2020-2021青岛市八年级数学上期末一模试题带答案

合集下载

山东省青岛市市南区2020-2021学年八年级(上)期末数学试卷及答案解析

山东省青岛市市南区2020-2021学年八年级(上)期末数学试卷及答案解析

2020-2021学年山东省青岛市市南区八年级(上)期末数学试卷一.选择题(每题3分,共24分)1.(3分)下列各组数中不能作为直角三角形的三边长的是()A.1.5,2,3B.7,24,25C.6,8,10D.9,12,15 2.(3分)下列说法不正确的是()A.的平方根是B.=±5C.的算术平方根是D.=﹣33.(3分)若样本x1,x2,x3,…x n的平均数为18,方差为2,则对于样本x1+2,x2+2,x3+2,…x n+2,下列结论正确的是()A.平均数为20,方差为2B.平均数为20,方差为4C.平均数为18,方差为2D.平均数为18,方差为44.(3分)小涵与阿嘉一起去咖啡店购买同款咖啡豆,咖啡豆每公克的价钱固定,购买时自备容器则结帐金额再减5元.若小涵购买咖啡豆250公克且自备容器,需支付295元;阿嘉购买咖啡豆x公克但没有自备容器,需支付y元,则y与x的关系式为下列何者?()A.y=x B.y=x C.y=x+5D.y=x+5 5.(3分)如图,在Rt△ABC中,∠BAC=90°,点D在BC上,过D作DF⊥BC交BA 的延长线于F,连接AD、CF,若∠CFE=32°,∠ADB=45°,则∠B的大小是()A.32°B.64°C.77°D.87°6.(3分)一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当∠BAD=15°时,BC∥DE,则∠BAD(0°<∠BAD<180°)符合条件的其它所有可能度数为()A.60°和135°B.45°、60°、105°、135°C.30°和45°D.以上都有可能7.(3分)如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且=,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC 周长最小的点P的坐标为()A.(2,2)B.(,)C.(,)D.(3,3)8.(3分)如图,△ABC中,BD、BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE,交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC﹣∠C;④∠BGH=∠ABE+∠C.其中正确个数是()A.4个B.3个C.2个D.1个二.填空题(每题3分,共18分)9.(3分)如图所示的网格是正方形网格,∠APB=°.10.(3分)某衬衣定价为100元时,每月可卖出2000件,受成本影响,该衬衣需涨价,已知价格每上涨10元,销售量便减少50件.那么,每月售出衬衣的总件数y(件)与衬衣价格x(元)之间的关系式为.11.(3分)如果三个数a、b、c满足其中一个数的两倍等于另外两个数的和,我们称这三个数a、b、c是“等差数”若正比例函数y=2x的图象上有三点A(m﹣1,y1)、B(m,y2)、C(2m+1,y3),且这三点的纵坐标y1、y2、y3是“等差数”,则m=.12.(3分)魏县鸭梨是我省的特产,经过加工后出售,单价可能提高20%,但重量会减少10%.现有未加工的鸭梨30千克,加工后可以比不加工多卖12元,设加工前每千克卖x 元,加工后每千克卖y元,根据题意,可列方程组.13.(3分)用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为.14.(3分)某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(3,75);④快递车从乙地返回时的速度为90千米/时,以上4个结论正确的是.三、作图题(共8分)15.(8分)如图1,图2,图3是每个小正方形的边长为1正方形网格,借用网格就能计算出一些三角形的面积的面积.(1)请你利用正方形网格,计算出如图1所示的△ABC的面积为.(2)请你利用正方形网格,在图2中比较+1与的大小.(3)已知x是正数,请利用正方形网格,在图3中求出+的最小值.(4)若△ABC三边的长分别为,,(其中m>0,n >0且m≠n),请运用构图法,求出这个三角形的面积.四、解答题(共70分)16.(10分)计算:(1)××.(2)﹣14﹣.(3)用含药30%和75%的两种防腐药水,配制含药50%的防腐药水36千克,两种药水各需多少千克?(4)甲,乙两位同学在解方程组时,甲把字母a看错了得到方程组的解为,乙把字母b看错了得到方程组的解为.求a,b的正确值及求原方程组的解.17.(6分)如图,已知∠1+∠2=180°,∠B=∠E,试猜想AB与CE之间有怎样的位置关系?并说明理由.18.(6分)随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数、中位数和平均数;(Ⅲ)根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.19.(4分)某工厂用如图①所示的长方形和正方形纸板,做成如图②所示的竖式与横式两种长方形形状的无盖纸盒.现有正方形纸板150张,长方形纸板300张,若这些纸板恰好用完,则可制作横式、竖式两种纸盒各多少个?20.(8分)已知,如图,在△ABC中,∠B<∠C,AD,AE分别是△ABC的高和角平分线.(1)若∠B=30°,∠C=50°,试确定∠DAE的度数;(2)试写出∠DAE,∠B,∠C的数量关系,并证明你的结论.21.(6分)小明从家去李宁体育馆游泳,同时,妈妈从李宁体育馆以50米/分的速度回家,小明到体育馆后发现要下雨,立即返回,追上妈妈后,小明以250米/分的速度回家取伞,立即又以250米/分的速度折回接妈妈,并一同回家.如图是两人离家的距离y(米)与小明出发的时间x(分)之间的函数图象.(注:小明和妈妈始终在同一条笔直的公路上行走,图象上A、C、D、F四点在一条直线上)(1)求点C坐标是、BC的函数表达式是.(2)求线段OB、AF函数表达式及点D的坐标;(3)当x为时,小明与妈妈相距1500米.22.(8分)已知某酒店的三人间和双人间客房标价为:三人间为每人每天200元,双人间为每人每天300元,为吸引客源,促进旅游,在“十•一”黄金周期间酒店进行优惠大酬宾,凡团体入住一律五折优惠.一个50人的旅游团在十月二号到该酒店住宿,租住了一些三人间、双人间客房.(1)如果租住的每个客房正好住满,并且一天一共花去住宿费6300元,求租住了三人间、双人间客房各多少间?(2)设三人间共住了x人,这个团一天一共花去住宿费y元,请写出y与x的函数关系式,并写出自变量的取值范围.(3)一天6300元的住宿费是否为最低?如果不是,请设计一种方案:要求租住的房间正好被住满,并使住宿费用最低,请写出设计方案,并求出最低的费用.23.(12分)【模型定义】它是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形.他们得知这种模型称为“手拉手模型”如果把小等腰三角形的腰长看作是小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手.【模型探究】(1)如图1,若△ACB和△DCE均为等边三角形,点A、D、E在同一条直线上,连接BE,则∠AEB的度数为;线段BE与AD之间的数量关系是.【模型应用】(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,P为等边△ABC内一点,且PA:PB:PC=3:4:5,以BP为边构造等边△BPM,这样就有两个等边三角形共顶点B,然后连接CM,求∠APB的度数是.【拓展提高】(4)如图4,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC 中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数.(用含有m的式子表示)(5)如图5,两个等腰直角三角形△ABC和△ADE中,AB=AC,AE=AD,∠BAC=∠DAE=90°,连接BD,CE,两线交于点P,请证明BD和CE的数量关系和位置关系.(6)如图6,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,求BD的长.【深化模型】(7)如图7,C为线段AE上一动点(不与A、E重合),在AE同侧分别作等边△ABC 和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:①AD=BE;②PQ∥AE;③CP=CQ;④BO=OE;⑤∠AOB=60°,恒成立的结论有.24.(10分)如图,在平面直角坐标系中,四边形OABC是矩形,点O(0,0),点A(3,0),点C(0,4);D为AB边上的动点.(Ⅰ)如图1,将△ABC对折,使得点B的对应点B落在对角线AC上,折痕为CD,求此刻点D的坐标:(Ⅱ)如图2,将△ABC对折,使得点A与点C重合,折痕交AB于点D,交AC于点E,求直线CD的解析式;(Ⅲ)在坐标平面内,是否存在点P(除点B外),使得△APC与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.2020-2021学年山东省青岛市市南区八年级(上)期末数学试卷参考答案与试题解析一.选择题(每题3分,共24分)1.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【解答】解:A、1.52+22≠32,不符合勾股定理的逆定理,故正确;B、72+242=252,符合勾股定理的逆定理,故错误;C、62+82=102,符合勾股定理的逆定理,故错误;D、92+122=152,符合勾股定理的逆定理,故错误.故选:A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2.【分析】根据平方根与立方根进行判断即可.【解答】解:A、的平方根是,正确;B、,错误;C、=2的算术平方根是,正确;D、,正确;故选:B.【点评】此题主要考查了平方根与立方根,正确把握相关定义是解题关键.3.【分析】根据平均数、方差随数据的变化规律进行判断,将一组数的每个数据都增加n,所得到的新一组数据的平均数就增加n,而方差不变.【解答】解:样本x1+2,x2+2,x3+2,…x n+2,对于样本x1,x2,x3,…x n来说,每个数据均在原来的基础上增加了2,根据平均数、方差的变化规律得:平均数较前增加2,而方差不变,即:平均数为18+2=20,方差为2,故选:A.【点评】考查平均数、方差的意义以及受数据变化的影响,掌握规律,理解意义是解决问题的关键.4.【分析】根据若小涵购买咖啡豆250公克且自备容器,需支付295元,可得咖啡豆每公克的价钱为(295+5)÷250=(元),据此即可y与x的关系式.【解答】解:根据题意可得咖啡豆每公克的价钱为:(295+5)÷250=(元),∴y与x的关系式为:.故选:B.【点评】本题主要考查了一次函数的应用,根据题意得出咖啡豆每公克的单价是解答本题的关键.5.【分析】如图,取CF的中点T,连接DT,AT.想办法证明AC=AF,推出∠CFA=45°即可解决问题.【解答】解:如图,取CF的中点T,连接DT,AT.∵∠BAC=90°,FD⊥BC,∴∠CAF=∠CDF=90°,∴AT=DT=CF,∴TD=TC=TA,∴∠TDA=∠TAD,∠TDC=∠TCD,∵∠ADB=45°,∴∠ADT+∠TDC=135°,∴∠ATC=360°﹣2×135°=90°,∴AT⊥CF,∵CT=TF,∴AC=AF,∴∠AFC=45°,∴∠BFD=45°﹣32°=13°,∵∠BDF=90°,∴∠B=90°﹣∠BFD=77°,故选:C.【点评】本题考查直角三角形斜边中线的性质,三角形内角和定理等知识,解题的关键是学会添加常用辅助线,构造等腰三角形解决问题,属于中考常考题型.6.【分析】根据题意画出图形,再由平行线的判定定理即可得出结论.【解答】解:当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAB=∠B=60°;当BC∥AE时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当AB∥DE时,∵∠E=∠EAB=90°,∴∠BAD=∠DAE+∠EAB=45°+90°=135°.故选:B.【点评】本题考查的是平行线的判定与性质,根据题意画出图形,利用平行线的性质及直角三角板的性质求解是解答此题的关键.7.【分析】根据已知条件得到AB=OB=4,∠AOB=45°,求得BC=3,OD=BD=2,得到D(0,2),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),求得直线EC的解析式为y=x+2,解方程组即可得到结论.【解答】解:∵在Rt△ABO中,∠OBA=90°,A(4,4),∴AB=OB=4,∠AOB=45°,∵=,点D为OB的中点,∴BC=3,OD=BD=2,∴D(2,0),C(4,3),作D关于直线OA的对称点E,连接EC交OA于P,则此时,四边形PDBC周长最小,E(0,2),∵直线OA的解析式为y=x,设直线EC的解析式为y=kx+b,∴,解得:,∴直线EC的解析式为y=x+2,解得,,∴P(,),故选:C.【点评】本题考查了轴对称﹣最短路线问题,等腰直角三角形的性质,正确的找到P点的位置是解题的关键.8.【分析】①根据BD⊥FD,FH⊥BE和∠FGD=∠BGH,证明结论正确;②根据角平分线的定义和三角形外角的性质证明结论正确;③证明∠DBE=∠BAC﹣∠C,根据①的结论,判断出错误;④根据角平分线的定义和三角形外角的性质证明结论正确.【解答】解:①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,②正确;③∠ABD=90°﹣∠BAC,∠DBE=∠ABE﹣∠ABD=∠ABE﹣90°+∠BAC=∠CBD﹣∠DBE﹣90°+∠BAC,∵∠CBD=90°﹣∠C,∴∠DBE=∠BAC﹣∠C﹣∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC﹣∠C﹣∠DBE,③错误;④∵∠AEB=∠EBC+∠C,∵∠ABE=∠CBE,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=∠FEB,∴∠BGH=∠ABE+∠C,④正确,∴正确的有①②④,共三个,故选:B.【点评】本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键二.填空题(每题3分,共18分)9.【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=12+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据等腰三角形的性质和三角形外角的性质即可得到结论.【解答】解:延长AP交格点于D,连接BD,则PD2=BD2=12+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=45°,∴∠APB=135°.故答案为:135.【点评】本题考查了勾股定理的逆定理,勾股定理,三角形的外角的性质,等腰直角三角形的判定和性质,正确作出辅助线是解题的关键.10.【分析】根据某衬衣定价为100元时,每月可卖出2000件,价格每上涨10元,销售量便减少50件,即可得到月售出衬衣的总件数y(件)与衬衣价格x(元)之间的关系式.【解答】解:由题意可得,y=2000﹣×50=﹣5x+2500,故答案为:y=﹣5x+2500.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,写出相应的函数解析式.11.