2020年七年级数学上册知识点归纳:第二章有理数及其运算

合集下载

七年级数学上册 第二章 有理数及其运算 (知识归纳+考点攻略+方法技巧)复习课件(新版)北师大版

七年级数学上册 第二章 有理数及其运算 (知识归纳+考点攻略+方法技巧)复习课件(新版)北师大版
A.高于正常水位 3 米记作+3 米 B.低于正常水位 5 米记作-5 米 C.+6 米表示水深为 6 米 D.-1 米表示比正常水位低 1 米
2最0新19北/11师/8大版初中数学精品
数学8·课标版(BS)
第二章复习
方法技巧 用正数和负数表示具有相反意义的量,关键是看规定 哪种意义的量为正,则与之相反意义的量为负.
2最0新19北/11师/8大版初中数学精品
数学1·6 课标版(BS)
第二章复习 ►考点五 有理数的大小比较
用“>”或“<”填空:
(1)9___>_____-16; (2)-175___<_____-125;(3)0___>_____-7.
[解析] 因为正数大于负数,所以 9>-16;因为在数轴
7
2
数学5·课标版(BS)
第二章复习
(4) 运 算 律 : ① 交 换 律 : a·b = _____ ; ② 结 合 律 : (a·b)·c =
__a_·(_b_8(·1_.c))_法有则;理一③数:乘的两法除数对法相加除法,的同分号配得律_:_b_·a_a(,b+异c号)=得_a__b___+___,_a_c并__把. 绝对
2最0新19北/11师/8大版初中数学精品
数学2·1 课标版(BS)
第二章复习
易错警示
(1)-22 与(-2)2 不同,-22 的底数是 2,(-2)2 的底数
是-2;
(2)在计算 12÷

12―13―14时,要清楚除法没有分配律;
(3)有理数的混合运算一定要按照顺序进行,同时要注
意每一步运算的符号.

底数
指数
2019/11/8
最新北师大版初中数学精品
6数学·课标版(BS)

北师大版七年级数学上册第二章知识点整理

北师大版七年级数学上册第二章知识点整理

北师大版七年级数学上册第二章知识点整理北师大版七年级数学上册第二章知识点整理七年级上册第二章有理数及其运算1.有理数:有理数=整数+分数(包括有限小数+无限循环小数)整数=正整数+0+负整数分数=正分数+负分数有理数=正有理数+0+负有理数正有理数=正整数+正分数负有理数=负整数+负分数l 正数的概念:数轴上0右边的数即比0大的数叫正数,形如+1,+0.5,+10.1,0.001…l 负数的概念:数轴上0左边的数,形如-3,-0.2,-100…(负号不能省略). l 0既不是正数也不是负数,0是整数也是偶数.① 正负数的表示方法:盈利,亏损;足球比赛胜,负;收入,支出;提高,降低;上升,下降;② 不投入不支出,不盈也不亏,海平面的海拔,某一个标准或基准….用0表示;2.数轴:概念:规定了原点,正方向和单位长度的直线数轴是一条可以向两端无限延伸的直线,数轴有三要素:原点,正方向,单位长度;画法:首先画一条直线;在这条直线上任取一点,作为原点;再确定正方向,一般规定向右为正,画上箭头,反方向为负方向;最后选取适应的长度作为单位长度;数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示。

有理数的大小比较:在数轴上表示的两个数,右边的数比左边的数大,正数都大于0,负数都小于0,正数大于负数.3. 相反数:(1)只有符号不同的两个数叫做互为相反数(在数轴上互为相反数的两点位于原点两侧,并且到原点的距离相等),0的相反数是0;a,b互为相反数 a+b=0;(2)求一个数的相反数,只要在它的前面添上负号“-”即得原数的相反数,当原数是多个数的和差时,要用括号括起来再添“-”;下面的a,b即可以是数字,字母,也可以是代数式;(3)一般地,数a的相反数是-a,这里的a表示任意一个数,可以是正数、负数、0.4. 绝对值:(1)几何定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值;(2)代数定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;互为相反数的两个数的绝对值相等.(3)对于任何有理数a,都有a的绝对值≥0 ,即绝对值非负性;若几个数的绝对值的和等于0,则这几个数同时为0;(4)比较两个负数,绝对值大的反而小;5.倒数:(1)乘积为1的两个数互为倒数,所以数a(a≠0) 的倒数是 1/a,0没有倒数;(2)求一个整数的倒数,写成这个整数分之一;求一个小数的倒数,先将其化成分数,再求其倒数;求一个带分数的倒数,先将其化为假分数,再求出倒数.(3)用1除以一个非0数,商就是这个数的倒数.6. 有理数的四则运算:⑴ 加法法则:① 同号两数相加,符号不变,把绝对值相加;② 异号两数相加,绝对值相等时(即互为相反数的两个数)相加得0;绝对值不相等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③ 一个数同0相加,仍得这个数;有理数加法运算律:交换律和结合律(互为相反数的可先相加;相加可得整数的可先相加;同分母的分数可先相加;符号相同的可先相加;易于通分的可先相加).⑵ 减法法则:① 减去一个数,等于加上这个数的相反数,依据加法法则② 加减混合运算,通过减法法则将减法转化为加法,统一成只含有加法运算的和式;减法没有交换律.⑶ 乘法法则:① 两数相乘,同号得正,异号得负,把绝对值相乘;② 任何数同0相乘,得0;(另外1乘任何数都等于这个数本身;-1乘以任何数都等于这个数的相反数.)③ 几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积为负;当负因数的个数是偶数时,积为正.乘法的运算律:交换律、结合律、乘法对加法的分配律.⑷ 除法法则:① 两数相除,同号得正,异号得负,把绝对值相除;② 0除以任何非0的数都得0.③ 除以一个数,等于乘上这个数的倒数,即 .⑸ 乘方:① 求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;② 负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;③ 正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数(奇次幂 2n+1,2n-1; 偶次幂 2n);0的正整数次幂都是0.⑹ 混合运算:① 从左到右的顺序进行;② 先乘方,再乘除,后加减;如有括号,应先算括号里面的;7. 科学记数法(1)把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数,它的值等于原数的整数位数减1,),这种记数方法叫科学记数法;(2)准确数与近似数:与实际完全相符的数是准确数;与实际相接近的数是近似数;(3)精确度:近似数与准确数的接近程度,可以用精确度表示;一般地,把一个数四舍五入到哪一位,就说这个数精确到了那一位;所以,精确度是描述一个近似数的近似程度的量;(4)有效数字:在近似数中,从左边第一个不是0的数字起,到精确的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;。

北师大版初一上册第二章有理数运算的基本概念及运用知识点总结

北师大版初一上册第二章有理数运算的基本概念及运用知识点总结

北师大版初一上册第二章有理数运算的基本概念及运用知识点总结有理数运算是数学中的基础知识,对于初一学生来说尤为重要。

本文总结了北师大版初一上册第二章有理数运算的基本概念及运用的知识点。

1. 有理数的概念有理数是可以表示为分数形式的数,包括正数、负数和零。

有理数的表示形式可以是整数、分数或小数。

2. 有理数的运算法则有理数的运算法则包括加法、减法、乘法和除法。

- 加法:有理数相加时,符号相同则相加;符号不同则求差,结果的符号取绝对值较大的数的符号。

- 减法:有理数相减时,可以转化为加法运算,将减数取相反数再相加。

- 乘法:有理数相乘时,符号相同则结果为正,符号不同则结果为负。

- 除法:有理数相除时,可以转化为乘法运算,将除数取倒数再相乘。

3. 有理数的绝对值有理数的绝对值是该数到原点的距离,表示为正数。

有理数的绝对值可以通过去掉符号得到。

4. 有理数的比较有理数的比较可以通过将两个数的分数形式转化为相同的分母后进行比较,也可以通过比较两个数的绝对值来判断大小关系。

5. 有理数的乘方和开方有理数的乘方是将该数连乘若干次,有理数的开方是该数的平方根。

乘方和开方的结果仍然是有理数或者无理数。

6. 有理数的运算性质有理数的运算具有交换律、结合律和分配律等性质。

根据这些性质,可以简化有理数的运算过程。

7. 实际问题中的有理数运算有理数的运算在实际问题中也有广泛应用,例如温度计的读数、海拔的计算等都涉及有理数的运算。

以上是北师大版初一上册第二章有理数运算的基本概念及运用的知识点总结。

希望对同学们理解和掌握有理数运算有所帮助。

参考资料:- 北师大版初一数学上册教材。

七年级数学上册第二章 有理数及其运算知识点

七年级数学上册第二章 有理数及其运算知识点

第二章有理数及其运算一、有理数1.用正、负数表示具有相反意义的量2.有理数的分类(1)按定义分类(2)按符号分类二、数轴1.数轴的概念规定了原点、正方向、单位长度的直线叫做数轴.2.用数轴上的点表示有理数任何一个有理数都可以用数轴上的一个点来表示.3.比较有理数的大小(1)数轴上两个点表示的数,右边的总比左边的大.(2)正数大于0,0大于负数,正数大于负数.三、绝对值1.相反数的概念及性质(1)只有符号不同的两个数叫做互为相反数(2)互为相反数的两个数到原点的距离相等2.绝对值的概念及性质(1)一个数在数轴上对应的点到原点的距离叫做这个数的绝对值(2)一个正数的绝对值是它本身.(3)一个负数的绝对值是它的相反数.(4)0的绝对值是0.3.比较两个负数的大小两个负数,绝对值大的反而小.三、有理数的运算1.有理数的加法(1)加法法则同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值.一个数同0相加,仍得这个数。

