完全平方公式经典习题.doc
配完全平方公式练习题
配完全平方公式练习题一、选择题1. 完全平方公式是什么?A. (a+b)² = a² + 2ab + b²B. (a+b)² = a² - 2ab + b²C. (a-b)² = a² - 2ab + b²D. (a-b)² = a² + 2ab - b²2. 以下哪个表达式是完全平方公式的展开形式?A. x² - 6x + 9B. x² + 6x + 9C. x² - 6x - 9D. x² + 6x - 93. 根据完全平方公式,下列哪个选项是正确的?A. (3x+2)² = 9x² + 12x + 4B. (3x-2)² = 9x² - 12x + 4C. (3x+2)² = 9x² + 12x - 4D. (3x-2)² = 9x² - 12x - 4二、填空题4. 将下列表达式用完全平方公式展开:(x+5)² = _______。
5. 将下列表达式用完全平方公式展开:(2y-3)² = _______。
三、解答题6. 计算下列表达式的值:(a) (3x-1)²(b) (4y+1)²7. 利用完全平方公式,将下列表达式简化:(a) x² - 10x + 25(b) 4z² - 12z + 9四、应用题8. 在一个直角三角形中,斜边的长度为13,一条直角边的长度为5,求另一条直角边的长度。
(提示:使用完全平方公式)9. 某工厂生产的产品数量与时间的关系可以表示为:P(t) = 2t² - 12t + 20,其中t表示时间(单位:月),P(t)表示产品数量。
如果工厂希望产品数量达到或超过36件,求时间t的最小值。
完整版)完全平方公式提升练习题
完整版)完全平方公式提升练习题完全平方公式提升练题一、完全平方公式1.$(\frac{a}{2}b-c)^2$2.$(x-3y-2)(x+3y-2)$3.$(x-2y)(x^2-4y^2)(x+2y)$4.若$x^2+2x+k$是完全平方形式,则$k=x+1$5.若$x^2-7xy+M$是完全平方形式,则$M=\frac{49}{4}y^2$6.若$4a^2-Nab+81b^2$是完全平方形式,则$N=8a$7.若$25x-kxy+49y$是完全平方形式,则$k=50$二、公式的逆用8.$(2x-y)^2=4x^2-4xy+y^2$9.$(3m^2+n)^2=9m^4+6m^2n+n^2$10.$x^2-xy+y^2=(x-\frac{1}{2}y)^2+\frac{3}{4}y^2$11.$49a^2-18ab+81b^2=(7a-9b)^2$12.代数式$xy-x^2-y^2$等于$(x-y)^2-x^2-y^2$三、配方思想13.若$a+b-2a+2b+2=0$,则$a=-1$14.已知$x^2+y^2+4x-6y+13=1$,求$xy=-\frac{3}{2}$15.已知$x^2+y^2-2x-4y+5=0$,求$(x-1)^2-xy=\frac{3}{4}$16.已知$x^2+y^2+xy=2(x+y)$,求代数式$\frac{x+y}{4}$17.已知$x^2+y^2+z^2-2x+4y-6z+14=0$,则$x+y+z=1$四、完全平方公式的变形技巧18.已知$(a+b)^2=16$,$ab=4$,求$(a-b)^2=8$19.已知$2a-b=5$,$ab=2$,求$4a^2+b^2-1=44$20.已知$x-\frac{1}{x}=6$,求$x^2+\frac{1}{x^2}=37$21.已知$x^2+3x+1=0$,求$(1) x^2+\frac{1}{x^2}$,$(2) x^4+\frac{1}{x^4}$五、利用乘法公式进行计算22.$992-98\times100=-806$23.$(1-\frac{1}{2^2})(1-\frac{1}{3^2})(1-\frac{1}{4^2})=\frac{3}{4}$六、“整体思想”在整式运算中的运用24.当代数式$x^2+3x+5=7$时,求代数式$3x^2+9x-2=18$25.