【分析】将点A,点B,点C坐标代入解析式,可求y1、y2、y3,根据“等差数”的定义可求m的值.【解答】解:∵正比例函数y=2x的图象上有三点A(m﹣1,y1)、B(m,y2)、C(2m+1,y3),∴y1=m﹣2,y2=2m,y3=4m+2,∵y1、y2、y3是“等差数”,∴2(m﹣2)=2m+4m+2,或4m=m﹣2+4m+2,或8m+4=m﹣2+2m,∴m=﹣或0或﹣故答案为:﹣或0或﹣【点评】本题考查了一次函数图象上点的坐标特征,熟知函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.12.【分析】根据题意可得等量关系:加工后的单价=加工前的单价×(1+20%);鸭梨30千克加工后所卖总价钱﹣加工前所卖总价钱=12元,根据等量关系列出方程组即可.【解答】解:设加工前每千克卖x元,加工后每千克卖y元,根据题意得:,故答案为:.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.13.【分析】图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依据等量关系即可得到方程组,进而得出a,b的值,即可得到图③中,阴影部分的面积.【解答】解:由图可得,图①中阴影部分的边长为=2,图②中,阴影部分的边长为=2;设小矩形的长为a,宽为b,依题意得,解得,∴图③中,阴影部分的面积为(a﹣3b)2=(4﹣2﹣6)2=44﹣16,解法二:设小矩形的长为a,宽为b,依题意得由②×2﹣①,得a﹣3b=,∴图③中,阴影部分的面积为(a﹣3b)2=(4﹣2)2=44﹣16,故答案为:44﹣16.【点评】本题主要考查了二元一次方程组的应用以及二次根式的化简,当问题较复杂时,有时设与要求的未知量相关的另一些量为未知数,即为间接设元.无论怎样设元,设几个未知数,就要列几个方程.14.【分析】根据一次函数的性质和图象结合实际问题对每一项进行分析即可得出答案.【解答】解:①设快递车从甲地到乙地的速度为x千米/时,则3(x﹣60)=120,x=100.(故①正确);②因为120千米是快递车到达乙地后两车之间的距离,不是甲、乙两地之间的距离,(故②错误);③因为快递车到达乙地后缷完物品再另装货物共用45分钟,所以图中点B的横坐标为3+=3,纵坐标为120﹣60×=75,(故③正确);④设快递车从乙地返回时的速度为y千米/时,则(y+60)(4﹣3)=75,y=90,(故④正确).故答案为:①③④.【点评】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题,关键是根据一次函数的性质和图象结合实际问题判断出每一结论是否正确.三、作图题(共8分)15.【分析】(1)根据三角形的面积公式计算;(2)根据勾股定理求出DF、DE,根据三角形的三边关系解答即可;(3)根据勾股定理、轴对称—最短路径解答;(4)根据三角形的面积公式、勾股定理解答即可.=4×3﹣×4×1﹣×2×1﹣×3×3=,【解答】解:(1)S△ABC故答案为:;(2)如图2,由勾股定理得:DF==,DE==,在△DEF中,DE+EF>DF,∴+1>;(3)如图3,设点M的坐标为(0,3),点N的坐标为(5,1),点P的坐标为(x,0),则PM=,PN=,作点M关于x轴的对称点M′,连接NM′,交x轴于P,此时PM+PN的值最小,最小值==,∴+的最小值为;(4)如图4,设小长方形的长为m,宽为n,则AB=,BC=,AC=,=4m×3n﹣×2m×n﹣×4m×2n﹣×2m×3n=4mn.则S△ABC【点评】本题考查的是三角形的面积、勾股定理等,解题的关键是灵活运用数形结合思想解决问题,学会用转化的思想解决问题.四、解答题(共70分)16.【分析】(1)原式利用二次根式的乘除法则计算即可得到结果;(2)原式利用二次根式性质,以及立方根性质计算即可得到结果;(3)根据题意列出算式,计算即可得到结果;(4)将错就错,求出正确a与b的值,进而求出原方程组的解即可.【解答】解:(1)原式==;(2)原式=﹣14×﹣(﹣2)=﹣2+2=2﹣;(3)设两种药水分别需要x千克,y千克,根据题意得:,即,①×5﹣②得:3x=60,解得:x=20,把x=20代入①得:20+y=36,解得:y=16,则两种药水分别需要20千克,16千克;(4)把代入2x﹣by=﹣1得:8﹣3b=﹣1,解得:b=3,把代入ax+3y=4得:﹣2a+6=4,解得:a=1,把a=1,b=3代入方程组得:,①+②得:3x=3,解得:x=1,把x=1代入①得:1+3y=4,解得:y=1,则方程组的解为.【点评】此题考查了实数的运算,由实际问题抽象出二元一次方程组,熟练掌握运算法则是解本题的关键.17.【分析】由∠1+∠2=180°可证得DE∥BC,得∠ADF=∠B,已知∠B=∠E,等量代换后可得∠ADF=∠E,由此可证得AB与CE平行.【解答】解:AB∥CE,∵∠1+∠2=180°(已知),∴DE∥BC(同旁内角互补,两直线平行),∴∠ADF=∠B(两直线平行,同位角相等),∵∠B=∠E(已知),∴∠ADF=∠E(等量代换),∴AB∥CE(内错角相等,两直线平行).【点评】此题主要考查平行线的判定和性质.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.18.【分析】(Ⅰ)根据家庭中拥有1台移动设备的人数及所占百分比可得调查的学生人数,将拥有4台移动设备的人数除以总人数可得m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)将样本中拥有3台移动设备的学生人数所占比例乘以总人数1500即可.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为:=50(人),图①中m的值为×100=32,故答案为:50、32;(Ⅱ)∵这组样本数据中,4出现了16次,出现次数最多,∴这组数据的众数为4;∵将这组数据从小到大排列,其中处于中间的两个数均为3,有=3,∴这组数据的中位数是3;由条形统计图可得==3.2,∴这组数据的平均数是3.2.(Ⅲ)1500×28%=420(人).答:估计该校学生家庭中;拥有3台移动设备的学生人数约为420人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.【分析】设制作竖式纸盒x个,生产横式纸盒y个.根据生产竖式纸盒用的正方形纸板+生产横式纸盒用的正方形纸板=150张;生产竖式纸盒用的长方形纸板+生产横式纸盒用的长方形纸板=300张.列方程组即可得到结论.【解答】解:设制作竖式纸盒x个,生产横式纸盒y个.由题意得,解得:.答:可制作横式纸盒60个、竖式纸盒30个.【点评】本题考查二元一次方程组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出等量关系式即可求解.20.【分析】(1)在三角形ABC中,由∠B与∠C的度数求出∠BAC的度数,根据AE为角平分线求出∠BAE的度数,由∠BAD﹣∠B即可求出∠DAE的度数;(2)仿照(1)得出∠DAE与、∠B、∠C的数量关系即可.【解答】解:(1)∵∠B=30°,∠C=50°,∴∠BAC=180°﹣∠B﹣∠C=100°,又∵AE是△ABC的角平分线,∴∠BAE=∠BAC=50°,∵AD是△ABC的高,∴∠BAD=90°﹣∠B=90°﹣30°=60°,则∠DAE=∠BAD﹣∠BAE=10°,(2)∠DAE=(∠C﹣∠B),理由如下:∵AD是△ABC的高,∴∠ADC=90°,∴∠DAC=180°﹣∠ADC﹣∠C=90°﹣∠C,∵AE是△ABC的角平分线,∴∠EAC=∠BAC,∵∠BAC=180°﹣∠B﹣∠C∴∠DAE=∠EAC﹣∠DAC,=∠BAC﹣(90°﹣∠C),=(180°﹣∠B﹣∠C)﹣90°+∠C,=90°﹣∠B﹣∠C﹣90°+∠C,=(∠C﹣∠B).【点评】此题考查了三角形内角和定理,以及三角形的外角性质,三角形的高线,角平分线定义,熟练掌握内角和定理是解本题的关键.21.【分析】(1)根据路程=速度×时间结合体育场离家3000米即可得出点C的坐标,根据点B、C的坐标利用待定系数法即可求出线段BC的表达式;(2)根据点O和点B的坐标可以求得线段OB对应的函数解析式,再根据妈妈的速度和路程可以求得点F的坐标,从而可以求得线段AF对应的函数表达式;根据小明的速度可以求得点E的坐标,从而可以写出线段DF的函数表达式,再根据线段AF的函数表达式,即可求得点D的坐标;(3)根据线段AF、线段OB、线段BC的函数表达式可以求得当x为多少时,小明与妈妈相距1500米;【解答】解:(1)∵45×50=2250(米),3000﹣2250=750(米),∴点C的坐标为(45,750);设线段BC的函数表达式为y=k2x+b2,把(30,3000)、(45,750)代入y=kx+b,,得,即线段BC的函数表达式是y=﹣150x+7500(30≤x≤45);(2)设OB的函数表达式为y=kx,30k=3000,得k=100,即线段OB的函数表达式为y=100x(0≤x≤30);点F的横坐标为:3000÷50=60,则点F的坐标为(60,0),设直线AF的函数表达式为:y=k1x+b1,,得,即直线AF的函数表达式为y=﹣50x+3000;∵750÷250=3(分钟),45+3=48,∴点E的坐标为(48,0)∴直线ED的函数表达式y=250(x﹣48)=250x﹣12000,∵AF对应的函数解析式为y=﹣50x+3000,∴,得,∴点D的坐标为(50,500);(3)当小明与妈妈相距1500米时,﹣50x+3000﹣100x=1500或100x﹣(﹣50x+3000)=1500或(﹣150x+7500)﹣(﹣50x+3000)=1500,解得:x=10或x=30,∴当x为10或30时,小明与妈妈相距1500米.故答案为:(45,750);y=﹣150x+7500(30≤x≤45);10或30.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.【分析】(1)设三人间有a间,双人间有b间.注意凡团体入住一律五折优惠,根据①客房人数=50;②住宿费6300列方程组求解;(2)根据题意,三人间住了x人,则双人间住了(50﹣x)人.住宿费=100×三人间的人数+150×双人间的人数;(3)根据x的取值范围及实际情况,运用函数的性质解答.【解答】解:(1)设三人间有a间,双人间有b间,根据题意得:,解得:,答:租住了三人间8间,双人间13间;(2)根据题意得:y=100x+150(50﹣x)=﹣50x+7500(0≤x≤50),(3)因为﹣50<0,所以y随x的增大而减小,故当x满足、为整数,且最大时,即x=48时,住宿费用最低,此时y=﹣50×48+7500=5100<6300,答:一天6300元的住宿费不是最低;若48人入住三人间,则费用最低,为5100元.所以住宿费用最低的设计方案为:48人住3人间,2人住2人间.【点评】本题考查二元一次方程组的应用、一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和方程的思想解答.23.【分析】(1)由条件易证△ACD≌△BCE,从而得到:BE=AD,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题.(3)以BP为边构造等边△BPM,连接CM,由△ABC与△BPM都是等边三角形,得出AB=BC,BP=BM=PM,∠ABC=∠PBM=∠BMP=60°,易证∠ABP=∠CBM,由SAS证得△ABP≌△CBM,得出AP=CM,∠APB=∠CMB,则CM:PM:PC=3:4:5,推出PC2=CM2+PM2,得出△CMP是直角三角形,得出∠PMC=90°,则∠CMB=∠BMP+∠PMC=150°,即可得出结果.(4)如图4中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=m°.(5)先判断出△DAB≌△EAC,得出BD=CE,∠DBA=∠ECA,进而判断出∠DBC+∠ECB,即可得出结论.(6)根据已知可得△ABC是等腰直角三角形,所以将△ADB绕点A顺时针旋转90°,得到△ACE,则BD=CE,证明△DCE是直角三角形,再利用勾股定理可求CE值.(7)①根据全等三角形的判定方法,证出△ACD≌△BCE,即可得出AD=BE.③先证明△ACP≌△BCQ,即可判断出CP=CQ,③正确;②根据∠PCQ=60°,可得△PCQ为等边三角形,证出∠PQC=∠DCE=60°,得出PQ∥AE,②正确.④没有条件证出BO=OE,得出④错误;⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,⑤正确;即可得出结论.【解答】解:(1)如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.BE=AD,∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°,BE=AD.(2)证明:如图2中,延长DC到E,使得DB=DE.∵DB=DE,∠BDC=60°,∴△BDE是等边三角形,∴∠BD=BE,∠DBE=∠ABC=60°,∴∠ABD=∠CBE,∵AB=BC,∴△ABD≌△CBE,∴AD=EC,∴BD=DE=DC+CE=DC+AD.∴AD+CD=BD.(3)解:以BP为边构造等边△BPM,连接CM,如图(3)所示:∵△ABC与△BPM都是等边三角形,∴AB=BC,BP=BM=PM,∠ABC=∠PBM=∠BMP=60°,∴∠ABC﹣∠PBC=∠PBM﹣∠PBC,即∠ABP=∠CBM,在△ABP和△CBM中,,∴△ABP≌△CBM(SAS),∴AP=CM,∠APB=∠CMB,∵PA:PB:PC=3:4:5,∴CM:PM:PC=3:4:5,∴PC2=CM2+PM2,∴△CMP是直角三角形,∴∠PMC=90°,∴∠CMB=∠BMP+∠PMC=60°+90°=150°,∴∠APB=150°,故答案为:150°;(4)解:如图4中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.由(1)可知△EAB≌△GAC,∴∠1=∠2,BE=CG,∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,∴BE=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=∠3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=m°.(5)BD=CE且BD⊥CE;理由如下:∵∠DAE=∠BAC=90°,∴∠DAE+∠BAE=∠BAC+∠BAE.∴∠DAB=∠EAC.在△DAB和△EAC中,,∴△DAB≌△EAC(SAS),∴BD=CE,∠DBA=∠ECA,∵∠ECA+∠ECB+∠ABC=90°,∴∠DBA+∠ECB+∠ABC=90°,即∠DBC+∠ECB=90°,∴∠BPC=180°﹣(∠DBC+∠ECB)=90°,∴BD⊥CE,综上所述:BD=CE且BD⊥CE;(6)解:过点A作EA⊥AD,且AE=AD,连接CE,DE,如图(6)所示:则△ADE是等腰直角三角形,∠EAD=90°,∴DE=AD=4,∠EDA=45°,∵∠ADC=45°,∴∠EDC=45°+45°=90°,在Rt△DCE中,CE=,∵∠ACB=∠ABC=45°,∴∠BAC=90°,AB=AC,∵∠BAC+∠CAD=∠EAD+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=.(7)解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,结论①正确.∵△ACD≌△BCE,∴∠CAD=∠CBE,又∵∠ACB=∠DCE=60°,∴∠BCD=180°﹣60°﹣60°=60°,。