(2)加法的运算律加法的交换律加法的结合律2.有理数的减法减法法则:减去一个数,等于加上这个数的相反数.3.有理数的乘法(1)乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.(2)乘法的运算律乘法的交换律乘法的结合律乘法对加法的分配律4.有理数的除法除法法则:除以一个数,等于乘以这个数的倒数.5.有理数的乘方乘方运算规律:(1)正数的任何次幂都是正数.(2)负数的偶次幂是正数,负数的奇次幂是负数.(3)0的任何正整数次幂都是0.(4)a的偶次幂是正数,即a n≥0(其中n为偶数).6.有理数的混合运算有理数混合运算的顺序:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.四、科学记数法1.科学记数法的概念一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n是正整数,这种记数方法叫做科学记数法.2.a与n的取法在a×10n形式中,n的值是原数整数位数减1,a 则是将原数保留一位整数得来的.。

七年级数学上册《有理数及其运算》知识点归纳北师大版

七年级数学上册《有理数及其运算》知识点归纳北师大版

七年级数学上册《有理数及其运算》知识点归纳北师大版1.有理数:有理数=整数+分数整数=正整数+0+负整数分数=正分数+负分数有理数=正有理数+0+负有理数正有理数=正整数+正分数负有理数=负整数+负分数l正数的概念:数轴上0右边的数即比0大的数叫正数,形如+1,+0.5,+10.1,0.001…l负数的概念:数轴上0左边的数,形如-3,-0.2,-100…(负号不能省略).l0既不是正数也不是负数,0是整数也是偶数.①正负数的表示方法:盈利,亏损;足球比赛胜,负;收入,支出;提高,降低;上升,下降;②不投入不支出,不盈也不亏,海平面的海拔,某一个标准或基准….用0表示;2.数轴:概念:规定了原点,正方向和单位长度的直线数轴是一条可以向两端无限延伸的直线,数轴有三要素:原点,正方向,单位长度;画法:首先画一条直线;在这条直线上任取一点,作为原点;再确定正方向,大凡规定向右为正,画上箭头,反方向为负方向;最后选取适应的长度作为单位长度;数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示。

有理数的大小比较:在数轴上表示的两个数,右边的数比左边的数大,正数都大于0,负数都小于0,正数大于负数.3.相反数:(1)只有符号例外的两个数叫做互为相反数(在数轴上互为相反数的两点位于原点两侧,并且到原点的距离相等),0的相反数是0;a,b互为相反数a+b=0;(2)求一个数的相反数,只要在它的前面添上负号“-”即得原数的相反数,当原数是多个数的和差时,要用括号括起来再添“-”;下面的a,b即可以是数字,字母,也可以是代数式;(3)大凡地,数a的相反数是-a,这里的a表示任意一个数,可以是正数、负数、0.4.绝对值:(1)几何定义:大凡地,数轴上表示数a的点与原点的距离叫做数a的绝对值;(2)代数定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;互为相反数的两个数的绝对值相等.(3)对于任何有理数a,都有a的绝对值≥0,即绝对值非负性;若几个数的绝对值的和等于0,则这几个数同时为0;(4)比较两个负数,绝对值大的反而小;5.倒数:(1)乘积为1的两个数互为倒数,所以数a的倒数是1/a,0没有倒数;(2)求一个整数的倒数,写成这个整数分之一;求一个小数的倒数,先将其化成分数,再求其倒数;求一个带分数的倒数,先将其化为假分数,再求出倒数.(3)用1除以一个非0数,商就是这个数的倒数.6.有理数的四则运算:⑴加法法则:①同号两数相加,符号不变,把绝对值相加;②异号两数相加,绝对值相等时(即互为相反数的两个数)相加得0;绝对值不相等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数;有理数加法运算律:交换律和结合律(互为相反数的可先相加;相加可得整数的可先相加;同分母的分数可先相加;符号相同的可先相加;易于通分的可先相加).⑵减法法则:①减去一个数,等于加上这个数的相反数,依据加法法则②加减混合运算,通过减法法则将减法转化为加法,统一成只含有加法运算的和式;减法没有交换律.⑶乘法法则:①两数相乘,同号得正,异号得负,把绝对值相乘;②任何数同0相乘,得0;(另外1乘任何数都等于这个数本身;-1乘以任何数都等于这个数的相反数.)③几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积为负;当负因数的个数是偶数时,积为正.乘法的运算律:交换律、结合律、乘法对加法的分配律.⑷除法法则:①两数相除,同号得正,异号得负,把绝对值相除;②0除以任何非0的数都得0.③除以一个数,等于乘上这个数的倒数,即.⑸乘方:①求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;②负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;③正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数(奇次幂2n+1,2n-1;偶次幂2n);0的正整数次幂都是0.⑹混合运算:①从左到右的顺序进行;②先乘方,再乘除,后加减;如有括号,应先算括号里面的;7.科学记数法(1)把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数,它的值等于原数的整数位数减1,),这种记数方法叫科学记数法;(2)确凿数与相似数:与实际完全相符的数是确凿数;与实际相接近的数是相似数;(3)精准度:相似数与确凿数的接近程度,可以用精准度表示;大凡地,把一个数四舍五入到哪一位,就说这个数精准到了那一位;所以,精准度是描述一个相似数的相似程度的量;(4)有效数字:在相似数中,从左边第一个不是0的数字起,到精准的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;两数相除,同号得正,异号得负,把绝对值相除;②0除以任何非0的数都得0.③除以一个数,等于乘上这个数的倒数,即.⑸乘方:①求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;②负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;③正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数(奇次幂2n+1,2n-1;偶次幂2n);0的正整数次幂都是0.⑹混合运算:①从左到右的顺序进行;②先乘方,再乘除,后加减;如有括号,应先算括号里面的;7.科学记数法(1)把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数,它的值等于原数的整数位数减1,),这种记数方法叫科学记数法;(2)确凿数与相似数:与实际完全相符的数是确凿数;与实际相接近的数是相似数;(3)精准度:相似数与确凿数的接近程度,可以用精准度表示;大凡地,把一个数四舍五入到哪一位,就说这个数精准到了那一位;所以,精准度是描述一个相似数的相似程度的量;(4)有效数字:在相似数中,从左边第一个不是0的数字起,到精准的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;两数相除,同号得正,异号得负,把绝对值相除;②0除以任何非0的数都得0.③除以一个数,等于乘上这个数的倒数,即.⑸乘方:①求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;②负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;③正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数(奇次幂2n+1,2n-1;偶次幂2n);0的正整数次幂都是0.⑹混合运算:①从左到右的顺序进行;②先乘方,再乘除,后加减;如有括号,应先算括号里面的;7.科学记数法(1)把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数,它的值等于原数的整数位数减1,),这种记数方法叫科学记数法;(2)确凿数与相似数:与实际完全相符的数是确凿数;与实际相接近的数是相似数;(3)精准度:相似数与确凿数的接近程度,可以用精准度表示;大凡地,把一个数四舍五入到哪一位,就说这个数精准到了那一位;所以,精准度是描述一个相似数的相似程度的量;(4)有效数字:在相似数中,从左边第一个不是0的数字起,到精准的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;。

