圆中常见辅助线的作法资料讲解
有关圆的七种辅助线的作法
![有关圆的七种辅助线的作法](https://img.taocdn.com/s3/m/8144afcecc17552706220883.png)
有关圆的七种辅助线的作法作者:来源:《语数外学习》2015年第10期圆是初中几何的重要内容之一,与圆有关的大部分几何题都需要添加辅助线来解答.只要添上合适的辅助线,就可以化繁为简、化难为易. 下面举例说明有关圆的几种辅助线的作法.一、有关直径问题,常作直径上的圆周角例1 ; 如图1,在△ABC中,∠C=90°,以BC上一点O为圆心,以OB为半径的圆交AB 于点M,交BC于点N.(1)求证:BA·BM=BC·BN;(2)如果CM是⊙O的切线,N为OC的中点,当AC=3时,求AB的值.图1 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;图2(1)证明:如图2,连结MN,则∠BMN=90°=∠ACB,∴△ACB∽△NMB,∴ ;= ;,∴AB·BM=BC·BN;(2)解:如图2,联结OM,则∠OMC=90°,∵N为OC中点,∴MN=ON=OM,∴∠MON=60°,∵OM=OB,∴∠B= ;∠MON=30°,∵∠ACB=90°,∴AB=2AC=2×3=6.说明:若已知圆的直径,一般是作直径所对的圆周角,利用“直径所对的圆周角是直角”,从而得到90°的角或直角三角形来证明问题.二、有关弦的问题,常作其弦心距例2 ; 如图3,AB是⊙O的直径,PO⊥AB交⊙O于点P,弦PN与AB相交于点M,求证:PM·PN=2PO2.图3 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;图4证明:如图4,过O作OC⊥NP于点C,则PC= ;PN,∵OC⊥NP,PO⊥AB,∴∠POM=∠PCO= 90°,又∵∠OPM=∠CPO,∴△OPM∽△CPO,∴ ;= ;,∴PO2=PM·PC=PM·( ;PN),即PM·PN= 2PO2.说明:求解圆中与弦有关的问题,常需作弦心距,其目的是构造以半径、弦心距、弦为边的直角三角形,并利用垂径定理来将弦、弧、弦心距联系起来.三、对于直线与圆相切的问题,常连结过切点的半径例3 ; 如图5,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦ED分别交⊙O于点E,交AB于点H,交AC于点F,过点C的切线交ED的延长线于P.(1)若PC=PF,求证:AB⊥ED.(2)点D在劣弧的什么位置时,才能使AD2=DE·DF,为什么?图 5 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;图6证明:(1)如图6,连接OC.∵PC=PF,∴∠4=∠5,∵∠4=∠3,∴∠3=∠5.∵OA=OC,∴∠1=∠2,∵PC切⊙O于点C,∴OC⊥PC,∴∠1+∠5=90°,∠2+∠3=90°.∴∠AHF=90°,即AB⊥DE.(2)当D在劣弧AC的中点时,才能使AD2=DE·DF.如图6,连接AE,∵ ;= ;,∵∠ADF=∠ADE,∴△ADF∽△EDA,∴ ;= ;.即AD2=DE·DF.说明:命题的条件中含有圆的切线,解题时往往连结过切点的半径,利用“切线与半径垂直”这一性质来证明问题.四、对于相切两圆,常添公切线作辅助线例4 ; 如图7,已知⊙O1、⊙O2外切于点P,A是⊙O1上一点,直线AC切⊙O2于点C,交⊙O1一点B,直线AP交⊙O2于点D .(1)求证:PC平分∠BPD;(2)将“⊙O1与⊙O2外切于点P”改为“⊙O1、⊙O2内切于点P”,其它条件不变,①中的结论是否仍然成立?画出图形并证明你的结论.图7证明:(1)如图8,过P点作两圆公切线PQ,∵∠QPC=∠PCQ,∠QPB=∠A,∠CPD=∠A+∠QCP,∴∠CPD=∠CPB,即PC平分∠BPD.图8 ; ; ; ; ; ; ; ; ; ; ; ; 图9(2)上述结论仍然成立.如图9,过点P作两圆公切线PM,则∠MPB=∠A,∴∠BPC=∠MPC-∠MPB=∠BCP-∠A=∠CPA,说明:在解答有关两圆相切的问题时,作辅助线的方法是作两圆的公切线.公切线是连接两圆的桥梁,可使两圆的圆周角产生联系,运用弦切角定理.五、两圆相交,常连结公共弦或连心线例5 ;已知⊙O1和⊙O2相交于A、B两点,过A点作⊙O1的切线交⊙O2于点E,连结EB并延长交⊙O1于点C,直线CA交⊙O2于点D.(1)如图10,当点D与点A不重合时,试猜想线段EA=ED是否成立,证明你的结论.(2)当点D与点A重合时,直线AC与⊙O2有怎样的位置关系?此时若BC=2,CE=8,求⊙O1的直径.图10 ; ; ; ; ; ; ; ; ; ; ; ; 图11(1)EA=ED成立.证明:如图11,联结AB,在EA延长线上取点F,∵AE是⊙O1的切线,切点为A,∴∠FAC=∠ABC,∵∠FAC=∠DAE, ;∴∠ABC=∠DAE,而∠ABC是⊙O2内接四边形ABED的外角∴∠ABC=∠D,∴∠DAE=∠D,∴EA=ED;(2)当点D与点A重合时,直线CA与⊙O2只有一个公共点,所以直线CA与⊙O2相切.解:如图12,由弦切角定理知:∠PAC=∠ABC,∠MAE=∠ABE,∴∠ABC=∠ABE=90°,∴AC与AE分别为⊙O1和O2的直径, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;图12∴由切割线定理知:AC2=CB·CE,而CB=2,CE=8 ;∴AC2=2×8=16,AC=4,故⊙O1直径为4.说明:在解两圆相交问题时,常作两圆的公共弦,构成圆内接四边形,再利用圆内接四边形定理,架设两圆之间的”桥梁”,从而寻找两圆之间的等量关系.六、圆中有相交弦,常作线段构造相似三角形例5 ;如图13,已知⊙O的两条弦AB、CD交于P点,求证:AP·BP=CP·DP.图13 ; ; ; ; ; ; ; ; ; ; ; ; ;图14证明:如图14,连结AC,BD,∵∠C和∠B都是⊙O中弧 ;所对的圆周角,∴∠C=∠B,同理可得∠A=∠D,∴△ACP∽△DBP,∴ ;= ;,即AP·BP=CP·DP.说明:在求解圆中与线段有关的等积式(或比例式)问题时,通常需要连结两条相交弦的两组端点,利用相似三角形的有关性质来帮助求解;若两条相交弦均是直径,则连线后可以构成全等的等腰三角形.七、圆中有特殊角,常作直径构造直角三角形例6 ; 如图15,点A、B、C在⊙O上(AC不过O点),若∠ACB=60°,AB=6,求⊙O 半径的长.图15 ; ; ; ; ; ; ; ; ; ; ; ; ; ; 图16解:如图16,作直径AD,连结BD.∵∠ACB与∠D都是 ;所对的圆周角,∴∠D=∠ACB=60°,又∵AD是直径,∴∠ABD=90°,∴∠DAB=30°,∴BD= ;AD,设BD=x,则AD=2x,∴AB= ;= ;= ;x,∴x= ;= ;=2 ;,∴r= ;AD=x=2 ;.说明:当题设中未告诉有直角三角形但却含有30°、45°、60°、90°等特殊角时,通常需要作直径构造直角三角形,以利用特殊三角形的边长关系及勾股定理来帮助求解.《轴对称》拓展精练参考答案1.C;2.B;3.B;4.C;5.18;6.108°;7.60°;8.309087;9.15°;10.480m2或768 m211. 解:(1)图略,∠ABC=90°时,PR=7.