对“四基”类型三概述上述几道题虽呈现的背模型于图形之中.题中框架的基础,更是学生质上都是考查学生利用了学生对数学本质属性现的背景不同,但都蕴 知识技能、思想方题中的 “特殊角”是解题的关键,也是是学生解题思路的来源与“脚手架”.生利用模型进行数学思考的能力,同时也有质属性的把握情况.思想方法、数学也是搭建模型 这几道题实时也有效地检测类型四 线角齐藏线角齐藏,类型四概述本题实质上以图形的旋愿,促使学生在模拟图殊角,展开适当的联想建模型框架。

一线三垂直与一线三等角(解析版)

一线三垂直与一线三等角(解析版)

一线三垂直与一线三等角一、基础知识回顾1)三角形内角和定理:三角形三个内角和等于180°2)1平角=180度二、模型的概述:1)一线三垂直模型[模型概述]只要出现等腰直角三角形,可以过直角点作一条直线,然后过45°顶点作直线的垂线,构造三垂直,所得两个直角三角形全等。

根据全等三角形倒边,得到线段之间的数量关系。

基础构造1构造2一线三垂直模型一:如图AB⊥BC,AB=BC,CE⊥DE,AD⊥DE,则∆ABD≌∆BCE,DE= AD+EC证明:∵CE⊥DE,AD⊥DE,AB⊥BC∴∠CEB=∠ADB=∠ABC=90°∴∠1+∠2=90°,∠2+∠3=90°∴∠1=∠3在∆ABD和∆BCE中,∠1=∠3∠CEB=∠ADB=90°AB=BC∴∆ABD≌∆BCE(AAS)∴AD=BE,EC=BD则DE=BE+BD=AD+EC一线三垂直模型二:如图AB⊥BC,AB=BC,CE⊥DE,AD⊥DE,则∆ABD≌∆BCE,DE= AD-EC证明:∵CE⊥DE,AD⊥DE,AB⊥BC∴∠CEB=∠ADB=∠ABC=90°∴∠A+∠ABD=90°,∠ABD+∠CBE=90°∴∠A=∠CBE在∆ABD和∆BCE中,∠A=∠CBE∠CEB=∠ADB=90°AB=BC∴∆ABD≌∆BCE(AAS)∴AD=BE,EC=BD则DE=BE-BD=AD-EC一线三垂直其它模型1)图1,已知∠AOC=∠ADB=∠CED=90°,AB=DC,得∆ADB≌∆DEC2)图2,延长DE交AC于点F,已知∠DBE=∠ABC=∠EFC=90°,AC=DE,得∆ABC≌∆DBE图1图22)一线三等角模型[模型概述]三个等角的顶点在同一条直线,这个角可以是直角,也可以是锐角或钝角。