七年级上册数学第二章知识点归纳

七年级上册数学第二章知识点归纳

七年级上册数学第二章知识点归纳在七年级上册数学的第二章中,我们主要学习了有理数的运算和性质。

有理数包括整数和分数,它们可以表示为两个整数的比,其中分母不为零。

这一章节的知识点归纳如下:首先,我们学习了有理数的分类。

有理数可以分为正有理数、负有理数和零。

正有理数是大于零的数,负有理数是小于零的数,而零既不是正数也不是负数。

其次,我们掌握了有理数的加减法。

在进行有理数的加法运算时,如果两个数的符号相同,我们直接将它们的绝对值相加,并保留相同的符号。

如果两个数的符号不同,我们需要取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

有理数的减法可以转化为加法,即减去一个数等于加上这个数的相反数。

接着,我们学习了有理数的乘除法。

在乘法运算中,如果两个数的符号相同,结果为正;如果符号不同,结果为负。

乘法运算中,绝对值相乘。

对于除法,除以一个数等于乘以这个数的倒数。

需要注意的是,除数不能为零。

此外,我们还了解了有理数的乘方运算。

乘方表示一个数自乘若干次。

例如,一个数的平方是这个数乘以它自己,立方是这个数乘以它自己两次。

在这一章中,我们还学习了有理数的混合运算。

在进行混合运算时,我们需要遵循运算的优先级,即先乘除后加减,同级运算从左到右进行。

最后,我们探讨了有理数的大小比较。

正有理数大于零,零大于负有理数,正有理数大于负有理数。

在比较两个负有理数的大小时,绝对值大的数实际上是较小的数。

通过这一章的学习,我们对有理数有了更深入的理解,为后续更复杂的数学学习打下了坚实的基础。

七年级数学第二章有理数及其运算知识总结+教师用

七年级数学第二章有理数及其运算知识总结+教师用

有理数及其运算知识总结一、本章知识概述本章所学习的是有理数及其运算,我们可以将本章的内容分为三大部分:第一部分:主要内容是有理数的有关概念.首先是理解有理数的意义及分类,判断一个数是正数还是负数,运用正、负数表示生活中具有相反意义的量.其次是认识数轴,用数轴上的点表示有理数,借助数轴认识相反数的概念及互为相反数的一对数在数轴上的位置关系,利用数轴比较有理数的大小.第三是理解绝对值的概念及求一个数的绝对值,利用绝对值比较两个负数的大小,通过应用题解决实际问题,体会绝对值的意义和作用.第二部分:学习有理数的加减法运算,通过探索有理数加法法则和运算律的过程,理解有理数的加法法则和运算律,利用有理数的加法法则进行有理数的加法运算,并利用运算律简化运算;通过探索有理数减法法则的过程,理解有理数的减法法则,利用有理数的减法法则进行有理数的减法运算;利用有理数的加、减法法则进行包括整数、分数或小数的有理数的加减混合运算,并适当利用运算律简化运算;综合运用有理数及其加法、减法的有关知识,解决简单的实际问题,体会数学与现实生活的联系.第三部分:主要内容是有理数的乘、除、乘方运算及有理数的加、减、乘、除、乘方混合运算.经历探索有理数乘法法则及运算律的过程,发展观察、归纳、猜测、验证等能力 .根据有理数乘法法则进行有理数的乘法运算,运用乘法运算律简化计算;根据有理数除法法则进行有理数的除法运算,求有理数的倒数;根据有理数乘方的意义进行有理数的乘方运算,通过实例感受当底数大于1时,乘方运算结果的快速增长.根据有理数混合运算顺序的规定,进行有理数加、减、乘、除、乘方的混合运算,在运算过程中,合理使用运算律简化运算;使用计算器进行有理数的加、减、乘、除、乘方运算,使用计算器进行实际问题的复杂运算.二、重点知识归纳及讲解1、正数和负数的概念比0大的数叫做正数;在正数前面加上“-”号的数叫做负数;0既不是正数,也不是负数.为了突出数的符号,可以在正数前面加“+”号,一般地“+”号往往省略不写,但负数前面的“-”号不能省略.对于正数和负数的概念,不能简单地理解为:带“+”号的数是正数,带“-”号的数是负数.2、有理数的概念及分类整数和分数统称为有理数:正数、负数和零也统称为有理数.整数包括正整数、零和负整数、分数包括正分数和负分数;正数包括正整数和负整数;负整数包括负整数和负分数.到目前为止,我们学过的数细分有五类:正整数、正分数、零、负整数、负分数,因为有限小数和无限循环小数可以化为分数,所以把有限小数和无限循环小数都看作分数.有时为了研究的需要,整数也可以看作是分母为 1的分数,但本章中的分数是指不包括分母是1的分数.通常把正整数和零统为非负数;负数和零统称为非正数;正整数和零统称为非负整数,即为自然数;负整数和零统称为非正整数.3、数轴的概念及画法规定了原点、正方向和单位长度的直线叫做数轴.数轴的概念中包含有三层含义:一是说数轴是一条直线,可以向两端无限延伸;二是说数轴具有原点,正方向和单位长度三要素,三者缺一不可;三是说数轴原点的选定,正方向的取向、单位长度大小的确定,是根据实际需要规定的.画数轴的步骤:(1)画一条直线,一般画成水平的直线;(2)在直线上选取一点为原点,用实心点表示,在原点下边标上0;(3)用箭头表示正方向,一般规定向右为正;(4)选取适当的长度为单位长度,用细短线画出,并在下边标上对应的数.4、相反数的概念如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数,特别地,0的相反数是0.在数轴上,表示互为相反数的两个点,位于原点的两侧,且与原点的距离相等,这就是相反数的几何意义.一般地,数a的相反数是-a,这里a表示任意一个数,可以是正数、负数或零,还可以代表任意一个代数式,表示或求一个数的相反数,只要在这个数的前面添上一个“-”号就可以了.相反数是成对出现的,不能单独存在,单独的一个数不能说是相反数;不能理解为只要符号不同的两个数就互为相反数,只有符合不同的两个数是说除了符号不同以外完全相同.5、绝对值的概念在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,数a的绝对值记作“|a|”.正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0,这就是绝对值的代数意义,也可表示为:6、绝对值的有关性质(1)对任意有理数a,都有|a|≥0;(2)若|a|=0,则a=0;(3)若|a|=|b|,则a=b或a=-b;(4)若|a|=b(b>0),则a=±b;(5)若|a|+|b|=0,则a=0且b=0;(6)对任意有理数a,都有|a|=|-a|.7、有理数大小的比较法则在数轴上表示的两个数,右边的数总比左边的数大;正数都大于 0,负数都小于0,正数大于一切负数;两个负数,绝对值大的反而小 .8、有理数加法法则同号两数相加,取相同的符号,并把绝对值相加 .异号两数相加,绝对值相等时和为 0;绝对值不等时,取绝对值较大的数的符号,并把较大的绝对值减去较小的绝对值.一个数同 0相加,仍得这个数.9、有理数加法运算律加法交换律: a+b=b+a加法结合律: (a+b)+c=a+(b+c)10、有理数减法法则减去一个数,等于加上这个数的相反数,即: a-b=a+(-b).11、代数和的意义几个正数或负数的和叫做代数和,代数和一般用省略加号、括号的和的形式来表示,代数和不仅表示有理数相加的结果,而且还可表示加法运算.12、有理数加减混合运算步骤(1)把加减混合运算统一成加法;(2)写成省略加号、括号的代数和;(3)利用加法法则及运算律进行计算.13、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘,任何数同零相乘都得0.14、多个非零因数相乘,积的符号规律n个不等于零的有理数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数的个数为偶数个时,积为正.n个数相乘,有一个因数为0,积就为0.15、有理数乘法的运算律(1)交换律:两个因数相乘,交换因数的位置,积不变.即a·b=b·a;(2)结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变,即(a·b)·c=a·(b·c);(3)分配律:一个数同两个数的和相乘,等于把这个数分别同这两数相乘,再把所得的积相加.即a(b +c)=ab+ac.16、倒数的概念乘积为1的两个有理数互为倒数.即当a·b=1时,a与b互为倒数.由于任何一个有理数与0的积为0,不可能是1,所以0没有倒数.倒数还可以说成是:1除以一个数(除数不等于0)的商叫做这个数的倒数,如a≠0,a的倒数为1a.17、有理数的除法法则除以一个数等于乘以这个数的倒数.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数都得0.18、利用除法化简分数除法可以写成几种不同的形式,例如:6÷3可以写成63,还可写成6∶3.