人教版 2020-2021学年第一学期八年级数学上册期末模拟测试题(含答案)

人教版 2020-2021学年第一学期八年级数学上册期末模拟测试题(含答案)

2020-2021学年第一学期八年级数学上册期末模拟测试题一、选择题(每小题3分,共30分)1.在给出的一组数据0,π,5,3.14,39,227中,无理数的个数有( )A .1B .2C .3D .52.等腰三角形的腰长为10,底边长为12,则其底边上的高为( ) A .13 B .8 C .25 D .643.如图,把“QQ ”笑脸放在直角坐标系中,已知左眼A 的坐标是(-2,3),嘴唇C 点的坐标为(-1,1),则此“QQ ”笑脸右眼B 的坐标是( )A .(0,3)B .(0,1)C .(-1,2)D .(-1,3)4.若方程x -2=0的解也是直线y =(2k -1)x +10与x 轴的交点的横坐标,则k 的值为( )A .2B .0C .-2D .±25.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( )A .a =4,b =0B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定6.某校九年级(1)班全体学生2020年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是( ) A .该班一共有40名同学B.该班学生这次考试成绩的众数是45分C.该班学生这次考试成绩的中位数是45分D.该班学生这次考试成绩的平均数是45分7.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP =20°,∠ACP=50°,则∠A+∠P的度数是( )A.70°B.80°C.90°D.100°8.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:①k<0;②a>0;③不等式kx+b<x+a的解集为x<3中,正确的个数是( )A.0 B.1 C.2 D.39.下列说法:①如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a,b,c(a>b=c),那么a2∶b2∶c2=2∶1∶1,其中正确的是( )A.①②B.①③C.①④D.②④10.如图所示中的圆点是有规律地从里到外逐层排列的.设y为第n层(n为正整数)圆点的个数,则下列函数关系中正确的是( )A.y=4n-4 B.y=4n C.y=4n+4 D.y=n2二、填空题(每小题3分,共18分)11.16的平方根是____;-125的立方根是____.12.已知P 1(a -1,5)和P 2(2,b -1)关于x 轴对称,则(a +b)2 020的值为____.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为____.14.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是____.15.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离到达点B 200 m ,结果他在水中实际游了520 m ,则该河流的宽度为____m .16.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0),如:3*2=3+23-2=5,那么7*(6*3)=3.三、解答题(共72分) 17.计算: (1)1212-(313+2); (2)(5-25)2;(3)23(375-12-27); (4)(3+2-1)(3-2+1).18.解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.19.已知点P(a -1,-b +2)关于x 轴的对称点为M ,关于y 轴的对称点为N ,若点M 与点N 的坐标相等.(1)求a ,b 的值;20.如图,将长方形ABCD 沿直线BD 折叠,使点C 落在点C′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.21.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序是:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试,两个程序的结果统计如下:请你根据以上信息解答下列问题:(1)请分别计算甲、乙、丙的得票数;(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.22.在△ABC中,∠BAC=∠BCA,CD平分∠ACB,CE⊥AB,交AB的延长线于点E,∠BCE=48°,求∠CDE的度数.23.如图,在数轴上与3,5对应的点分别是A,B,点C也在数轴上,且AB=AC,设点C表示的数为x.(1)求x的值;(2)计算|x-3|+6x+5.24.某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y1与y2的函数表达式;(2)解释图中表示的两种方案是如何付推销费的;(3)如果你是推销员,应如何选择付费方案?25.如图,一次函数y=-34x+3的图象与x轴和y轴分别交于点A和点B,将△AOB沿直线CD对折,使点A和点B重合,直线CD与x轴交于点C,与直线AB交于点D.(1)求A,B两点的坐标;(2)求OC的长;(3)设P是x轴上一动点,若使△PAB是等腰三角形,写出点P的坐标.参考答案一、选择题(每小题3分,共30分)1.在给出的一组数据0,π,5,3.14,39,227中,无理数的个数有( C )A.1 B.2 C.3 D.52.等腰三角形的腰长为10,底边长为12,则其底边上的高为( B )A.13 B.8 C.25 D.643.如图,把“QQ”笑脸放在直角坐标系中,已知左眼A的坐标是(-2,3),嘴唇C点的坐标为(-1,1),则此“QQ”笑脸右眼B的坐标是( A)A.(0,3) B.(0,1) C.(-1,2) D.(-1,3)4.若方程x -2=0的解也是直线y =(2k -1)x +10与x 轴的交点的横坐标,则k 的值为( C )A .2B .0C .-2D .±25.在方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =1中,如果⎩⎪⎨⎪⎧x =12,y =-1是它的一个解,那么a ,b 的值是( A ) A .a =4,b =0 B .a =12,b =0 C .a =1,b =2 D .a ,b 不能确定6.某校九年级(1)班全体学生2020年初中毕业体育考试的成绩统计如表:根据表中的信息判断,下列结论中错误的是( D )A .该班一共有40名同学B .该班学生这次考试成绩的众数是45分C .该班学生这次考试成绩的中位数是45分D .该班学生这次考试成绩的平均数是45分7.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP =20°,∠ACP =50°,则∠A +∠P 的度数是( C )A .70°B .80°C .90°D .100°8.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③不等式kx +b <x +a 的解集为x <3中,正确的个数是( B )A .0B .1C .2D .39.下列说法:①如果a ,b ,c 为一组勾股数,那么4a ,4b ,4c 仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a ,b ,c(a >b =c),那么a 2∶b 2∶c 2=2∶1∶1,其中正确的是( C )A .①②B .①③C .①④D .②④10.如图所示中的圆点是有规律地从里到外逐层排列的.设y 为第n 层(n 为正整数)圆点的个数,则下列函数关系中正确的是( B )A .y =4n -4B .y =4nC .y =4n +4D .y =n 2二、填空题(每小题3分,共18分)11.16的平方根是__±2__;-125的立方根是__-5__.12.已知P 1(a -1,5)和P 2(2,b -1)关于x 轴对称,则(a +b)2 020的值为__-1__.13.已知x ,y 是二元一次方程组⎩⎪⎨⎪⎧x -2y =3,2x +4y =5的解,则代数式x 2-4y 2的值为__152__.14.需要对一批排球的质量是否符合标准进行检测,其中质量超过标准的克数记为正数,不足标准的克数记为负数,现抽取8个排球,通过检测所得数据如下(单位:克):+1,-2,+1,0,+2,-3,0,+1,则这组数据的方差是__2.5__.15.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C 偏离到达点B 200 m ,结果他在水中实际游了520 m ,则该河流的宽度为__480__m .17.对于两个不相等的实数a ,b ,定义一种新的运算如下:a*b =a +ba -b(a +b >0),如:3*2=3+23-2=5,那么7*(6*3)=3.三、解答题(共72分) 17.计算: (1)1212-(313+2); (2)(5-25)2; 解:- 2. 解:95.(3)23(375-12-27); (4)(3+2-1)(3-2+1). 解:60. 解:2 2.18.解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.解:⎩⎨⎧x =2,y =-1. 解:⎩⎨⎧x =9,y =6. 解:⎩⎨⎧x =1,y =1.解:⎩⎨⎧x =1,y =-2,z =-1.19.已知点P(a -1,-b +2)关于x 轴的对称点为M ,关于y 轴的对称点为N ,若点M 与点N 的坐标相等.(1)求a ,b 的值;解:因为点P (a -1,-b +2)关于x 轴的对称点为M ,所以M (a -1,b -2),因为点P (a -1,-b +2)关于y 轴的对称点为N ,所以N (-a +1,-b +2),因为点M 与点N 的坐标相等,所以a -1=-a +1,b -2=-b +2,解得a =1,b =2.(2)猜想点P 的位置并说明理由.解:点P 的位置是原点.理由:因为a =1,b =2,所以点P (a -1,-b +2)的坐标为(0,0),即P 点为原点.20.如图,将长方形ABCD 沿直线BD 折叠,使点C 落在点C′处,BC ′交AD 于点E ,AD =8,AB =4,求△BED 的面积.解:由题意,易知AD ∥BC ,所以∠2=∠3.因为△BC′D 与△BCD 关于直线BD 对称,所以∠1=∠2.所以∠1=∠3.所以EB =ED.设EB =x ,则ED =x ,AE =AD -ED =8-x.在Rt △ABE 中,AB 2+AE 2=BE 2,所以42+(8-x )2=x 2.所以x =5.所以DE =5.所以S △BED =12DE·AB =12×5×4=10.21.某校八年级有200名学生,为了向市团委推荐本年级一名学生参加团代会,按如下程序进行了民主投票,推荐的程序是:首先由全年级学生对六名候选人进行投票,每名学生只能给一名候选人投票,选出票数多的前三名;然后再对这三名候选人(记为甲、乙、丙)进行笔试和面试,两个程序的结果统计如下:请你根据以上信息解答下列问题: (1)请分别计算甲、乙、丙的得票数;解:甲的票数是200×34%=68(票),乙的票数是200×30%=60(票),丙的票数是200×28%=56(票).(2)若规定每名候选人得一票记1分,将投票、笔试、面试三项得分按照2∶5∶3的比例计入每名候选人的总成绩,成绩最高的将被推荐,请通过计算说明甲、乙、丙哪名学生将被推荐.解:甲的平均成绩:68×2+92×5+85×32+5+3=85.1(分),乙的平均成绩:60×2+90×5+95×32+5+3=85.5(分),丙的平均成绩:56×2+95×5+80×32+5+3=82.7(分),因为乙的平均成绩最高,所以应该推荐乙.22.在△ABC 中,∠BAC =∠BCA ,CD 平分∠ACB ,CE ⊥AB ,交AB 的延长线于点E ,∠BCE =48°,求∠CDE 的度数.解:∵CE ⊥AB ,∴∠E =90°.在△BEC 中,∠CBE =180°-∠E -∠BCE =42°,∵∠BAC =∠BCA ,∠CBE =∠BAC +∠BCA ,∴∠BAC =∠BCA =12∠CBE =21°,又∵CD平分∠ACB ,∴∠ACD =12∠ACB =10.5°,∴∠CDE =∠ACD +∠BAC =10.5°+21°=31.5°.23.如图,在数轴上与3,5对应的点分别是A ,B ,点C 也在数轴上,且AB =AC ,设点C 表示的数为x.(1)求x 的值;解:因为数轴上A ,B 两点表示的数分别为3和5,且AB =AC ,所以3-x =5-3,解得x =23- 5.(2)计算|x -3|+6x +5.解:原式=|23-5-3|+623-5+5=5-3+3= 5.24.某公司推销一种产品,设x(件)是推销产品的数量,y(元)是推销费,如图表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求y 1与y 2的函数表达式;解:设y 1=k 1x (k 1≠0),将点(30,600)代入,可得k 1=20,所以y 1=20x.设y 2=k 2x +b (k 2≠0),将点(0,300),(30,600)代入,即⎩⎨⎧b =300,30k 2+b =600,解得⎩⎨⎧k 2=10,b =300.所以y 2=10x +300.(2)解释图中表示的两种方案是如何付推销费的;解:y 1是不推销产品没有推销费,每推销10件产品得推销费200元;y 2是保底工资300元,每推销10件产品再提成100元.(3)如果你是推销员,应如何选择付费方案?解:若业务能力强,平均每月推销都为30件时,两种方案都可以;平均每月推销大于30件时,就选择y 1的付费方案;平均每月推销小于30件时,选择y 2的付费方案.25.如图,一次函数y =-34x +3的图象与x 轴和y 轴分别交于点A 和点B ,将△AOB沿直线CD 对折,使点A 和点B 重合,直线CD 与x 轴交于点C ,与直线AB 交于点D.(1)求A ,B 两点的坐标;解:令y =0,则x =4;令x =0,则y =3,故点A 的坐标为(4,0),点B 的坐标为(0,3).(2)求OC 的长;解:设OC =x ,则AC =CB =4-x ,∵∠BOA =90°,∴OB 2+OC 2=CB 2,32+x 2=(4-x )2,解得x =78,∴OC =78.(3)设P 是x 轴上一动点,若使△PAB 是等腰三角形,写出点P 的坐标.解:设P 点坐标为(x ,0),当PA =PB 时,(x -4)2=x 2+9,解得x =78;当PA =AB 时,(x -4)2=42+32,解得x =9或x =-1;当PB =AB 时,x 2+32=42+32,解得x =-4(x =4,舍去).∴P 点坐标为(错误!,0),(-1,0)或(9,0),(-4,0).1、三人行,必有我师。

2020-2021青岛市八年级数学上期末试卷(带答案)

2020-2021青岛市八年级数学上期末试卷(带答案)

2020-2021青岛市八年级数学上期末试卷(带答案)一、选择题1.如图所示,小兰用尺规作图作边AC 上的高8”,作法如下:①分别以点。

石为圆心,大于OE 的一半长为半径作弧两弧交于凡②作射线8F,交边AC 于点儿③以8为圆心,BK 长为半径作弧,交直线AC 于点。

和民④取一点K 使K 和B 在AC 的两侧;所以8H 就是所求作的高.其中顺序正确的作图步骤是( )2 .如图,已知圆柱底面的周长为4 dm,圆柱的高为2 dm,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长的最小值为()A. 4>/5 dmB. 2-72 dmC. 2-75 dmD. 4& dm3 .如图,在平面直角坐标系中,以。

为圆心,适当长为半径画弧,交X 轴于点",交轴于点N,再分别一点M 、N 为圆心,大于!MN 的长为半径画弧,两弧在第二象限交 2[1 1于点P.若点P 的坐标为(二,小卜则。

的值为()4 .风筝会期间,几名同学租一辆面包车前去观看开幕式,面包车的租价为180元,出发时又 增加两名同学,结果每人比原来少摊了3元钱车费,设前去观看开幕式的同学共K 人,则所列方程为(180 180 、 180 180 、c.②④③①D.A. a = -lB. 。

= 一7C. ci = l 1D. a =-x x+2 x+2 x180 180 0 180 180 ,C. ----------- = 3D. ---------- = 3x x-2 x-2 x5.运用图腾解释神话、民俗民风等是人类历史上最早的一种文化现象.下列图腾中,不是轴对称图形的是()6.已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是()A. 4 B, 6 C. 8 D. 107,下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧^ABC全等的是()A. 8B. 9C. 10D. 11|3-x>a-2(x-l)9.若数a使关于x的不等式组| 1-x 有解且所有解都是2x+6>0的解,且2-x> -------I 2使关于y的分式方程*'+3=W 有整数解,则满足条件的所有整数a的个数是()A. 5B. 4C. 3D. 210.如图,用四个螺丝将四条不可弯曲的木条闱成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为何?3\v 、A. 5B. 6C. 7D. 1011.到三角形各顶点的距离相等的点是三角形()A.三条角平分线的交点B.三条高的交点C.三边的垂直平分线的交点D.三条中线的交点Y (I12.若关于x的方程」一= 2 +」一有增根,则a的值为() x-4 x-4A. -4B. 2C. 0D. 4二、填空题13.若大+kx+25是一个完全平方式,则k的值是.14.当】口= 时,关于x的分式方程经上1=-1无解.x-315.分解因式:x3y - 2x2y+xy=.x (x + 2)16.若加为实数,分式——^不是最简分式,则川=.r+ H1「人】> ba17.已知。