证明如下:连接PB、RB,∵P、R为O分别以直线AB、直线BC为对称轴的对称点,∴PB=OB=3 ;,RB=OB=3 ;,∵∠ABC=90°,∴∠ABP+∠CBR=∠ABO+∠CBO=90°,∴点P、B、R三点共线,∴PR=2×3 ;=7;(2)PR的长度是小于7,理由如下:∠A BC≠90°,则点P、B、R三点不在同一直线上,∴PB+BR>PR,∵PB+BR=2OB=2×3 ;=7,∴PR图形的平移与旋转强化练习参考答案1.C;2.A;3.D;4.45;5. ;;6.5;7. ;+1;8. (1)△ABC扫过面积即S梯形ABFD=32;(2)a=5或a=6.9.(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴CO=CD,∠OCD=60°,∴△COD是等边三角形.(2)解:当α=150°时,△AOD是直角三角形.∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴△BOC≌△ADC,∴∠ADC=∠BOC=150°,又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=∠ADC-∠ODC=90°,∵∠α=150°,∠AOB=110°,∠COD=60°,∴∠AOD=360°-∠α-∠AOB-∠COD=360°-150°-110°-60°=40°,∴△AOD不是等腰直角三角形,即△AOD是直角三角形.(3)解:①要使AO=AD,需∠AOD=∠ADO,∵∠AOD=360°-110°-60°-α=190°-α,∠ADO=α-60°,∴190°-α=α-60°,∴α=125°;②要使OA=OD,需∠OAD=∠ADO,∵∠OAD=180°-(∠AOD+∠ADO)=180°-(190°-α+α-60°)=50°,∴α-60°=50°,∴α=110°;③要使OD=AD,需∠OAD=∠AOD.∵∠OAD=360°-110°-60°-α=190°-α,∠AOD= ;=120°- ;,∴190°-α=120°- ;,解得α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是等腰三角形.。
与圆有关的辅助线常规作法解析
![与圆有关的辅助线常规作法解析](https://img.taocdn.com/s3/m/ea24452fbcd126fff7050bbd.png)
评析 : 当欲求解 的 问题 中含 有 圆的切 线时 , 常 常
证明: 连接 A C、 B C 。
。 . ‘
需要作 出过切点的半径 , 利用该半径与切线 的垂 直关 系来 沟通题 设 与结 论 之 间的 联 系。四 、 圆 中有 特 殊 角, 常作直径构造直 角三角形 ( 若题 中有三角 函数但 无直 角三角 形 , 则也需 作
直径 构造直角三角形 ) 例7 . 如 图, 点 A、 B、 C在 00上 ( A C不过 0点 ) ,
A B为直径 ,
LA C B =9 0 。 。 1+ 2 =9 0。 。
‘ . .
‘ . .
又‘ . ‘C D 上A B,
‘ . .
LA DC = L C DB =9 0 。 , 1+ L 3=9 0。 ,
_ 夔 i i } 论 坛OP E Nc A s s T e a c h i n g a n d R e s e a r c h F o r u m
与圆有关 的辅助 线常规作法解析
李 军 【 遵义县松林中学 , 贵州 遵义 5 6 3 0 0 2 】
【 摘 要】 在解决有关 两圆相切 的 问题 时, 常常 需作 出两圆 的公 切线 或连心 线, 利 用公切 线垂直 于经 过切
:
删・ 尸 c : ・ f ÷ P Ⅳ 1 ,
・ 尸 Ⅳ=2 P O 。
例1 . 如图, 以R t AA B C的直角顶点 4为 圆心 , 直
角边 A B为半 径 的 0A分别 交 B C 、 A C于 点 D、 E, 若 B D:1 0 c m, D C= 6 c m, 求 0A的半径 。
点的半径 、 切线长相 等、 连心线长等于两 圆半径之和 ( 或差) 等性质来沟通两 圆间的联 系。
圆中常用的作辅助线的八种方法
![圆中常用的作辅助线的八种方法](https://img.taocdn.com/s3/m/4b1b94bc760bf78a6529647d27284b73f24236d6.png)
证明:1 如图;过点D作⊙O的直径DE;连接AE;EC;AC ∵DE是⊙O的直径; ∴∠ECD=∠EAD=90° 又∵CD⊥AB;∴EC∥AB ∴∠BAC=∠ACE ∴B︵C=A︵E ∴BC=AE 在Rt△AED中;AD2+AE2=DE2; ∴AD2+BC2=4R2
2若弦AD;BC的长是方程x26x+5=0的两个根 AD>BC;求⊙O的半径及点O到AD的距离
1求证:PB是⊙O的切线; 证明:1 如图;连接OB;∵OA=OB;
∴∠OAB=∠OBA ∵PA=PB; ∴∠PAB=∠PBA ∴∠OAB+∠PAB=∠OBA+∠PBA
即∠PAO=∠PBO 又∵PA是⊙O的切线;∴∠PAO=90° ∴∠PBO=90° ∴OB⊥PB 又∵OB是⊙O的半径; ∴PB是⊙O的切线
︵ 2求由弦CD;BD与BC所围成的阴影部分的面积
结果保留π
解:2∵OE⊥DB;∴EB=
D1 B=3 2
c3m
在Rt△EOB中;∵∠OBD=30°;
∴OE=
1 2
OB
∵EB=3 3 cm;
∴由勾股定理可求得OB=6 cm
又∵∠CDB=∠DBO;DE=BE;
∠CED=∠OEB;
∴△CDE≌△OBE
方法 8 巧添辅助线计算阴影部分的面积
9 中考·自贡如图所示;点B;C;D都在⊙O上; 过点C作AC∥BD交OB的延长线于点A;连接CD; 且∠CDB=∠OBD=30°;DB=6 3cm
1求证:AC是⊙O的切线;
证明:1如图;连接CO;交DB于点E; ∴∠O=2∠CDB=60° 又∵∠OBE=30°; ∴∠BEO=180°60°30°=90° ∵AC∥BD;∴∠ACO=∠BEO=90° 即OC⊥AC 又∵点C在⊙O上; ∴AC是⊙O的切线
浅谈圆的辅助线作法3
![浅谈圆的辅助线作法3](https://img.taocdn.com/s3/m/c218b71f10a6f524ccbf85ff.png)
浅谈圆的辅助线作法3
4.当两圆相切,可作公切线或连心线 例5 已知:如图5,⊙O 1与⊙O 2外切 于点P ,过P 点作两条直线分别交⊙O 1与 ⊙O 2于点A 、B 、C 、D 。
求证 PB •PC=PA •PD 。
分析:欲证PB •PC=PA •PD ,即证PA ∶PB=PC ∶PD , 由此可作辅助线AC 、BD ,并证AC//DB ,要证平行,需证一对内错角相等,如∠C=∠D ,然后考虑到这两个角分别与弦切角有关,进而再作辅助线即两圆公切线MN ,从而问题迎刃而解。
例6
已知:如图6,⊙O 1与⊙O 2内切于点T ,经过
切点T 的直线与⊙O 1与⊙O 2分别相交于点A 和B 。
求证 TA ∶TB=O 1A ∶O 2B 。
分析:欲证TA ∶TB=O 1A ∶O 2B ,可考虑证这四条线段 所在的三角形相似,即证△TO 1A ∽△TO 2B ,于是只需连结O 2O 1,并延长,必过切点,则产生△TO 1A 和△TO 2B ,由∠1= ∠2=∠T ,则O 1A// O 2B ,易证线段比相等。
说明,由连心线必过切点可构造三角形证全等想到作连心线。
T B
A O
1 O 2
1
2
图 6
A
C
N
B
D
M P
O 1 O 2
.
