单片机C 延时时间怎样计算
延时时间计算
单片机C51延时时间怎样计算?[日期:2010-04-28 ] [来源:本站原创作者:admin] [字体:大中小] (投递新闻)C程序中可使用不同类型的变量来进行延时设计。
经实验测试,使用unsigned char类型具有比unsigned int更优化的代码,在使用时应该使用unsigned char作为延时变量。
以某晶振为12MHz的单片机为例,晶振为12MHz即一个机器周期为1us。
一. 500ms延时子程序程序:void delay500ms(void){unsigned char i,j,k;for(i=15;i>0;i--)for(j=202;j>0;j--)for(k=81;k>0;k--);}计算分析:程序共有三层循环一层循环n:R5*2 = 81*2 = 162us DJNZ 2us二层循环m:R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值1us = 3us三层循环: R7*(m+3) = 15*33333 = 499995us DJNZ 2us + R6赋值1us = 3us循环外: 5us 子程序调用2us + 子程序返回2us + R7赋值1us = 5us延时总时间= 三层循环+ 循环外= 499995+5 = 500000us =500ms计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5二. 200ms延时子程序程序:void delay200ms(void){unsigned char i,j,k;for(i=5;i>0;i--)for(j=132;j>0;j--)for(k=150;k>0;k--);}三. 10ms延时子程序程序:void delay10ms(void){unsigned char i,j,k;for(i=5;i>0;i--)for(j=4;j>0;j--)for(k=248;k>0;k--);}四. 1s延时子程序程序:void delay1s(void){unsigned char h,i,j,k;for(h=5;h>0;h--)for(i=4;i>0;i--)for(j=116;j>0;j--)for(k=214;k>0;k--);}参考链接:/news/2010-04/2106.htmkeilc51程序设计中几种精确延时及延时的计算、确定软件用法(如protues、keil、Word)2009-09-08 12:04:54 阅读340 评论0 字号:大中小摘要实际的单片机应用系统开发过程中,由于程序功能的需要,经常编写各种延时程序,延时时间从数微秒到数秒不等,对于许多C51开发者特别是初学者编制非常精确的延时程序有一定难度。
c延时计算
晶振12MHz,一个机器周期1us.)一. 500ms延时子程序程序:void delay500ms(void){unsigned char i,j,k;for(i=15;i>0;i--)for(j=202;j>0;j--)for(k=81;k>0;k--);}产生的汇编:C:0x0800 7F0F MOV R7,#0x0FC:0x0802 7ECA MOV R6,#0xCAC:0x0804 7D51 MOV R5,#0x51C:0x0806 DDFE DJNZ R5,C:0806C:0x0808 DEFA DJNZ R6,C:0804C:0x080A DFF6 DJNZ R7,C:0802C:0x080C 22 RET计算分析:程序共有三层循环一层循环n:R5*2 = 81*2 = 162us DJNZ 2us二层循环m:R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值1us = 3us三层循环: R7*(m+3) = 15*33333 = 499995us DJNZ 2us + R6赋值1us = 3us循环外: 5us 子程序调用2us + 子程序返回2us + R7赋值1us = 5us 延时总时间= 三层循环+ 循环外= 499995+5 = 500000us =500ms计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5二. 200ms延时子程序程序:void delay200ms(void){unsigned char i,j,k;for(i=5;i>0;i--)for(j=132;j>0;j--)for(k=150;k>0;k--);}产生的汇编C:0x0800 7F05 MOV R7,#0x05C:0x0802 7E84 MOV R6,#0x84C:0x0804 7D96 MOV R5,#0x96C:0x0806 DDFE DJNZ R5,C:0806C:0x0808 DEFA DJNZ R6,C:0804C:0x080A DFF6 DJNZ R7,C:0802C:0x080C 22 RET三. 10ms延时子程序程序:void delay10ms(void){unsigned char i,j,k;for(i=5;i>0;i--)for(j=4;j>0;j--)for(k=248;k>0;k--);}产生的汇编C:0x0800 7F05 MOV R7,#0x05 C:0x0802 7E04 MOV R6,#0x04 C:0x0804 7DF8 MOV R5,#0xF8 C:0x0806 DDFE DJNZ R5,C:0806 C:0x0808 DEFA DJNZ R6,C:0804 C:0x080A DFF6 DJNZ R7,C:0802 C:0x080C 22 RET四. 1s延时子程序程序:void