2020-2021学年青岛版数学八年级上册第一单元、第二单元测试题及答案(各一套)

2020-2021学年青岛版数学八年级上册第一单元、第二单元测试题及答案(各一套)

青岛版数学八年级上册第一单元测试题(时间:90分钟分值:120分)一、选择题(共10小题,每小题4分,满分40分)1.(4分)如图,若△ABC≌△DEF,∠E=()A.30°B.62°C.92°D.88°2.(4分)如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=7cm,BC =12cm,AC=9cm,那么BD的长是()A.7cm B.9cm C.12cm D.无法确定3.(4分)如图,线段AC与BD交于点O,且OA=OC,请添加一个条件,使△OAB≌△OCD,这个条件不可以是()A.AB=CD B.OB=OD C.∠A=∠C D.∠B=∠D 4.(4分)如图,点P是∠BAC内一点,PE⊥AB,PF⊥AC,PE=PF,则△PEA≌△PF A 的理由是()A.HL B.ASA C.AAS D.SAS5.(4分)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E.BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()A.1组B.2组C.3组D.4组6.(4分)图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ7.(4分)如图,用∠B=∠D,∠1=∠2直接判定△ABC≌△ADC的理由是()A.AAS B.SSS C.ASA D.SAS8.(4分)如图,AC与BD相交于点E,BE=ED,AE=EC,则△ABE≌△CDE的理由是()A.ASA B.SAS C.AAS D.SSS9.(4分)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()。

2020-2021学年山东省青岛市黄岛区八年级(上)期末数学试卷

2020-2021学年山东省青岛市黄岛区八年级(上)期末数学试卷

2020-2021学年山东省青岛市黄岛区八年级(上)期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(3分)下列各数中,是无理数的是()A.B.3.C.D.2.(3分)下列句子,是命题的是()A.美丽的天空B.相等的角是对顶角C.作线段AB=CD D.你喜欢运动吗?3.(3分)小明为了解本班同学一周的课外阅读量,随机抽取班上15名同学进行调查,并将调查结果绘制成折线统计图(如图)()A.中位数是3,众数是2B.众数是1,平均数是2C.中位数是2,众数是2D.中位数是3,平均数是2.54.(3分)满足下列条件时,△ABC不是直角三角形的是()A.AB=,BC=4,AC=5B.AB:BC:AC=3:4:5C.∠A:∠B:∠C=3:4:5D.∠A=40°,∠B=50°5.(3分)已知点P1(a﹣1,5)和P2(2,b﹣1)关于x轴对称,则a+b的值为()A.0B.﹣1C.1D.56.(3分)已知一次函数y=kx+3的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A.(﹣1,2)B.(1,﹣2)C.(2,3)D.(3,4)7.(3分)在抗击疫情网络知识竞赛中,为奖励成绩突出的学生,学校计划用200元购买A (两种都要买),A种每个15元,B种每个25元,购买方案共有()A.2种B.3种C.4种D.5种8.(3分)已知关于x,y的二元一次方程组无解的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(本大题共8小题,每小题3分,共24分)9.(3分)比较大小:.10.(3分)如图,在△ABC中,AB=AC,CD∥AB,则∠BCD的度数是°.11.(3分)某5人学习小组在寒假期间进行线上测试,其成绩(分)分别为:86,90,92,方差为S2=8.0,后来老师发现每人都少加了2分,每人补加2分后新2=.12.(3分)如图,在一次夏令营活动中,小明从营地A出发,然后再沿北偏西37°方向走了300m到达目的地C.此时A,C两点之间的距离为m.13.(3分)如图,正比例函数的图象与一次函数y=﹣x+1的图象相交于点P,点P到x轴的距离是2.14.(3分)如图,△AOB与△COB关于边OB所在的直线成轴对称,AO的延长线交BC于点D.若∠BOD=46°,则∠ADC=°.15.(3分)如图,是由7块颜色不同的正方形组成的长方形,已知中间小正方形的边长为1.16.(3分)如图,已知直线a:y=x,直线b:y=﹣(1,0),过点P作y轴的平行线交直线a于点P1,过点P1作x轴的平行线交直线b于点p2,过点p2作y轴的平行线交直线a于点p3,过点p3作x轴的平行线交直线b于点p4,…,按此作法进行下去,则点P2021的横坐标为.三、解答题(本题共8道小题,满分72分)17.(16分)(1)计算:4﹣;(2)计算:(﹣2)×;(3)解方程组:;(4)解方程组:.18.(6分)如图,直线EF分别与直线AB,CD交于点E,FN平分∠CFE,且EM∥FN.求证:AB∥CD.19.(6分)为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,某农业科技小组对A,B两个玉米品种进行了试验种植对比研究.今年A,B两个品种的售价均为2.4元/千克,且B品种的平均亩产量比A品种高100千克,A,B两个品种今年平均亩产量分别是多少千克?20.(8分)6月26日是“国际禁毒日”,某中学组织七、八年级全体学生开展了“禁毒知识”网上竞赛活动.为了解竞赛情况,从两个年级各随机抽取了10名同学的成绩(满分为100分),95,95,90,80,90,85;八年级85,85,80,95,90,90,90.整理数据:80859095100分数人数年级七年级22321八年级124a1分析数据:平均数中位数众数方差七年级89b9039八年级c90d30根据以上信息回答下列问题:(1)请直接写出表格中a,b,c,d的值;(2)通过数据分析,你认为哪个年级的成绩比较好?请说明理由;(3)该校七、八年级共有600人,本次竞赛成绩不低于90分的为“优秀”.估计这两个年级共有多少名学生达到“优秀”?21.(8分)如图,BD∥GE,∠AFG=∠1=50°,交BD的延长线于点Q,交DE于点H,求∠CAQ的度数.22.(8分)如图1,在A,B两地之间有汽车站C,货车由B地驶往A地,两车同时出发1(km)、货车离C站的距离y2(km)与行驶时间x(h)之间的关系如图2所示.(1)A,B两地相距千米,货车的速度是千米/时;(2)出发3小时后,求货车离C站的距离y2(km)与行驶时间x(h)之间的关系式;(3)两车出发后几小时相遇?23.(10分)阅读感悟:有些关于方程组的问题,需要求的结果不是每一个未知数的值,而是关于未知数的代数式的值已知实数x,y满足3x﹣y=5①,2x+3y=7②本题常规思路是将①②两式联立组成方程组,解得x,y的值再代入欲求值的代数式得到答案,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组,则x﹣y=,x+y=;(2)“战疫情,我们在一起”,某公益组织计划为老年公寓捐赠一批防疫物资.已知购买20瓶消毒液、3支测温枪、2套防护服共需1180元,若该公益组织实际捐赠了100瓶消毒液、10支测温枪、20套防护服,则购买这批防疫物资共需多少元?(3)对于实数x,y,定义新运算:x*y=ax﹣by+c,其中a,b,等式右边是通常的加法和乘法运算.已知3*5=15,4*7=2824.(10分)如图,在平面直角坐标系中,直线y=x+2与x轴,B两点,直线y=x+2与直线y=nx+5相交于点C(m,4).(1)求m,n的值;(2)直线y=nx+5与x轴交于点D,动点P从点D开始沿线段DA以每秒1个单位的速度向A点运动,设点P的运动时间为t秒.①若△ACP的面积为12,求t的值;②是否存在某一时刻t,使△ACP为等腰三角形?若存在,求出t的值,请说明理由.2020-2021学年山东省青岛市黄岛区八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的。