一线三等角类型:(同侧)已知∠A=∠CPD=∠B=∠α,CP=PD(异侧)已知∠EAC=∠ABD=∠DPC=∠α,CP=PD证明:以右图为例∵∠ACP+∠A+∠CPA=180°,∠DPB+∠CPD+∠CPA=180°而∠CAP=∠CPD=∠PBD=∠α∴∠ACP=∠DPB又∵CP=PD∴∆ACP≌∆BPD(AAS)【基础过关练】1.如下图所示,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.DE=6cm,AD=9cm,则BE的长是()A.6cmB.1.5cmC.3cmD.4.5cm【答案】C【分析】本题可通过全等三角形来求BE的长.△BEC和△CDA中,已知了一组直角,∠CBE和∠ACD同为∠BCE的余角,AC=BC,可据此判定两三角形全等;那么可得出的条件为CE=AD,BE=CD,因此只需求出CD的长即可.而CD的长可根据CE即AD的长和DE的长得出,由此可得解.【详解】解:∵∠ACB=90°,BE⊥CE,∴∠BCE+∠ACD=90°,∠BCE+∠CBE=90°;∴∠ACD=∠CBE,又AC=BC,∴△ACD≌△CBE;∴EC=AD,BE=DC;∵DE=6cm,AD=9cm,则BE的长是3cm.故选C.【点睛】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.2.如图,在△ABC中,AB=AC=9,点E在边AC上,AE的中垂线交BC于点D,若∠ADE=∠B,CD=3BD,则CE等于()A.3B.2C.94D.92【答案】A【分析】根据等腰三角形的性质得到∠B=∠C,推出∠BAD=∠CDE,根据线段垂直平分线的性质得到AD=ED,根据全等三角形的性质得到CD=AB=9,BD=CE,即可得到结论.【详解】解:∵AB=AC=9,∴∠B=∠C,∵∠ADE=∠B,∠BAD=180°-∠B-∠ADB,∠CDE=180°-∠ADE-∠ADB,∴∠BAD=∠CDE,∵AE的中垂线交BC于点D,∴AD=ED,在△ABD与△DCE中,∠BAD=∠CDE ∠B=∠CAD=ED,∴△ABD≌△DCE(AAS),∴CD=AB=9,BD=CE,∵CD=3BD,∴CE=BD=3故选:A.【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,全等三角形的性质,属于基础题.3.如图,AC=CE,∠ACE=90°,AB⊥BD,ED⊥BD,AB=6cm,DE=2cm,则BD等于()A.6cmB.8cmC.10cmD.4cm【答案】B【分析】根据题意证明△ABC≌△CDE即可得出结论.【详解】解:∵AB⊥BD,ED⊥BD,∴∠ABC=∠CDE=90°,∵∠ACE=90°,∴∠ACB+∠DCE=90°,∵∠ACB+∠BAC=90°,∴∠BAC=∠DCE,在△ABC和△CDE中,∠ABC=∠CDE=90°∠BAC=∠DCE AC=CE,∴△ABC≌△CDE(AAS),∴AB=CD=6cm,BC=DE=2cm,∴BD=BC+CD=2+6=8cm,故选:B.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理以及性质定理是解本题的关键.4.如图,△ABC中,AC=BC,∠ACB=90°,A(0,3),C(1,0),则点B的坐标为________.【答案】(4,1)【分析】如图,过点B作BD⊥x轴于D,根据点A、点C坐标可得OA、OC的长,根据同角的余角相等可得∠OAC=∠DCB,利用AAS可证明△OAC≌△DCB,根据全等三角形的性质可得BD= OC,CD=OA,即可求出OD的长,进而可得答案.【详解】如图,过点B作BD⊥x轴于D,∵A(0,3),C(1,0),∴OA=3,OC=1,∵∠ACB=90°,∴∠OCA+∠DCB=90°,∵∠OAC+∠OCA=90°,∴∠OAC=∠DCB,在△OAC和△DCB中,∠AOC=∠CDB ∠OAC=∠DCB AC=BC,∴△OAC≌△DCB,∴BD=OC=1,CD=OA=3,∴OD=OC+CD=4,∴点B坐标为(4,1).故答案为:(4,1)【点睛】本题考查坐标与图形及全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题关键.5.如图,△ABC 为等腰直角三角形AC =BC ,若A (-3,0),C (0,2),则点B 的坐标为_________.【答案】(2,-1)【分析】过点B 作BT ⊥y 轴于点T .证明△AOC ≅△CTB ,可得结论.【详解】解:如图中,过点B 作BT ⊥y 轴于点T .∵A (-3,0),C (0,2),∴OA =3,OC =2,∵∠AOC =∠ACB =∠CTB =90°,∴∠ACO +∠BCT =90°,∠BCT +∠CBT =90°,∴∠ACO =∠CBT ,在△AOC 和△CTB 中,∠AOC =∠CTB∠ACO =∠CBT AC =CB,∴△AOC ≅△CTB (AAS ),∴AO =CT =3,BT =CO =2,∴OT =CT -CO =1,∴B (2,-1),故答案为:(2,-1).【点睛】本题考查了坐标与图形,等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.6.如图所示,△ABC 中,AB =AC ,∠BAC =90°.直线l 经过点A ,过点B 作BE ⊥l 于点E ,过点C 作CF ⊥l 于点F .若BE =2,CF =5,则EF =__________.【答案】7【分析】根据全等三角形来实现相等线段之间的关系,从而进行计算,即可得到答案;【详解】解:∵BE⊥l,CF⊥l,∴∠AEB=∠CFA=90°.∴∠EAB+∠EBA=90°.又∵∠BAC=90°,∴∠EAB+∠CAF=90°.∴∠EBA=∠CAF.在△AEB和△CFA中∵∠AEB=∠CFA,∠EBA=∠CAF,AB=AC,∴△AEB≌△CFA.∴AE=CF,BE=AF.∴AE+AF=BE+CF.∴EF=BE+CF.∵BE=2,CF=5,∴EF=2+5=7;故答案为:7.【点睛】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是熟练掌握所学的知识,正确的证明三角形全等.7.如图,一个等腰直角三角形ABC物件斜靠在墙角处(∠O=90°),若OA=50cm,OB=28cm,则点C离地面的距离是____cm.【答案】28【分析】作CD⊥OB于点D,依据AAS证明ΔAOB≅ΔBDC,GMF,再根据全等三角形的性质即可得到结论.【详解】解:过点C作CD⊥OB于点D,如图,∴∠CDB=∠AOB=90°∵ΔABC是等腰直角三角形∴AB=CB,∠ABC=90°∴∠ABO+∠CBD=90°又∠CBD+∠BCD=90°∴∠ABO=∠BCD在ΔABO和ΔBCD中,∠AOB=∠BDC ∠ABO=∠BCD AB=CB∴ΔABO≅ΔBCD(AAS)∴CD=BO=28cm故答案为:28.【点睛】本题主要考查了等腰直角三角形的性质、三角形全等的判定与性质,正确作出辅助线构造全等三角形是解答本题的关键.8.如图,AB=BC,AB⊥BC,AE⊥BD于F,BC⊥CD,求证:EC=AB-CD.【答案】见解析【分析】利用ASA证明出△ABE≌△BCD,在通过等量代换进行解答.【详解】证明:∵AB⊥BC,CD⊥BC,∴∠ABC=∠ACD=90°∴∠AEB+∠A=90°∵AE⊥BD∴∠BFE=90°∴∠AEB+∠FBE=90°∴∠A=∠FBE,又∵AB=BC,∴△ABE≌△BCD,∴AB=BC,BE=CD,∴EC=BC-BE=AB-CD【点睛】本题考查了三角形全等的判定及性质,解题的关键是掌握三角形的判定定理,再利用等量代换的思想来间接证明.【提高测试】1.如图,在平面直角坐标系中,点A、B分别在x轴的负半轴和正半轴上,以AB为边向上作正方形ABCD,四边形OEFG是其内接正方形,若直线OF的表达式是y=2x,则S正方形ABCDS正方形OEFG的值为()A.43B.85C.169D.94【答案】B【分析】根据正方形性质易得△GBO≅△FCG,从而可得CG=BO、FC=GB,设OB=a,BG=b,可得F点坐标为(a-b,a+b),根据F点在直线OF上,可求出a=3b,然后即可根据正方形面积和勾股定理求出面积比.【详解】解:在正方形ABCD,正方形OEFG中,∠OBG=∠OGF=∠GCF=90°,FG=OG,∴∠OGB+∠GOB=∠OGB+∠CGF=90°,∴∠GOB=∠CGF,在△GBO和△FCG中,∠OBG=∠GCF ∠GOB=∠FGC OG=FG∴△GBO≅△FCG(AAS)∴CG=BO、FC=GB,设CG=BO=a、FC=GB=b,∴BC=BG+CG=a+b,HF=OB-FC=a-b,∴点F坐标为(a-b,a+b),∵直线OF的表达式是y=2x,∴2(a-b)=a+b,∴a=3b,∴S正方形ABCD=BC2=(a+b)2=(3b+b)2=16b2,S正方形OEFG=OG2=OB2+BG2=a2+b2=(3b)2+b2=10b2,∴S正方形ABCDS正方形OEFG=16b210b2=85,故选B.【点睛】本题主要考查了一次函数与几何综合,解题关键是根据正方形性质求证△GBO≅△FCG (AAS),从而用参数表示点F坐标,再直线OF解析式求出线段之间关系.2.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,EF=6,BG=3,DH=4,计算图中实线所围成的图形的面积S 是______.【答案】50【分析】易证△AEF ≌△BAG ,△BCG ≌△CDH 即可求得AF =BG ,AG =EF ,GC =DH ,BG =CH ,即可求得梯形DEFH 的面积和△AEF ,△ABG ,△CGB ,△CDH 的面积,即可解题.【详解】解:∵∠EAF +∠BAG =90°,∠EAF +∠AEF =90°,∴∠BAG =∠AEF ,∵在△AEF 和△BAG 中,∠F =∠AGB =90°∠AEF =∠BAG AE =AB,∴△AEF ≌△BAG (AAS ),同理△BCG ≌△CDH ,∴AF =BG ,AG =EF ,GC =DH ,BG =CH ,∵梯形DEFH 的面积=12(EF +DH )•FH =80,S △AEF =S △ABG =12AF •AE =9,S △BCG =S △CDH =12CH •DH =6,∴图中实线所围成的图形的面积S =80-2×9-2×6=50,故答案为:50.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△AEF ≌△BAG ,△BCG ≌△CDH 是解题的关键.3.已知直线l 经过正方形ABCD 的顶点A ,过点B 和点D 分别作直线的垂线BM 和DN ,垂足分别为点M 、点N ,如果BM =5,DN =3,那么点M 和点N 之间的距离为_______.【答案】8或2##2或8【分析】根据正方形的性质得出∠NAD =∠MBA ,再利用全等三角形的判定得出△ABM ≌△AND ,进而求出MN 的值,注意分类讨论.