已知$a=\frac{1}{1\times2}\times\frac{2}{2\times3}\times\frac{3}{3\ti mes4}\times\cdots\times\frac{1999}{1999\times2000}$,$b=\frac{1}{2\times3}\times\frac{2}{3\times4}\times\frac{3}{4\ti mes5}\times\cdots\times\frac{1999}{2000\times2001}$,$c=\frac{1}{3\times4}\times\frac{2}{4\times5}\times\frac{3}{5\ti mes6}\times\cdots\times\frac{1999}{2001\times2002}$,求代数式$a^2+b^2+c^2-ab-ac-bc=\frac{1}{4003}$26、已知当$x=2$时,代数式$ax^5+bx^3+cx-8=10$,当$x=-2$时,代数式$ax^5+bx^3+cx-8$的值为27.当$x=2$时,代数式$ax^5+bx^3+cx-8=10$,即$32a+8b+2c=18$;当$x=-2$时,代数式$ax^5+bx^3+cx-8$的值为27,即$-32a+8b-2c=35$。
完全平方公式专项练习题有答案
完全平方公式专项练习 知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )27.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值.26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
(完整版)完全平方公式经典练习题
一.直接运用公式(1).(a+3)(a-3) (2).( 2a+3b)(2a-3b) (3). (1+2c)(1-2c) (4). (-x+2)(-x-2)二.运用公式使计算简便(1) 1998×2002 (2) 999×1001 (3) 1.01×0.99 (4) (100-13)×(99-23)三.两次运用平方差公式(1) (a+b)(a-b)(a2+b2) (2) (a+2)(a-2)(a2+4)四.需要先变形再用平方差公式1.(-2x-y)(2x-y)2.(y-x)(-x-y)3.(-2x+y)(2x+y)4.(4a-1)(-4a-1)五.计算(a+1)(a-1)(2a+1)(4a+1)(8a+1).六.已知9621可以被在60至70之间的两个整数整除,则这两个整数是多少?七.计算:2222211111(1)(1)(1)(1)(1)23499100-----.完全平方公式公式:熟悉公式:公式中的a 和b 既可以表示数字也可以表示字母,还可以表示一个单项式或者一个多项式。
公式变形1.a 2+b 2=(a+b)2 =(a-b)22.(a-b )2=(a+b)2 ; (a+b)2=(a-b)23.(a+b)2 +(a-b )2=4.(a+b)2 --(a-b )2=一、计算下列各题:①2)(y x + ②2)21(b a + ③2)12(--t ④2)313(c ab +-2、=-2)32(y x3、如果92++kx x 是一个完全平方式,求k 的值二、利用完全平方公式计算:①1022 ②1972 ③982 ④2032提高题一.求值:(1)已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.(2)已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.3已知:a +b =3,ab =2,求下列各式的值:(1)a 2b +ab 2 (2)a 2+b 24.已知16x x -=,求221x x +的值。
完全平方公式30道题
完全平方公式30道题一、完全平方公式基础计算(10道题)1. 计算(a + 3)^2解析:根据完全平方公式(a + b)^2=a^2 + 2ab+b^2,这里a=a,b = 3。
所以(a+3)^2=a^2+2× a×3 + 3^2=a^2 + 6a+9。
2. 计算(x 5)^2解析:根据完全平方公式(a b)^2=a^2-2ab + b^2,这里a=x,b = 5。
所以(x 5)^2=x^2-2× x×5+5^2=x^2-10x + 25。
3. 计算(2m+1)^2解析:根据完全平方公式(a + b)^2=a^2 + 2ab+b^2,这里a = 2m,b=1。
所以(2m + 1)^2=(2m)^2+2×2m×1+1^2=4m^2 + 4m+1。
4. 计算(3n 2)^2解析:根据完全平方公式(a b)^2=a^2-2ab + b^2,这里a = 3n,b = 2。