delay1s(void){unsigned char h,i,j,k;for(h=5;h>0;h--)for(i=4;i>0;i--)for(j=116;j>0;j--)for(k=214;k>0;k--);}产生的汇编C:0x0800 7F05 MOV R7,#0x05C:0x0802 7E04 MOV R6,#0x04C:0x0804 7D74 MOV R5,#0x74C:0x0806 7CD6 MOV R4,#0xD6C:0x0808 DCFE DJNZ R4,C:0808C:0x080A DDFA DJNZ R5,C:0806C:0x080C DEF6 DJNZ R6,C:0804C:0x080E DFF2 DJNZ R7,C:0802C:0x0810 22 RET在精确延时的计算当中,最容易让人忽略的是计算循环外的那部分延时,在对时间要求不高的场合,这部分对程序不会造成影响.void mDelay(unsigned int Delay) //Delay = 1000 时间为1S{unsigned int i;for(;Delay>0;Delay--){for(i=0;i<124;i ){;}}}void waitms(int i){char m;for( ; i ;i--)for(m = 203; m ; m--){_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();}}}延时1ms的函数时钟频率12MHzunsigned int sleepTime;unsinged char inSleep = 0;void sleepService(void){if (inSleep) sleepTime--;if (sleepTime == 0) inSleep = 0;}void isr_timer(void) //假定定时器中断1ms 中断一次。
单片机C51延时时间怎样计算
C程序中可使用不同类型的变量来进行延时设计。
经实验测试,使用unsi gned char类型具有比un signe d int更优化的代码,在使用时应该使用unsi gned char作为延时变量。
以某晶振为12MHz的单片机为例,晶振为12MH z即一个机器周期为1us。
一. 500ms延时子程序程序:void delay500ms(void){unsign ed char i,j,k;for(i=15;i>0;i--)for(j=202;j>0;j--)for(k=81;k>0;k--);}计算分析:程序共有三层循环一层循环n:R5*2 = 81*2 = 162usDJNZ 2us二层循环m:R6*(n+3) = 202*165 = 33330u s DJNZ 2us + R5赋值1us = 3us三层循环: R7*(m+3) = 15*33333= 499995us DJNZ 2us + R6赋值1us = 3us循环外: 5us 子程序调用 2us + 子程序返回 2us + R7赋值1us = 5us延时总时间 =三层循环+ 循环外= 499995+5 = 500000us =500ms计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5二. 200ms延时子程序程序:void delay200ms(void){unsign ed char i,j,k;for(i=5;i>0;i--)for(j=132;j>0;j--)for(k=150;k>0;k--); }三. 10ms延时子程序程序:void delay10ms(void){unsign ed char i,j,k;for(i=5;i>0;i--)for(j=4;j>0;j--)for(k=248;k>0;k--); }四. 1s延时子程序程序:void delay1s(void){unsign ed char h,i,j,k;for(h=5;h>0;h--)for(i=4;i>0;i--)for(j=116;j>0;j--)for(k=214;k>0;k--);}参考链接:http://www.picav/news/2010-04/2106.htm摘要实际的单片机应用系统开发过程中,由于程序功能的需要,经常编写各种延时程序,延时时间从数微秒到数秒不等,对于许多C51开发者特别是初学者编制非常精确的延时程序有一定难度。
51单片机c语言延时
51单片机c语言延时51单片机(8051微控制器)是一种广泛使用的嵌入式系统芯片,其编程语言包括C语言和汇编语言等。
在C语言中,实现51单片机延时的方法有多种,下面介绍其中一种常用的方法。
首先,我们需要了解51单片机的指令周期和机器周期。
指令周期是指单片机执行一条指令所需的时间,而机器周期是指单片机执行一个操作所需的时间,通常以微秒为单位。
在C语言中,我们可以使用循环结构来实现延时。
#include <reg51.h> // 包含51单片机的寄存器定义void delay(unsigned int time) // 延时函数,参数为需要延时的微秒数{unsigned int i, j;for (i = 0; i < time; i++)for (j = 0; j < 1275; j++); // 1275个机器周期,约等于1ms}void main() // 主函数{while (1) // 无限循环{// 在这里添加需要延时的代码P1 = 0x00; // 例如将P1口清零delay(1000); // 延时1秒P1 = 0xFF; // 将P1口清零delay(1000); // 延时1秒}}在上面的代码中,我们定义了一个名为delay的函数,用于实现延时操作。
该函数接受一个无符号整数参数time,表示需要延时的微秒数。