. 图 5。
圆的辅助线作法详讲
![圆的辅助线作法详讲](https://img.taocdn.com/s3/m/50c85302bed5b9f3f90f1cd1.png)
初中数学“圆中辅助线”添法探究弦与弦心距,密切紧相连.直径对直角,圆心作半径.已知有两圆,常画连心线.遇到相交圆,连接公共弦.遇到相切圆,作条公切线.“有点连圆心,无点作垂线.”切线证明法,规律记心间.圆是初中数学教学重点内容之一,对培养学生的分析能力、逻辑推理能力、解决问题能力有着重要作用.圆的知识是中考必考内容,从基础知识检测到综合解题能力考察都出现在中考数学试卷中.由圆和直线型图形,圆和函数图象可以组合成一些复杂的几何题;由圆的重要性质和平面直角坐标系、函数、方程、面积等知识就组成了综合性强、涉及面广、图形变化大的中考压轴题.在解决此类问题时,常常需要添加辅助线,才能把题中的已知条件和所求问题联系起来,使问题逐层分解,化繁为简,化难为易,从而使解题简便易行.在圆中如何添辅助线?结合自己的教学实践作一些探究.一、根据垂径定理及其推论,过圆心作弦的垂线.例1 半径为5的圆中,求两条长为8和6的平行弦之间的距离.分析:此题没有说明两条平行弦是在圆心的两旁还是同旁,因此要考虑两种情况.解:第一种情况:如图,弦AB 、CD 在圆心O 的同旁. 过O 作OE ⊥AB 于E ,交CD 于F ,则AE=12 AB=3.连结OA 、OC. ∵AB ∥CD,∴OE ⊥CD 于F ,则EF 是平行弦AB 、CD 间的距离. 在Rt △OEA 中,由OA=5,AE=3得OE=3522=4.同理可得OF=3.∴EF=OE-OF=4-3=1.第二种情况:如图,弦AB 、CD 在圆心O 的两旁. 过O 点作OE ⊥AB 于E ,延长EO 交CD 于F. 连结OA 、OC.∵AB ∥CD ,则EO ⊥CD 于F. ∴EF 是平行弦AB 、CD 间的距离.由垂径定理和勾股定理易得:OE=4,OF=3,则EF=OE+OF=7. 启示:有关圆中弦常添的辅助线是过圆心作垂线,利用勾股定理, 依靠垂径定理及其推论解决有关弦的问题.二、连结圆上的有关点,根据同圆(或等圆)中,圆周角、圆心角、弦、弧之间的转换关系,解决问题.例2 已知:在△ABC 中,AB=AC,BD 平分∠ABC,△ABD 的外接圆交BC 于E.求证:AD=EC.分析:连结DE ,由圆周角∠1=∠2,可得AD=DE. 欲证AD=EC ,只要证DE=EC 即可.证明:连结DE.∵BD平分∠ABC,∴∠1=∠2,∴AD=DE.又∵AB=AC,∴∠ABC=∠C.∵∠3是圆内接四边形ABED的外角,∴∠3=∠ABC.∴∠3=∠C,∴DE=EC,∴AD=EC.启示:有关圆上非特殊点,常作点与点连线.三、当题目中有直径这一条件时,常利用“直径所对的圆周角是直角”添加辅助线.例3 已知:在Rt△ABC中∠ABC=90º,以AB为直径作☉O交AC于D,DE切☉O于D且交BC于E. 求证:BE=EC.证明:连结BD.∵AB是☉O的直径,∴∠ADB=90º,△BDC为Rt△.又∵∠ABC=90º,AB是☉O的直径,∴BC切☉O于点B.又∵DE切☉O于D,∴BE=DE,则∠BDE=∠DBE.∵∠1+∠BDE=90º,∠C+∠DBE=90 º,∴∠1=∠C,∴DE=EC.∴BE=EC.启示:有关圆中直径,常构造直径所对的圆周角是直角添加辅助线. 四、作过切点的半径(或直径).当题中有切线时,常连结过切点的半径或直径,利用切线与它垂直的特点.有时也作过切点的弦,沟通弦切角与圆心角、圆周角之间的联系.例4 已知:在Rt △ABC 中,∠C=90º,BC 是☉O 的直径,AB 交☉O 于D ,DE 切☉O 于D ,交AC 于E. 求证:OE ∥BA.证明:连结OD.∵DE 切☉O 于D, ∴∠EDO=90 º.又∵∠C=90 º,OC=OD , OE=OE, ∴Rt △ECO ≌RtEDO. ∴∠1=∠2= 12 ∠COD.又∵∠B= 12 ∠COD,∴∠1=∠B. ∴OE ∥BA.例5 已知:如图点O ′为∠AOB 角平分线上一点,以O ′为圆心作☉O ′与OA 相切于点E. 求证:☉O ′与OB 相切.证明:过点O ′作O ′F ⊥OB 于F ,连结O ′E. ∵OA 切☉O ′于点E,∴O ′E ⊥OA 于点E;O ′E 为☉O ′的半径. 又∵点O ′为∠AOB 角平分线上的点, ∴O ′E=O ′F.∴☉O′与OB相切.启示:关于圆中切线,常用辅助线是:(1)切点与圆心连线要领先,过切点作弦,莫忘弦切角.(2)要证一条线为圆的切线时,只要过圆心作这条线的垂线,证垂线段等于这个圆的半径.五、当题中有两圆相切时,首先考虑的是过切点作两圆的公切线,由此沟通弦切角与圆周角之间的联系.有时也作两圆的连心线,利用切点在连心线上沟通圆心距与两圆半径之间的联系.例 6 已知:两圆外切于点P,一条割线分别交两圆于A、B、C、D 四点.求证:∠APD+∠BPC=180º.证明:过切点P作两圆的公切线MN.则∠BPM=∠A,∠CPM=∠D.∵∠APD+∠A+∠D=180º,∴∠APD+∠BPM+∠CPM=180º.∵∠BPM+∠CPM=∠BPC,∴∠APD+∠BPC=180º.例7 已知:两圆内切于点P,大圆的弦AD交小圆于B、C两点.求证:∠APB=∠CPD.证明:过点P作公切线TP.则∠APT=∠D ,∠BPT=∠BCP.∵∠APB=∠BPT-∠APT,∠CPD=∠BCP-∠D,∴∠APB=∠CPD.启示:两圆相切,过切点作公切线,再利用弦切角定理等知识解之.六、两圆相交时,作两圆的公共弦,以两圆的公共弦作为“桥梁”沟通两圆的圆周角和其他角之间的联系.例8 已知:☉O1与☉O2相交于A、B两点,E为☉O1上的一点,EF 切☉O1于点E,EA、EB的延长线交☉O2于C、D两点.求证:EF∥CD.证明:连结AB,则∠1=∠2.∵四边形ABDC是☉O2的内接四边形,∴∠2=∠D.∴∠1=∠D.∴EF∥CD.启示:两圆相交,试连公共弦,有时也作连心线.七、代数、几何的综合题型.