所以(3n-2)^2=(3n)^2-2×3n×2+2^2 = 9n^2-12n + 4。
5. 计算(a + b)^2,其中a = 2x,b=3y解析:先将a = 2x,b = 3y代入完全平方公式(a + b)^2=a^2+2ab + b^2,得到(2x+3y)^2=(2x)^2+2×2x×3y+(3y)^2=4x^2 + 12xy+9y^2。
6. 计算(m n)^2,其中m = 5a,n=2b解析:把m = 5a,n = 2b代入完全平方公式(a b)^2=a^2-2ab + b^2,这里a = 5a,b = 2b,所以(5a-2b)^2=(5a)^2-2×5a×2b+(2b)^2=25a^2-20ab + 4b^2。
7. 计算(4x+3)^2解析:根据完全平方公式(a + b)^2=a^2 + 2ab+b^2,这里a = 4x,b = 3。
完全平方公式计算题100道
完全平方公式计算题100道
题目1:求下列各式的解:
(1)$x^2+9x+20=0$
解:根据完全平方公式,将方程变形为$(x+a)^2=b$的形式。
可以发现,$(x+5)(x+4)=x^2+9x+20$
所以,方程的解为$x=-5$或$x=-4$。
题目2:求下列各式的解:
(2)$x^2-16=0$
解:可以将方程变形为$(x+a)^2=b$的形式。
可以发现,$(x+4)(x-4)=x^2-16$
所以,方程的解为$x=-4$或$x=4$。
题目3:求下列各式的解:
(3)$x^2-6x+9=0$
解:根据完全平方公式,将方程变形为$(x+a)^2=b$的形式。
可以发现,$(x-3)(x-3)=x^2-6x+9$
所以,方程的解为$x=3$。
题目4:求下列各式的解:
(4)$x^2-5x+6=0$
解:根据完全平方公式,将方程变形为$(x+a)^2=b$的形式。
可以发现,$(x-2)(x-3)=x^2-5x+6$
所以,方程的解为$x=2$或$x=3$。
题目5:求下列各式的解:
(5)$2x^2-9x+9=0$
解:根据完全平方公式,将方程变形为$(x+a)^2=b$的形式。
可以发现,$(\sqrt{2}x-\frac{9}{\sqrt{2}})(\sqrt{2}x-\frac{9}{\sqrt{2}})=2x^2-9x+9$
所以,方程的解为$x=\frac{9}{2\sqrt{2}}$。
......
继续写完100道完全平方公式计算题。
完全平方公式经典习题
—完全平方公式一1.(a +2b )2=a 2+_______+4b 2; (3a -5)2=9a 2+25-_______.2.(2x -_____)2=____-4xy +y 2; (3m 2+_____)2=______+12m 2n +______. 3.x 2-xy +______=(x -______)2; 49a 2-______+81b 2=(______+9b )2. 4.(-2m -3n )2=_________; (41s +31t 2)2=_________.5.4a 2+4a +3=(2a +1)2+_______. (a -b )2=(a +b )2-________. 6.a 2+b 2=(a +b )2-______=(a -b )2-__________. 7.(a -b +c )2=________________________. 》8.(a 2-1)2-(a 2+1)2=[(a 2-1)+(a 2+1)][(a 2-1)-(______)]=__________.9.代数式xy -x 2-41y 2等于……………………( )(A )(x -21y )2 (B )(-x -21y )2 (C )(21y -x )2 (D )-(x -21y )2 10.已知x 2(x 2-16)+a =(x 2-8)2,则a 的值是…………………………( ) (A )8 (B )16 (C )32 (D )6411.如果4a 2-N ·ab +81b 2是一个完全平方式,则N 等于……………………… ( ) (A )18 (B )±18 (C )±36 (D )±6412.若(a +b )2=5,(a -b )2=3,则a 2+b 2与ab 的值分别是………………( ) |(A )8与21 (B )4与21 (C )1与4 (D )4与113.