说明除法可以表示成分数和比的形式;反过来,分数和比可化为除法,由于除法、分数和比可以互化,所以可以利用除法化简分数.19、乘方的概念求几个相同因数的积的运算,叫做乘方,即在n a中,a叫做底数,n叫做指数,n a叫做幂.na的读法有两种:(1)读作a的n次幂.(2)读作a的n次方.20、有理数的乘方法则正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.21、学记数法a 的形式,其中a的整数位数只有一位,这种记数的方法,叫做学记数把一个大于10的数记成10n法.22、有理数的混合运算有理数的运算中,加减为一级运算,乘除为二级运算,乘方(及开方——乘方的逆运算,以后将讲到)为三级运算.对于有理数的混合运算,要特别注意运算顺序及正确使用符号法则确定各步运算结果的符号.有理数的运算顺序是:先算乘方,再算乘除,最后算加减,对于同级运算,一般从左到右依次进行.如果有括号,就先算括号内的,且一般先算小括号内的,再算中括号内的,最后算大括号内的.如果能利用运算律简化计算,可变更上面的运算顺序,灵活处理.三、难点知识剖析1、负数的产生及其意义随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,为了满足实际需要,引入了负数、负数是由于实际需要产生的,负数也是客观存在的数 .正数和负数通常表示具有相反意义的量,若正数表示某种意义的量,则负数就表示其相反意义的量,反之亦然 .2、数集的概念把一些数放在一起,就组成一个数的集合,简称数集、所有的有理数组成的数集叫做有理数集,类似地,所有整数组成的数集叫做整数集,所有正数组成的数集叫做正数集,所有负数组成的数集叫做负数集,等等 .3、多重符号的化简规律单独一个有理数前面的“+”号和“-”号,一般都是性质符号,读作“正”号或“负”号 .括号前是“+”号时,去掉括号和“+”号后,括号内的数不变,括号前是“-”号时,去掉括号和“-”号后,括号内的数就变成它的相反数 .在一个数的前面添加一个“+”号,仍然与原数相同;在一个数的前面添加一个“-”号,就成为原数的相反数 .4、两个负有理数的大小比较两个负有理数的大小比较与其它数一样,可以利用数轴找准两个负有理数在数轴上的对应点,右边的数总比左边的数大 .两个负有理数的大小比较,还可以利用绝对值,求这两个数的绝对值,比较两个数绝对值的大小,绝对值大的反而小 .5、有关绝对值的计算及化简灵活正确运用绝对值的代数意义及有关性质 .6、积的符号的确定方法有理数乘法与算术中的乘法的区别在于积的符号.几个正数与负数相乘时积的符号法则:几个不等于0的有理数相乘,积的符号由负因数的个数决定,当负因数有奇数个数,积为负;当负因数有偶数个数,积为正;几个数相乘,有一个因数为0,积为0,根据积的符号法则,在有理数乘法中,不管有多少个不为0的数相乘,都应该首先根据负因数的个数一次性地先确定积的符号,这样做的好处是既简练又准确.7、几个非0的有理数相除,商的符号的确定几个非0的有理数相除,商的符号由负数的个数决定:当负数的个数为奇数时,商为负;当负数的个数为偶数时,商为正.如: (-12)÷(-2)÷(-3)——三个负数:负=-(12÷2÷3)=-2(-12)÷2÷(-3)——两个负数:正=+(12÷2÷3)=28、有理数混合运算中应注意的问题(1)要注意运算顺序;(2)要灵活运用运算定律进行简便运算,不要搞错符号,特别是乘方的符号;(3)要灵活进行小数、分数的互化;(4)互为相反数的和,互为倒数的积,有因数为零,特殊运算先行结合.典型例题例1:一个物体沿着南北两个相反方向运动,如果把向南的方向规定为正,那么走 6km,走-4.5km,走0km的意义各是什么?分析:正数与负数可表示具有相反意义的量,正数表示向南运动,则负数表示向北运动 .0表示原地不动,0表示正数与负数的分界,在实际问题中也有确定的意义.解:走 6km表示物体向南走6km;走- 4.5km表示物体向北走4.5km;走 0km表示物体原地不动.例2:某老师把某一小组五名同学的成绩简记为:+ 10、-5、0、+8、-3,又知记为0的实际成绩表示90分,正数表示超过90分,则这五位同学的平均成绩为多少分?分析:由题意先求出这五位同学的实际成绩,如简记为+ 10的学生实际成绩为100,然后再求平均成绩.解:依题意知,五位同学在实际成绩分别为:100、85、90、98、87,其平均成绩为:1(10085909887)92().5++++=分例3:如图所示的数轴上, A、B、C、D、E各点分别表示什么数?分析:根据各点在原点的左侧,右侧还是在原点上,来确定数是负数,正数还是 0,根据各点距离原点多少个长度单位,来确定数的值.解:点A表示数132;点B表示数12;点C表示数0;点D表示-3;点E 表示数142-. 例4:在数轴上画出表示下列各数的点,并用“<”连接起来;分析:首先画出数轴,三要素要齐全;再把各数在数轴上的对应点找出来;然后根据这些数在数轴上的位置顺序比较大小,再用“<”连接起来.解:这些数在数轴上的表示如图所示.它们从小到大的排列为:111132101242242<-<-<<<< 例5:利用绝对值比较下列有理数的大小 .(1)-0.6,-60234(2) ,,345--- 分析:比较负数的大小,先求出各数的绝对值,关键是比较绝对值的大小,绝对值大的反而小,比较分数大小,一般要化成同分母的分数来比较 .解:(1)|-0.6|=0.6, |-60|=60∵ 0.6<60,∴ -0.6>-60.224033454448(2) ||||||336044605560404548 ,606060234 .345---<<∴->->-==,==,==, 例6:已知 |a +2|+|b -3|=0,求a 和b 的值.分析:由绝对值的非负性可知, |a +2|≥0,|b -3|≥0,而且只有当|a +2|和|b -3|都等于0时,|a +2|+|b -3|=0才成立,因为只有0的绝对值等于0,所以a=-2,b=3.解:∵ |a +2|+|b -3|=0,又 ∵ |a+2|≥0,|b -3|≥0,∴ |a +2|=0,|b -3|=0.∴ a +2=0,b -3=0.∴ a=-2,b=3.例7:计算分析:进行有理数加减混合运算时,应先把加减运算统一成加法运算,再写成省略加号和括号的代数和,最后运用有理数的加法法则及运算律进行计算,能够简化运算的尽量简化运算 .解:(1)原式=(-5)+(-3)+(-9)+(+7)=-5-3-9+7=(-5-3-9)+7=-17+7=-1034210(2)()()()()10757++++-+-原式=例8:计算题:2322232183(1)(1)(1)(0.51);362141(2)(3)12(2).3(2)÷-+⨯------÷--- 268491(1)()()3721168471 76834922 (2)29(8)1⨯-+⨯---++-⨯-----解:原式==121=1684-6原式====-1 注:(1)要按运算顺序进行计算.(2)乘方时要看清楚底数与指数,先确定幂的符号.例9:计算题:242112518(1){[(2)]()(2)}();23639131(2)0.25()(1)(12 3.75)24.283--÷---÷--÷-⨯-++-⨯112518(1){[2)]()2)}()23639251 []631 3 3131 (2)16(1)124224 3.7521683+÷-+÷-⨯⨯⨯⨯-⨯⨯-+⨯+⨯-⨯解:原式=169=(-)+2(-)589=(-5+2)(-)889=(-)(-)38=原式=4 1+33+56-900== 注:第(1)小题先由里及外逐层去掉括号,同时把除法转化为乘法进行运算,第(2)小题应用乘法分配律使运算得以简化.例10:用学记数法表示下列各数.(1)270.3; (2)3870000;(3)光的速度约为300 000 000米/秒;(4)0.5×9×1000000; (5)10.解:(1)270.3=2.703×100=2.703×102.(2)3870000=3.87×1000000=3.87×106.(3)300000000=3×100000000=3×108.(4)0.5×9×1000000=4.5×106.(5)10=1×10.说明:学记数法a ×10n 中,a 是小于10且大于等于1的数,n 比原数位的整数位数少1,比如:3870000000是10位数,指数n 就是9.这就是说n 等于原数的整数位数减1,而不是比所有的数位和少1.如179.4=1.794×102,而不是179.4=1.794×103.例11:某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6 ℃,若该地地面温度为21 ℃,高空某处温度为-39 ℃,求此处的高度是多少千米?解: 1×{[21-(-39)]÷6}=1×(60÷6)=10(千米)因此:此处的高度是10千米.。