解代数、几何的综合题型时,根据问题的特点和需要,由数形结合,于数思形,以形助数,适时转化,变通.运用数形结合的思想方法,结合图形特征添加辅助线.下题是集三角形、圆、一次函数、二次函数为一体的综合性较强的试题.它要求学生不仅需要掌握必要的基础知识和较高的基本技能,而且要有较强的数形结合思想,才能在解题过程中切中要害,迎刃而解.例9 已知:如图,在Rt△AOC中,直角边OA在X轴负半轴上,OC 在Y轴正半轴上,点F在AO上,以点F为圆心的圆与Y轴、AC边相切,切点分别为O、D,☉F与X轴的另一个交点为E.若tanA=34,☉F的半径为32. (1)、求过A 、C 两点的一次函数解析式;(2)、求过E 、D 、O 三点的二次函数解析式; (3)、证明(2)中抛物线的顶点在直线AC 上.分析:解本题(1)(2)两问的关键是求A 、C 、E 、D 、O 五个点 的坐标.解:(1)过切点D 作☉F 的半径DF ,则∠ADF=90º. 在Rt △ADF 中,由tanA=34 和半径DF=32 得AD=2.∴AF=AD 2+DF 2= 52,则AO=AF+FO=4.在Rt △AOC 中,由AO=4和tanA=34,得OC=3,AC=5.则A 、C 两点的坐标为:A (-4,0),C (0,3). 设:所求一次函数解析式为y=kx+b. 由A 、C 两点的坐标求得k=34 ,b=3.∴所求一次函数的解析式为:y=34x+3.(2)过点D 作DG ⊥AO 于G ,则Rt △ADG ∽Rt △ACO. ∴AD AC =DG CO ,即25 =DG 3 得DG=65 .由于点D 在AC 上, 把DG=65 代入y=34 x+3,可求得D 点的横坐标为:- 125.∵OE=2OF=2×32=3,∴E 、D 、O 三点的坐标为:E (-3,0),D (- 125 ,65 )、0(0,0).设:过E 、D 、O 三点的二次函数解析式为y=ax 2+bx+c.则: 9a-3b+c=0, a=- 56,14425 a- 125 b+c= , b=- 52 , c=0, c=0 . ∴所求二次函数解析式为:y=- 56 x 2- 52x.(3)由y=- 56 x 2 - 52 x 易得抛物线的顶点坐标为:(- 32 ,158 ).经检验得,点(- 32 ,158 )在直线y = 34 x + 3上.∴抛物线y=- 56 x 2 - 52x 的顶点在直线AC 上.启示:本题的辅助线是通过图形特征,挖掘题中的明显和隐含条件,而达到目的.综上所述,在解决涉及到圆的问题时,只要添加适当的辅助线,就能把题中的已知条件和问题巧妙地连接起来,达到化繁为简,化难为易的目的,从而使问题的解决简便易行.[课后冲浪]一、证明解答题16.已知:P 是⊙O 外一点,PB ,PD 分别交⊙O 于A 、B 和C 、D ,且AB=CD.求证:PO 平分∠BPD .17.如图,ΔABC 中,∠C=90°,圆O 分别与AC 、BC 相切于M 、N ,点O 在AB 上,如果AO=15㎝,BO=10㎝,求圆O 的半径.18.已知:□ABCD 的对角线AC 、BD 交于O 点,BC 切⊙O 于E 点.求证:AD 也和⊙O 相切.ABCDO E19.如图,学校A 附近有一公路MN ,一拖拉机从P 点出发向PN 方向行驶,已知∠NPA=30°,AP=160米,假使拖拉机行使时,A 周围100米以内受到噪音影响,问:当拖拉机向PN 方向行驶时,学校是否会受到噪音影响?请说明理由.如果拖拉机速度为18千米∕小时,则受噪音影响的时间是多少秒?20.如图,A 是半径为1的圆O 外的一点,OA=2,AB 是圆O 的切线,B 是切点,弦BC ∥OA ,连结AC ,求阴影部分的面积.A21.如图,已知AB 是⊙O 的直径,CD 是弦,AE ⊥CD ,垂足为E,BF ⊥CD ,垂足为F.求证:DE=CF.22.如图,O 2是⊙O 1 上的一点,以O 2为圆心,O 1O 2为半径作一个圆交⊙O 1 于C ,D .直线O 1O 2分别交⊙O 1 于延长线和⊙O 1 ,⊙O 2于点A 与点B .连结AC ,BC .⑴求证:AC=BC ;⑵设⊙O 1 的半径为r ,求AC 的长.⑶连AD ,BD ,求证:四边形ADBC 是菱形;⑷当r=2时,求菱形ADBC 的面积.23.已知:如图,AB 是⊙O 的直径,BC 是⊙O 的切线,连AC 交⊙O 于D ,过D 作⊙O 的切线EF ,交BC 于E 点.求证:OE //AC.A...N三、探索题24.已知:图a,AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD.求证:(1)DC是⊙O的切线,(2)过D点作DE⊥AB,图b所示,交AC于P点,请考察P点在DE的什么位置?并说明理由.B 图aB 图b。
圆中常见辅助线的作法
![圆中常见辅助线的作法](https://img.taocdn.com/s3/m/34cafff43968011ca20091c7.png)
圆中常见辅助线的作法正文:在学习圆的内容时,很多同学觉得难学,总是找不到解题的突破口。
觉得难学,很大程度是因为不会画辅助线。
辅助线,就是现有图形的基础上,添加一些线条,以便运用所学知识,化繁为简,达到解决问题的目的。
在解决几何问题的时候,当运用题目给出的条件无法解决问题时,可以通过添加辅助线,形成新图形,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这便是辅助线的作用。
一条巧妙的辅助线常常使一道难题迎刃而解。
在此,对初中几何圆中常见的辅助线的添加思路从以下几个方面进行总结。
一:弦长计算,作弦心距,结合勾股定理和垂径定理。
例:如图,已知⊙O的半径为13,点O到AB的距离是5,则弦AB长是多少?分析:过O作OC⊥AB于C,由垂径定理得AC=BC=AB在Rt△AOC中,由勾股定理得AC=12.所以AB=24.二:切线的证明:1.连半径,证垂直。