计算:(1)(-2a +5b )2; (2)(-21ab 2-32c )2;(3)(x -3y -2)(x +3y -2); (4)(x -2y )(x 2-4y 2)(x +2y );^(5)(2a+3)2+(3a-2)2;(6)(a-2b+3c-1)(a+2b-3c-1);(7)(s-2t)(-s-2t)-(s-2t)2;(8)(t-3)2(t+3)2(t 2+9)2.,14. 用简便方法计算:(1)972;(2)992-98×100;15.求值:(1)已知a+b=7,ab=10,求a2+b2,(a-b)2的值.·3,求4a2+b2-1的值.(2)已知2a-b=5,ab=2(3)已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.、完全平方公式二1.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
七年级下1.6完全平方公式习题含详细答案
《完全平方公式》习题一、选择题1.下列等式成立的是( )A.(-1)3=-3B.(-2)2×(-2)3=(-2)6C.2a-a=2D.(x-2)2=x2-4x+42.若(2x-5y)2=(2x+5y)2+m,则代数式m为( )A.-20xyB.20xyC.40xyD.-40xy3.下列计算中,正确的是( )A.x2•x5=x10B.3a+5b=8abC.(a+b)2=a2+b2D.(-x)6÷(-x)4=x24.下面各运算中,结果正确的是( )A.2a3+3a3=5a6B.-a2•a3=a5C.(a+b)(-a-b)=a2-b2D.(-a-b)2=a2+2ab+b25.若m+n=3,则2m2+4mn+2n2-6的值为( )A.12B.6C.3D.06.不论x,y为何有理数,x2+y2-10x+8y+45的值均为( )A.正数B.零C.负数D.非负数二、填空题7.已知:a-b=3,ab=1,则a2-3ab+b2=_____.8.若a+b=4,则a2+2ab+b2的值为_____.9.若a2b2+a2+b2+1-2ab=2ab,则a+b的值为_____.10.填上适当的整式,使等式成立:(x-y)2+_____=(x+y)2.三、解答题11.已知实数x、y都大于2,试比较这两个数的积与这两个数的和的大小,并说明理由.12.已知(a+b)2=24,(a-b)2=20,求:(1)ab的值是多少?(2)a2+b2的值是多少?13.已知2(x+y)=-6,xy=1,求代数式(x+2)-(3xy-y)的值.14.计算:①29.8×30.2;②46×512;③2052.15.计算:(a-2b+3c)(a+2b-3c).参考答案一、选择题1.答案:D解析:【解答】A:(-1)3=(-1)×(-1)×(-1)=-1,故选项A错误;B:(-2)2×(-2)3=(-2)2+3=(-2)5,故选项B错误;C:2a-a=(2-1)a=a,故选项C错误;D:(x-2)2=x2-2•x•2+22=x2-4x+4,故选项D正确.故选:D【分析】根据同底数幂的乘法运算,底数不变指数相加,以及有理数的乘方,完全平方公式算出即可.2.答案:D解析:【解答】(2x-5y)2=(2x+5y)2+m,整理得:4x2-20xy+25y2=4x2+20xy+25y2+m,∴-20xy=20xy+m,则m=-40xy.故选:D【分析】利用完全平方公式化简已知等式,根据多项式相等的条件即可求出m.3.答案:D解析:【解答】A、因为x2•x5=x2+5=x7,故本选项错误;B、3a和5b不是同类项的不能合并,故本选项错误;C、应为(a+b)2=a2+2ab+b2,故本选项错误;D、(-x)6÷(-x)4=(-x)6-4=(-x)2=x2.正确.故选D.【分析】利用同底数幂相乘,底数不变,指数相加;完全平方公式;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.4.答案:D解析:【解答】A、原式=5a3,故选项错误;B、原式=-a5,故选项错误;C、原式=-(a+b)2=-a2-2ab-b2,故选项错误;D、原式=(a+b)2=a2+2ab+b2,故选项正确.故选D.【分析】A、原式合并同类项得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式变形后,利用完全平方公式展开得到结果,即可做出判断;D、原式利用完全平方公式展开得到结果,即可做出判断.5.