七年级数学上册 第二章 有理数 2.6 有理数的乘法与除法 知识点解读 有理数的乘法素材 (新版)苏

七年级数学上册 第二章 有理数 2.6 有理数的乘法与除法 知识点解读 有理数的乘法素材 (新版)苏

知识点解读:有理数的乘法知识点一:有理数的乘法法则有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同零相乘,都得零.温馨点拨:(1)有理数乘法法则中的“同号得正,异号得负”是专指“两数相乘”而言的;(2)有理数的乘法与有理数的加法的运算步骤一样,第一步:确定符号;第二步:确定绝对值.知识点二:有理数的乘法的运算律(掌握)有理数乘法的运算律:算术乘法中适用的交换律、结合律以及乘法对加法的分配律在有理数范围内依然成立.(1)乘法交换律:两个数相乘,交换因数的位置,积不变,即ab ba =.(2)乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变,即()()ab c a bc =.(3)乘法分配律:一个数与两个数的和相乘等于把这个数分别与这两个数相乘,再把积相加,即()a b c ab ac +=+.例1 应用乘法运算定律把8.5×10.1改成( )式计算简便.A .8.5×10+0.1B .8.5×10+8.5×0.1C .8.5×10×0.1D .8×10×0.1×0.5分析:在计算8.5×10.1时,把10.1看作10+0.1,运用乘法分配律简算. 解答: 8.5×10.1=8.5×(10+0.1)=8.5×10+8.5×0.1,这样计算简便. 故选:B .知识点三:多个有理数相乘的符号法则(掌握)多个有理数相乘的符号法则:(1)几个不为0的数相乘,积的符号由负数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.(2)几个数相乘,如果有一个因数为0,积就为0,反之,如果积为0,那么至少有一个因数为0.例2 计算(134-78-712)×(-117).分析:可以直接利用乘法的分配律计算,即正向运用.解:(134-78-712)×(-117)=74×(-87)+(-78)×(-87)+(-712)×(-87)=-2+1+23=-13.说明:利用乘法的分配律可以使某些特殊结构的有理数乘法运算简化,但要注意灵活运用避免符号、拆项等错误.2。

七年级上册数学第二章知识点

七年级上册数学第二章知识点

千里之行,始于足下。

七年级上册数学第二章知识点
第二章:有理数
1. 正数和负数:了解正数和负数的概念及其表示方法,掌握在数轴上表示正数和负数的方法。

2. 有理数:了解有理数的概念,即可以表示成两个整数比的数,包括整数、分数和小数。

3. 绝对值:掌握求一个有理数的绝对值的方法,并了解绝对值的意义。

4. 比较大小:掌握比较两个有理数大小的方法,可以利用数轴进行比较。

5. 加法和减法:掌握有理数的加法和减法运算规则,包括同号相加、异号相减等。

6. 乘法和除法:掌握有理数的乘法和除法运算规则,包括同号相乘得正、异号相乘得负等。

7. 有理数的混合运算:掌握有理数的混合运算方法,能够灵活运用加减乘除进行计算。

8. 有理数的运算性质:掌握有理数的运算性质,包括交换律、结合律、分配律等。

9. 有理数的应用:了解有理数在现实生活中的应用,例如温度计、海拔等。

第1页/共2页
锲而不舍,金石可镂。

10. 小数运算:掌握小数的加减乘除运算方法,包括小数点的对齐和补零等。

以上是七年级上册数学第二章的主要知识点。

在学习过程中,注意理解概念,掌握运算方法,并能够将所学知识与实际生活应用结合起来。

北师大版初一上册第二章有理数及其运算知识点总结

北师大版初一上册第二章有理数及其运算知识点总结

北师大版初一上册第二章有理数及其运算知识点总结有理数可以分为正整数、负整数、零、正分数、负分数等几种类型。

其中,正整数和零都是正数,而负整数和负分数则是负数。

数轴是一条直线,规定了原点、正方向和单位长度。

任何一个有理数都可以用数轴上的一个点来表示,而在数轴上表示的两个数,右边的数总比左边的数大。

正数都大于0,负数都小于0,正数大于一切负数。

相反数是指符号相反的两个数,零的相反数是零。

任意一个有理数a的相反数是-a,而0的相反数是0.如果a与b互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1,而零没有倒数。

绝对值是一个数所对应的点与原点的距离,在数轴上表示。

对任何有理数a,总有|a|≥0.零的绝对值是它本身,也可看成它的相反数。

若|a|=a,则a≥0;若|a|=-a,则a≤0.若a>0,则|a|=a;若a<0,则|a|=-a;若a=0,则|a|=0.有理数的比较大小有几个规则:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

有理数的运算包括加、减、乘、除和乘方。

在运算顺序上,先算乘方,再算乘除,最后算加减。

如果有括号,就先算括号里面的。

对只含乘除或只含加减的运算,应从左往右运算。

在加法法则中,同号两数相加取相同的符号,并把绝对值相加;异号两数相加取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两数相加得0.减法法则是减去一个数,等于加上这个数的相反数。

乘法法则是两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同相乘,都得0.在除法法则中,除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于的数,都得0.有理数的乘方是指将有理数连乘若干次的操作。

其中,正数的任何次幂都是正数,例如2的3次方等于8,而负数的奇次幂是负数,例如-2的3次方等于-8,负数的偶次幂是正数,例如-2的4次方等于16.这些规律需要我们在进行有理数的乘方运算时注意。

数学 第二单元 有理数及其运算 知识点汇总

数学 第二单元 有理数及其运算 知识点汇总
3. 数轴上的点与有理数的关系: ⑴所有的有理数都可以用数轴上的点来表示, 正有理数可用原点右边的点表示, 负有理数可用原点左边的点表示, 0 用原点表示。 ⑵所有的有理数都可以用数轴上的点表示出来, 但数轴上的点不都表示有理数, 也就是说,有理数与数轴上的点不 是一一对应关系。 (如, 数轴上的点π 不是有理数) 4. 利用数轴比较有理数的大小: 在数轴上表示的两个数, 右边的数总比左边的数大。 正数都大于 0; 负数都小于0; 正数大于一切负数。
七年级-上册
七年级上册-第二章 有理数及其运算
七年级上册-第二章 有理数及其运算
1.有理数 2.数轴 3.绝对值 4.有理数的加法 5.有理数的减法 6.有理数的加减混合运算 7.水位的变化 8.有理数的乘法 9.有理数的除法 10.有理数的乘方 11.科学记数法
七年级上册-第二章 有理数及其运算
思维导图
七年级上册-第二章 有理数及其运算
正数和负数的概念
⒈正数和负数的概念 负数:比 0 小的数 正数:比 0 大的数 0 既不是正数,也不是负数。 注意: ①字母 a 可以表示任意数,当 a 表示正数时,-a 是负数;当 a 表示负数时,-a 是正数;当 a 表示 0 时,-a 仍是 0。 (如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a, -a 就不能做出简单判断) ②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。 2. 具有相反意义的量 若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量, 比如:零上 8℃表示为: +8℃; 零下 8℃表示为: -8℃ 3. 0 表示的意义 ⑴0 表示“ 没有”,如教室里有 0 个人,就是说教室里没有人; ⑵0 是正数和负数的分界线,0 既不是正数,也不是负数。

初中数学七年级上册第二章 有理数及其运算第二章 有理数及其运算

初中数学七年级上册第二章 有理数及其运算第二章 有理数及其运算

第二章有理数及其运算4 有理数的加法第1课时有理数的加法法则学习目标1.了解有理数加法的意义,理解有理数加法法则的合理性.2.能运用该法则准确进行有理数的加法运算(重点)3.经历探索有理数加法法则的过程,理解并掌握有理数加法的法则(难点)学习媒介:教材,多媒体学习方法:合作交流,归纳。

学习过程:动物王国举办奥运会,蚂蚁当火炬手,它第一次从数轴上的原点上向正方向跑一个单位,接着向负方向跑一个单位.蚂蚁经过两次运动后在哪里?如何列算式?活动一:游戏规则用红圆表示+1,蓝圆表示-1,+1与-1相互抵消,和为0,即(+1)+(-1)=0试一试:利用游戏规则,如何解释下面算式的结果?(1)(+2)+(-5)(2)(+8)+(-6)(3)(+5)+(-5)(4)5+(+3)(5)(-2)+(-3)(6)(-8)+0利用PPT分别解释以上运算过程。

议一议两个有理数相加,和的符号怎样确定?和的绝对值如何确定?总结归纳有理数加法法则(1)同号两数相加:取相同符号,并把绝对值相加.(2)异号两数相加:绝对值相等时,和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减较小的绝对值.(3)一个数同0相加,仍得这个数.典例精析例1 计算:(1)(-4)+(-8);(2)(-5)+13;(3)0+(-7);(4)(-)+.活动二:你出,我答!1.计算:(1) (-8)+(-9);(2) (-17)+21 ;(3) (-12)+25;(4) 45+(-23);(5) (-45)+23;(6) (-29)+(-31);(7) (-39)+(-45);(8) (-28)+37;(9)(-13)+0;(10) 45+(-45).2.思维拓展思考题:用“>”或“<”号填空:(1)如果a>0,b>0,那么a+b 0;(2)如果a<0,b<0,那么a+b 0;(3)如果a>0,b<0,|a|>|b|,那么a+b 0;(4)如果a<0,b>0,|a|>|b|,那么a+b 0.有理数的加法法则:。