在函数内部,我们使用两个嵌套的循环来计算延时时间,其中外层循环控制需要延时的次数,内层循环控制每个机器周期的时间(约为1微秒)。
具体来说,内层循环执行了约1275次操作(具体数值取决于编译器和单片机的型号),以实现约1毫秒的延时时间。
需要注意的是,由于单片机的指令周期和机器周期不同,因此我们需要根据具体的单片机型号和编译器进行调整。
在主函数中,我们使用一个无限循环来不断执行需要延时的操作。
例如,我们将P1口的所有引脚清零,然后调用delay函数进行1秒钟的延时,再将P1口清零并再次调用delay函数进行1秒钟的延时。
hc单片机延时计算公式
hc单片机延时计算公式
当使用HC单片机时,我们通常需要进行延时操作。
延时时间的
计算可以使用以下公式:
延时时间 = (定时器计数值 x 定时器时钟周期) / 系统时钟频
率
其中,定时器计数值是计数器计数的次数,定时器时钟周期是定时器的时钟周期,系统时钟频率是HC单片机的时钟频率。
例如,如果我们需要延时100毫秒,而HC单片机的时钟频率为
8MHz,定时器时钟周期为1微秒,那么我们可以根据以下公式计算出定时器计数值:
定时器计数值 = (100毫秒 x 8MHz) / 1微秒 = 800
因此,我们可以在程序中设置定时器计数值为800,然后在程序中进行延时操作,以满足我们的要求。
需要注意的是,不同的单片机型号可能具有不同的时钟频率和定时器时钟周期,因此在进行延时计算时需要根据具体的情况进行调整。
- 1 -。
单片机延时计算公式
单片机延时计算公式单片机是一种应用广泛的微型计算机系统,它被广泛应用于嵌入式系统、电子设备等领域。
在单片机的编程过程中,经常需要进行延时操作,以控制系统的运行速度或实现特定的功能。
为了准确地控制延时时间,需要使用延时计算公式。
延时时间与单片机的时钟频率有关,通常以秒、毫秒、微秒等单位来表示。
在单片机中,时钟频率是一个基本参数,它决定了单片机每秒钟所执行的指令数。
延时计算公式可以通过时钟频率和所需延时时间来计算出延时所需的指令数。
延时计算公式的一般形式如下:延时指令数 = 延时时间× 时钟频率其中,延时指令数表示需要延时的指令数目,延时时间表示所需延时的时间,时钟频率表示单片机的时钟频率。
在实际应用中,延时时间一般以毫秒或微秒为单位。
为了方便计算,可以将延时时间转换为秒,再根据单片机的时钟频率进行计算。
假设延时时间为T秒,时钟频率为f Hz,则延时指令数可以表示为:延时指令数= T × f延时指令数一般为整数,表示需要延时的指令数目。
在单片机编程中,可以通过循环执行空操作指令或者通过定时器来实现延时操作。
通过控制循环次数或者定时器的设置,可以实现精确的延时时间。
需要注意的是,延时计算公式中的时钟频率必须与实际使用的时钟频率相一致。
在单片机编程中,时钟频率一般通过设置寄存器来进行配置。
如果延时计算公式中的时钟频率与实际使用的时钟频率不一致,将会导致延时时间的不准确。
延时计算公式在单片机编程中具有重要的作用。
通过合理地计算延时指令数,可以实现精确的延时操作,从而实现系统的稳定运行和功能的正常实现。
在实际应用中,需要根据具体的需求和系统的要求,选择合适的延时时间和时钟频率,以确保系统的性能和功能的准确性。
总结起来,单片机延时计算公式是一种根据延时时间和时钟频率来计算延时指令数的方法。
通过合理地计算延时指令数,可以实现精确的延时操作,保证系统的稳定运行和功能的正常实现。
在单片机编程中,合理地应用延时计算公式,可以提高系统的性能和功能的准确性。
c语言延时程序的计算方法经典
for(k=81;k>0;k--);
}
下面是用了8.0000MHZ的晶振的几个延时程序(用定时0的工作模式1):
(1)延时0.9MS
void delay_0_9ms(void)
{
TMOD=0x01; /*定时器0工作在模式1下(16位计数器)*/
TH0=0xfd;
Loop2: djnz r6, loop2; djnz双周期指令
Djnz r7, loop1,
延时时间=T+i*T+i*j*2T+i*2T
下面几个是单片机的延时程序(包括asm和C程序,都是我在学单片机的过程中用到的),在单片机延时程序中应考虑所使用的晶振的频率,在51系列的单片机中我们常用的是11.0592MHz和12.0000MHz的晶振,而在AVR单片机上常用的有8.000MHz和4.000MH的晶振所以在网上查找程序时如果涉及到精确延时则应该注意晶振的频率是多大。
{
unsigned char i,j,k;
for(i=5;i>0;i--)
for(j=132;j>0;j--)
for(k=150;k>0;k--);
}
500ms延时子程序程序:(12MHZ)
void delay500ms(void)
{
unsigned char i,j,k;
for(i=15;i>0;i--)
DJNZ R7,HERE
CLR TR0 ;定时器要软件清零
SETB EX0
RET
C语言延时程序:
10ms延时子程序(12MHZ)
void delay10ms(void)
{
单片机延时
其三:对于要求精确延时时间更长,这时就要采用循环嵌套的方法来实现,因此,循环嵌套的方法常用于达到ms级的延时。对于循环语句同样可以采用for,do…while,while结构来完成,每个循环体内的变量仍然采用无符号字符变量。
unsigned char i,j
MOV R4,03H
C0012: DJNZ R3, C0012
MOV R3,04H
DJNZ R5, C0012
MOV R5,06H
DJNZ R7, C0012
for(i=255;i>0;i--)
for(j=255;j>0;j--);
或
unsigned char i,j
i=255;