答案:A解析:【解答】原式=2(m2+2mn+n2)-6,=2(m+n)2-6,=2×9-6,=12.故选A.【分析】根据完全平方公式的逆用,先整理出完全平方公式的形式,再代入数据计算即可.6.答案:A解析:【解答】x2+y2-10x+8y+45,=x2-10x+25+y2+8y+16+4,=(x-5)2+(y+4)2+4,∵(x-5)2≥0,(y+4)2≥0,∴(x-5)2+(y+4)2+4>0,故选A.【分析】根据完全平方公式对代数式整理,然后再根据平方数非负数的性质进行判断.二、填空题7.答案:8解析:【解答】∵(a-b)2=32=9,∴a2-3ab+b2=(a-b)2-ab=9-1=8【分析】应把所给式子整理为含(a-b)2和ab的式子,然后把值代入即可.8.答案:16解析:【解答】∵a+b=4,∴a2+2ab+b2=(a+b)2=16.【分析】原式利用完全平方公式化简,将a+b的值代入计算即可求出值.9.答案:2或-2解析:【解答】∵a2b2+a2+b2+1-2ab=2ab,∴a2b2+a2+b2+1-2ab-2ab=0,∴a2b2-2ab+1+a2+b2-2ab=0,∴(ab-1)2+(a-b)2=0,∴ab=1,a-b=0,∴a=b=1或-1,∴a+b=2或-2.【分析】首先把2ab移到等式的左边,然后变为a2b2+a2+b2+1-2ab-2ab=0,接着利用完全平方公式分解因式,最后利用非负数的性质即可求解.10.答案:4xy解析:【解答】(x+y)2-(x-y)2=(x2+2xy+y2)-(x2-2xy+y2)=4xy.【分析】所填的式子是:(x+y)2-(x-y)2,化简即可求解.三、解答题11.答案:见解答过程解析:【解答】xy>x+y,理由是:∵x>2,y>2,∴xy>2y,xy>2x,∴相加得:xy+xy>2y+2x,∴2xy>2(x+y),∴xy>x+y.【分析】根据已知得出xy>2y,xy>2x,相加得出xy+xy>2y+2x,即可求出答案.12.答案:(1)ab=1;(2)a2+b2=22.解析:【解答】∵(a+b)2=24,(a-b)2=20,∴a2+b2+2ab=24…①,a2+b2-2ab=20…②,(1)①-②得:4ab=4,则ab=1;(2)①+②得:2(a2+b2)=44,则a2+b2=22.【分析】由(a+b)2=24,(a-b)2=20,可以得到:a2+b2+2ab=24…①,a2+b2-2ab=20…②,通过两式的加减即可求解.13.答案:-4.解析:【解答】∵2(x+y)=-6,即x+y=-3,xy=1,∴(x+2)-(3xy-y)=x+2-3xy+y=(x+y)-3xy+2=-3-3+2=-4.【分析】将所求式子去括号整理变形后,把x+y与xy的值代入计算,即可求出值.14.答案:①899.96;②1012;③42025.解析:【解答】①29.8×30.2=(30+0.2)(30-0.2)=302-0.22=900-0.04=899.96;②46×512=212×512=(2×5)12=1012;③2052=(200+5)2=40000+2000+25=42025.【分析】①首先将原式变为:(30+0.2)(30-0.2),然后利用平方差公式求解即可求得答案;②利用幂的乘方,可得46=212,然后由积的乘方,可得原式=(2×5)12=1012;③首先将205化为:200+5,然后利用完全平方公式求解即可求得答案.15.答案:a2-4b2+12bc-9c2解析:【解答】(a-2b+3c)(a+2b-3c)=[a-(2b-3c)][a+(2b-3c)]=a2-(2b-3c)2=a2-(4b2-12bc+9c2)=a2-4b2+12bc-9c2.【分析】首先将原式变为:[a-(2b-3c)][a+(2b-3c)],然后利用平方差公式,即可得到a2-(2b-3c)2,求出结果.。
完全平方公式练习题
完全平方公式练习题### 完全平方公式练习题一、选择题1. 完全平方公式为:A. (a+b)² = a² + 2ab + b²B. (a-b)² = a² - 2ab + b²C. (a+b)² = a² - 2ab + b²D. (a-b)² = a² + 2ab - b²2. 以下哪个表达式不能通过完全平方公式化简?A. x² + 6x + 9B. y² - 8y + 16C. z² + 4z - 5D. w² + 10w + 253. 已知 (2x - 3)² = 4x² - 12x + 9,求 x 的值。