七年级数学上册 第二章 有理数及其运算 7 有理数的乘法课件 (新版)北师大版

七年级数学上册 第二章 有理数及其运算 7 有理数的乘法课件 (新版)北师大版

C.恰有一个数为零 D.均为零
答案 B 0乘任何数均为零.多个有理数相乘,当积为零时,因数中至少
有一个数为零.
5.-1 3 的倒数与 1 的相反数的积为
.
5
20
答案 1
32
解析
-1
3 5
=-
8 5
,它的倒数为-
5 8
,
1 20
的相反数为-
1 20
,
5 8
×
1 20
=
5 8
×
1 20
=
1 ,故答案为 1 .
(1)-10;(2) 5 ;(3)-0.25;(4)3 1 .
7
2
解析 求倒数时,对于小数和带分数,应先将小数化成分数,将带分数化
成假分数,然后将分子、分母交换位置即可.
(1)-10的倒数是- 1 .
10
(2) 5 的倒数是 7 .
7
5
(3)-0.25=- 1,所以-0.25的倒数是-4.
4
(4)3 1 = 7 ,所以3 1 的倒数是 2 .
32
32
6.(2016江西小松中学联考)某商店以32元的价格购进30个茶杯,针对不 同的顾客,30个茶杯的售价不完全相同.若以47元为标准,将超过的钱数 记为正,不足的钱数记为负,记录结果如下表:
售出个数
7
6
3
5
4
5
每件(元)
+3
+2
+1
0
-1
-2
该超市售完这30个茶杯后,赚了多少钱? 解析 (+3)×7+(+2)×6+(+1)×3+0×5+(-1)×4+(-2)×5=22(元). (47-32)×30+22=472(元). 答:该超市售完这30个茶杯后,赚了472元.

人教版数学七年级上册知识点汇总

人教版数学七年级上册知识点汇总

第一章有理数1.1正数和负数1.正数:大于0的数.2.负数:小于0的数.3.0即不是正数,也不是负数.4.正数大于0,负数小于0,正数大于负数.1.2有理数及其大小比较1.整数:正整数、0、负整数,统称整数.2.有理数:可以写成分数形式的数.(1)正有理数:可以写成正分数形式的数.(2)负有理数:可以写成负分数形式的数.3.数轴(1)定义:用直线上的点表示数,这条直线叫做数轴.(在直线上任取一个点表示数0,这个点叫作原点;规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度.)(2)数轴的三要素:原点、正方向、单位长度.(3)原点将数轴(原点除外)分成两部分,其中正方向一侧的部分叫作数轴的正半轴;另一侧的部分叫作数轴的负半轴.(4)数轴上特殊的最大(小)数①最小的自然数是0,无最大的自然数;②最小的正整数是1,无最大的正整数;③最大的负整数是-1,无最小的负整数.4.相反数:只有符号不同的两个数叫做互为相反数.(1)任何数都有相反数,且只有一个;(2)0的相反数是0;(3)互为相反数的两数和为0,和为0的两数互为相反数,即a,b互为相反数,则a+b=0.5.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0.6.有理数的大小比较(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.第二章有理数的运算2.1有理数的加法与减法1.有理数加法法则(1)同号两数相加,和取相同的符号,且和的绝对值等于加数的绝对值的和.(2)绝对值不相等的异号两数相加,和取绝对值较大的加数的符号,且和的绝对值等于加数的绝对值中较大者与较小者的差,互为相反数的两个数相加得0.(3)一个数与0相加,仍得这个数.2.有理数加法运算律(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c=a+(b+c)3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).2.2有理数的乘法与除法1.有理数的乘法法则(1)两数相乘,同号得正,异号得负,且积的绝对值等于乘数的绝对值的积.(2)任何数与0相乘,都得0.2.倒数:乘积为1的两个数互为倒数;但0没有倒数.3.有理数乘法的运算律(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.4.有理数除法法则:除以一个数等于乘以这个数的倒数.(注意:0不能做除数)(1)两数相除,同号得正,异号得负,且商的绝对值等于被除数的绝对值除以除数的绝对值的商.(2)0除以任何一个不等于0的数,都得0.2.3有理数的乘方1.乘方:求n个相同乘数的积的运算.(1)乘方的结果叫作幂.(2)在a n中,a叫作底数,n叫作指数.(3)负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.2.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数即1≤a<10,这种记数法叫科学记数法.10的指数=整数位数-1,整数位数=10的指数+1.第三章代数式3.1列代数式表示数量关系1.代数式:用运算符号把数或表示数的字母连接起来的式子.(1)单独的一个数或字母也是代数式.(2)列代数式应注意:若式子后面有单位且式子是和或差的形式,式子应用小括号括起来.2.反比例(1)两个相关联的量,一个量变化,另一个量也随着变化,且这两个量的乘积一定,这两个量就叫作成反比例的量,它们之间的关系叫作反比例关系.(2)反比例关系可以用xy=k或kyx来表示,其中k叫作比例系数.(k≠0)3.2代数式的值1.代数式的值:一般地,用数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果.2.求代数式的一般步骤(1)代入:用指定的字母的数值代替代数式里的字母,其他的运算符号和原来的数值都不能改变;(2)计算:按照代数式指明的运算,根据有理数的运算方法进行计算.第四章整式的加减4.1整式1.整式(1)定义:单项式和多项式的统称.(2)单项式:数与字母的乘积组成的式子叫单项式.单独的一个数或一个字母也是单项式.(3)系数;一个单项式中,数字因数叫做这个单项式的系数.(4)次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.(5)多项式:几个单项式的和.(6)项:组成多项式的每个单项式.(7)常数项:不含字母的项.(8)多项式的次数:多项式中,次数最高的项的次数.4.2整式的加法与减法1.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项.2.合并同类项:把多项式中的同类项合并成一项.3.合并同类项后,所得项的系数是合并前各同类项的系数的和,字母连同它的指数不变.4.整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项.(1)步骤:①列出代数式;②去括号;③合并同类项.(2)去括号的法则①括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;②括号前面是“-”号,把括号和它前面的“-”号去掉,括号里各项的符号都要改变.第五章一元一次方程5.1方程1.等式:用“=”号连接而成的式子.2.等式的性质(1)等式两边都加上(或减去)同一个数(或式子),结果仍相等;如果a=b,那么a±c=b±c.(2)等式两边都乘以(或除以)同一个不为零的数,结果仍相等.如果a=b,那么ac=bc;如果a=b,(c≠0),那么a/c=b/c.3.方程:含未知数的等式(方程是含有未知数的等式,但等式不一定是方程).4.方程的解:使等式左右两边相等的未知数的值.5.一元一次方程(1)概念:只含有一个未知数(元)且未知数的指数是1(次)的方程.(2)一般形式:ax+b=0(a≠0)5.2解一元一次方程1.移项:把等式一边的某项变号后移到另一边.2.解一元一次方程的一般步骤化简方程——分数基本性质去分母——同乘(不漏乘)最简公分母去括号——注意符号变化移项——变号(留下靠前)合并同类项——合并后符号系数化为1——除前面5.3实际问题与一元一次方程1.用方程解决问题(1)行程问题:路程=时间×速度(2)利润问题:利润=售价-进价,售价=标价×(1-折扣)(3)等积变形问题:长方体的体积=长×宽×高;圆柱的体积=底面积×高;(4)利息问题:本息和=本金+利息;利息=本金×利率(5)顺水逆水问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度第六章几何图形初步6.1几何图形1.几何图形:把从实物中抽象出来的各种图形的统称.2.立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形.(棱柱、棱锥、圆柱、圆锥、球等)3.平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形.(三角形、四边形、圆、多边形等)4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的.(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型.5.点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.(2)点动成线,线动成面,面动成体.6.2直线、射线、线段1.直线、线段、射线(1)线段:线段有两个端点.(2)射线:将线段向一个方向无限延长就形成了射线.射线只有一个端点.(3)直线:将线段的两端无限延长就形成了直线.直线没有端点.(4)两点确定一条直线:经过两点有一条直线,并且只有一条直线.(5)相交:两条直线有一个公共点时,称这两条直线相交.(6)两条直线相交有一个公共点,这个公共点叫交点.(7)中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.(8)线段的性质:两点的所有连线中,线段最短.(两点之间,线段最短)(9)距离:连接两点间的线段的长度,叫做这两点的距离.2.尺规作图:在数学中,我们常限定用无刻度的直尺和圆规作图.6.3角1.角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边.或:角也可以看成是一条射线绕着它的端点旋转而成的.2.平角和周角(1)平角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角.(2)周角:终边继续旋转,当它又和始边重合时,所形成的角.3.角的表示(1)用数字表示单独的角,如∠1,∠2,∠3等.(2)用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等.(3)用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等.(4)用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等.注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧.4.角的度量单位及换算(60进制)(1)角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”.(2)换算1°=60',1'=60”把1°的角60等分,每一份叫做1分的角,1分记作“1'”.把1'的角60等分,每一份叫做1秒的角,1秒记作“1''”.5.角的分类6.角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.7.余角和补角(1)余角:两个角的和等于90度,这两个角互为余角.即其中每一个是另一个角的余角.(2)补角:两个角的和等于180度,这两个角互为补角.即其中一个是另一个角的补角.(3)补角的性质:等角的补角相等.(4)余角的性质:等角的余角相等.。