【详解】如图1,在正方形ABCD 中,∵∠NAD +∠BAM =90°,∠ABM +∠BAM =90°,∴∠NAD =∠MBA ,∵在△ABM 和△DAN 中,∠AMB =∠AND∠ABM =∠NADAB =AD∴△ABM ≌△DAN (AAS ),∴AM =DN =3,BM =AN =5,∴MN =AM +AN =3+5=8,如图2,在正方形ABCD 中,∵∠DAN +∠BAM =90°,∠ABM +∠BAM =90°,∴∠NAD =∠MBA ,∵在△ABM 和△DAN 中,∠AMB =∠DNA∠ABM =∠NADAB =AD∴△ABM ≌△DAN (AAS ),∴AM =DN =3,BM =AN =5,∴MN =AN -AM =5-3=2,综上:MN =8或2.故答案为:8或2.【点睛】此题主要考查了正方形的性质以及全等三角形的判定与性质等知识,将直线l 与正方形ABCD 的位置分类讨论是解题关键.4.如图,已知△ABC 中,AB =AC ,∠BAC =90°,分别过B 、C 向过A 的直线作垂线,垂足分别为E 、F .(1)如图1,过A 的直线与斜边BC 不相交时,直接写出线段EF 、BE 、CF 的数量关系是______;(2)如图2,过A 的直线与斜边BC 相交时,探究线段EF 、BE 、CF 的数量关系并加以证明;(3)在(2)的条件下,如图3,直线FA 交BC 于点H ,延长BE 交AC 于点G ,连接BF 、FG 、HG ,若∠AHB =∠GHC ,EF =CF =6,EH =2FH ,四边形ABFG 的面积是90,求△GHC的面积.【答案】(1)数量关系为:EF =BE +CF ;(2)数量关系为:EF =BE -CF .证明见详解;(3)S △GHC =15.【分析】(1)数量关系为:EF =BE +CF .利用一线三直角得到∠BEA =∠AFC =90°,∠EBA =∠FAC ,再证△EBA ≌△FEC (AAS )可得BE =AF ,AE =CF即可;(2)数量关系为:EF=BE-CF.先证∠BEA=∠AFC=90°,∠EBA+∠EAB=90°,∠EAB+∠FAC==90°,可得∠EBA=∠FAC,再证△EBA≌△FEC(AAS),可得BE=AF,AE=CF即可;(3)先由(2)结论EF=BE-CF;EF=CF=6,求出BE=AF=12,由EH=2FH,可求FH=2,EH=4,利用对角线垂直的四边形面积可求BG=2×90AF =18012=15,再求EG=3,AH=10,分别求出S△ACF=12AF⋅FC=36,S△HCF=12HF⋅FC=6,S△AGH=12AH⋅EG=15,利用面积差即可求出.【详解】解:(1)数量关系为:EF=BE+CF.∵BE⊥EF,CF⊥EF,∠BAC=90°,∴∠BEA=∠AFC=90°,∠EBA+∠EAB=90°,∠EAB+∠FAC=180°-∠BAC=90°,∴∠EBA=∠FAC,∵在△EBA和△FEC中,∠AEB=∠CFA ∠EBA=∠FAC AB=CA,∴△EBA≌△FAC(AAS),∴BE=AF,AE=CF,∴EF=AF+AE=BE+CF;(2)数量关系为:EF=BE-CF.∵BE⊥AF,CF⊥AF,∠BAC=90°,∴∠BEA=∠AFC=90°,∠EBA+∠EAB=90°,∠EAB+∠FAC==90°,∴∠EBA=∠FAC,∵在△EBA和△FEC中,∠AEB=∠CFA ∠EBA=∠FAC AB=CA,∴△EBA≌△FAC(AAS),∴BE=AF,AE=CF,∴EF=AF-AE=BE-CF;(3)∵EF=BE-CF;EF=CF=6,∴BE=AF=EF+CF=6+6=12,∵EH=2FH,EH+FH=EF=6,∴2FH+FH=6,解得FH=2,∴EH=2FH=4,S四边形ABFG=12AF⋅BG=90,∴BG=2×90AF =18012=15,∴EG=BG-BE=15-12=3,AH=AE+EH=6+4=10,∵S△ACF=12AF⋅FC=12×12×6=36,S△HCF=12HF⋅FC=12×2×6=6,S△AGH=12AH⋅EG=12×10×3=15,∴S△GHC=S△ACF-S△HCF-S△AGH=36-6-15=15.【点睛】本题考查图形变换探究线段和差问题,感知,探究以及应用,三角形全等判定与性质,三角形面积,四边形面积,与三角形高有关的计算,掌握图形变换探究线段和差问题,感知,探究以及应用,三角形全等判定与性质,三角形面积,四边形面积,与三角形高有关的计算是解题关键.5.如图1所示,已知△ABC中,∠ACB=90°,AC=BC,直线m经过点C,过A、B两点分别作直线m的垂线,垂足分别为E、F.(1)如图1,当直线m在A、B两点同侧时,求证:EF=AE+BF;(2)若直线m绕点C旋转到图2所示的位置时(BF<AE),其余条件不变,猜想EF与AE,BF有什么数量关系?并证明你的猜想;(3)若直线m绕点C旋转到图3所示的位置时(BF>AE)其余条件不变,问EF与AE,BF的关系如何?直接写出猜想结论,不需证明.【答案】(1)见解析;(2)EF=AE-BF,理由见解析;(3)EF=BF-AE,理由见解析【分析】(1)先证得∠AEC=∠BFC=90°,∠EAC=∠FCB,根据AAS证△EAC≌△FCB,推出CE =BF,AE=CF即可;(2)类比(1)证得对应的两个三角形全等,由此可推出CE=BF,AE=CF,再根据EF=CF-CE即可得到EF=AE-BF;(3)类比(1)证得对应的两个三角形全等,由此可推出CE=BF,AE=CF,再根据EF=CE-CF即可得到EF=BF-AE.【详解】(1)证明:∵AE⊥EF,BF⊥EF,∠ACB=90°,∴∠AEC=∠BFC=∠ACB=90°,∴∠EAC+∠ECA=90°,∠ECA+∠FCB=90°,∴∠EAC=∠FCB,在△EAC和△FCB中,∠AEC=∠CFB ∠EAC=∠FCB AC=BC,∴△EAC≌△FCB(AAS),∴CE=BF,AE=CF,∵EF=CF+CE,∴EF=AE+BF;(2)解:EF=AE-BF,理由如下:∵AE⊥EF,BF⊥EF,∠ACB=90°,∴∠AEC=∠BFC=∠ACB=90°,∴∠EAC+∠ECA=90°,∠ECA+∠FCB=90°,∴∠EAC=∠FCB,在△EAC和△FCB中,∠AEC=∠CFB ∠EAC=∠FCB AC=BC,∴△EAC≌△FCB(AAS),∴CE=BF,AE=CF,∵EF=CF-CE,∴EF=AE-BF;(3)解:EF=BF-AE,理由如下:∵AE⊥EF,BF⊥EF,∠ACB=90°,∴∠AEC=∠BFC=∠ACB=90°,∴∠EAC+∠ECA=90°,∠ECA+∠FCB=90°,∴∠EAC=∠FCB,在△EAC和△FCB中,∠AEC=∠CFB ∠EAC=∠FCB AC=BC,∴△EAC≌△FCB(AAS),∴CE=BF,AE=CF,∵EF=CE-CF,∴EF=BF-AE.【点睛】本题考查了全等三角形的判定与性质,主要涉及到了全等三角形的判定与性质,等量代换等知识点,难度不大,熟练掌握全等三角形的判定与性质是解决本题的关键.6.如图1,在平面直角坐标中,点A0,m,B m,0,C0,-m,其中m>0,点P为线段OA上任意一点,连接BP,CE⊥BP于E,AD⊥BP于D.(1)求证:AD=BE;(2)当m=3时,若点N-3,0,请你在图1中连接CD,EN交于点Q.求证:EN⊥CD;(3)若将“点P为线段OA上任意一点”,改为“点P为线段OA延长线上任意一点”,其他条件不变,连接CD,EN⊥CD,垂足为F,交y轴于点H,交x轴于点N,请在图2中补全图形,求点N的坐标(用含m的代数式表示).【答案】(1)见解析;(2)见解析;(3)见解析,-m,0【分析】(1)先根据点A0,m,得到OA=OB=OC=m,则由三线合一定理得,C0,-m,B m,0到,AB=BC,证明∠ABC=90°,推出∠CBE=∠BAD即可证明△ABD≅△BCE,得到AD=BE;(2)先根据点N-3,0,得到OA=OB=OC=ON=3,则AC=BN=6,再证明∠DAC=∠EBN,即可利用SAS证明△DAC≅△EBN得到∠ACD=∠BNE,再由∠NGF=∠CGO,可以推出∠NFG =∠COG=90°,即CD⊥EN;(3)同样先证明∠CBE=∠BAD,推出△ABD≅△BCE,得到AD=BE,即可得到∠CAD=∠NBE,再由∠NOH=∠CFH=90°,∠OHN=∠FHC,得到∠ACD=∠BNE,则△ACD≅△BNE,推出AC =BN=2m.【详解】证明:(1)如图1,∵点A0,m,C0,-m,,B m,0∴OA=OB=OC=m,∵OB⊥AC,∴AB=BC,∵∠AOB=∠AOC=90°,∴∠BAC=∠BCA=∠ABO=∠CBO=45°,∴∠ABC=90°,∵AD⊥BP,CE⊥BP,∴∠ABC=∠D=∠CEB=90°∴∠ABD+∠CBE=∠ABD+∠BAD=90°,∴∠CBE=∠BAD,∴△ABD≅△BCE AAS,∴AD=BE;(2)如图2,由(1)得△ABD≅△BCE,∴AD=BE,∵m=3,点N-3,0,∴OA=OB=OC=ON=3,∴AC=BN=6,∵∠CBE=∠BAD,∠BAC=∠CBO=45°,∴∠BAD-∠BAC=∠CBE-∠CBO,∴∠DAC=∠EBN,又∵BE=AD,AC=BN,∴△DAC≅△EBN SAS∴∠ACD=∠BNE,∵∠NGF=∠CGO,∴∠NFG=∠COG=90°,∴CD⊥EN;(3)如图3,由(1)得OA=OB=OC=m,AB=BC,∠BAC=∠CBO=45°,∠ABC=90°,∵AD⊥BP,CE⊥BP,∴∠ABC=∠ADB=∠CEB=90°,∵∠ABD+∠CBE=∠ABD+∠BAD=90°,∴∠CBE=∠BAD,∴△ABD≅△BCE AAS,∴AD=BE,∵∠BAC+∠BAD=∠CBO+∠CBE,∴∠CAD=∠NBE,∵EN⊥CD,x轴⊥y轴,∴∠NOH=∠CFH=90°,∵∠OHN=∠FHC,∴∠ACD=∠BNE,∴△ACD≅△BNE AAS∴AC=BN=2m,∴点N的坐标为-m,0.【点睛】本题主要考查了坐标与图形,全等三角形的性质与判定,等腰直角三角形的性质与判定等等,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.7.在平面直角坐标系中,点A的坐标为4,0,点B为y轴正半轴上的一个动点,以B为直角顶点,AB为直角边在第一象限作等腰Rt △ABC.(1)如图1,若OB =3,则点C 的坐标为______;(2)如图2,若OB =4,点D 为OA 延长线上一点,以D 为直角顶点,BD 为直角边在第一象限作等腰Rt △BDE ,连接AE ,求证:AE ⊥AB ;(3)如图3,以B 为直角顶点,OB 为直角边在第三象限作等腰Rt △OBF .连接CF ,交y 轴于点P ,求线段BP 的长度.【答案】(1)点C (3,7);(2)证明见详解过程;(3)2.【分析】(1)如图1,过点C 作CH ⊥y 轴,由“AAS ”可证△ABO ≌△BCH ,可得CH =OB =3,BH =AO =4,可求解;(2)过点E 作EF ⊥x 轴于F ,由“AAS ”可证△ABO ≌△BCH ,可得BO =DF =4,OD =EF ,由等腰直角三角形的性质可得∠BAO =45°,∠EAF =∠AEF =45°,可得结论;(3)由(1)可知△ABO ≌△BCG ,可得BO =GC ,AO =BG =4,再由“AAS ”可证△CPG ≌△FPB ,可得PB =PG =2.