2020--2021学年上学期人教版 八年级数学试题

2020--2021学年上学期人教版 八年级数学试题

2020-2021上学期人教版八年级数学期末试卷一.选择题(共12小题)1.在预防新冠疫情期间,到公共场所都要佩戴口罩,据了解口罩的规格有两种:儿童款(长14cm)和成人款(长17cm),其中超过标准长度的数量记为正数,不足的数量记为负数.质量监督局检查了四个药店的儿童口罩,结果如下,从长度的角度看,最接近标准的儿童口罩是()A.+0.09B.﹣0.21C.+0.15D.﹣0.062.若|a|=a,则a表示()A.正数B.负数C.非正数D.非负数3.已知方程x2﹣3x=0,下列说法正确的是()A.方程的根是x=3B.只有一个根x=0C.有两个根x1=0,x2=3D.有两个根x1=0,x2=﹣34.x、y、c是有理数,则下列判断错误的是()A.若x=y,则x+2c=y+2c B.若x=y,则a﹣cx=a﹣cyC.若x=y,则=D.若=,则x=y5.点P到x轴的距离是3,到y轴的距离是2,且点P在y轴的左侧,则点P的坐标是()A.(﹣2,3)或(﹣2,﹣3)B.(﹣2,3)C.(﹣3,2)或(﹣3,﹣2)D.(﹣3,2)6.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2019个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是()A.(1,0)B.(0,1)C.(﹣1,1)D.(﹣1,﹣2)7.下列属于圆柱体的是()A.B.C.D.8.沿图中虚线旋转一周,能围成的几何体是()A.B.C.D.9.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔,若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋10.下列说法:①已知△ABC中,AB=6,AC=8,则中线AD的取值范围是1≤AD≤7;②两边和一角对应相等的两个三角形全等;③如果两个三角形关于某直线成轴对称,那么它们是全等三角形;④一腰上的中线也是这条腰上的高的等腰三角形是等边三角形.其中正确的有()A.1个B.2个C.3D.4个11.某校为了解七年级14个班级学生吃零食的情况,下列做法中,比较合理的是()A.了解每一名学生吃零食情况B.了解每一名女生吃零食情况C.了解每一名男生吃零食情况D.每班各抽取7男7女,了解他们吃零食情况12.把25枚棋子放入右图的三角形内,那么一定有一个小三角形中至少放入()枚.A.6B.7C.8D.9二.填空题(共6小题)13.如果汽车向东行驶30千米记作+30千米,那么向西行驶20千米记作千米.14.若x=﹣1为方程x2﹣m=0的一个根,则m的值为.15.点M(﹣2,3)到x轴和y轴的距离之和是.16.个完全相同的圆锥形铁块,可以熔铸成一个与它们等底等高的圆柱.17.如图,在矩形ABCD中,AB=8,BC=4,一发光电子开始置于AB边的点P处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°,当发光电子与矩形的边碰撞2020次后,它与AB边的碰撞次数是.18.小芸为了解同学们最感兴趣的在线学习方式,设计了如下的调查问题(选项不完整):你最感兴趣的一种在线学习方式是()(单选)A.B.C.D.其他她准备从“①在线听课,②在线讨论,③在线学习2~3小时,④用手机在线学习,⑤在线阅读”中选取三个作为该问题的备选答案,合理的选取是.(填序号)三.解答题(共9小题)19.在抗洪抢险过程中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天航行路程记录如下:(单位:千米)15,﹣7,18,9,﹣3,6,﹣8(1)通过计算说明B地在A地的什么位置;(2)已知冲锋舟每千米耗油0.5升,油箱容量为40升,若冲锋舟在救援前将油箱加满,请问该冲锋舟在救援过程中是否还需要补充油?20.把下列各数填在相应的括号内:﹣,0,﹣30,,+20,﹣2.6,π,0.,0.3030030003…(每两个3之间逐次增加一个0).正有理数集合:{…};负数集合:{…};整数集合:{…}.21.阅读理解题:下面是小明将等式x﹣4=3x﹣4进行变形的过程:x﹣4+4=3x﹣4+4,①x=3x,②1=3.③(1)小明①的依据是.(2)小明出错的步骤是,错误的原因是.(3)给出正确的解法.22.关于x的方程x﹣2m=﹣3x+4与2﹣x=m的解互为相反数.(1)求m的值;(2)求这两个方程的解.23.已知当m,n都是实数.且满足2m=8+n时,称p(m﹣1,)为“开心点”.(1)判断点A(5,3),B(4,10)是否为“开心点”,并说明理由;(2)若点M(a,2a﹣1)是“开心点”,请判断点M在第几象限?并说明理由.24.综合与实践某“综合与实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为acm的正方形纸板制作出两种不同方案的长方体盒子(图1为无盖的长方体纸盒,图2为有盖的长方体纸盒),请你动手操作验证并完成任务.(纸板厚度及接缝处忽略不计)动手操作一:根据图1方式制作一个无盖的长方体盒子.方法:先在纸板四角剪去四个同样大小边长为bcm的小正方形,再沿虚线折合起来.问题解决:(1)该长方体纸盒的底面边长为cm;(请你用含a,b的代数式表示)(2)若a=24cm,b=6cm,则长方体纸盒的底面积为多少cm2;动手操作二:根据图2方式制作一个有盖的长方体纸盒.方法:先在纸板四角剪去两个同样大小边长为bcm的小正方形和两个同样大小的小长方形,再沿虚线折合起来.拓展延伸:(3)该长方体纸盒的体积为多少cm3?(请你用含a,b的代数式表示)25.如图,△ABC中,∠ABC=45°,点A关于直线BC的对称点为P,连接PB并延长.过点C作CD⊥AC,交射线PB于点D.(1)如图①,∠ACB为钝角时,补全图形,判断AC与CD的数量关系:;(2)如图②,∠ACB为锐角时,(1)中结论是否仍成立,并说明理由.26.甲、乙两种水稻试验品种连续5年的平均单位面积产量(单位:t/hm2)如表,试根据这组数据估计哪一种水稻品种好.品种第1年第2年第3年第4年第5年甲9.89.910.11010.2乙9.410.310.89.79.8 27.若从1,2,3,…,n中任取5个两两互素的不同的整数a1,a2,a3,a4,a5,其中总有一个整数是素数,求n的最大值.2020-2021上学期人教版八年级数学期末试卷参考答案与试题解析一.选择题(共12小题)1.【分析】根据题意可知绝对值最小的即为最接近标准的儿童口罩,即可得出答案.【解答】解:根据题意得:|﹣0.06|<|+0.09|<|+0.15|<|﹣0.21|,故选:D.2.【分析】根据绝对值的意义解答即可.【解答】解:∵|a|=a,∴a为非负数,故选:D.3.【分析】本题应对方程进行变形,提取公因式x,将原式化为两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:原方程变形为:x(x﹣3)=0,∴x=0或x﹣3=0,∴x=0或x=3,故选:C.4.【分析】根据等式的性质一一判断即可.【解答】解:A、根据等式的性质1可得出,若x=y,则x+2c=y+2c,原变形正确,故此选项不符合题意;B、根据等式的性质1和2得出,若x=y,则a﹣cx=a﹣cy,原变形正确,故此选项不符合题意;C、由x=y得出=必须c≠0,当c=0时不成立,故本选项符合题意;D、根据等式的性质2可得出,若=,则x=y,原变形正确,故此选项不符合题意;故选:C.5.【分析】根据题意,判断出点P所在的象限,再根据点到y轴的距离是点的横坐标的绝对值,到x轴的距离是点的纵坐标的绝对值,判断即可.【解答】解:∵点P在y轴左侧,∴点P在第二象限或第三象限,∵点P到x轴的距离是3,到y轴距离是2,∴点P的坐标是(﹣2,3)或(﹣2,﹣3),故选:A.6.【分析】由点A,B,C,D的坐标可得出四边形ABCD为矩形及AB,AD的长,由矩形的周长公式可求出矩形ABCD的周长,结合2019=202×10﹣1可得出细线的另一端在线段AD上且距A点1个单位长度,结合点A的坐标即可得出结论.【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=2,AD=3,四边形ABCD为矩形,∴C矩形ABCD=(3+2)×2=10.∵2019=202×10﹣1,∴细线的另一端在线段AD上,且距A点1个单位长度,∴细线的另一端所在位置的点的坐标是(1,1﹣1),即(1,0).故选:A.7.【分析】根据圆柱体的形状解答即可.【解答】解:A、图形是正方体,不符合题意;B、图形是梯形,不符合题意;C、图形属于圆柱体,符合题意;D、图形是圆,不符合题意;故选:C.8.