2022年七年级数学上册 第二章 有理数及其运算知识点归纳 (新版)北师大版

2022年七年级数学上册 第二章 有理数及其运算知识点归纳 (新版)北师大版

第二章知识点整理七年级上册第二章有理数及其运算1.有理数:有理数=整数+分数(包括有限小数+无限循环小数)整数=正整数+0+负整数分数=正分数+负分数有理数=正有理数+0+负有理数正有理数=正整数+正分数负有理数=负整数+负分数l 正数的概念:数轴上0右边的数即比0大的数叫正数,形如+1,+0.5,+10.1,0.001…l 负数的概念:数轴上0左边的数,形如-3,-0.2,-100…〔负号不能省略〕.l 0既不是正数也不是负数,0是整数也是偶数.①正负数的表示方法:盈利,亏损;足球比赛胜,负;收入,支出;提高,降低;上升,下降;②不投入不支出,不盈也不亏,海平面的海拔,某一个标准或基准….用0表示;2.数轴:概念:规定了原点,正方向和单位长度的直线数轴是一条可以向两端无限延伸的直线,数轴有三要素:原点,正方向,单位长度;画法:首先画一条直线;在这条直线上任取一点,作为原点;再确定正方向,一般规定向右为正,画上箭头,反方向为负方向;最后选取适应的长度作为单位长度;数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示。

有理数的大小比拟:在数轴上表示的两个数,右边的数比左边的数大,正数都大于0,负数都小于0,正数大于负数.3. 相反数:〔1〕只有符号不同的两个数叫做互为相反数〔在数轴上互为相反数的两点位于原点两侧,并且到原点的距离相等〕,0的相反数是0;a,b互为相反数 a+b=0;〔2〕求一个数的相反数,只要在它的前面添上负号“-〞即得原数的相反数,当原数是多个数的和差时,要用括号括起来再添“-〞;下面的a,b即可以是数字,字母,也可以是代数式;〔3〕一般地,数a的相反数是-a,这里的a表示任意一个数,可以是正数、负数、0.4. 绝对值:〔1〕几何定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值;〔2〕代数定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;互为相反数的两个数的绝对值相等.〔3〕对于任何有理数a,都有a的绝对值≥0 ,即绝对值非负性;假设几个数的绝对值的和等于0,那么这几个数同时为0;〔4〕比拟两个负数,绝对值大的反而小;5.倒数:〔1〕乘积为1的两个数互为倒数,所以数a(a≠0) 的倒数是 1/a,0没有倒数;〔2〕求一个整数的倒数,写成这个整数分之一;求一个小数的倒数,先将其化成分数,再求其倒数;求一个带分数的倒数,先将其化为假分数,再求出倒数.〔3〕用1除以一个非0数,商就是这个数的倒数.6. 有理数的四那么运算:⑴加法法那么:①同号两数相加,符号不变,把绝对值相加;②异号两数相加,绝对值相等时〔即互为相反数的两个数〕相加得0;绝对值不相等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数;有理数加法运算律:交换律和结合律〔互为相反数的可先相加;相加可得整数的可先相加;同分母的分数可先相加;符号相同的可先相加;易于通分的可先相加〕.⑵减法法那么:①减去一个数,等于加上这个数的相反数,依据加法法那么②加减混合运算,通过减法法那么将减法转化为加法,统一成只含有加法运算的和式;减法没有交换律.⑶乘法法那么:①两数相乘,同号得正,异号得负,把绝对值相乘;②任何数同0相乘,得0;〔另外1乘任何数都等于这个数本身;-1乘以任何数都等于这个数的相反数.〕③几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积为负;当负因数的个数是偶数时,积为正.乘法的运算律:交换律、结合律、乘法对加法的分配律.⑷除法法那么:①两数相除,同号得正,异号得负,把绝对值相除;② 0除以任何非0的数都得0.③除以一个数,等于乘上这个数的倒数,即 .⑸乘方:①求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;②负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;③正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数〔奇次幂2n+1,2n-1; 偶次幂 2n〕;0的正整数次幂都是0.⑹混合运算:①从左到右的顺序进行;②先乘方,再乘除,后加减;如有括号,应先算括号里面的;7. 科学记数法〔1〕把一个大于10的数表示成的形式〔其中a是整数数位只有一位的数,n是正整数,它的值等于原数的整数位数减1,〕,这种记数方法叫科学记数法;〔2〕准确数与近似数:与实际完全相符的数是准确数;与实际相接近的数是近似数;〔3〕精确度:近似数与准确数的接近程度,可以用精确度表示;一般地,把一个数四舍五入到哪一位,就说这个数精确到了那一位;所以,精确度是描述一个近似数的近似程度的量;〔4〕有效数字:在近似数中,从左边第一个不是0的数字起,到精确的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;。

2020年七年级数学上册(北师大版)第二章有理数及其运算2.4.2有理数的加法运算律课件

2020年七年级数学上册(北师大版)第二章有理数及其运算2.4.2有理数的加法运算律课件

8.已知两个数 556和-823,这两个数的相反数的 5
和是___2_6____. 9.已知飞机的飞行高度为 10 000 m,上升 3 000
m 后,又上升了-5 000 m,此时飞机的高度是 __8_0_0_0___m.
10.比 3 大-1 的数是____2____.
11.若 a,b 互为相反数,c、d 互为相反数,则 (a+b)+2(c+d)=_0_(提__示__:__相__反__数__和__为___0._).
花一花样一美样丽美,丽感,谢感你谢的你阅的读阅。读。 87、满勇放招气眼损通前,往方谦天,受堂只益,要。怯我懦们20通继:30往续2地,0:3狱收0。获:17的270.季:1340节.22就00:23在00T前:1u7方e7s.。d1a42y.02,.0J72u.10ly4T12u40e,.s72d.01a24y02, 0Ju.7ly.1144。, 2020年7月14日星期二二〇二〇年七月十 花一样美丽,感谢你的阅读。 四日
第二章 有理数及其运算
用字母表示:加法交换律:___a_+__b_=__b_+__a____; 加法结合律:_a_+__(b_+__c_)_=__(_a_+__b_)+__c____.
1.计算: (1)23+(-17)+6+(-22);
=23+6+(-17)+(-22) =29+(-39) =-10.
(1)问收工时距 A 地多远?
41千米
(2)若每千米耗油 0.2 升,从 A 地出发到收工时 共耗油多少升?
13.4 升(提示:不管是前进还是后退都会耗 油)
1.计算: (1)15+(-15);
0 (3)(-0.9)+3.9.
3
(2)(-13)+(-13); -26

