温差发电

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

温差发电

塞贝克原理:

在两种金属A和B组成的回路中,如果使两个接触点的温度不同,则在回路中将出现电流,称为热电流。相应的电动势称为热电势,其方向取决于温度梯度的方向。一般规定热电势方向为:在热端电流由负流向正。

塞贝克效应的实质在于两种金属接触时会产生接触电势差(电压),该电势差取决于两种金属中的电子溢出功不同及两种金属中电子浓度不同造成的。

半导体的温差电动势较大,可用作温差发电器。

产生Seebeck效应的机理,对于半导体和金属是不相同的。

半导体效应

产生Seebeck效应的主要原因是热端的载流子往冷端扩散的结果。例如p型半导体,由于其热端空穴的浓度较高,则空穴便从高温端向低温端扩散;在开路情况下,就在p型半导体的两端形成空间电荷(热端有正电荷,冷端有负电荷),同时在半导体内部出现电场;当扩散作用与电场的漂移作用相互抵消时,即达到稳定状态,在半导体的两端就出现了由于温度梯度所引起的电动势——温差电动势。自然,n型半导体的温差电动势的方向是从低温端指向高温端(Seebeck系数为负),相反,p型半导体的温差电动势的方向是低温端指向高温端(Seebeck系数为正),因此利用温差电动势的方向即可判断半导体的导电类型。

可见,在有温度差的半导体中,即存在电场,因此这时半导体的能带是倾斜的,并且其中的Fermi能级也是倾斜的;两端Fermi能级的差就等于温差电动势。

实际上,影响Seebeck效应的因素还有两个:

第一个因素是载流子的能量和速度。因为热端和冷端的载流子能量不同,这实际上就反映了半导体Fermi能级在两端存在差异,因此这种作用也会对温差电动势造成影响——增强Seebeck效应。

第二个因素是声子。因为热端的声子数多于冷端,则声子也将要从高温端向低温端扩散,并在扩散过程中可与载流子碰撞、把能量传递给载流子,从而加速了载流子的运动——声子牵引,这种作用会增加载流子在冷端的积累、增强Seebeck效应。

半导体的Seebeck效应较显著。一般,半导体的Seebeck系数为数百mV/K,这要比金属的高得多。

金属效应

因为金属的载流子浓度和Fermi能级的位置基本上都不随温度而变化,所以金属的Seebeck效应必然很小,一般Seebeck系数为0~10mV/K。

虽然金属的Seebeck效应很小,但是在一定条件下还是可观的;实际上,利用金属Seebeck效应来检测高温的金属热电偶就是一种常用的元件。

产生金属Seebeck效应的机理较为复杂,可从两个方面来分析:

①电子从热端向冷端的扩散。然而这里的扩散不是浓度梯度(因为金属中的电子浓度与温度无关)所引起的,而是热端的电子具有更高的能量和速度所造成的。显然,如果这种作用是主要的,则这样产生的Seebeck效应的系数应该为负。

②电子自由程的影响。因为金属中虽然存在许多自由电子,但对导电有贡献的却主要是Fermi能级附近2kT范围内的所谓传导电子。而这些电子的平均自由程与遭受散射(声子散射、杂质和缺陷散射)的状况和能态密度随能量的变化情况有关。

如果热端电子的平均自由程是随着电子能量的增加而增大的话,那么热端的电子将由于一方面具有较大的能量,另一方面又具有较大的平均自由程,则热端电子向冷端的输运则是主要的过程,从而将产生Seebeck系数为负的Seebeck效应;金属Al、Mg、Pd、Pt等即如此。

相反,如果热端电子的平均自由程是随着电子能量的增加而减小的话,那么热端的电子虽然具有较大的能量,但是它们的平均自由程却很小,因此电子的输运将主要是从冷端向热端的输运,从而将产生Seebeck系数为正的Seebeck效应;金属Cu、Au、Li等即如此。塞贝克效应电势差的计算公式:

与分别为两种材料的塞贝克系数。如果与不随温度的变化而变化,上式即可表示成如下形式:

塞贝克后来还对一些金属材料做出了测量,并对35种金属排成一个序列(即

Bi-Ni-Co-Pd-U-Cu-Mn-Ti-Hg-Pb-Sn-Cr-Mo-Rb-Ir-Au-Ag-Zn-W-Cd-Fe-As-Sb-Te-……),并指出,当序列中的任意两种金属构成闭合回路时,电流将从排序较前的金属经热接头流向排序较后的金属。

温差电动势还有如下两个基本性质:①中间温度规律,即温差电动势仅与两结点温度有关,与两结点之间导线的温度无关。②中间金属规律,即由A、B导体接触形成的温差电动势与两结点间是否接入第三种金属C无关。只要两结点温度T1、T2相等,则两结点间的温差电动势也相等。正是由于①、②这两点性质,温差电现象如今才会被广泛应用。

缺点:

1.帕尔贴(Peltier)效应1834年帕尔贴发现,电流通过不同金属的结点时,在结点处有吸放热量Qp的现象。吸热还是放热由电流方向确定,Qp称为帕尔贴热。其产生的速率与所通过的电流强度成正比,即

其中Π12称帕尔贴系数,其大小等于在结点上每通过单位电流时所吸放的热量。

汤姆孙效应如果在存在有温度梯度的均匀导体中通过电流时,导体中除了产生不可逆的焦耳热外,还要吸收或放出一定的热量,这一现象定名为汤姆孙效应,所吸放的热量称为汤姆孙热。汤姆孙热与佩尔捷热的区别是,前者是沿导体(或半导体)作分布式吸放热,后

者在结点上吸放热。汤姆孙热也是可逆的,但测量汤姆孙热比测量佩尔捷热困难得多,因为要把汤姆孙热与焦耳热区分开来较为困难。

2.效率低

温差发电是利用塞贝克效应把热能转化为电能。当一对温差电偶的两结处于不同温度时,热电偶两端的温差电动势就可作为电源。常用的是半导体温差热电偶;这是一个由一组半导体温差电偶经串联和并联制成的直流发电装置。每个热电偶由一N型半导体和一P型半导体串联而成,两者联接着的一端和高温热源接触,而N型和P型半导体的非结端通过导线均与低温热源接触,由于热端与冷端间有温度差存在,使P的冷端有负电荷积累而成为发电器的阴极;N的冷端有正电荷积累而成为阳极。若与外电路相联就有电流流过。这种发电器效率不大,为了能得到较大的功率输出,实用上常把很多对温差电偶串、并联成温差电堆。

相关文档
最新文档