例:如图, AB是⊙O的直径,AD平分∠BAC交⊙O于D,过D作DE⊥AC交AC延长线于点E,交AB延长线于点F.求证:EF是⊙O的切线;分析:连接OD ,先证OD∥AE,再证OD⊥EF,直线EF经过半径OD的外端点D,并与OD 垂直。
从而可以证明EF是⊙O的切线.2.作垂直,证半径例:如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.求证:CD与⊙O相切;分析:过点O作OG⊥DC,垂足为G.证明△ADO≌△GDO后可以得到OA=OG.从而OG是⊙O的半径,CD经过半径OG的外端点并与半径OG垂直,根据切线的判定可以证明CD与⊙O相切。
三:有直径,作直径所对圆周角。
例:如图,是的外接圆⊙O的直径,若,则.分析:连接,如图,因为AD为的外接圆⊙O的直径,所以∠ABD=90°,从而可得∠ACB=∠D=50°四.弧有中点,连中点圆心,结合垂径定理。
例:如图,在扇形中,已知,,过弧AB的中点作,,垂足分别为、,则图中阴影部分的面积为()分析:连接OC,因为点C为弧AB的中点,所以∠AOC=∠BOC,从而可以证明△CDO≌△CEO,于是四边形CDOE为正方形,面积等于1,由扇形面积公式得,故选B。
(完整版)圆中常见辅助线作法分类大全
![(完整版)圆中常见辅助线作法分类大全](https://img.taocdn.com/s3/m/4fff9af9866fb84ae55c8d7d.png)
1.碰到弦时(解决相关弦的问题时)经常增添弦心距,或许作垂直于弦的半径(或直径)或再连结过弦的端点的半径。
或许连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。
作用: 1 、利用垂径定理;2、利用圆心角及其所对的弧、弦和弦心距之间的关系;3、利用弦的一半、弦心距和半径构成直角三角形,依据勾股定理求相关量。
4、可得等腰三角形;5、据圆周角的性质可得相等的圆周角。
例:如图,AB是⊙ O 的直径 ,PO⊥ AB 交⊙ O 于 P 点,弦 PN 与 AB 订交于点 M ,求证:PM ?PN=2PO 2.剖析:要证明PM?PN=2PO2,即证明 PM ?PC =PO 2,过 O 点作 OC⊥PN 于 C,依据垂经定理 NC=PC ,只需证明PM?PC=PO2,要证明 PM?PC=PO2只需证明 Rt△ POC∽Rt △ PMO.1证明 : 过圆心 O 作 OC⊥ PN 于 C,∴ PC=PN2∵PO⊥ AB, OC ⊥PN ,∴∠ MOP= ∠ OCP=90° .又∵∠ OPC=∠ MPO ,∴ Rt△POC∽ Rt△PMO.∴ PO PC即∴ PO2 = PM?PC.∴ PO2= PM ?1PN,∴ PM ?PN=2PO2.PM PO2【例 1】如图,已知△ ABC内接于⊙ O,∠ A=45°, BC=2,求⊙ O的面积。
AOB C【例 2】如图,⊙ O的直径为10,弦 AB=8, P 是弦 AB 上一个动点,那么 OP的长的取值范围是 _________ .【例 3】如图,弦AB的长等于⊙ O的半径,点 C 在弧 AMB上,则∠ C的度数是 ________.2. 碰到有直径时经常增添(画)直径所对的圆周角。
作用:利用圆周角的性质,获得直角或直角三角形。
例 如图,在△ ABC 中,∠ C=90°,以 BC 上一点 O 为圆心,以 OB 为半径的圆交 AB 于点 M ,交 BC 于点 N .( 1) 求证: BA · BM=BC · BN ;( 2) 假如 CM 是⊙ O 的切线, N 为 OC 的中点,当 AC=3 时,求 AB 的值.剖析:要证 BA · BM=BC · BN ,需证△ ACB ∽△ NMB ,而∠ C=90°,因此需要△ NMB 中有个直角,而BN 是圆 O 的直径,因此连结 MN 可得∠ BMN=90 °。
浅谈圆的辅助线作法4
![浅谈圆的辅助线作法4](https://img.taocdn.com/s3/m/9bec27dd50e2524de5187eff.png)
浅谈圆的辅助线作法4
5.当两圆相交,可作公共弦或连心线。
例7 如图7,⊙O 1与⊙O 2相交于A 、B
两点,过A 点作⊙O 2的切线交⊙O 1于点C ,
直线CB 交⊙O 2于点D ,DA 延长线交⊙O 1
于点E ,连结CE 。
求证 CA=CE 。
分析:欲证CA=CE ,考虑在三角形中证它
们所对的角相等,即∠E=∠CAE ,又由
∠DAF=∠CAE ,想到弦切角∠DAF 与所夹弧
对的圆周角相等,故需作辅助线:公共弦AB ,得∠E=∠DBA ,易证CA=CE 。
说明,由两圆相交及用到弦切角和圆内接四边形想到作公共弦。
例8 如图8,在梯形ABCD 中,以两腰 AD 、BC 分别为直径的两个圆相交于M 、N 两点, 过M 、N 的直线与梯形上、下底交于E 、F 。
求证: MN ⊥AB 。
分析:因为MN 是公共弦,若作辅助线O 1O 2, 必有MN ⊥O 1O 2,再由O 1O 2是梯形的中位线,得O 1O 2//AB ,从而易证MN ⊥AB 。
说明,由两圆相交连心线垂直于公共弦想到作连心线。
C D
E M N G A B O 2 O 1
F 图 8 F E B C A O 1 O 2 . . 图 7 D。
圆中常见辅助线及作法
![圆中常见辅助线及作法](https://img.taocdn.com/s3/m/580cb33da6c30c2259019e48.png)
H
五、课后反思
1.谈谈收获和体会:从知识、思想、方法方面 谈
2.评选优秀师友组
六、课堂检测(5分钟)
1.六位同学做第一题 2.其他人从2、3题选作(2题加5颗心,3题加 10颗心)
四、巩固提高(想出思路即可)
1.自主学习
5分钟
2.师友讨论
3分钟
3.同学展示时认真聆听提出质疑和补充不同的想
法
5分钟
已知:如图,在△ABC 中,D 是 AB边 上一点 ,⊙O 过D,B,C 三点, ∠DOC=2∠ACD=90°
(1)求证:直线AC 是⊙O的切线;
(2)如果 ∠ACB,⊙O 的半径为 2, 求BD 的 长.