七年级数学上册 第二章 有理数及其运算 4 有理数的加法知识点解读素材 (新版)北师大版

七年级数学上册 第二章 有理数及其运算 4 有理数的加法知识点解读素材 (新版)北师大版

《有理数的加法》知识点解读知识点1 有理数的加法法则(重点)有理数的加法法则如下:(1)同号两数相加,取相同的符合,并把绝对值相加.(2)异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符合,并用较大数的绝对值减去较小的绝对值.(3)一个数同0相加,仍得这个数.归纳:有理数的运算涉及两个方面:(1)符合的确定;(2)绝对值的计算.因此运用有理数加法法则进行计算时要按照“一观察,二确定,三求和”的步骤进行,即第一步观察两数的符合是同号还是异号;第二步确定用哪条法则;第三步求出结果.典例剖析【例1】计算下列各题:23(1)(30)(6);(2)()();341(3)( 3.6)( 1.9);(4)()0;3(5)( 2.5)( 3.1);(6)(5)(5).-+--++-++-+-++++- 解析:先观察两个加数的符号,并比较两个加数的绝对值的大小,再根据相应的法则计算. 答案:(1)(30)(6)=(30+6)=36;23321(2)()()();(3)( 3.6)( 1.9)(3.6 1.9) 1.7;11(4)()0;33(5)( 2.5)( 3.1)(3.1 2.5)0.6;(6)(5)(5)0.-+----++=+-=+-++=--=--+=--++=+-=+++-= 方法归纳:(1)有理数加法运算的一般步骤:①首先判断是同号两数相加还是异号两数相加;②再判断结果是正好还是负号;③最后判断是利用绝对值的和还是差进行计算.(2)有理数加法法则口诀:同号相加一边倒;异号相加“大”减“小”,符号跟着“大”的跑,绝对值相等“零”正好;数零相加变不了.其中“大”“小”指加数的绝对值的大小.【类题突破】下列各式,p ,q 互为相反数的是( )A.pq=1B.pq=-1C.P+q=0D.p-q=0答案:C知识点2 有理数加法的运算律(难点)有理数加法的运算律(1)加法的交换律:两个数相加,交换加数的位置,和不变,即a+b=b+a(2)加法的结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,即(a+b )+c=a+(b+c )说明:式子中的字母a ,b ,c 表示任意有理数.交换律和结合律对两个以上的数也使用,使用运算律是为了简化运算,在使用时,一般先把具有以下特征的数相加:(1)互为相反数的两个数;(2)符号相同的数;(3)相加能得到整数的数;(4)分母相同的数;(5)易于通分的数.典例剖析【例2】计算下列各题:(1)15(19)18(12)(14);(2)(13.5)22.5(13.26)(8.5)19.4;521(3)(3)(15.5)(18)(5);77211(4)(18)(71).42+-++-+--++-+-+-+-+-+++-解析:几个有理数相加,可以先把正数和负数相加,这样能简化计算,几个带分数相加,可以先把每个带分数拆成整数部分与真分式部分相加的形式,再把整数部分与真分数部分分别结合在一起,再相加.答案:(1)15(19)18(12)(14);=15+18+[(-19)+(-12)+(-14)]=33+(-45)=12;(2)(13.5)22.5(13.26)(8.5)19.4;22.519.4[(13.5)(13.26)(8.5)]41.9(35.26)6.64;521(3)(3)(15.5)(18)(5)7725=[(3)7+-++-+---++-+-+=++-+-+-=+-=-+-+-+-+21(18)][(15.5)(5)]7222(10)32;11(4)(18)(71).4211[(18)()][(71)()]4211(18)()(71)()4211(18)(71)[()()]42153()4153.4-+-+=-+-=-++-=++++-+-=++++-+-=++-+++-=-+-=-方法提示:将带分数拆成整数部分与真分数相加的形式要注意:(1)分开的整数部分进而小数部分必须保持原带分数的符合;(2)运算符号和数的性质符号要同括号区分开,如2+(-3)这个符号不能连在一起写成“2+-3”.【类型突破】计算52315(9)17(3)6342-+-++-. 答案:原式=5231[(5)()][(9)()](17)[(3)()]63425231[(5)(9)17(3)][()()()]6342110(1)1.44-+-+-+-+++-+-=-+-++-+-+-++-=+-=-。

七年级上册数学第二章

七年级上册数学第二章

七年级上册数学第二章
七年级上册数学第二章是有理数。

有理数包括整数和分数,其中整数包括正整数、零和负整数,分数包括正分数和负分数。

此外,有理数还包括正数、负数和零,其中正数是大于0的数,负数是小于0的数,零既不是正数也不是负数,它是正数与负数的分界点。

在有理数的运算方面,主要介绍了有理数的加法、减法、乘法和除法运算,以及乘方运算。

有理数的加法和减法运算中需要注意符号的处理,而乘法和除法运算中需要注意结果的符号和绝对值。

此外,还介绍了有理数的混合运算,包括先乘除后加减的原则和括号的使用。

此外,还介绍了数轴和相反数的概念,数轴是一条规定了原点、正方向和单位长度的直线,相反数是指只有符号不同的两个数。

最后介绍了有理数的应用,包括温度、海拔和方向等方面的应用。

以上信息仅供参考,如需获取更多详细信息,建议查阅七年级上册数学教材或咨询数学老师。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版七年级数学上册第二章知识点整理
北师大版七年级数学上册第二章知识点整理
七年级上册第二章有理数及其运算
1.有理数:
有理数=整数+分数(包括有限小数+无限循环小数)
整数=正整数+0+负整数分数=正分数+负分数
有理数=正有理数+0+负有理数
正有理数=正整数+正分数负有理数=负整数+负分数
l 正数的概念:数轴上0右边的数即比0大的数叫正数,形如+1,+0.5,+10.1,0.001…
l 负数的概念:数轴上0左边的数,形如-3,-0.2,-100…(负号不能省略).
l 0既不是正数也不是负数,0是整数也是偶数.
①正负数的表示方法:
盈利,亏损;足球比赛胜,负;收入,支出;提高,降低;上升,下降;
②不投入不支出,不盈也不亏,海平面的海拔,某一个标准或基准….用0表示;
2.数轴:概念:规定了原点,正方向和单位长度的直线
数轴是一条可以向两端无限延伸的直线,数轴有三要素:原点,正方向,单位长度;画法:首先画一条直线;在这条直线上任取一点,作为原点;再确定正方向,一般规定向右为正,画上箭头,反方向为负方向;最后选取适应的长度作为单位长度;
数轴上的点与有理数的关系:任意一个有理数都可以用数轴上的点来表示。

有理数的大小比较:在数轴上表示的两个数,右边的数比左边的数大,正数都大于0,
负数都小于0,正数大于负数.
3. 相反数:
(1)只有符号不同的两个数叫做互为相反数(在数轴上互为相反数的两点位于原点两侧,并且到原点的距离相等),0的相反数是0;
a,b互为相反数a+b=0;
(2)求一个数的相反数,只要在它的前面添上负号“-”即得原数的相反数,当原数是多个数的和差时,要用括号括起来再添“-”;下面的a,b即可以是数字,字母,也可以是代数式;
(3)一般地,数a的相反数是-a,这里的a表示任意一个数,可以是正数、负数、0.
4. 绝对值:
(1)几何定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值;(2)代数定义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;互为相反数的两个数的绝对值相等.
(3)对于任何有理数a,都有a的绝对值≥0 ,即绝对值非负性;若几个数的绝对值的和等于0,则这几个数同时为0;
(4)比较两个负数,绝对值大的反而小;
5.倒数:(1)乘积为1的两个数互为倒数,所以数a(a≠0) 的倒数是1/a,0没有倒数;
(2)求一个整数的倒数,写成这个整数分之一;求一个小数的倒数,先将其化成分数,再求其倒数;求一个带分数的倒数,先将其化为假分数,再求出倒数.
(3)用1除以一个非0数,商就是这个数的倒数.
6. 有理数的四则运算:
⑴加法法则:
①同号两数相加,符号不变,把绝对值相加;
②异号两数相加,绝对值相等时(即互为相反数的两个数)相加得0;绝对值不相等时,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.
③一个数同0相加,仍得这个数;
有理数加法运算律:交换律和结合律(互为相反数的可先相加;相加可得整数的可先相加;同分母的分数可先相加;符号相同的可先相加;易于通分的可先相加).
⑵减法法则:
①减去一个数,等于加上这个数的相反数,依据加法法则
②加减混合运算,通过减法法则将减法转化为加法,统一成只含有加法运算的和式;减法没有交换律.
⑶乘法法则:
①两数相乘,同号得正,异号得负,把绝对值相乘;
②任何数同0相乘,得0;(另外1乘任何数都等于这个数本身;-1乘以任何数都等于这个数的相反数.)
③几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是奇数时,积为负;当负因数的个数是偶数时,积为正.
乘法的运算律:交换律、结合律、乘法对加法的分配律.
⑷除法法则:
①两数相除,同号得正,异号得负,把绝对值相除;
②0除以任何非0的数都得0.
③除以一个数,等于乘上这个数的倒数,即 .
⑸乘方:
①求几个相同因数积的运算,叫做乘方;乘方的结果叫做幂;,表示n个相同因数乘积的运算;
②负数乘方要用括号括起来;分数乘方要用括号括起来;当指数是1时,可省略不写;
③正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数(奇次幂
2n+1,2n-1; 偶次幂2n);0的正整数次幂都是0.
⑹混合运算:
①从左到右的顺序进行;
②先乘方,再乘除,后加减;如有括号,应先算括号里面的;
7. 科学记数法
(1)把一个大于10的数表示成的形式(其中a是整数数位只有一位的数,n是正整数,它的值等于原数的整数位数减1,),这种记数方法叫科学记数法;
(2)准确数与近似数:与实际完全相符的数是准确数;与实际相接近的数是近似数;(3)精确度:近似数与准确数的接近程度,可以用精确度表示;一般地,把一个数四舍五入到哪一位,就说这个数精确到了那一位;所以,精确度是描述一个近似数的近似程度的量;
(4)有效数字:在近似数中,从左边第一个不是0的数字起,到精确的数位止,所有的数字都叫做这个数的有效数字;一共包含的数字的个数,叫做有效数字的个数;。

相关文档
最新文档