(1)如图1,过点C 作CH ⊥y 轴于H ,∴∠CHB =∠ABC =∠AOB =90°,∴∠BCH +∠HBC =90°=∠HBC +∠ABO ,∴∠ABO =∠BCH ,在△ABO 和△BCH 中,∠CHB =∠AOB∠BCH =∠ABO BC =AB,∴△ABO ≌△BCH (AAS ),∴CH =OB =3,BH =AO =4,∴OH =7,∴点C (3,7),故答案为:(3,7);(2)过点E 作EF ⊥x 轴于F ,∴∠EFD =∠BDE =∠BOD =90°,∴∠BDO +∠EDF =90°=∠BDO +∠DBO ,∴∠DBO =∠EDF ,在△BOD 和△DFE 中,∠BOD =∠EFD∠DBO =∠EDF BD =ED,∴△BOD ≌△DFE (AAS ),∴BO =DF =4,OD =EF ,∵点A 的坐标为(4,0),∴OA =OB =4,∴∠BAO =45°,∵OA =DF =4,∴OD =AF =EF ,∴∠EAF =∠AEF =45°,∴∠BAE =90°,∴BA ⊥AE ;(3)过点C 作CG ⊥y 轴G ,由(1)可知:△ABO ≌△BCG ,∴BO =GC ,AO =BG =4,∵BF =BO ,∠OBF =90°,∴BF =GC ,∠CGP =∠FBP =90°,又∵∠CPG =∠FPB ,∴△CPG ≌△FPB (AAS ),∴BP =GP ,∴BP =12BG =2.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质等知识,添加恰当辅助线构造直角三角形是本题的关键.8.(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .证明∶DE =BD +CE .(2)如图(2),将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论DE =BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.【答案】(1)见解析(2)成立,证明见解析(3)△DEF为等边三角形,证明见解析【分析】(1)因为DE=DA+AE,故由全等三角形的判定AAS证△ADB≌△CEA,得出DA=EC,AE=BD,从而证得DE=BD+CE;(2)成立,仍然通过证明△ADB≌△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+ BD;(3)由△ADB≌△CEA得BD=AE,∠DBA=∠CAE,由△ABF和△ACF均等边三角形,得∠ABF =∠CAF=60°,FB=FA,所以∠DBA+∠ABF=∠CAE+∠CAF,即∠DBF=∠FAE,所以△DBF≌△EAF,所以FD=FE,∠BFD=∠AFE,再根据∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600得到△DEF是等边三角形.【详解】解:(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°.∵∠BAC=90°,∴∠BAD+∠CAE=90°.∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD.又AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE;(2)成立.证明如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α.∴∠DBA=∠CAE.∵∠BDA=∠AEC=α,AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.∴DE=AE+AD=BD+CE;(3)△DEF为等边三角形.理由如下:由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°.∴∠DBA+∠ABF=∠CAE+∠CAF.∴∠DBF=∠FAE.∵BF=AF,∴△DBF≌△EAF(SAS).∴DF=EF,∠BFD=∠AFE.∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°.∴△DEF为等边三角形.【点睛】此题考查了全等三角形的性质和判定、等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定,等边三角形的性质和判定.9.(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D,E.求证:DE=BD+CE.(2)组员小明想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB,AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高.延长HA交EG于点I.若S△AEG=7,则S△AEI=______.【答案】(1)见解析;(2)结论成立,理由见解析;(3)3.5【分析】(1)由条件可证明△ABD≌△CAE,可得DA=CE,AE=BD,可得DE=BD+CE;(2)由条件可知∠BAD+∠CAE=180°-α,且∠DBA+∠BAD=180°-α,可得∠DBA=∠CAE,结合条件可证明△ABD≌△CAE,同(1)可得出结论;(3)由条件可知EM=AH=GN,可得EM=GN,结合条件可证明△EMI≌△GNI,可得出结论I是EG的中点.【详解】解:(1)证明:如图1中,∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,∠ABD=∠CAE ∠BDA=∠CEA AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.(2)解:成立.理由:如图2中,∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠DBA=∠CAE,在△ADB和△CEA中,∠BDA=∠AEC ∠DBA=∠CAE AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.(3)如图3,过E作EM⊥HI于M,GN⊥HI的延长线于N.∴∠EMI=∠GNI=90°由(1)和(2)的结论可知EM=AH=GN∴EM=GN在△EMI 和△GNI 中,∠GIN =∠EIMEM =GN ∠GNI =∠EMI,∴△EMI ≌△GNI (AAS ),∴EI =GI ,∴I 是EG 的中点.∴S △AEI =12S △AEG =3.5.故答案为:3.5.【点睛】本题是四边形综合题,考查了全等三角形的判定和性质,正方形的性质,直角三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.10.如图,在ABC 中,AB =AC =2,∠B =40°,点D 在线段BC 上运动(点D 不与点B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于点E .(1)当∠BDA =115°时,∠EDC =______°,∠AED =______°;(2)线段DC 的长度为何值时,△ABD ≌△DCE ,请说明理由;(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,求∠BDA 的度数;若不可以,请说明理由.【答案】(1)25°,65°;(2)2,理由见详解;(3)可以,110°或80°.【分析】(1)利用邻补角的性质和三角形内角和定理解题;(2)当DC =2时,利用∠DEC +∠EDC =140°,∠ADB +∠EDC =140°,求出∠ADB =∠DEC ,再利用AB =DC =2,即可得出△ABD ≌△DCE .(3)当∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形.【详解】解:(1)∵∠B =40°,∠ADB =115°,∴∠BAD =180°-∠B -∠ADB =180°-115°-40°=25°,∵AB =AC ,∴∠C =∠B =40°,∵∠EDC =180°-∠ADB -∠ADE =25°,∴∠DEC =180°-∠EDC -∠C =115°,∴∠AED =180°-∠DEC =180°-115°=65°;(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD和△DCE中,∠ADB=∠DEC ∠B=∠CAB=DC∴△ABD≌△DCE(AAS);(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,∵∠BDA=110°时,∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∴△ADE的形状是等腰三角形;∵当∠BDA的度数为80°时,∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴△ADE的形状是等腰三角形.【点睛】本题主要考查学生对等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质等知识点的理解和掌握,此题涉及到的知识点较多,综合性较强,但难度不大,属于基础题.11.综合与探究:在平面直角坐标系中,已知A(0,a),B(b,0)且a,b满足(a-3)2+|a-2b-1|=(1)求A,B两点的坐标(2)已知△ABC中AB=CB,∠ABC=90°,求C点的坐标(3)已知AB=10,试探究在x轴上是否存在点P,使△ABP是以AB为腰的等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【答案】(1)A (0,3)、B (1,0);(2)C (4,1);(3)存在,P 1(1-10,0),P 2(1+10,0),P 3(-1,0)【分析】(1)由平方数和绝对值的非负性可得a -3=0,a -2b -1=0,从而求得a =3,b =1,即可得到A ,B 两点的坐标.(2)过点C 向x 轴作垂线,垂足为D ,结合已知条件可构造一线三等角模型,即可证明ΔAOB ≅ΔBDC ,则CD =OB =1,BD =OA =3,易得点C 的坐标.(3)若△ABP 是以AB 为腰的等腰三角形,则需分两种情况讨论:①BP =BA =10,则P 在B 的左侧,P 1-10,0 ;P 在B 右侧,P 1+10,0 ;②AP =AB ,则易证OP =OB =1,故P -1,0 .【详解】解:(1)∵a 、b 满足(a -3)2+|a -2b -1|=0.∴a -3=0,a -2b -1=0,∴a =3,b =1,∴A (0,3)、B (1,0);(2)如图,过点C 向x 轴作垂线,垂足为D ,则∠AOB =∠ABC =∠BDC =90°,∵∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2在ΔAOB 和ΔBDC 中,∵∠AOB =∠BDC∠1=∠2AB =BC∴ΔAOB ≅ΔBDC∴CD =0B =1,BD =OA =3,∴C (4,1).