二、总结归纳
1.解决有关弦的问题时 常常作弦心距构造垂径定理;利用弦的一半、 弦心距和半径组成直角三角形,根据勾股定 理求有关量。
二、总结归纳
1.解决有关弦的问题时 常常作弦心距构造垂径定理;利用弦的一半、 弦心距和半径组成直角三角形,根据勾股定 理求有关量。
2.遇到有直径时(作直径)
常常添加直径所对的圆周角,利用圆周角 的性质得到直角或直角三角形。
常常添加直径所对的圆周角,利用圆周角 的性质得到直角或直角三角形。
2.遇到有直径时(作直径)
常常添加直径所对的圆周角,利用圆周角 的性质得到直角或直角三角形。
3.遇到切线时 在解决有关切线问题时,常作过切点的半
径,利用切线的性质定理得垂直
3.遇到切线时 在解决有关切线问题时,常作过切点的半
径,利用切线的性质定理得垂直
A
B
2.遇到有直径时(作直径)
常常添加直径所对的圆周角,利用圆周角 的性质得到直角或直角三角形。
A
B
浅谈圆的辅助线作法2
![浅谈圆的辅助线作法2](https://img.taocdn.com/s3/m/83b5d16f7e21af45b307a8ff.png)
浅谈圆的辅助线作法2
2.有直径,可作直径上的圆周角
对于关系到直径的有关问题时,可作直径上的圆周角,以便利用直径所对的圆周角是直角这个性质。
例2 如图2,在△ABC 中,AB=AC ,
以AB 为直径作⊙O 交BC 于点D ,过D
作⊙O 的切线DM 交AC 于M 。
求证 DM ⊥AC 。
分析:由AB 是直径,很自然想到其所
对的圆周角是直角。
于是可连结AD ,得∠ADB=Rt ∠,又由等腰三角形性质可得∠1=∠2,再由弦切角的性质可得∠ADM=∠B ,故易证∠AMD=∠ADB=90°,从而DM ⊥AC 。
3. 当圆中有切线常连结过切点的半径或过切点的弦
例3 如图3,AB 是⊙O 的直径,点D 在AB 的延长线上,BD=OB ,DC 切⊙O 于C 点。
求∠A 的度数。
分析:由过切点的半径垂直于切线, 于是可作辅助线即半径OC ,得Rt △, 再由解直角三角形可得∠COB 的度数, 从而可求∠A 的度数。
例4 如图4,已知△ABC 中,∠1=∠2, 圆O 过A 、D 两点,且与BC 切于D 点。
求证 EF//BC 。
分析:欲证EF//BC ,可找同位角或内错角 是否相等,显然同位角相等不易证,于是可连结DE ,得一对内错角∠BDE 与∠DEF ,由圆的性质可知这两个角分别等于∠1和∠2,故易证EF//BC 。
B
D C
M A
O .
A 2
1 图 2
D
A
O
B
C
.
图 3 E
D
C
F
O 1 2 A B
图 4。
圆中常见的辅助线的作法分类大全
![圆中常见的辅助线的作法分类大全](https://img.taocdn.com/s3/m/f5bb3af183c4bb4cf7ecd1dd.png)
1- 遇到弦时(解决有关弦的问题时)常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。
或者连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。
作用:1、利用垂径泄理;2、利用圆心角及其所对的弧、弦和弦心距之间的关系:3、利用弦的一半、弦心距和半径组成宜角三角形,根据勾股定理求有关量。
4、可得等腰三角形;5、据圆周角的性质可得相等的圆周角。
例:如图,A B是。
0的直径,P0丄AB交00于P点,弦PN与AB相交于点*求证:PM*PN=2P0:.分析:要证明PM・PN=2P0S即证明PM*PC =P0:,过0点作0C丄PN于C,根据垂经左理NC=PC,只需证明PM*PC=PO\ 要证明PM*PC=P03只需证明RtAPOC^RtAPMO.证明:过圆心0作0C丄PN于C, APC= -PN2TPO丄AB, 0C丄PN, A ZM0P=Z0CP=90°・又I Z0PC=ZMP0, ARtAPOC^RtAPMO.即AP02= PM・PC. •••POJ PM•丄PN, •••PM・PN=2P01• PO PC2•而一75【例1】如图, 已知Z\ABC内接于00, ZA=45° , BC二2,求00的而枳。
【例2】如图,00的直径为10,弦AB=8, P是弦AB上一个动点,那么0P的长的取值范羽是.【例3】如图,眩AB的长等于00的半径,点C在弧AMB上,则ZC的度数是2・遇到有直径时常常添加(画)直径所对的圆周角。
作用:利用圆周角的性质,得到直角或直角三角形。
例如图,在AABC中,ZC二90° ,以BC上一点0为圆心,以0B为半径的圆交AB于点M,交BC于点N.(1)求证:BA • BM=BC • BN:(2) 如果CM是00的切线,N为0C的中点,当AC二3时,求AB的值.分析:要证BA - BM=BC - BN,需证△ACBs/\MB,而ZC=90° ,所以需要△NMB中有个直角,而BN是圆0 的直径,所以连结MN可得ZBMN=90° °(1)证明:连结MN,则ZBMN=90° =ZACB•••△ACB S/\NMB.B^_AB•• BM _ BNA AB • BM=BC• BN(2)解:连结0M,则ZOMC二90°TN为0C中点.\MN=ON=OM, A ZM0N=60°V0M=0B> ••• ZB二+ ZM0N=30cMBV ZACB=90° , AAB=2AC=2X3=6【例4】如图,AB是00的直径,AB二4,弦BC二2,ZB 二______________3. 遇到90°的圆周角时常常连结两条弦没有公共点的另一端点。
圆中常见辅助线的添加口诀及技巧
![圆中常见辅助线的添加口诀及技巧](https://img.taocdn.com/s3/m/d7a502e348649b6648d7c1c708a1284ac8500502.png)
圆中常见辅助线的添加口诀及技巧半径与弦长计算;弦心距来中间站..圆上若有一切线;切点圆心半径连..要想证明是切线;半径垂线仔细辨..是直径;成半圆;想成直角径连弦..弧有中点圆心连;垂径定理要记全..圆周角边两条弦;直径和弦端点连..要想作个外接圆;各边作出中垂线..还要作个内切圆;内角平分线梦园..如果遇到相交圆;不要忘作公共弦..若是添上连心线;切点肯定在上面..二:圆中常见辅助线的添加:1、遇到弦时解决有关弦的问题时1、常常添加弦心距;或者作垂直于弦的半径或直径或再连结过弦的端点的半径..作用:①利用垂径定理;②利用圆心角及其所对的弧、弦和弦心距之间的关系;③利用弦的一半、弦心距和半径组成直角三角形;根据勾股定理求有关量..2、常常连结圆心和弦的两个端点;构成等腰三角形;还可连结圆周上一点和弦的两个端点..作用:①可得等腰三角形;②据圆周角的性质可得相等的圆周角..2、遇到有直径时常常添加画直径所对的圆周角..作用:利用圆周角的性质;得到直角或直角三角形3、遇到90°的圆周角时常常连结两条弦没有公共点的另一端点..