A. x = 0B. x = 3C. x = 1.5D. x = 6二、填空题4. 根据完全平方公式,(3a + 5)²可以展开为 ______ 。
5. 将下列表达式化简为完全平方形式:x² - 6x + ______ 。
6. 如果 (4m + n)² = 16m² + 8mn + n²,那么 n 的值是 ______ 。
三、计算题7. 计算下列表达式的值,如果可能的话,将其化简为完全平方形式:(a) (3x + 2)²(b) (2y - 3)²8. 已知 (a + b)² = 25 和 a - b = 3,求 a² + b²的值。
四、解答题9. 证明:对于任意实数 a 和 b,(a + b)² + (a - b)² = 2(a² + b²)。
10. 一个正方形的边长为 x,其面积为 S。
如果边长增加 2 单位,新的面积为 S'。
证明 S' - S = 4x + 4。
(完整版)完全平方公式专项练习题有答案
完全平方公式专项练习 知识点:完全平方公式:(a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。
1、完全平方公式也可以逆用,即a 2+2ab+b 2=(a+b)2 a 2-2ab+b 2=(a-b)22、能否运用完全平方式的判定①有两数和(或差)的平方即:(a+b)2或 (a-b)2或 (-a-b)2或 (-a+b)2②有两数平方,加上(或减去)它们的积的2倍,且两数平方的符号相同。
即:a 2+2ab+b 2或a 2-2ab+b 2-a 2-2ab-b 2或 -a 2+2ab-b 2专项练习:1.(a +2b )22.(3a -5)23..(-2m -3n )24. (a 2-1)2-(a 2+1)25.(-2a +5b )26.(-21ab 2-32c )27.(x -2y )(x 2-4y 2)(x +2y )8.(2a +3)2+(3a -2)29.(a -2b +3c -1)(a +2b -3c -1);10.(s -2t )(-s -2t )-(s -2t )2;11.(t -3)2(t +3)2(t 2+9)2.12. 972;13. 20022;14. 992-98×100;15. 49×51-2499.16.(x -2y )(x +2y )-(x +2y )217.(a +b +c )(a +b -c )18.(2a +1)2-(1-2a )219.(3x -y )2-(2x +y )2+5x (y -x )20.先化简。
再求值:(x +2y )(x -2y )(x 2-4y 2),其中x =2,y =-1.21.解关于x 的方程:(x +41)2-(x -41)(x +41)=41. 22.已知x -y =9,x ·y =5,求x 2+y 2的值.23.已知a (a -1)+(b -a 2)=-7,求222b a +-ab 的值.24.已知a +b =7,ab =10,求a 2+b 2,(a -b )2的值.25.已知2a -b =5,ab =23,求4a 2+b 2-1的值.26.已知(a +b )2=9,(a -b )2=5,求a 2+b 2,ab 的值.27.已知 2()16,4,a b ab +==求223a b +与2()a b -的值。
完全平方练习题带答案
11139.如果x+=8,且x>,求x-的值。xxx
112240.已知m+2=1求的值。mm
41.利用完全平方公式化简2
42.证明:2-2是28的倍数,其中m为整数.
43.化简-4xy
44.求证:对于任意自然数n,n-×的值都能被6整除.
A.B.C.D.2
8.计算2-2的结果为
A.-8x2+16xy B.-4x2+16xy C.-4x2-16xy D.8x2-16xy
9.计算的结果是
A.-a2-2a-1 B.-a2-1 C.a2-1 D.-a2+2a-1
10.运用完全平方公式计算:
2
111
352
- 1 -
-a2
101 19819.92
完全平方公式参考答案
1.a2+2ab+b a2-2ab+b和平方和这两个数乘积的2倍
2.?2a ?2a 1 1 a2+4a+1 x x y y x2-12xy+9y2
3.a+6b a-3b.-??.1
6.C.A.A.A
10.a2+6a+5x2-20x+a2-6a+1 ?