(3)若AB 为腰,则分两种情况讨论:①当BP =BA =10时,若P 在B 的左侧,则OP =BP -OB =10-1,∴P 1-10,0 ;若P 在B 的右侧,则OP =OB +BP =1+10,∴P 1+10,0 ;②当AP =AB =10时,∵AO ⊥BP ,∴由等腰三角形三线合一可知OP =OB =1,∴P -1,0 .综上所述,存在P 1(1-10,0),P 2(1+10,0),P 3(-1,0).【点睛】本题考查点的坐标,等腰三角形的性质,掌握一线三等角证全等及等腰三角形的存在性的方法为解题关键.12.如图,在△ABC 中,AB =BC .(1)如图①所示,直线NM过点B,AM⊥MN于点M,CN⊥MN于点N,且∠ABC=90°.求证:MN=AM+CN.(2)如图②所示,直线MN过点B,AM交MN于点M,CN交MN于点N,且∠AMB=∠ABC=∠BNC,则MN=AM+CN是否成立?请说明理由.【答案】(1)见解析;(2)MN=AM+CN仍然成立,理由见解析【分析】(1)首先根据同角的余角相等得到∠BAM=∠CBN,然后证明△AMB≅△BNC AAS,然后根据全等三角形对应边相等得到AM=BN,BM=CN,然后通过线段之间的转化即可证明MN= AM+CN;(2)首先根据三角形内角和定理得到∠MAB=∠CBN,然后证明△AMB≅△BNC AAS,根据全等三角形对应边相等得到MN=MB+BN,最后通过线段之间的转化即可证明MN=AM+CN.【详解】证明:(1)∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°,∴∠ABM+∠BAM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠BAM=∠CBN,在△AMB和△BNC中,∠AMB=∠BNC ∠BAM=∠CBN AB=BC,∴△AMB≅△BNC AAS,∴AM=BN,BM=CN,∵BN+MB=MN,∴MN=AM+CN;(2)MN=AM+CN仍然成立,理由如下:∵∠AMB+∠MAB+∠ABM=∠ABM+∠ABC+∠CBN=180°,∵∠AMB=∠ABC,∴∠MAB=∠CBN,在△AMB 和△BNC 中,∠AMB =∠BNC∠BAM =∠CBN AB =BC,∴△AMB ≅△BNC AAS ,∴AM =BN ,NC =MB ,∵MN =MB +BN ,∴MN =AM +CN .【点睛】此题考查了全等三角形的性质和判定,同角的与相等,三角形内角和定理等知识,解题的关键是根据同角的余角相等或三角形内角和定理得到∠BAM =∠CBN .13.通过对下面数学模型的研究学习,解决下列问题:(1)如图1,∠BAD =90°,AB =AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥AC 于点E .由∠1+∠2=∠2+∠D =90°,得∠1=∠D .又∠ACB =∠AED =90°,可以推理得到△ABC ≌△DAE .进而得到AC = ,BC =AE .我们把这个数学模型称为“K 字”模型或“一线三等角”模型;(2)如图2,∠BAD =∠CAE =90°,AB =AD ,AC =AE ,连接BC ,DE ,且BC ⊥AF 于点F ,DE 与直线AF 交于点G .求证:点G 是DE 的中点;(深入探究)(3)如图,已知四边形ABCD 和DEGF 为正方形,△AFD 的面积为S 1,△DCE 的面积为S 2,则有S 1 S 2(填“>、=、<”)【答案】(1)DE ;(2)见解析;(3)=【分析】(1)根据全等三角形的性质可直接进行求解;(2)分别过点D 和点E 作DH ⊥FG 于点H ,EQ ⊥FG 于点Q ,进而可得∠BAF =∠ADH ,然后可证△ABF ≌△DAH ,则有AF =DH ,进而可得DH =EQ ,通过证明△DHG ≌△EQG 可求解问题;(3)过点D 作DO ⊥AF 交AF 于O ,过点E 作EN ⊥OD 交OD 延长线于N ,过点C 作CM ⊥OD 交OD 延长线于M ,由题意易得∠ADC =∠90°,AD =DC ,DF =DE ,然后可得∠ADO =∠DCM ,则有△AOD ≌△DMC ,△FOD ≌△DNE ,进而可得OD =NE ,通过证明△ENP ≌△CMP 及等积法可进行求解问题.【详解】解:(1)∵△ABC ≌△DAE ,∴AC =DE ;(2)分别过点D和点E作DH⊥FG于点H,EQ⊥FG于点Q,如图所示:∴∠DAH+∠ADH=90°,∵∠BAD=90°,∴∠BAF+∠DAH=90°,∴∠BAF=∠ADH,∵BC⊥AF,∴∠BFA=∠AHD=90°,∵AB=DA,∴△ABF≌△DAH,∴AF=DH,同理可知AF=EQ,∴DH=EQ,∵DH⊥FG,EQ⊥FG,∴∠DHG=∠EQG=90°,∵∠DGH=∠EGQ∴△DHG≌△EQG,∴DG=EG,即点G是DE的中点;(3)S1=S2,理由如下:如图所示,过点D作DO⊥AF交AF于O,过点E作EN⊥OD交OD延长线于N,过点C作CM⊥OD交OD延长线于M∵四边形ABCD与四边形DEGF都是正方形∴∠ADC=∠90°,AD=DC,DF=DE∵DO⊥AF,CM⊥OD,∴∠AOD=∠CMD=90°,∠OAD+∠ODA=90°,∠CDM+∠DCM=90°,又∵∠ODA+∠CDM=90°,∴∠ADO=∠DCM,∴△AOD≌△DMC,∴S△AOD=S△DMC,OD=MC,同理可以证明△FOD≌△DNE,∴S△FOD=S△DNE,OD=NE,∴MC=NE,∵EN⊥OD,CM⊥OD,∠EPN=∠CMP,∴△ENP≌△CMP,∴S△ENP=S△CMP,∵S△ADF=S△AOD+S△FOD,S△DCE=S△DCM-S△CMP+S△DEN+S△ENP,∴S△DCE=S△DCM+S△DEN=S△AOD+S△FOD,∴S△DCE=S△ADF即S1=S2.【点睛】本题主要考查全等三角形的性质与判定、直角三角形的两个锐角互余及等积法,熟练掌握全等三角形的判定条件是解题的关键.14.已知:CD是经过∠BCA的顶点C的一条直线,CA=CB,E、F是直线CD上两点,∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,∠BCD>∠ACD.①如图1,∠BCA=90°,∠α=90°,写出BE,EF,AF间的等量关系: .②如图2,∠α与∠BCA具有怎样的数量关系,能使①中的结论仍然成立?写出∠α与∠BCA的数量关系 .(2)如图3.若直线CD经过∠BCA的外部,∠α=∠BCA,①中的结论是否成立?若成立,进行证明;若不成立,写出新结论并进行证明.【答案】(1)①EF=BE-AF;②∠α+∠BCA=180°,理由见解析;(2)不成立,EF=BE+AF,证明见解析【分析】(1)①求出∠BEC=∠AFC=90°, ∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE =CF,CE=AF即可得出结论;②求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可得出结论;(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根据AAS证△BCE≌△CAF,推出BE=CF,CE=AF即可得出结论.【详解】(1)①EF、BE、AF的数量关系:EF=BE-AF,证明:当α=90°时,∠BEC=∠CFA=90°,∵∠BCA=90°,∴∠BCE+∠ACF=90°,∵∠BCE+∠CBE=90°,∴∠ACF=∠CBE,∵AC=BC,∴△BCE≌△CAF,∴BE=CF,CE=AF,∵CF=CE+EF,∴EF=CF-CE=BE-AF;②∠α与∠BCA关系:∠α+∠BCA=180°当∠α+∠BCA=180°时,①中结论仍然成立;理由是:如题图2,∵∠BEC=∠CFA=∠α, ∠CBE+∠BCE+∠BEC=180°,∠α+∠ACB=180°,∴∠ACB=∠CBE+∠BCE又∵∠ACB=∠ACF+∠BCE∴∠CBE=∠ACF,在△BCE和△CAF中,∠BEC=∠CFA ∠CBE=∠ACF BC=AC∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF-CE=BE-AF;故答案为:∠α+∠BCA=180°;(2)EF、BE、AF的数量关系:EF=BE+AF,理由如下∵∠BEC=∠CFA=∠α, ∠α=∠BCA,又∵∠EBC+∠BCE+∠BEC=180° , ∠BCE+∠ACF+∠ACB=180° ,∴∠EBC+∠BCE=∠BCE+∠ACF∴∠EBC=∠ACF,在△BEC和△CFA中,∠EBC=∠FCA ∠BEC=∠CFA BC=CA∴△ABE≌△CFA(AAS)∴AF=CE,BE=CF∵EF=CE+CF,∴EF=BE+AF.【点睛】本题考查了全等三角形的性质和判定,证明△BCE≌△CAF是解题的关键.15.通过对数学模型“K字”模型或“一线三等角”模型的研究学习,解决下列问题:[模型呈现]如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.求证:BC=AE.[模型应用]如图2,AE⊥AB且AE=AB,BC⊥CD且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积为________________.[深入探究]如图3,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.若BC=21,AF=12,则△ADG的面积为_____________.【答案】[模型呈现]见解析;[模型应用]50;[深入探究]63【分析】[模型呈现]证明△ABC≌△DAE,根据全等三角形的对应边相等得到BC=AE;[模型应用]根据全等三角形的性质得到AP=BG=3,AG=EP=6,CG=DH=4,CG=BG=3,根据梯形的面积公式计算,得到答案;[深入探究]过点D作DP⊥AG于P,过点E作EQ⊥AG交AG的延长线于Q,根据全等三角形的性质得到DP=AF=12,EQ=AF=12,AP=BF,AQ=CF,证明△DPG≌△EQG,得到PG= GQ.,进而求出AG,根据三角形的面积公式计算即可.【详解】[模型呈现]证明:∵∠BAD=90°,∴∠BAC+∠DAE=90°,∵BC⊥AC,DE⊥AC,∴∠ACB=∠DEA=90°,∴∠BAC+∠ABC=90°,∴∠ABC=∠DAE,在△ABC和△DAE中,∠ABC=∠DAE ∠ACB=∠DAE BA=AD,∴△ABC≌△DAE(AAS),∴BC=AE;[模型应用]解:由[模型呈现]可知,△AEP≌△BAG,△CBG≌△DCH,∴AP=BG=3,AG=EP=6,CG=DH=4,CG=BG=3,则S实线围成的图形=12(4+6)×(3+6+4+3)-12×3×6-12×3×6-12×3×4-12×3×4=50,故答案为:50;。