作用:利用圆周角的性质;可得到直径..4、遇到有切线时1常常添加过切点的半径见切点连半径得垂直作用:利用切线的性质定理可得OA⊥AB;得到直角或直角三角形..5、遇到证明某一直线是圆的切线时1若直线和圆的公共点还未确定;则常过圆心作直线的垂线段;再证垂足到圆心的距离等于半径..2若直线过圆上的某一点;则连结这点和圆心即作半径;再证其与直线垂直..6、遇到三角形的内切圆时连结内心到各三角形顶点;或过内心作三角形各边的垂线段..作用:利用内心的性质;可得:1内心到三角形三个顶点的连线是三角形的角平分线; 2内心到三角形三条边的距离相等7、遇到三角形的外接圆时;连结外心和各顶点作用:外心到三角形各顶点的距离相等..例题1、如图;已知△ABC内接于⊙O;∠A=45°;BC=2;求⊙O的面积..例题2、如图;弦AB的长等于⊙O的半径;点C在弧AMB上;则∠C的度数是________.例题3、如图;AB是⊙O的直径;AB=4;弦BC=2;∠B=例题4、如图;AB、AC是⊙O的的两条弦;∠BAC=90°;AB=6;AC=8;⊙O的半径是例题5、如图所示;已知AB是⊙O的直径;AC⊥L于C;BD⊥L于D;且AC+BD=AB..求证:直线L与⊙O相切..例题6、如图;P是⊙O外一点;PA、PB分别和⊙O切于A、B;C是弧AB上任意一点;过C作⊙O的切线分别交PA、PB于D、E;若△PDE的周长为12;则PA长为______________例题7、如图;△ABC中;∠A=45°;I是内心;则∠BIC=例题8、如图;Rt△ABC中;AC=8;BC=6;∠C=90°;⊙I分别切AC;BC;AB于D;E;F;求Rt△ABC的内心I与外心O之间的距离.课后练习1、已知:P是⊙O外一点;PB;PD分别交⊙O于A、B和C、D且AB=CD.求证:PO平分∠BPD.2、如图;ΔABC中;∠C=90°;圆O分别与AC、BC相切于M、N;点O在AB 上;如果AO=15㎝;BO=10㎝;求圆O的半径.3、已知:□ABCD的对角线AC、BD交于O点;BC切⊙O于E点.求证:AD 也和⊙O相切.4、如图;学校A附近有一公路MN;一拖拉机从P点出发向PN方向行驶;已知∠NPA=30°;AP=160米;假使拖拉机行使时;A周围100米以内受到噪音影响;问:当拖拉机向PN方向行驶时;学校是否会受到噪音影响请说明理由.如果拖拉机速度为18千米∕小时;则受噪音影响的时间是多少秒总结:弦心距、半径、直径是圆中常见的辅助线..圆中辅助线添加的常用方法圆是初中几何中比较重要的内容之一;与圆有关的问题;汇集了初中几何的各种图形概念和性质;其知识面广;综合性强;随着新课程的实施;园的考察主要以填空题;选择题的形式出现;不会有比较繁杂的证明题;取而代之的是简单的计算..圆中常见的辅助线有:1作半径;利用同圆或等圆的半径相等; 2涉及弦的问题时;常作垂直于弦的直径弦心距;利用垂径定理进行计算和推理; 3作半径和弦心距;构造直角三角形利用勾股定理进行计算; 4 作直径构造直径所对的圆周角; 5 构造同弧或等弧所对的圆周角; 6遇到三角形的外心时;常连接外心与三角形的各个顶点; 7 已知圆的切线时;常连接圆心和切点半径; 8 证明直线和园相切时;有两种情况:1已知直线与圆有公共点时;连接圆心与公共点;证此半径与已知直线垂直 ;简称“有点连线证垂直;”2已知直线与圆无公共点时;过圆心作已知直线的垂线段;证它与半径相等;简称“无点做线证相等”此外;两解问题是圆中经常出现的问题;涉及弧;弦;与圆有关的角;点与圆;直线与圆;圆与圆的位置关系等知识;着重考察思维的完备性和严谨性;应特别引起重视。
圆中常作哪些辅助线
![圆中常作哪些辅助线](https://img.taocdn.com/s3/m/94dfa990d5d8d15abe23482fb4daa58da0111cbc.png)
CM O N 圆中常作哪些辅助线?通过作辅助线能使复杂问题简单化,圆问题中常用的辅助线是哪些呢?现把一些规律总结如下:弦与弦心距,密切紧相连. 直径对直角,圆心作半径. 已知有两圆,常画连心线. 遇到相交圆,连接公共弦. 遇到相切圆,作条公切线. “有点连圆心,无点作垂线.” 切线证明法,规律记心间.一、作弦心距.在解决有关弦的问题时,常常作弦心距,以利用垂经定理或圆心角、弦、弦心距之间的关系定理及推论.因此“弦与弦心距,密切紧相连.”.例 1.如图,AB是⊙O 的直径,PO⊥AB 交⊙O 于 P 点,弦 PN 与 AB 相交于点 M,求P证:PM•PN=2PO2.1分析:要证明PM•P N=2PO²,即证明PM•PN =POA B2²,1过 O 点作 OC⊥PN 于 C,根据垂经定理PN =PC,只需证明2。
⨯。
∆PMOPM•PC=PO²,由PO = P M,“三点定型”法可判断需证明 Rt△POC∽Rt△PMO.。
⨯ ∆POCPC PO1证明: 过圆心 O 作 OC⊥PN 于 C,∴PC= PN2∵PO⊥AB, OC⊥PN,∴∠MOP=∠OCP=900.又∵∠OPC=∠MPO,∴Rt△POC∽Rt△PMO.∴ PO = PC PM,即∴PO2= PM•PC. PO1∴PO2= PM•PN,∴PM•PN=2PO2.2二、连结半径圆的半径是圆的重要元素,圆中的许多性质如:“同圆的半径相等”和“过切点的半径与切线相互垂直”都与圆的半径有关.连结半径是常用的方法之一.例 2.已知:△ABC 中,∠B=900,O 是 AB 上一点,以 O 为圆心,以 OB 为半径的圆切 AC 与 D 点,交 AB 与 E 点,AD=2,AE=1.求证:CD 的长. CD 分析:D 为切点,连结 DO,∠ODA=900.根据切线长定理AE O BCD=CB.DO=EO= 半径r,在Rt△ADO 中根据勾股定理或Rt△ADO~ Rt△ABC,求出CD.证明: 连结DO∴OD⊥AC 于 D, ∴∠OCP=900.∵AB 过 O 点, ∠B=900.∴BC 为⊙O 的切线, ∴CD=CB设 CD=CB=x,DO=EO=y在Rt△ADO 中,AO2 =AD2+ DO2,AD=2,AE=13∴(1+y)2=22+y2, ∴ y=23 3在Rt△ABC 中,AC2 =AB2+ BC2,即(2+x)2=(1+ + )2+x2, ∴x=32 2∴CD=3.三、连结公共弦D 在处理有关两圆相交的问题时,公共弦像一把AEBPAE“钥匙”,常常可以打开相应的“锁”,因此“遇到相交圆,连接公共弦.”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.4.5
B.4
C.3
D.2
类型 7 与圆中阴影部分面积的计算有关的辅助线 13.(2019·南充)如图,在半径为 6 的⊙O 中,点 A,B,C 都在⊙O 上, 四边形 OABC 是平行四边形,则图中阴影部分的面积为( A) A.6π B.3 3π C.2 3π D.2π
(2)∵BC=4,∴OA=2. ∴AD=OA·tan60°=2 3. ∴S△ AOD=12AD·OA=2 3. 又∵S 扇形 AOC=603π6×04=23π, ∴S 阴影=2 3-23π.