do{j=255;
do{j--}
while(j);
i--;
}
while(i);
或
unsigned char i,j
i=255;
3、在延时子程序设计时,要进行循环体嵌套时,采用先内循环,再减减比先减减,再内循环要好。
unsigned char delay(unsigned char i,unsigned char j,unsigned char k)
{unsigned char b,c;
b="j";
c="k";
下面举例说明:
unsigned char i;
for(i=0;i<255;i++);
unsigned char i;
for(i=255;i>0;i--);
其中,第二个循环语句C51编译后,就用DJNZ指令来完成,相当于如下指令:
单片机C语言延时计算
单片机C语言延时计算单片机是一种集成电路芯片,内部集成了微处理器、存储器、输入输出接口等主要部件。
C语言是常用的单片机编程语言,可以通过编写C程序来实现单片机的控制和功能。
在单片机编程中,延时是一种常用的操作,用于控制程序执行过程中的时间间隔。
延时的实现方法有多种,可以使用循环遍历、定时器、外部中断等方式。
在循环遍历的延时方法中,可以通过设定一个循环次数来实现延时。
具体的延时时间与循环的次数成正比关系。
例如,在一个8位单片机中,循环一次大约需要4个机器周期,因此可以通过适当设置循环次数来达到需要的延时时间。
但是,使用循环遍历的延时方法会占用CPU资源,可能会影响其他任务的执行。
另一种常用的延时方法是使用定时器。
单片机内部通常集成了一个或多个定时器,可以通过设置定时器的初值和工作模式来实现精确的延时。
例如,可以通过设置定时器的计数值和工作频率来计算出延时的时间。
在定时器工作期间,单片机可以继续执行其他任务,不会占用过多的CPU资源。
除了循环遍历和定时器方法外,还可以使用外部中断的方式来实现延时。
具体的实现方法是通过外部信号触发中断,并在中断处理程序中实现延时功能。
这种方法可以根据外部信号的频率和工作模式来调整延时时间。
在单片机编程中,为了提高代码的可读性和可重用性,可以将延时操作封装成函数。
例如,可以定义一个名为delay的函数,函数的参数为延时的时间(单位为毫秒),函数内部通过循环遍历、定时器或外部中断的方式实现延时。
延时的时间计算可以考虑单片机的工作频率、机器周期以及延时的时间要求。
单片机的工作频率可以由时钟源来决定,一般可以通过设置分频系数来调整。
机器周期是单片机执行一条指令所需的时间,通过单片机的数据手册可以查到相关的数据。
根据单片机的工作频率和机器周期,可以计算出所需的循环次数或定时器计数值。
在使用延时功能时需要注意延时时间的准确性和可调性。
准确性是指延时的实际时间与预期时间之间的误差,通过调整循环次数或定时器计数值可以实现较高的准确性。
延时时间计算
单片机C51延时时间怎样计算?[日期:2010-04-28 ] [来源:本站原创作者:admin] [字体:大中小] (投递新闻)C程序中可使用不同类型的变量来进行延时设计。
经实验测试,使用unsigned char类型具有比unsigned int更优化的代码,在使用时应该使用unsigned char作为延时变量。
以某晶振为12MHz的单片机为例,晶振为12MHz即一个机器周期为1us。
一. 500ms延时子程序程序:void delay500ms(void){unsigned char i,j,k;for(i=15;i>0;i--)for(j=202;j>0;j--)for(k=81;k>0;k--);}计算分析:程序共有三层循环一层循环n:R5*2 = 81*2 = 162us DJNZ 2us二层循环m:R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值1us = 3us三层循环: R7*(m+3) = 15*33333 = 499995us DJNZ 2us + R6赋值1us = 3us循环外: 5us 子程序调用2us + 子程序返回2us + R7赋值1us = 5us延时总时间= 三层循环+ 循环外= 499995+5 = 500000us =500ms计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5二. 200ms延时子程序程序:void delay200ms(void){unsigned char i,j,k;for(i=5;i>0;i--)for(j=132;j>0;j--)for(k=150;k>0;k--);}三. 10ms延时子程序程序:void delay10ms(void){unsigned char i,j,k;for(i=5;i>0;i--)for(j=4;j>0;j--)for(k=248;k>0;k--);}四. 1s延时子程序程序:void delay1s(void){unsigned char h,i,j,k;for(h=5;h>0;h--)for(i=4;i>0;i--)for(j=116;j>0;j--)for(k=214;k>0;k--);}参考链接:/news/2010-04/2106.htmkeilc51程序设计中几种精确延时及延时的计算、确定软件用法(如protues、keil、Word)2009-09-08 12:04:54 阅读340 评论0 字号:大中小摘要实际的单片机应用系统开发过程中,由于程序功能的需要,经常编写各种延时程序,延时时间从数微秒到数秒不等,对于许多C51开发者特别是初学者编制非常精确的延时程序有一定难度。
单片机C51延时时间怎样计算
单片机C51延时时间怎样计算
1. 延时函数:C51中提供了一个延时函数`delay(`,可以用来实现简单的延时操作。