211ab+b a2+2ab+ba4-a2+41525
Байду номын сангаас完全平方练习题带答案
知识点:
完全平方公式:2=a2+2ab+b2=a2-2ab+b2
两数和的平方,等于它们的平方和,加上它们的积的2倍。
1、完全平方公式也可以逆用,即a2+2ab+b2=2a2-2ab+b2=2
完全平方公式练习题及答案
完全平方公式练习题及答案◆基础训练1.=2-2=______..=2-2=_____..20×19==_____-_____=_____..9.3×10.7==____-_____..20062-2005×2007的计算结果为A.1 B.-1C. D.-6.在下列各式中,运算结果是b2-16a2的是 A. B. C.D..运用平方差公式计算. 102×921007×912-b- 1 -34×314-2.7×3.313×1123-1945×2051+-+-+◆综合应用8.=b2-9a2;=b2-2.9.先化简,再求值:-,其中a=-.31- -10.运用平方差公式计算:11.解方程:2=x2++2x+3=12.计算:-.◆拓展提升13.若a+b=4,a2-b2=12,求a,b的值. - -2220052005?20004?20062;9×101×10 001.完全平方公式◆基础训练1.完全平方公式:2=______,2=______.即两数的_____的平方等于它们的_____,加上________..计算:2=2+2·____·_____+2=________;2=2-2·____·_____+2=_______..2=a2+12ab+36b2;2=4a2-12ab+9b2..2=9x2-12x+B,则A=_____,B=______..m2-8m+_____=2..下列计算正确的是A.2=a2-bB.2=a2+2ab+4b C.=a-2a+1D.=a+2ab+b.运算结果为1-2ab+ab的是A. B. C. D..计算-的结果为A.-8x+16xy B.-4x+16xy C.-4x-16xy D.8x -16xy.计算的结果是A.-a2-2a-1 B.-a2-1 C.a2-1 D.-a2+2a -1 10.运用完全平方公式计算:2222 2 2 2 2 2 2 2 22 2 2 2 2 24 2 2 4 2 2 2 2- --a2101 19819.9211.计算:-+2>13+2.- -12)2-完全平方公式专项练习知识点:完全平方公式:2=a2+2ab+b2=a2-2ab+b2两数和的平方,等于它们的平方和,加上它们的积的2倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 213.计算:(1) (―2。
+5。
)2;
⑵(十2_§)2;
(3)(工一3y —2)(尤+3y —2); (4) (x~2y) (x 2—4>,2)(尤+2y);
完全平方公式一
1. (。
+2人)2 =决+ ______ +4人2; (3Q —5) 2=9Q 2+25— _______
2. (2尤— ___ ) 2= ________ —Axy-^y 1; (3m 2+ ______ .)2
= ______ +12冰〃+ ___ 3. JC —xv+ = (x~ - )2; 49a 2- + 81^2= ( +%) 2
4. ( ~2m —3n) 2 = ; (£+圮)2 = •
4 3
5. 4决+4。
+3= (2Q +1) 2+ ・ (。
——人) 2= (Q +Z?) 2—
6.疽 +》2= (Q + 人)2_ =(a~b) 2 — _____ ■
7. (。
—b+c) 2
=.
8. (a 2— 1 ) 2— (Q 2+1)2=[(Q 2— 1)+ (Q 2+])][( Q 2— 1)—() ]=
9. 代数式xy-x 2--y 2等于 .................. ( )
4
(A) (x~-y) 2 (B) (—x —-y) 2 (C) (-y —x) 2 (D) — (x~-y) 2
2 2 2 2
10. 已知 j (x 2— 16) +。
= (X 2—8) 2,则 Q 的值是.................... ( )
(A) 8 (B) 16 (C) 32 (D) 64
11. 如果4Q 2—N 泌+8场2是一个完全平方式,则N 等于 ..................... (
) (A) 18 (B) ±18 (C) ±36 (D) ±64
12. 若(a+b) 2=5, (a-b) 2=3,则 a 2+b 2与沥的值分别是 ...................... (
)
(A) 8 与上 (B) 4-^- (C) 1 与4 (。
)4与1
(5) (2Q+3)2+(3CL2)2;(6)(Q ——2/?+3C——1) (Q+2/?——(7)(s—2r) (—s—2r) — (5—2f) (8)(L3) 2 (r+3) 2(广+9) 2.