10.如图,在梯形 ABCD 中,AD∥BC,AE⊥BC 于点 E,∠ADC 的 平分线交 AE 于点 O,以点 O 为圆心,OA 为半径的圆经过点 B,交 BC 于 另一点 F.
AC,BD.若 AC=2,则 tanD 的值是( A )
A.2 2
B.2
2 3
2 C. 4
1 D.3
6.(2019·辽阳)如图,A,B,C,D 是⊙O 上的四点,且点 B 是A︵C的 中点,BD 交 OC 于点 E,∠AOC=100°,∠OCD=35°,那么∠OED= 60°.
7.(2019·连云港)如图,点 A,B,C 在⊙O 上,BC=6,∠BAC=30°, 则⊙O 的半径为 6 .
∴tan∠ABC=ABEE=23.
类型 6 与三角形内切圆有关的辅助线
11.(2019·娄底)如图,边长为 2 3的等边△ ABC 的内切圆的半径为(A )
A.1
B.Hale Waihona Puke 3C.2D.2 3
12.(2018·河北)如图,点 I 为△ ABC 的内心,AB=4,AC=3,BC=2,
将∠ACB 平移使其顶点与 I 重合,则图中阴影部分的周长为( B )
(1)求证:直线 AD 是⊙O 的切线; (2)若直径 BC=4,求图中阴影部分的面积.
解:(1)证明:连接 OA. ∵AD=AB,∠D=30°, ∴∠B=∠D=30°. ∵OA=OB, ∴∠OAB=∠B=30°. ∴∠AOD=60°. ∴∠OAD=180°-30°-60°=90°. ∴OA⊥AD. 又∵OA 是⊙O 的半径, ∴AD 是⊙O 的切线.
=84°,则∠E 等于( B) A.42°
B.28°
C.21°
D.20°
类型 2 与垂径定理有关的辅助线
在圆中,求弦长、半径或圆心到弦的距离时,常过圆心作弦的垂线段 或连接弧的中点与圆心,再连接半径构成直角三角形,利用勾股定理或锐 角三角函数进行计算.
3.(2018·枣庄)如图,AB 是⊙O 的直径,弦 CD 交 AB 于点 P,AP=2,
类型 5 与切线的判定有关的辅助线
证明一条直线是圆的切线,当直线与圆有公共点时,只需“连半径、证 垂直”即可;当已知条件中没有指出圆与直线有公共点时,则需要过圆心作 已知直线的垂线,证明垂线段的长等于半径.
9.(2019·齐齐哈尔)如图,以△ ABC 的边 BC 为直径作⊙O,点 A 在⊙O 上,点 D 在线段 BC 的延长线上,AD=AB,∠D=30°.
类型 4 与切线的性质有关的辅助线
已知圆的切线时,常把切点与圆心连接起来,得半径与切线垂直,从 而构造出直角三角形,再利用直角三角形的有关性质解题.
8.如图,在⊙O 中,AD,CD 是弦,连接 OC 并延长,交过点 A 的切 线于点 B.若∠ADC=30°,则∠ABO 的度数为( B )
A.20° B.30° C.40° D.50°
(1)求证:CD 与⊙O 相切; (2)若 BF=24,OE=5,求 tan∠ABC 的值.
解:(1)证明:过点 O 作 OG⊥DC,垂足为 G.
∵AD∥BC,AE⊥BC, ∴OA⊥AD. 又∵DO 平分∠ADC,OG⊥DC, ∴OA=OG. ∴OG 是⊙O 的半径. ∴DC 是⊙O 的切线.
(2)连接 OF. ∵OA⊥BC, ∴BE=EF=12BF=12. 在 Rt△ OEF 中,OE=5,EF=12. ∴OF= OE2+EF2=13. ∴AE=OA+OE=13+5=18.
BP=6,∠APC=30°,则 CD 的长为( )
A. 15 C.2 15
B.2 5 D.8 C
4.(2018·威海)如图,⊙O 的半径为 5,AB 为弦,点 C 为A︵B的中点.若
∠ABC=30°,则弦 AB 的长为( D )
1 A.2
B.5
53 C. 2
D.5 3
类型 3 与圆周角定理及其推论有关的辅助线
(1)利用圆周角定理求角度时,常构造同弧或等弧所对的圆周角或者圆 心角;(2)遇到直径时,常构造直径所对的圆周角,这是圆中常用的辅助线 作法,可充分利用“半圆(或直径)所对的圆周角是直角”这一性质;(3)遇 90° 的圆周角时,常连接圆周角的两边与圆的交点,得到直径.
5.如图,在半径为 3 的⊙O 中,直径 AB 与弦 CD 相交于点 E,连接
圆中常见辅助线的作法
类型 1 连半径——构造等腰三角形
作圆的半径,利用“同圆的半径相等”构造等腰三角形,这样就把有关 线段或角的问题转化到三角形中来解答.
1.如图,△ ABC 内接于⊙O.若∠A=α,则∠OBC 等于( D)
A.180°-2α
B.2α
C.90°+α
D.90°-α
2.如图,⊙O 的直径 AB 与弦 CD 的延长线交于点 E.若 DE=OB,∠AOC