该函数的参数为延时的时间,单位是毫秒(ms)。
2.单片机时钟频率:C51的时钟频率一般为12MHz,即每秒钟钟脉冲个数为12,000,000次。
3.定时/计数器模块:C51中的定时/计数器模块可以用来精确控制延时时间。
其中,TMOD寄存器用来设置定时器的工作模式,THx和TLx寄存器用来设置定时器的初值。
4.定时器计数:C51的定时器工作时,会不断地进行计数。
当计数值达到设定的初值时,会触发中断或者产生一个标志位,可以利用这个特性来实现精确的延时操作。
5.延时时间计算公式:延时时间(单位:毫秒)=计数器初值*定时器计数时间/定时器时钟频率
延时时间计算的具体步骤如下:
1.确定延时所需的毫秒数。
2.确定定时器的工作模式。
3.根据定时器的工作模式,设置THx和TLx寄存器的初值。
4.根据定时器的时钟频率和计数器初值,计算延时时间。
延时函数的缺点是,它是通过循环执行一段无用指令来实现延时的,因此在延时期间无法执行其他操作,延时的精度也不够高。
如果需要精确的延时时间,可以利用定时/计数器模块来实现。
c语言延时程序的计算方法经典
MOV 70H,#48
LOOP4:DJNZ 70H,LOOP4
定时器延时:
晶振12MHZ,延时1s,定时器0工作方式为方式1
DELAY1:MOV R7,#0AH ;;晶振12MHZ,延时0.5秒
AJMP DELAY
DELAY2:MOV R7,#14H ;;晶振12MHZ,延时1秒
TL0=0xa8;
TR0=1; /*启动定时器*/
while(TF0==0);
TR0=0;
}
(2)延时1MS
void delay_1ms(void)
{
TMOD=0x01; /*定时器0工作在模式1下(16位计数器)*/
TH0=0xfd;
TL0=0x65;
TR0=1; /*启动定时器*/
while(TF0==0);
TR0=0;
}
(3)延时4.5ms
void delay_4_5ms(void)
{
TMOD=0x01; /*定时器0工作在模式1下(16位计数器)*/
TH0=0xf4;
TL0=0x48;
TR0=1; /*启动定时器*/
while(TF0==0);
TR0=0;
}
}
1s延时子程序(12MHZ)
void delay1s(void)
{
unsigned char h,i,j,k;
for(h=5;h>0;h--)
for(i=4;i>0;i--)
for(j=116;j>0;j--)
for(k=214;k>0;k--);
}
200ms延时子程序(12MHZ)
void delay200ms(void)
C语言延时计算
C语言延时计算C语言的延时计算C51中精确的延时与计算的实现C51由于其可读性和可移植性很强,在单片机中得到广泛的应用,但在某些时候由于C51编写的程序对在有精确时间要求下,可能就得要用汇编语言来编写,但在C51是否也能实现时间的精确控制呢,答案是肯定的。
在C51中要实现对时间的精确延时有以下几种方法其一:对于延时很短的,要求在us级的,采用“_nop_”函数,这个函数相当汇编NOP指令,延时几微秒,就插入个这样的函数。
NOP指令为单周期指令,可由晶振频率算出延时时间,对于12M 晶振,延时1uS。
其二:对于延时比较长的,要求在大于10us,采用C51中的循环语句来实现。
在选择C51中循环语句时,要注意以下几个问题第一、定义的C51中循环变量,尽量采用无符号字符型变量。
第二、在FOR循环语句中,尽量采用变量减减来做循环。
第三、在do…while,while语句中,循环体内变量也采用减减方法。
这因为在C51编译器中,对不同的循环方法,采用不同的指令来完成的。
下面举例说明:unsigned char I;for(i=0;i<255;i++);unsigned char I;for(i=255;i>0;i--);其中,第二个循环语句C51编译后,就用DJNZ指令来完成,相当于如下指令: MOV 09H,,0FFHLOOP: DJNZ 09H,LOOP指令相当简洁,也很好计算精确的延时时间。
同样对do…while,while循环语句中,也是如此例:unsigned char n;n=255;do{n--}while(n);或n=255;while(n){n--};这两个循环语句经过C51编译之后,形成DJNZ来完成的方法,故其精确时间的计算也很方便。
其三:对于要求精确延时时间更长,这时就要采用循环嵌套的方法来实现,因此,循环嵌套的方法常用于达到ms级的延时。
对于循环语句同样可以采用for,do…while,while结构来完成,每个循环体内的变量仍然采用无符号字符变量。
单片机C语言的延时计算
标准的C语言中没有空语句。
但在单片机的C语言编程中,经常需要用几个空指令产生短延时的效果。
这在汇编语言中很容易实现,写几个nop就行了。
在keil C51中,直接调用库函数:#include<intrins.h> // 声明了void _nop_(void);_nop_(); // 产生一条NOP指令作用:对于延时很短的,要求在us级的,采用“_nop_”函数,这个函数相当汇编NOP 指令,延时几微秒。
NOP指令为单周期指令,可由晶振频率算出延时时间,对于12M晶振,延时1uS。
对于延时比较长的,要求在大于10us,采用C51中的循环语句来实现。
在选择C51中循环语句时,要注意以下几个问题第一、定义的C51中循环变量,尽量采用无符号字符型变量。
第二、在FOR循环语句中,尽量采用变量减减来做循环。
第三、在do…while,while语句中,循环体内变量也采用减减方法。
这因为在C51编译器中,对不同的循环方法,采用不同的指令来完成的。