相似三角形中的 “一线三等角”模型-2023年新九年级数学核心知识点与常见题型(沪教版)(解析版)

相似三角形中的 “一线三等角”模型-2023年新九年级数学核心知识点与常见题型(沪教版)(解析版)

重难点专项突破:相似三角形中的“一线三等角”模型【知识梳理】一线三等角指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。

或叫“K字模型”。

三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下:当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。

一般类型:基本类型:同侧“一线三等角”异侧“一线三等角”【考点剖析】例1.如图,直角梯形ABCD 中,AB // CD ,90ABC ∠=︒,点E 在边BC 上,且34AB BE EC CD ==, AD = 10,求AED ∆的面积.【答案】24.【解析】90ABC ∠=,//AB CD , ∴90DCB ABC ∠=∠=.又34AB BE EC CD ==, ABE ECD ∴∆∆∽.∴AEB EDC ∠=∠. ∴34AE AB ED EC ==.90EDC DEC ∠+∠=,∴90AEB DEC ∠+∠=. ∴90AED ∠=.在Rt AED ∆中,10AD =,68AE ED ∴==,. 24AED S ∆∴=.【总结】本题考查一线三等角模型的相似问题,还有外角知识、平行的判定等.例2.已知:如图,△ABC 是等边三角形,点D 、E 分别在边BC 、AC 上,∠ADE =60°.(1)求证:△ABD ∽△DCE ;(2)如果AB =3,EC =,求DC 的长.【分析】(1)△ABC 是等边三角形,得到∠B =∠C =60°,AB =AC ,推出∠BAD =∠CDE ,得到△ABD∽△A B C DEDCE ;(2)由△ABD ∽△DCE ,得到=,然后代入数值求得结果.【解答】(1)证明:∵△ABC 是等边三角形,∴∠B =∠C =60°,AB =AC ,∵∠B+∠BAD =∠ADE+∠CDE ,∠B =∠ADE =60°,∴∠BAD =∠CDE∴△ABD ∽△DCE ;(2)解:由(1)证得△ABD ∽△DCE ,∴=,设CD =x ,则BD =3﹣x ,∴=,∴x =1或x =2,∴DC =1或DC =2.【点评】本题考查了等边三角形的性质,相似三角形的判定和性质,注意数形结合和方程思想的应用. 例3.已知,在等腰ABC ∆中,AB = AC = 10,以BC 的中点D 为顶点作EDF B ∠=∠, 分别交AB 、AC 于点E 、F ,AE = 6,AF = 4,求底边BC 的长.【答案】46.【解析】EDC B BED ∠=∠+∠,而EDC EDF FDC ∠=∠+∠,∴B BED EDF FDC ∠+∠=∠+∠. 又EDF B ∠=∠,∴BED FDC ∠=∠.AB C D EFAB AC=,∴B C∠=∠.EDB DCF∴∆∆∽.BE BDDC CF∴=.106104BDDC−∴=−,24DC BD∴=.又12CD DB BC==,BC∴=【总结】本题是对“一线三等角”模型的考查.例4.已知:如图,AB⊥BC,AD // BC, AB = 3,AD = 2.点P在线段AB上,联结PD,过点D作PD的垂线,与BC相交于点C.设线段AP的长为x.(1)当AP = AD时,求线段PC的长;(2)设△PDC的面积为y,求y关于x的函数解析式,并写出函数的定义域;(3)当△APD∽△DPC时,求线段BC的长.满分解答:(1)过点C作CE⊥AD,交AD的延长线于点E.∵AB⊥BC,CE⊥AD,PD⊥CD,AD // BC,∴∠ABC =∠AEC =∠PDC = 90°,CE = AB = 3.∵AD // BC,∴∠A +∠ABC = 180°.即得∠A = 90°.又∵∠ADC =∠DCE +∠DEC,∠ADC =∠ADP +∠PDC,∴∠ADP =∠DCE.又由∠A =∠DEC = 90°,得△APD∽△DCE.∴AD APCE DE=.于是,由AP = AD = 2,得DE = CE = 3.…………………………(2分)在Rt△APD和Rt△DCE中,得PD=,CD=1分)AB CDPAB CD(备用图)于是,在Rt △PDC 中,得 PC = (1分)(2)在Rt △APD 中,由 AD = 2,AP = x ,得 PD 1分)∵ △APD ∽△DCE ,∴AD PD CE CD =.∴ 32CD PD ==1分)在Rt △PCD 中,22113332224PCD S PD CD x ∆=⋅⋅=⨯=+.∴ 所求函数解析式为2334y x =+.…………………………………(2分) 函数的定义域为 0 < x ≤ 3.…………………………………………(1分)(3)当△APD ∽△DPC 时,即得 △APD ∽△DPC ∽△DCE .…………(1分)根据题意,当△APD ∽△DPC 时,有下列两种情况:(ⅰ)当点P 与点B 不重合时,可知 ∠APD =∠DPC .由 △APD ∽△DCE ,得 AP PD DE DC =.即得AP DE PD CD =. 由 △APD ∽△DPC ,得AP AD PD DC =. ∴AD DE CD CD =.即得 DE = AD = 2. ∴ AE = 4.易证得四边形ABCE 是矩形,∴ BC = AE = 4.…………………(2分)(ⅱ)当点P 与点B 重合时,可知 ∠ABD =∠DBC .在Rt △ABD 中,由 AD = 2,AB = 3,得 BD =.由 △ABD ∽△DBC ,得AD BD BD BC =.即得 =. 解得 132BC =.………………………………………………………(2分)∴ △APD ∽△DPC 时,线段BC 的长分别为4或132.方法总结本题重点在于:过点C 作CE ⊥AD ,交AD 的延长线于点E .(构造一线三角,出现相似三角形,进行求解) 例5.在梯形ABCD 中,AD ∥BC ,︒=∠===90,2,1A BC AB AD .(如图1)(1)试求C ∠的度数;(2)若E 、F 分别为边AD 、CD 上的两个动点(不与端点A 、D 、C 重合),且始终保持︒=∠45EBF ,BD 与EF交于点P .(如图2)①求证:BDE ∆∽BCF ∆;②试判断BEF ∆的形状(从边、角两个方面考虑),并加以说明;③设y DP x AE ==,,试求y 关于x 的函数解析式,并写出定义域.答案:(1)作BC DH ⊥,垂足为H ,在四边形ABHD 中,AD ∥BC ,︒=∠==90,1A AB AD ,则四边形ABHD 为正方形又在CDH ∆中,1,1,90=−====∠︒BH BC CH AB DH DHC , ∴︒︒=∠−=∠452180DHC C .(2)①∵四边形ABHD 为正方形,∴︒=∠45CBD ,︒=∠45ADB ,又∵︒=∠45EBF ,∴CBF DBE ∠=∠又∵︒=∠=∠45C BDE ,∴BDE ∆∽BCF ∆.②BEF ∆是等腰直角三角形,∵BDE ∆∽BCF ∆, ∴CB FB BD BE =,又∵︒=∠=∠45DBC EBF ,∴EBF ∆∽DBC ∆,又在DBC ∆中,︒=∠=∠45C DBC ,为等腰直角三角形,∴BEF ∆是等腰直角三角形. ③x x x x x x y +−=+−⨯=1221222,(0<x <1).方法总结 第三问方法提示:过点P 作AD 的垂线于点H ,构造一线三直角相似,进行求解,很简单。