【分析】根据“面动成体”可知,将长方形沿着长边所在的直线旋转一周,形成的几何体是圆柱,得出判断即可.【解答】解:将长方形沿着一边旋转一周,所形成的几何体是圆柱,故选:B.9.【分析】利用轴对称画出图形即可.【解答】解:如图所示:,该球最后落入的球袋是4号袋,故选:D.10.【分析】根据三角形的三边关系,全等三角形的判定,等边三角形的判定,轴对称的性质一一判断即可.【解答】解:①已知△ABC中,AB=6,AC=8,则中线AD的取值范围是1≤AD≤7,错误,应该是中线AD的取值范围是1<AD<7.②两边和一角对应相等的两个三角形全等,错误,SSA不一定全等.③如果两个三角形关于某直线成轴对称,那么它们是全等三角形,正确.④一腰上的中线也是这条腰上的高的等腰三角形是等边三角形,正确.故选:B.11.【分析】根据样本抽样的原则要求,逐项进行判断即可.【解答】解:根据样本抽样具有普遍性、代表性和可操作性,选项D比较合理,选项A为普查,没有必要,也不容易操作;选项B、C仅代表男生或女生的情况,不能反映全面的情况,不具有代表性,故选:D.12.【分析】把4个小三角形看作4个抽屉,把25枚棋子看作25个元素,那么每个抽屉需要放25÷4=6…1,所以每个抽屉需要放6枚,剩余的1枚无论怎么放,总有一个抽屉里至少有6+1=7,所以,至少有一个小三角形内至少要放7枚棋子,即可得出结论.【解答】解:25÷4=6……1,6+1=7(枚),故选:B.二.填空题(共6小题)13.【分析】根据正数和负数表示相反意义的量,向东行驶记为正,可得向西行驶的表示方法.【解答】解:如果汽车向东行驶30千米记作+30千米,那么向西行驶20千米记作﹣20千米.故答案为:﹣20.14.【分析】把x=﹣1代入方程得1﹣m=0,然后解一元一次方程即可.【解答】解:把x=﹣1代入方程得1﹣m=0,解得m=1.故答案为1.15.【分析】根据点的坐标与其到坐标轴的距离的关系进行解答.【解答】解:点M(﹣2,3)到x轴的距离为:3,到y轴的距离为:2,故点M(﹣2,3)到x轴和y轴的距离之和是:3+2=5.故答案为:5.16.【分析】根据圆柱的体积是同底同高的圆锥的体积的三倍解答即可.【解答】解:因为圆柱的体积是同底同高的圆锥的体积的三倍,所以3个完全相同的圆锥形铁块,可以熔铸成一个与它们等底等高的圆柱.故答案为:3.17.【分析】如图,以AB为x轴,AD为y轴,建立平面直角坐标系,根据反射角与入射角的定义可以在格点中作出图形,可以发现,在经过6次反射后,发光电子回到起始的位置,即可求解.【解答】解:如图以AB为x轴,AD为y轴,建立平面直角坐标系,根据图形可以得到:每6次反弹为一个循环组依次循环,经过6次反弹后动点回到出发点(6,0),且每次循环它与AB边的碰撞有2次,∵2020÷6=336…4,当点P第2020次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(2,0),∴它与AB边的碰撞次数是=336×2+1=673次,故答案为:673.18.【分析】根据题意可得“①在线听课,②在线讨论,⑤在线阅读”合理.【解答】解:根据题意可知:①在线听课,②在线讨论,⑤在线阅读,作为该问题的备选答案合理,故答案为:①②⑤.三.解答题(共9小题)19.【分析】(1)求出所有正负数之和,可以判断B点位置;(2)求所有正负数的绝对值之和,即为行程总和,在确定所需油量即可求解.【解答】解:(1)15﹣7+18+9﹣3+6﹣8=30(千米),答:B地在A地东面30千米;(2)15+7+18+9+3+6+8=66(千米),66×0.5=33<40,答:不需补充.20.【分析】按照有理数的分类填写即可.【解答】解:正有理数集合:{,+20,0.…}负数集合:{,﹣30,﹣2.6…}整数集合:{0,﹣30,+20…}故答案为:,+20,0.;,﹣30,﹣2.6;0,﹣30,+20.21.【分析】根据等式的性质解答即可.【解答】解:(1)小明①的依据是等式的两边都加(或减)同一个数(或整式),结果仍得等式;(2)小明出错的步骤是③,错误的原因是等式两边都除以0;(3)x﹣4=3x﹣4,x﹣4+4=3x﹣4+4,x=3x,x﹣3x=0,﹣2x=0,x=0.故答案为:等式的两边都加(或减)同一个数(或整式),结果仍得等式;③;等式两边都除以0.22.【分析】(1)先分别解关于x的一次方程得到x=m+1和x=2﹣m,再利用相反数的定义得到m+1+2﹣m=0,然后解关于m的方程即可;(2)把m的值分别代入x=m+1和x=2﹣m中得到两方程的解.【解答】解:(1)解方程x﹣2m=﹣3x+4得x=m+1,解方程2﹣x=m得x=2﹣m,根据题意得,m+1+2﹣m=0,解得m=6;(2)当m=6时,x=m+1=×6+1=4,即方程x﹣2m=﹣3x+4的解为x=4;当m=6时,x=2﹣m=2﹣6=﹣4,即方程2﹣x=m的解为x=﹣4.23.【分析】(1)根据A、B点坐标,代入(m﹣1,)中,求出m和n的值,然后代入2m=8+n检验等号是否成立即可;(2)直接利用“开心点”的定义得出a的值进而得出答案.【解答】解:(1)点A(5,3)为“开心点”,理由如下,当A(5,3)时,m﹣1=5,,得m=6,n=4,则2m=12,8+n=12,所以2m=8+n,所以A(5,3)是“开心点”;点B(4,10)不是“开心点”,理由如下,当B(4,10)时,m﹣1=4,,得m=5,n=18,则2m=10,8+18=26,所以2m≠8+n,所以点B(4,10)不是“开心点”;(2)点M在第三象限,理由如下:∵点M(a,2a﹣1)是“开心点”,∴m﹣1=a,,∴m=a+1,n=4a﹣4,代入2m=8+n有2a+2=8+4a﹣4,∴a=﹣1,2a﹣1=﹣3,∴M(﹣1,﹣3),故点M在第三象限.24.【分析】(1)根据折叠可得答案;(2)将a=24,b=6代入底面积的代数式计算即可;(3)根据图2的裁剪,折叠后,表示出长、宽、高进而用代数式表示体积.【解答】解:(1)根据折叠可知,底面是边长为(a﹣2b)(cm)的正方形,故答案为:(a﹣2b);(2)将a=24,b=6代入得,(a﹣2b)2=(24﹣2×6)2=144(cm2)答:长方体纸盒的底面积为144cm2;(3)裁剪后折叠成长方体的长为:(a﹣2b)cm,宽为cm,高为bcm,所以,折叠后长方体的体积为(a﹣2b)××b,即,b(a﹣2b)2,答:长方体的体积为b(a﹣2b)2.25.【分析】(1)结论:AC=CD.想办法证明,AC=CP,CD=CP即可.(2)结论不变,证明方法类似(1).【解答】解:(1)结论:AC=CD.理由:如图①中,设AB交CD于O,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACO=∠DBO=90°,∵∠AOC=∠DOB,∴∠D=∠A,∴∠D=∠P,∴CD=CP,∴AC=CD.故答案为:AC=CD.(2)结论不变.理由:如图②中,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACD=∠DBA=90°,∴∠ABD+∠ACD=180°,∴∠A+∠BDC=180°,∵∠CDP+∠BDC=180°,∴∠A=∠CDP∴∠CDP=∠P,∴CD=CP,∴AC=CD.26.【分析】首先求得平均产量,然后求得方差,进行比较即可.【解答】解:根据表格中的数据求得甲的平均数=(9.8+9.9+10.1+10+10.2)÷5=10;乙的平均数=(9.4+10.3+10.8+9.7+9.8)÷5=10,甲种水稻产量的方差是:[(9.8﹣10)2+(9.9﹣10)2+(10.1﹣10)2+(10﹣10)2+(10.2﹣10)2]=0.02,乙种水稻产量的方差是:[(9.4﹣10)2+(10.3﹣10)2+(10.8﹣10)2+(9.7﹣10)2+(9.8﹣10)2]=0.244.∴0.02<0.244,∴产量比较稳定的水稻品种是甲.因为甲、乙两种水稻单位面积产量的平均数相等,甲种方差小于乙种方差,所以甲种水稻品种好.27.【分析】只有1和它本身两个因数的数,就是质数(或素数).除了1和它本身以外,还有别的因数的数,就是合数.因为5个整数两两互素,它们的约数只能取2、3、5、7、11,又因为是合数,只能是约数的平方.所以可求解.【解答】解:若n≥49,取整数1,22,32,52,72,这五个整数是五个两两互素的不同的整数,但没有一个整数是素数,∴n≤48,在1,2,3,……,48中任取5个两两互素的不同的整数,若都不是素数,则其中至少有四个数是合数,不妨假设,a1,a2,a3,a4为合数,设其中最小的素因数分别为p1,p2,p3,p4,由于两两互素,∴p1,p2,p3,p4两两不同,设p是p1,p2,p3,p4中的最大数,则p≥7,因为a1,a2,a3,a4为合数,所以其中一定存在一个,aj≥p2≥72=49,与n≤48矛盾,于是其中一定有一个是素数,综上所述,正整数n的最大值为48.。