下面举例说明:unsigned char I;for(i=0;i<255;i++);unsigned char I;for(i=255;i>0;i--);其中,第二个循环语句C51编译后,就用DJNZ指令来完成,相当于如下指令:MOV09H,#0FFHLOOP:DJNZ09H,LOOP指令相当简洁,也很好计算精确的延时时间。
同样对do…while,while循环语句中,也是如此例:unsigned char n;n=255;do{n--}while(n);或n=255;while(n){n--};这两个循环语句经过C51编译之后,形成DJNZ来完成的方法,故其精确时间的计算也很方便。
其三:对于要求精确延时时间更长,这时就要采用循环嵌套的方法来实现,因此,循环嵌套的方法常用于达到ms级的延时。
对于循环语句同样可以采用for,do…while,while结构来完成,每个循环体内的变量仍然采用无符号字符变量。
hc单片机延时计算公式
hc单片机延时计算公式
HC单片机延时计算公式是指在HC单片机中进行延时操作时所需采用的计算公式。
由于HC单片机没有内置定时器,因此延时操作需要通过软件实现。
而延时时间是由所使用的指令的执行时间以及指令执行的次数决定的。
因此,我们需要通过计算来得出所需的延时时间。
计算公式如下:
延时时间(ms)=指令执行时间(us)*指令执行次数/1000
其中,指令执行时间(us)是指单片机中一条指令所需的执行时间,可以通过单片机的手册或者数据手册中查阅得到。
而指令执行次数则需要根据所需延时时间和单片机的主频进行计算得出。
例如,若单片机的主频为12MHz,而需要延时1ms,则指令执行次数为:
指令执行次数=延时时间(ms)*1000/指令执行时间(us)
=1*1000/83.3
=12
因此,我们需要执行12次指令才能实现1ms的延时。
具体实现时可以采用循环的方式进行计数,从而实现延时操作。
需要注意的是,由于单片机执行指令的速度可能受到外部因素的影响而发生变化,因此延时时间可能会有一定的误差。
因此,在进行精确定时操作时,需要考虑到这些误差,采用更加精确的方法进行计算。
- 1 -。
单片机C语言中_nop_函数的使用及C语言的延时计算
for(k=150;k>0;k--);
}
产生的汇编
C:0x0800 7F05 MOV R7,#0x05
C:0x0802 7E84 MOV R6,#0x84
C:0x0804 7D96 MOV R5,#0x96
其三:对于要求精确延时时间更长,这时就要采用循环嵌套
的方法来实现,因此,循环嵌套的方法常用于达到ms级的延时。
对于循环语句同样可以采用for,do…while,while结构来完
成,每个循环体内的变量仍然采用无符号字符变量。
unsigned char i,j
for(i=255;i>0;i--)
DJNZ R7,LOOP2
这些指令的组合在汇编语言中采用DJNZ指令来做延时用,
因此它的时间精确计算也是很简单,假上面变量i的初
值为m,变量j的初值为n,则总延时时间为:m×(n×T+T),
其中T为DJNZ指令执行时间(DJNZ指令为双周期指令)。
这里的+T为MOV这条指令所使用的时间。
......
......
//============
......
......
_nop_(); //引用库函数
敬礼。
我一直都是借助仿真软件编。一点一点试时间。
C语言最大的缺点就是实时性差,我在网上到看了一些关于延时的讨论,其中有篇文章
DJNZ R5,LOOP1 ; 2
定时数=(TIME1*4+2+1)*TIM2*2+4
刚刚又学了一条,用_nop_();时记得加上#include <intrins.h> 头文件
如:
单片机C51延时时间怎样计算
单片机C51延时时间怎样计算一. 500ms延时子程序程序:void delay500ms(void){unsigned char i,j,k;for(i=15;i>0;i--)for(j=202;j>0;j--)for(k=81;k>0;k--);}计算分析:程序共有三层循环一层循环n:R5*2 = 81*2 = 162us DJNZ 2us二层循环m:R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值1us = 3us三层循环: R7*(m+3) = 15*33333 = 499995us DJNZ 2us + R6赋值1us = 3us循环外: 5us 子程序调用2us + 子程序返回2us + R7赋值1us = 5us延时总时间= 三层循环+ 循环外= 499995+5 = 500000us =500ms计算公式:延时时间=[(2*R5+3)*R6+3]*R7+5二. 200ms延时子程序程序:void delay200ms(void){unsigned char i,j,k;for(i=5;i>0;i--)for(j=132;j>0;j--)for(k=150;k>0;k--); }三. 10ms延时子程序程序:void delay10ms(void){unsigned char i,j,k;for(i=5;i>0;i--)for(j=4;j>0;j--)for(k=248;k>0;k--); }四. 1s延时子程序程序:void delay1s(void){unsigned char h,i,j,k;for(h=5;h>0;h--)for(i=4;i>0;i--)for(j=116;j>0;j--)for(k=214;k>0;k--); }摘要实际的单片机应用系统开发过程中,由于程序功能的需要,经常编写各种延时程序,延时时间从数微秒到数秒不等,对于许多C51开发者特别是初学者编制非常精确的延时程序有一定难度。
单片机C语言的延时计算之欧阳歌谷创编