中考数学复习 一线三等角模型(含解析)

中考数学复习 一线三等角模型(含解析)

中考数学复习一线三等角模型(含解析)1.如图,点B,C,E在同一条直线上,∠B=∠E=∠ACF=60°,AB=CE,则与线段BC相等的线段是()A.ACB.AFC.CFD.EF第1题图2.如图,在等边△ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP=2,CD=1,则△ABC 的边长为()A.3B.4C.5D.6第2题图3.如图,A、B、C是直线l上的三个点,∠DAB=∠DBE=∠ECB=α,且DB=BE.若α=120°,点F在直线l的上方,连接AF、BF、CF,△BEF为等边三角形,则可判断△ACF的形状为()A.等腰三角形B.等边三角形C.等腰或等边三角形D.无法确定第3题图4.如图,在△ABC中,点D是BC上一点,连接AD,点E是AD上一点,连接BE,若∠BAC=∠BED,∠BAC+∠ADC=180°,AE=1,BE=CD=2,则DE的长是________.第4题图5.如图,点E,F,G分别在正方形ABCD的边AB,BC,AD上,AF⊥EG.若AB=5,AE=DG=1,则BF=________.第5题图6.如图,在等腰直角△ABC中,∠ACB=90°,AC=BC,点D是∠ACB内部一点,连接CD,作AD⊥CD,BE⊥CD,垂足分别为点D,E.若BE=DE=2,则△ACD的周长是________.第6题图7.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°.(1)当∠BDA=115°时,∠AED=________°;(2)当CD=________时,△ABD≌△DCE.第7题图8.已知,在△EFG中,∠EFG=90°,EF=FG,且点E,F分别在矩形ABCD的边AB,AD上.(1)如图①,当点G在CD上时,求证:△AEF≌△DFG;(2)如图②,若F是AD的中点,FG与CD相交于点N,连接EN,求证:EN=AE+DN;(3)如图③,若AE=AD,EG,FG分别交CD于点M,N,MN=2,MD=3,求MG的长.第8题图微专题一线三等角模型1.D 【解析】∵∠ACE =∠B +∠CAB =∠ACF +∠ECF ,∠B =∠E =∠ACF =60°,∴∠ECF =∠CAB ,∵AB =CE ,∴△ABC ≌△CEF (ASA),∴BC =EF .2.B 【解析】∵△ABC 是等边三角形,∴AB =BC =AC ,∠B =∠C =60°,∴∠BAP +∠APB =180°-60°=120°,∵∠APD =60°,∴∠APB +∠DPC =180°-60°=120°,∴∠BAP =∠DPC ,∴△ABP ∽△PCD ,∴AB PC =BP CD ,即AB AB -2=21,∴AB =4,即△ABC 的边长为4.3.B 【解析】∵△BEF 为等边三角形,∴BF =EF ,∠BFE =∠FBE =∠FEB =60°.∵∠DBE =120°,∴∠DBF =60°.∵∠DAB =∠DBE =α,∴∠ADB +∠ABD =∠CBE +∠ABD =180°-α.∴∠ADB =∠CBE .在△ADB 和△CBE DAB =∠BCEADB =∠CBE =BE,∴△ADB ≌△CBE (AAS),∴∠ABD =∠CEB ,∴∠ABD +∠DBF=∠CEB +∠FEB ,∴∠ABF =∠CEF .又∵AB =CE ,∴△AFB ≌△CFE (SAS),∴AF =CF ,∠AFB =∠CFE ,∴∠AFC =∠AFB +∠BFC =∠CFE +∠BFC =60°,∴△ACF 为等边三角形.4.3【解析】如解图,延长AD 至点F ,∵∠BAC =∠BED ,∠BAC +∠ADC =180°,∴∠BAC =∠BED =∠FDC ,∵∠FDC =∠ACD +∠DAC ,∠BAC =∠BAE +∠DAC ,∴∠ACD =∠BAE ,∵∠BED =∠ABE +∠BAE ,∴∠DAC =∠EBA ,∴△ACD ∽△BAE ,∴CD AE =AD BE,∵AE =1,BE =CD =2,∴AD =4,∴DE =AD -AE =3.第4题解图5.54【解析】如解图,设AF 与EG 交于点H ,∵四边形ABCD 是正方形,∴∠BAD =∠B =90°,∠FAB+∠GAH =90°.∵AF ⊥EG ,∴∠AGE +∠GAH =90°.∴∠AGE =∠FAB .∴△ABF ∽△GAE ,∴AB GA =BF AE,∵AB =5,AE =GD =1,∴AG =AD -GD =5-1=4,∴54=BF 1,解得BF =54.第5题解图6.6+25【解析】∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠EBC=∠ACD.在△BCE和△CAD E=∠ADC,EBC=∠DCA,=CA,∴△BCE≌△CAD(AAS),∴CE=AD,BE=CD=2,∴AD=BE+DE=4,由勾股定理得AC=CD2+AD2=25,∴△ACD的周长为25+2+4=6+25.7.(1)65【解析】∵AB=AC,∴∠C=∠B=40°,∵∠ADE=40°,∠BDA=115°,∴∠EDC=180°-∠BDA -∠ADE=25°,∴∠AED=∠EDC+∠C=25°+40°=65°;(2)2【解析】∵∠C=∠B=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,当DC=AB时,在△ABD和△DCE ADB=∠DECB=∠C=DC,∴△ABD≌△DCE(AAS),∴当DC=AB=2时,△ABD≌△DCE.8.(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠AEF+∠AFE=90°.∵∠EFG=90°,∴∠AFE+∠DFG=90°,∴∠AEF=∠DFG,∵EF=FG,∴△AEF≌△DFG(AAS);(2)证明:如解图①,延长NF,EA,交点记为点H,∴∠AFH=∠DFN,∠HAF=90°.∵F是AD的中点,∴AF=DF,∴△AHF≌△DNF,∴AH=DN,FH=FN.∵∠EFN=90°,∴△HEN为等腰三角形,∴EH=EN.∵EH =AE +AH =AE +DN ,∴EN =AE +DN ;第8题解图①(3)解:如解图②,过点G 作GP ⊥AD ,交AD 的延长线于点P ,连接DG ,∴∠P =90°,同(1)的方法得,△AEF ≌△PFG ,∴AF =PG ,AE =PF ,∵AE =AD ,∴PF =AD ,∴PF -FD =AD -FD ,∴PD =AF ,∴PG =PD .∴∠PDG =∠MDG =45°,在Rt △EFG 中,EF =FG ,∴∠FGE =45°,∴∠FGE =∠GDM .∵∠GMN =∠DMG ,∴△MGN ∽△MDG ,∴MG MD =MN MG,∴MG =MD ·MN =3×2= 6.第8题解图②。

2024年中考数学复习(全国版)重难点09 相似三角形8种模型(解析版)

2024年中考数学复习(全国版)重难点09 相似三角形8种模型(解析版)

∴△ 퐶퐴 ∽△ 퐶 ,
∴ ∠퐶퐴 = ∠퐶 ,
∵ ∠퐶퐴 = ∠퐶퐵 ,
∴ ∠퐶 퐵 = ∠퐶퐵 ,
∴ 퐵퐶 = 퐶,
∴ 퐶 = 퐶퐵, ∴ ∠퐵 퐶 = ∠퐵퐴 ,
∴ 퐶//퐴 ,

푃퐶 퐶
=
푃 퐴
=
2� �
=
2,
∴ 푃퐶 = 2퐶 = 4 2,
∵ ∠푃퐶퐵 = ∠푃퐴 ,∠퐶푃퐵 = ∠퐴푃 ,

【答案】2 【分析】过 D 作 垂直퐴퐶于 H 点,过 D 作 ∥퐴 交 BC 于 G 点,先利用解直角三角形求出퐶 的长, 其次利用△ 퐶 ∽△ 퐶퐵 ,求出퐶 的长,得出퐵 的长,最后利用△ 퐵 ∽△ 퐵퐴 ,求出퐵 的长, 最后得出答案. 【详解】解:如图:过 D 作 垂直퐴퐶于 H 点,过 D 作 ∥퐴 交퐵퐶于 G 点,
∴퐴
= 퐴�,即
퐴 �+