2021-2022学年八上期末数学题(含答案)

2021-2022学年八上期末数学题(含答案)
(2)当5是腰时,符合三角形的三边关系,
周长=4+5+5=14.
故选D.
【点睛】本题考查的知识点是等腰三角形的性质和三角形的三边关系,解题关键是进行分类讨论,还应验证各种情况是否能构成三角形进行解答.
4.平面直角坐标系中,点(a2+1,2020)所在象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
故选A.
【点睛】本题主要考查轴对称图形,掌握轴对称图形的定义并能正确识别轴对称图形是解答本题的关键.
2.下列实数0, , ,π,其中,无理数共有( )
A.1个B.2个C.3个D.4个
【答案】B
【解析】
【分:无理数有: , .
故选B.
【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.
6.如图,点B,C在线段AD上,AB=CD,AE∥BF,添加一个条件仍不能判定△AEC≌△BFD的是( )
A.AE=BFB.CE=DFC.∠ACE=∠BDFD.∠E=∠F
【答案】B
【解析】
【分析】根据三角形全等的判定定理逐项分析即可.
【详解】解:∵AE∥BF,
∴∠A=∠FBD,
∵AB=CD,
∴AC=BD,
7.满足下列条件时, 不是直角三角形的是( )
A. , , B.
C. D. ,
【答案】C
【解析】
【分析】根据三角形内角和公式和勾股定理的逆定理判定是否为直角三角形.
【详解】解:A、 符合勾股定理的逆定理,故A选项是直角三角形,不符合题意;
B、32+42=52,符合勾股定理的逆定理,故B选项是直角三角形,不符合题意;
(3)乙车出发后小时追上甲车.

2020-2021八年级数学上期末第一次模拟试题含答案(6)

2020-2021八年级数学上期末第一次模拟试题含答案(6)