标准的C语言中没有空语句。
但在单片机的C语言编程中,经常需要用几个空指令产生短延时的效果。
欧阳歌谷(2021.02.01)这在汇编语言中很容易实现,写几个nop就行了。
在keil C51中,直接调用库函数:#include<intrins.h> // 声明了void _nop_(void);_nop_(); // 产生一条NOP指令作用:对于延时很短的,要求在us级的,采用“_nop_”函数,这个函数相当汇编NOP指令,延时几微秒。
NOP指令为单周期指令,可由晶振频率算出延时时间,对于12M晶振,延时1uS。
对于延时比较长的,要求在大于10us,采用C51中的循环语句来实现。
在选择C51中循环语句时,要注意以下几个问题第一、定义的C51中循环变量,尽量采用无符号字符型变量。
第二、在FOR循环语句中,尽量采用变量减减来做循环。
第三、在do…while,while语句中,循环体内变量也采用减减方法。
这因为在C51编译器中,对不同的循环方法,采用不同的指令来下面举例说明:unsigned char I;for(i=0;i<255;i++);unsigned char I;for(i=255;i>0;i--);其中,第二个循环语句C51编译后,就用DJNZ指令来完成,相当于如下指令:MOV09H,#0FFHLOOP: DJNZ09H,LOOP指令相当简洁,也很好计算精确的延时时间。
同样对do…while,while循环语句中,也是如此例:unsigned char n;n=255;do{n--}while(n);或n=255;while(n){n--};这两个循环语句经过C51编译之后,形成DJNZ来完成的方法,故其精确时间的计算也很方便。
的方法来实现,因此,循环嵌套的方法常用于达到ms级的延时。
对于循环语句同样可以采用for,do…while,while结构来完成,每个循环体内的变量仍然采用无符号字符变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
◆#pragma asm、#pragma endasm不允许嵌套使用;
◆在程序的开头应加上预处理指令#pragma asm,在该指令之前只能有注释或其他预处理指令;
把P1.0接入示波器,运行上面的程序,可以看到P1.0输出的波形为周期是3 ms的方波。其中,高电平为2 ms,低电平为1 ms,即for循环结构“for(j=0;j<124;j++) {;}”的执行时间为1 ms。通过改变循环次数,可得到不同时间的延时。当然,也可以不用for循环而用别的语句实现延时。这里讨论的只是确定延时的方法。
◆当使用asm语句时,编译系统并不输出目标模块,而只输出汇编源文件;
◆asm只能用小写字母,如果把asm写成大写,编译系统就把它作为普通变量;
◆#pragma asm、#pragma endasm和asm只能在函数内使用。
将汇编语言与C51结合起来,充分发挥各自的优势,无疑是单片机开发人员的最佳选择。
关键词??Keil C51??精确延时
程序执行时间
引言
单片机因具有体积小、功能强、成本低以及便于实现分布式控制而有非常广泛的应用领域[1]。单片机开发者在编制各种应用程序时经常会遇到实现精确延时的问题,比如按键去抖、数据传输等操作都要在程序中插入一段或几段延时,时间从几十微秒到几秒。有时还要求有很高的精度,如使用单总线芯片DS18B20时,允许误差范围在十几微秒以内[2],否则,芯片无法工作。用51汇编语言写程序时,这种问题很容易得到解决,而目前开发嵌入式系统软件的主流工具为C语言,用C51写延时程序时需要一些技巧[3]。因此,在多年单片机开发经验的基础上,介绍几种实用的编制精确延时程序和计算程序执行时间的方法。
C程序中可使用不同类型的变量来进行延时设计。经实验测试,使用unsigned char类型具有比unsigned int更优化的代码,在使用时应该使用unsigned char作为延时变量。 以某晶振为12MHz的单片机为例,晶振为12MHz即一个机器周期为1us。
一. 500ms延时子程序
程序:Байду номын сангаас
void delay500ms(void)
for(h=5;h>0;h--)
for(i=4;i>0;i--)
for(j=116;j>0;j--)
for(k=214;k>0;k--);
}
参考链接:
摘要
实际的单片机应用系统开发过程中,由于程序功能的需要,经常编写各种延时程序,延时时间从数微秒到数秒不等,对于许多C51开发者特别是初学者编制非常精确的延时程序有一定难度。本文从实际应用出发,讨论几种实用的编制精确延时程序和计算程序执行时间的方法,并给出各种方法使用的详细步骤,以便读者能够很好地掌握理解。
使用自定义头文件的优点是,可实现任意时间长短的延时,并减少主程序的代码长度,便于对程序的阅读理解和维护。编写延时程序是一项很麻烦的任务,可能需要多次修改才能满足要求。掌握延时程序的编写,能够使程序准确得以执行,这对项目开发有着重要的意义。本文所讨论的几种方法,都是来源于实际项目的开发经验,有着很好的实用性和适应性。
当采用while (DlyT--)循环体时,DlyT的值存放在R7中。相对应的汇编代码如下:
2.5??使用性能分析器计算延时时间