14.用简便方法计算:(1)(2 ) 992 -
15.求值:(1)已知Q+A=7,泌=10,求疽+胪,(a-b)2的值.
(2)已知*2=5, ab=*求4疽+胪一1的值.
(3)已知(。
+/?)2 = 9, (0—/?) 2 = 5,求决+疽,沥的值.
完全平方公式二
9a 2 +b2, o
1.已知(a + by =l6,ab = 4,求一-—与 0 — b)~的值。
2.已知(i一人)=5,泌=3求(。
+月与3(/ +/)的值。
3.已知a + b = 6,a-b = 4求沥与a2+b2的值。
4.已知a + b = 4.a2+b2 =4 求a2b2 (a-b)2的值。
5.已知a + b =
6.ab = 4 ,求a2b + 3a2b2 + ab2的值。
6.已知x2 + ^2-2x-4^ + 5 = 0 ,求—(A:-1)2 -xy 的值。
7.试说明不论x,y取何值,代数式必+ :/+6尤-4> + 15的值总是正数。
特殊的平行四边形的性质观课报告
“学生是学习的主人,把课堂还给学生,课堂是学生交流知识、获得能力,体验情感的摇篮。
”这节课的亮点:“从学生思维的起点,兴趣的契入点开始,让学生一气呵成,从而学会学习。
本堂课的设计主要是从学生的角度出发,思路为:设置情景复习引入一一激发学习欲望,自主探索——鼓励学生动手、观察、猜想一归纳总结一一分层过关应用——鼓励学生大胆发表自己的想法——小结,有效地完成了本节课的教学目标。
1、引出问题很恰当,操作性强,具有启发性
2、学案设计好,容量大,难度适中,循序渐进,效果好。
3、动手更能使学生直观理解平行四边形的性质,“设计思路流畅,能给学生探索新知提供一种学习方法,注重从习题中渗透勇于思考的情感与转化的数学思想。
”在课堂实施过程中能够创设情景,课件辅助教学。
同学们带着实际问题,迫不急待猜想结论,师生合作论证,学生认真练习,给学生创设上台发言的机会,分析出错的原因,同学们不仅能学到知识,锻炼表达能力,更能锻炼胆量,“绝大多数同学能达到设计的目标,不同层次的学生都有发展。
从反馈中发现学生错点,犯错的原因,一是:学生未能认真审题不会从条件和结论两头分析。
有的学生不会转化为三角形的边角,未能正确完成。
针对以上不足,平时教学中通过习题精讲,必重视培养学生的审题习惯, 学会抓关键图形,并用合适的记号标出来,能用流利的语言表述几何证明过程,鼓励学生从错题中寻找原因,并及时修正,从而提高学生的推理能力。
绝大多数学生能认真地倾听老师的讲课,注意力集中,优等学生能坚持到15分钟,有95%的学生能倾听同学的发言,30%多的学生有记笔记的习惯,大部分的学生停留在“听”的程度上,学困生表现为无所事
事,不吭声不积极,没有参与到整个学习过程,教师应关注到这层面学生的学习情况。
我觉得应该注意以下几点问题:
1应注意给学生留下足够的思维空间。
如及时的总结平行四边形的边,角,对角线的性质。
2教师的提问不仅能培养学生回答别人提出的问题,而且能使学生自己组织问题并求得答案,还要关注其能否根据具体的教学情境和学生的反应灵活生成,同时要关注教学时生成性方面的内容,使学生的主体地位得到体现。
本节课的一点建议:个别学生的重复参与度较高占用了较多的表现机会;另外班级中有儿位同学可能因为知识面和学习能力的限制,没有主动参与进来,需要教师多激励这部分学生的学习积极性和问题参与热情。