=
� 퐴
∴2
2+

=
� 2
解得 � = 5 − 1 或 � =− 5 − 1 < 0(不符题意,舍去)
则퐵 = � = 5 − 1
故答案为:2, 5 − 1. 【点睛】本题考查了矩形的性质、折叠的性质、三角形全等的判定定理与性质、相似三角形的判定与性质 等知识点,根据矩形与折叠的性质,正确找出两个相似三角形是解题关键. 3.(2020·山东济宁·中考真题)如图,在四边形 ABCD 中,以 AB 为直径的半圆 O 经过点 C,D.AC 与 BD 相
BC=DC,证明
OC∥AD,利用平行线分线段成比例定理得到퐶푃퐶
=
푃 퐴
=
2,则푃퐶
=
2퐶
= 4 2,然后证
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九讲:一线三等角(二)
教师:______ 学生:______ 上课时间:_____
例1:数学课堂上,徐老师出示了一道试题:如图所示,在正三角形ABC 中,M 是BC 边(不含端点B ,C )上任意一点,P 是BC 延长线上一点,N 是∠ACP 的平分线上一点,若∠AMN=60°,求证:AM=MN 。

(1) 经过思考,小明展示了一种正确的证明过程,请你将证明过程补充完整。

证明:在AB 上截取EA=MC ,连结EM ,得△AEM 。

∵∠1=180°-∠AMB-∠AMN ,∠2=180°-∠AMB -∠B ,∠AMN=∠B=60°,
∴∠1=∠2.
又∵CN 、平分∠ACP ,∴∠4=1/2∠ACP=60°。

∴∠MCN=∠3+∠4=120°。

又∵BA=BC ,EA=MC ,∴BA-EA=BC-MC ,即BE=BM 。

∴△BEM 为等边三角形,∴∠6=60°。

∴∠5=10°-∠6=120°。

由①②得∠MCN=∠5.在△AEM 和△MCN 中,∵__________,
____________,___________,∴△AEM ≌△MCN (ASA )。

∴AM=MN.
(2)若将试题中的“正三角形ABC ”改为“正方形A 1B 1C 1D 1”(如图),N 1是
∠D 1C 1P 1的平分线上一点,则当∠A 1M 1N 1=90°时,结论A 1M 1=M 1N 1是否还成立?
(直接给出答案,不需要证明)
(3)若将题中的“正三角形ABC ”改为“正多边形A n B n C n D n …X n ”,请你猜想:
当∠A n M n N n =__ °时,结论A n M n =M n N n 仍然成立?(直接写出答案,不需要证明)
例2:如图1,在边长为5的正方形ABCD 中,点E 、F 分别是BC 、DC 边上的点,且AE EF ⊥,2BE =.
(1)求EC ∶CF 的值;(2)延长EF 交正方形外角平分线CP P 于点,试判断AE EP 与的大小关系,并说明理由;(3)在图2的AB 边上是否存在一点M ,使得四边形DMEP 是平行四边形?若存在,请给予证明;若不存在,请说明理由.
秒杀秘籍:一线三等角与全等
(一)①等边三角形的一条边BC 上构造一个60°的角∠APE ;②∠ACB 外角平分线与∠APE 相交于F ;③ ∠APE 的两条边相等,即AP=PF 。

(二)①正方形的一条边BC 上构造一个90°的角∠APE ;②∠DCB 外角平分线∠APE 相交于F ;③ ∠APE 的两条边相等,即AP=PF 。

这里都是知二定一(知道两个条件推出第三个条件),证明的关键是△AGP ≌△PCF
E B C E D A
F P
A D
B
C F
例3:如图,在梯形ABCD 中,∠A =90°,∠B =120°,AD =3,AB =
6.在
底边AB 上取点E ,在射线DC 上取点F ,使得
∠DEF =120°.(1)当点E 是AB 的中点时,DF = ;
(2)若射线EF 经过点C ,则AE = .
例4:在直角ABC ∆中,4
3tan ,5,90===∠B AB C o ,点D 是BC 的中点,点E 是AB 边上的动点,DE DF ⊥交射线AC 于点F (1)、求AC 和BC 的长(2)、当BC EF //时,求BE 的长。

(3)、连结EF,当DEF ∆和ABC ∆相似时,求BE 的长。

例5.:在矩形ABCD 中,点P 在AD 上,AB =2,AP =1,将三角板的直角顶点放在点P 处,三角板的两直角边分别能与AB 、BC 边相交于点E 、F ,连接EF .(1)如图,当点E 与点B 重合时,点F 恰好与点C 重合,求此时PC 的长;(2)将三角板从(1)中的位置开始,绕点P 顺时针旋转,当点E 与点A 重合时停止,在这个过程中,请你观察、探究并解答:① ∠PEF 的大小是否发生变化?请说明理由;② 直接写出从开始到停止,线段EF 的中点所经过的路线长.
秒杀秘籍:一线二等角构造成一线三等角
1.由一个不等腰梯形构造成等腰梯形,实现一线三等角;
2.凡遇到一个直角三角形的一条直角边上有直角时,需要作垂线构造一线三等角;
F C B A E D F D C
A B E
1.已知D、E、F分别为等腰△ABC边BC、CA、AB上的点,如果AB=AC,BD=2,CD=3,CE=4,AE=,∠FDE=∠B,那么AF的长为()
A .5.5 B

4.5 C

4 D

3.5
第1题第2题第3题第4题
2.如图,已知:在边长为12的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=3,则BE长为()
A .1 B

2.5 C

2.25 D

1.5
3.如图,Rt△ABC中,∠B=90°,AD平分∠BAC,DE⊥AD交AC于点E,EF⊥BC于点F,若AB=4,BD=2,则CE的长为()
A .2
B

C

D

4.△ABC中,∠ACB=90°,将△ABC按如图的位置放在直角坐标系中,若点A的坐标为(0,2),点C的坐标为(1,0),点B的横坐标为4,则点B的纵坐标为()
A .1 B

1.2 C

1.5 D

1.8
5.如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=BC.图中相似三角形共有()
A .1对B

2对C

3对D

4对
第5题第6题第7题第8题6.直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为()
A .B

C

D

7如图,在梯形ABCD中,AD∥BC,∠A=90°,AB=7cm,AD=2cm,BC=3cm,动点P从点A出发沿着线段AB方向以1cm/s的速度向点B运动,到达点B运动结束,设点P的运动时间为t秒,若以P、A、D为顶点的三角形与以P、B、C为顶点的三角形相似,则t的值不可能是()
A .1
B

6
C

D

8.如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,E 为AB 上一点,且DE 平分∠ADC ,CE 平分∠BCD ,则下列结论中正确的有( )
①DE ⊥EC ;②∠ADE=∠BEC ;③AD•BC=BE•AE ;④CD=AD+BC .
A . 1个
B . 2个
C . 3个
D .
4个
9.如图,在Rt △ABC 中,∠C=90°,AD ⊥DE ,DE=BE ,若AC=6,BC=9时,则CD=

10.如图,矩形ABCD 中,点E 在边BC 上,EF ⊥AE 交AD 于点F ,若AB=2,BC=8,BE=5,则FD 的长度为 .
11.如图,在Rt △ABC 中,∠C=90°,AD 是∠CAB 的平分线交BC 于点D ,过点D 作DE ⊥AD 交AB 于点E ,过点E 作EF
⊥BC ,EG ⊥ED ,交BC 分别为点F ,G ,过点G 作GH ⊥EG 交AB 于点H ,过点H 作HI ⊥BC ,HJ ⊥GH ,交BC 分别为点I ,J ,若三角形ACD 与三角形DEF 的面积分别为2和1,则三角形GHJ 的面积= .
E
D B
C A
第9题 第10题 第11题 第12题
12.如图,在Rt △ABC 中,90ACB ∠=︒,60A ∠=︒,AC =2,D 是AB 边上一个动点(不与点A 、B 重合),E 是BC 边上一点,且30CDE ∠=︒.设AD=x , BE=y ,则y 与x 的函数关系是
13.如图,E 是矩形ABCD 的边BC 上一点,EF ⊥AE ,EF 分别交AC ,CD 于点M ,F ,BG ⊥AC ,垂足为C ,BG 交AE 于点H .(1)求证:△ABE ∽△ECF ;(2)找出与△ABH 相似的三角形,并证明;(3)若E 是BC 中点,BC=2AB ,AB=2,求EM 的长.
14.如图,在Rt △ABC 中,∠C=90°,AB=10,AC=6,点D 是BC 的中点,点E 是AB 边上的动点,DF ⊥DE 交边AC 于点F .(1)求BC 的长;(2)设FC=x ,BE=y ,求y 关于x 的函数关系式,并写出x 的取值范围;(3)联结EF ,当△DEF 和△ABC 相似时,求BE 的长.。

相关文档
最新文档