很多C程序员可能对汇编语言不太熟悉,特别是每个指令执行的时间是很难记忆的,因此,再给出一种使用Keil C51的性能分析器计算延时时间的方法。这里还以前面介绍的for (i=0;i<124;i++)结构为例。使用这种方法时,必须先设置系统所用的晶振频率,选择Options for target中的target选项,在Xtal(MHz)中填入所用晶振的频率。将程序编译后,分别在_point = 1和T_point = 0处设置两个运行断点。选择start/stop debug session按钮进入程序调试窗口,分别打开Performance Analyzer window和Disassembly window。运行程序前,要首先将程序复位,计时器清零;然后按F5键运行程序,从程序效率评估窗口的下部分可以看到程序到了第一个断点,也就是所要算的程序段的开始处,用了389 μs;再按F5键,程序到了第2个断点处也就是所要算的程序段的结束处,此时时间为1 386 μs。最后用结束处的时间减去开始处时间,就得到循环程序段所占用的时间为997 μs。
2.4??使用反汇编工具计算延时时间
对于不熟悉示波器的开发人员可用Keil C51中的反汇编工具计算延时时间,在反汇编窗口中可用源程序和汇编程序的混合代码或汇编代码显示目标应用程序。为了说明这种方法,还使用“for (i=0;i<DlyT;i++) {;}”。在程序中加入这一循环结构,首先选择build taget,然后单击start/stop debug session按钮进入程序调试窗口,最后打开Disassembly window,找出与这部分循环结构相对应的汇编代码,具体如下:
2.3??使用示波器确定延时时间
熟悉硬件的开发人员,也可以利用示波器来测定延时程序执行时间。方法如下:编写一个实现延时的函数,在该函数的开始置某个I/O口线如P1.0为高电平,在函数的最后清P1.0为低电平。在主程序中循环调用该延时函数,通过示波器测量P1.0引脚上的高电平时间即可确定延时函数的执行时间。方法如下:
可以看出,0x000F~0x0017一共8条语句,分析语句可以发现并不是每条语句都执行DlyT次。核心循环只有0x0011~0x0017共6条语句,总共8个机器周期,第1次循环先执行“CLR A”和“MOV R6,A”两条语句,需要2个机器周期,每循环1次需要8个机器周期,但最后1次循环需要5个机器周期。DlyT次核心循环语句消耗(2+DlyT×8+5)个机器周期,当系统采用12 MHz时,精度为7 μs。
{
unsigned char i,j,k;
for(i=15;i>0;i--)
for(j=202;j>0;j--)
for(k=81;k>0;k--);
}
计算分析:
程序共有三层循环
一层循环n:R5*2 = 81*2 = 162us DJNZ 2us
二层循环m:R6*(n+3) = 202*165 = 33330us DJNZ 2us + R5赋值 1us = 3us
Delay10us( )函数中共用了6个_NOP_( )语句,每个语句执行时间为1 μs。主函数调用Delay10us( )时,先执行一个LCALL指令(2 μs),然后执行6个_NOP_( )语句(6 μs),最后执行了一个RET指令(2 μs),所以执行上述函数时共需要10 μs。 可以把这一函数当作基本延时函数,在其他函数中调用,即嵌套调用\[4\],以实现较长时间的延时;但需要注意,如在Delay40us( )中直接调用4次Delay10us( )函数,得到的延时时间将是42 μs,而不是40 μs。这是因为执行Delay40us( )时,先执行了一次LCALL指令(2 μs),然后开始执行第一个Delay10us( ),执行完最后一个Delay10us( )时,直接返回到主程序。依此类推,如果是两层嵌套调用,如在Delay80us( )中两次调用Delay40us( ),则也要先执行一次LCALL指令(2 μs),然后执行两次Delay40us( )函数(84 μs),所以,实际延时时间为86 μs。简言之,只有最内层的函数执行RET指令。该指令直接返回到上级函数或主函数。如在Delay80μs( )中直接调用8次Delay10us( ),此时的延时时间为82 μs。通过修改基本延时函数和适当的组合调用,上述方法可以实现不同时间的延时。
当然也可以不用打开Performance Analyzer window,这时观察左边工具栏秒(SEC)项。全速运行时,时间不变,只有当程序运行到断点处,才显示运行所用的时间。
3??总结
本文介绍了多种实现并计算延时程序执行时间的方法。使用定时器进行延时是最佳的选择,可以提高MCU工作效率,在无法使用定时器而又需要实现比较精确的延时时,后面介绍的几种方法可以实现不等时间的延时:
在实际应用中,定时常采用中断方式,如进行适当的循环可实现几秒甚至更长时间的延时。使用定时器/计数器延时从程序的执行效率和稳定性两方面考虑都是最佳的方案。但应该注意,C51编写的中断服务程序编译后会自动加上PUSH ACC、PUSH PSW、POP PSW和POP ACC语句,执行时占用了4个机器周期;如程序中还有计数值加1语句,则又会占用1个机器周期。这些语句所消耗的时间在计算定时初值时要考虑进去,从初值中减去以达到最小误差的目的。
实现延时通常有两种方法:一种是硬件延时,要用到定时器/计数器,这种方法可以提高CPU的工作效率,也能做到精确延时;另一种是软件延时,这种方法主要采用循环体进行。
1??使用定时器/计数器实现精确延时
单片机系统一般常选用11.059 2 MHz、12 MHz或6 MHz晶振。第一种更容易产生各种标准的波特率,后两种的一个机器周期分别为1 μs和2 μs,便于精确延时。本程序中假设使用频率为12 MHz的晶振。最长的延时时间可达216=65 536 μs。若定时器工作在方式2,则可实现极短时间的精确延时;如使用其他定时方式,则要考虑重装定时初值的时间(重装定时器初值占用2个机器周期)。
程序:
void delay10ms(void)
{
unsigned char i,j,k;
for(i=5;i>0;i--)
for(j=4;j>0;j--)