2020-2021八年级数学上期末第一次模拟试题含答案(6)一、选择题1.张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意,得到的方程是( )A .1515112x x -=+B .1515112x x -=+C .1515112x x -=-D .1515112x x -=- 2.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别一点M N 、为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P . 若点P 的坐标为11,423a a ⎛⎫ ⎪-+⎝⎭,则a 的值为( )A .1a =-B .7a =-C .1a =D .13a = 3.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b +=++C .22()22a a b a ab +=+D .222()2a b a ab b -=-+ 4.若b a b -=14,则a b 的值为( ) A .5 B .15 C .3 D .135.下列各因式分解的结果正确的是( )A .()321a a a a -=-B .2()b ab b b b a ++=+C .2212(1)x x x -+=-D .22()()x y x y x y +=+-6.如图,在ABC ∆中,90︒∠=C ,8AC =,13DC AD =,BD 平分ABC ∠,则点D到AB 的距离等于( )A .4B .3C .2D .17.下列各式中不能用平方差公式计算的是( )A .()2x y)x 2y -+( B .() 2x y)2x y -+--( C .() x 2y)x 2y ---( D .()2x y)2x y +-+( 8.如图,在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 为BC 的中点,点E 、F 分别在AB 、AC 上,且90EDF ∠=︒,下列结论:①DEF ∆是等腰直角三角形;②AE CF =;③BDE ADF ∆∆≌;④BE CF EF +=.其中正确的是( )A .①②④B .②③④C .①②③D .①②③④9.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线; Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A .①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB .①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC .①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD .①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ 10.如图,在Rt△ABC 中,∠ACB=90°,∠B=30°,CD 是斜边AB 上的高,AD =3 cm ,则AB 的长度是( )A .3cmB .6cmC .9cmD .12cm 11.如图,在△ABC 中,AB=AC ,∠B=50°,P 是边 AB 上的一个动点(不与顶点 A 重合),则∠BPC 的度数可能是A .50°B .80°C .100°D .130° 12.下列运算正确的是( ) A .236326a a a -⋅=-B .()632422a a a ÷-=-C .326()a a -=D .326()ab ab =二、填空题13.3(5)2(5)x x x -+-分解因式的结果为__________.14.如图ABC V ,24AB AC ==厘米,B C ∠=∠,16BC =厘米,点D 为AB 的中点,点P 在线段BC 上以4厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动,若点Q 的运动速度为v 厘米/秒,则当BPD △与CQP V 全等时,v 的值为_____厘米/秒.15.等腰三角形的一个内角是100︒,则这个三角形的另外两个内角的度数是__________.16.已知等腰三角形的两边长分别为4和6,则它的周长等于_______17.分解因式:x 3y ﹣2x 2y+xy=______.18.在△ABC 中,AB=AC ,∠BAC=100°,点D 在BC 边上,连接AD ,若△ABD 为直角三角形,则∠ADC 的度数为_____.19.如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E , AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是____ ___20.因式分解34x x -= .三、解答题21.龙人文教用品商店欲购进A 、B 两种笔记本,用160元购进的A 种笔记本与用240元购进的B 种笔记本数量相同,每本B 种笔记本的进价比每本A 种笔记本的进价贵10元.(1)求A 、B 两种笔记本每本的进价分别为多少元?(2)若该商店准备购进A 、B 两种笔记本共100本,且购买这两种笔记本的总价不超过2650元,则至少购进A 种笔记本多少本?22.(1)计算:()108613333π-⎛⎫--÷+ ⎪⎝⎭ (2)因式分解:22312x y -23.在如图所示的直角坐标系中,每个小方格都是边长为1的正方形,△ABC 的顶点均在格点上,点A 的坐标是(﹣3,﹣1).(1)将△ABC 沿y 轴正方向平移3个单位得到△A 1B 1C 1,画出△A 1B 1C 1,并写出点B 1坐标;(2)画出△A 1B 1C 1关于y 轴对称的△A 2B 2C 2,并写出点C 2的坐标.24.先化简,再求值:22211111x x x x x ⎛⎫-++÷ ⎪-+⎝⎭,其中x =-2. 25.“2017年张学友演唱会”于6月3日在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】设小李每小时走x 千米,则小张每小时走(x+1)千米,根据题意可得等量关系:小李所用时间-小张所用时间=半小时,根据等量关系列出方程即可.【详解】解:设小李每小时走x 千米,依题意得:1515112x x -=+ 故选B .【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系列出方程.2.D解析:D【解析】【分析】根据作图过程可得P 在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得11=423a a -+,再根据P 点所在象限可得横纵坐标的和为0,进而得到a 的数量关系.【详解】根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0, 故11+423a a -+=0, 解得:a=13. 故答案选:D.【点睛】本题考查的知识点是作图—基本作图, 坐标与图形性质, 角平分线的性质,解题的关键是熟练的掌握作图—基本作图, 坐标与图形性质, 角平分线的性质作图—基本作图, 坐标与图形性质, 角平分线的性质.3.A解析:A【解析】【分析】根据阴影部分面积的两种表示方法,即可解答.【详解】图1中阴影部分的面积为:22a b -,图2中的面积为:()()a b a b +-,则22()()a b a b a b +-=-故选:A.【点睛】本题考查了平方差公式的几何背景,解决本题的关键是表示阴影部分的面积.4.A解析:A【解析】因为ba b-=14,所以4b=a-b.,解得a=5b,所以ab=55bb=.故选A.5.C解析:C【解析】【分析】将多项式写成整式乘积的形式即是因式分解,且分解到不能再分解为止,根据定义依次判断即可.【详解】()321a a a a-=-=a(a+1)(a-1),故A错误;2(1)b ab b b b a++=++,故B错误;2212(1)x x x-+=-,故C正确;22x y+不能分解因式,故D错误,故选:C.【点睛】此题考查因式分解的定义,熟记定义并掌握因式分解的方法及分解的要求是解题的关键.6.C解析:C【解析】【分析】如图,过点D作DE AB⊥于E,根据已知求出CD的长,再根据角平分线的性质进行求解即可.【详解】如图,过点D作DE AB⊥于E,AC8= Q,1DC AD3=,1CD 8213∴=⨯=+, C 90∠︒=Q ,BD 平分ABC ∠,DE CD 2∴==,即点D 到AB 的距离为2,故选C .【点睛】本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解题的关键.7.A解析:A【解析】【分析】根据公式(a+b )(a-b )=a 2-b 2的左边的形式,判断能否使用.【详解】解:A 、由于两个括号中含x 、y 项的系数不相等,故不能使用平方差公式,故此选项正确;B 、两个括号中,含y 项的符号相同,1的符号相反,故能使用平方差公式,故此选项错误;C 、两个括号中,含x 项的符号相反,y 项的符号相同,故能使用平方差公式,故此选项错误;D 、两个括号中,y 相同,含2x 的项的符号相反,故能使用平方差公式,故此选项错误; 故选:A .【点睛】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.8.C解析:C【解析】【分析】根据等腰直角三角形的性质以及斜边上的中线的性质,易证得△CDF ≌△ADE ,即可判断①②;利用SSS 即可证明△BDE ≅△ADF ,故可判断③;利用等量代换证得BE CF AB +=,从而可以判断④.【详解】∵△ABC 为等腰直角三角形,且点在D 为BC 的中点,∴CD=AD=DB ,AD ⊥BC ,∠DCF =∠B=∠DAE=45°,∵∠EDF=90︒,又∵∠C DF +∠FDA=∠CDA=90︒,∠EDA+∠EDA=∠EDF=90︒,∴∠C DF =∠EDA ,在△CDF 和△ADE 中,DF DCF C EDA CD AD DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CDF ≌△ADE ,∴DF=DE ,且∠EDF=90︒,故①DEF n 是等腰直角三角形,正确;CF=AE ,故②正确;∵AB=AC ,又CF=AE ,∴BE=AB-AE=AC-CF=AF ,在△BDE 和△ADF 中,BE AF DE DF BD DC =⎧⎪=⎨⎪=⎩,∴△BDE ≅△ADF ,故③正确;∵CF=AE ,∴BE CF BE AE AB EF +=+=≠,故④错误;综上:①②③正确故选:C .【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定方法是解题的关键.9.D解析:D【解析】【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;Ⅱ、作线段的垂直平分线,观察可知图③符合;Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;Ⅳ、作角的平分线,观察可知图①符合,所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,故选D .【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.10.D【解析】【分析】先求出∠ACD=30°,然后根据30°所对的直角边等于斜边的一半解答.【详解】在Rt△ABC中,∵CD是斜边AB上的高,∴∠ADC=90°,∴∠ACD+∠DCB=90°,∠B+∠DCB=90°,∴∠ACD=∠B=30°.∵AD=3cm.在Rt△ACD中,AC=2AD=6cm,在Rt△ABC中,AB=2AC=12cm,∴AB的长度是12cm.故选D.【点睛】本题主要考查直角三角形30°角所对的直角边等于斜边的一半的性质.11.C解析:C【解析】【分析】根据等边对等角可得∠B=∠ACB=50°,再根据三角形内角和计算出∠A的度数,然后根据三角形内角与外角的关系可得∠BPC>∠A , 再因为∠B=50°,所以∠BPC<180°-50°=130°进而可得答案.【详解】∵AB=AC,∠B=50°,∴∠B=∠ACB=50°,∴∠A=180°-50°×2=80°,∵∠BPC=∠A+∠ACP,∴∠BPC>∠A,∴∠BPC>80°.∵∠B=50°,∴∠BPC<180°-50°=130°,则∠BPC的值可能是100°.故选C.【点睛】此题主要考查了等腰三角形的性质,关键是掌握等腰三角形两底角相等.解析:C【解析】【分析】根据单项式的乘法和除法法则,以及幂的乘方法则即可作出判断.【详解】A 、-3a 2•2a 3=-6a 5,故A 错误;B 、4a 6÷(-2a 3)=-2a 3,故B 错误;C 、(-a 3)2=a 6,故C 正确;D 、(ab 3)2=a 2b 6,故B 错误;故选:C .【点睛】本题考查了单项式的乘法、除法以及幂的乘方,正确理解幂的运算法则是关键.二、填空题13.(x-5)(3x-2)【解析】【分析】先把代数式进行整理然后提公因式即可得到答案【详解】解:==;故答案为:【点睛】本题考查了提公因式法分解因式解题的关键是熟练掌握分解因式的几种方法解析:(x-5)(3x-2)【解析】【分析】先把代数式进行整理,然后提公因式(5)x -,即可得到答案.【详解】解:3(5)2(5)x x x -+-=3(5)2(5)x x x ---=(5)(32)x x --;故答案为:(5)(32)x x --.【点睛】本题考查了提公因式法分解因式,解题的关键是熟练掌握分解因式的几种方法. 14.4或6【解析】【分析】此题要分两种情况:①当BD=PC 时△BPD 与△CQP 全等计算出BP 的长进而可得运动时间然后再求v ;②当BD=CQ 时△BDP ≌△QCP 计算出BP 的长进而可得运动时间然后再求v 【详解析:4或6【解析】【分析】此题要分两种情况:①当BD=PC 时,△BPD 与△CQP 全等,计算出BP 的长,进而可得运动时间,然后再求v ;②当BD=CQ 时,△BDP ≌△QCP ,计算出BP 的长,进而可得运动时间,然后再求v.【详解】解:当BD=PC时,△BPD与△CQP全等,∵点D为AB的中点,∴BD=12AB=12cm,∵BD=PC,∴BP=16-12=4(cm),∵点P在线段BC上以4厘米/秒的速度由B点向C点运动,∴运动时间时1s,∵△DBP≌△PCQ,∴BP=CQ=4cm,∴v=4÷1=4厘米/秒;当BD=CQ时,△BDP≌△QCP,∵BD=12cm,PB=PC,∴QC=12cm,∵BC=16cm,∴BP=4cm,∴运动时间为4÷2=2(s),∴v=12÷2=6厘米/秒.故答案为:4或6.【点睛】此题主要考查了全等三角形的判定,关键是要分情况讨论,不要漏解,掌握全等三角形的判定方法:SSS、SAS、ASA、AAS、HL.15.40°40°【解析】【分析】因为等腰三角形的两个底角相等且三角形内角和为180°100°只能为顶角所以剩下两个角为底角且为40°40°【详解】解:∵三角形内角和为180°∴100°只能为顶角∴剩下两解析:40° 40°【解析】【分析】因为等腰三角形的两个底角相等,且三角形内角和为180°,100°只能为顶角,所以剩下两个角为底角,且为40°,40°.【详解】解:∵三角形内角和为180°,∴100°只能为顶角,∴剩下两个角为底角,且它们之和为80°,∴另外两个内角的度数分别为40°,40°.故答案为:40°,40°.【点睛】本题考查了等腰三角形的性质和三角形的内角和,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.16.14或16【解析】当4是底时三边为466能构成三角形周长为4+6+6=16;当6是底时三边为446能构成三角形周长为4+4+6=14故周长为16或14故答案为:16或14解析:14或16【解析】当4是底时,三边为4,6,6,能构成三角形,周长为4+6+6=16;当6是底时,三边为4,4,6,能构成三角形,周长为4+4+6=14.故周长为16或14.故答案为:16或14.17.xy(x﹣1)2【解析】【分析】原式提取公因式再利用完全平方公式分解即可【详解】解:原式=xy(x2-2x+1)=xy(x-1)2故答案为:xy(x-1)2【点睛】此题考查了提公因式法与公式法的综合解析:xy(x﹣1)2【解析】【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】解:原式=xy(x2-2x+1)=xy(x-1)2.故答案为:xy(x-1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.18.130°或90°【解析】分析:根据题意可以求得∠B和∠C的度数然后根据分类讨论的数学思想即可求得∠ADC的度数详解:∵在△ABC中AB=AC∠BAC=100°∴∠B=∠C=40°∵点D在BC边上△A解析:130°或90°.【解析】分析:根据题意可以求得∠B和∠C的度数,然后根据分类讨论的数学思想即可求得∠ADC的度数.详解:∵在△ABC中,AB=AC,∠BAC=100°,∴∠B=∠C=40°,∵点D在BC边上,△ABD为直角三角形,∴当∠BAD=90°时,则∠ADB=50°,∴∠ADC=130°,当∠ADB=90°时,则∠ADC=90°,故答案为130°或90°.点睛:本题考查等腰三角形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类讨论的数学思想解答.19.15cm 【解析】【分析】【详解】在△ABC 中边AB 的垂直平分线分别交BCAB 于点DEAE=3cmAE=BEAD=BD△ADC 的周长为9cm 即AC+CD+AD=9则△ABC 的周长=AB+BC+AC=解析:15cm【解析】【分析】【详解】在△ABC 中,边AB 的垂直平分线分别交BC 、AB 于点D 、E ,AE=3cm ,AE=BE ,AD=BD ,△ADC•的周长为9cm ,即AC+CD+AD=9,则△ABC 的周长=AB+BC+AC=AE+BE+BD+CD+AC=AE+BE+AD+CD+AC=6+9=15cm【点睛】本题考查垂直平分线,解答本题的关键是掌握垂直平分线的概念和性质,运用其来解答本题20.【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式若有公因式则把它提取出来之后再观察是否是完全平方公式或平方差公式若是就考虑用公式法继续分解因式因此先提取公因式后继续应用平方 解析:()()x x 2x 2-+-【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x -后继续应用平方差公式分解即可:()()()324x x x x 4x x 2x 2-=--=-+-. 三、解答题21.(1)A 、B 两种笔记本每本的进价分别为 20 元、30 元;(2)至少购进 A 种笔记本 35 本【解析】【分析】(1)设A 种笔记本每本的进价为x 元,则每本B 种笔记本的进价为(x +10)元,根据用160元购进的A 种笔记本与用240元购进的B 种笔记本数量相同即可列出方程,解方程即可求出结果;(2)设购进A 种笔记本a 本,根据购进的A 种笔记本的价钱+购进的B 种笔记本的价钱≤2650即可列出关于a 的不等式,解不等式即可求出结果.【详解】(1)解:设A 种笔记本每本的进价为x 元,根据题意,得:16024010x x =+,解得:=20x . 经检验:=20x 是原分式方程的解,+10=20+10=30x .答:A 、B 两种笔记本每本的进价分别为20 元、30元.(2)解:设购进A 种笔记本a 本,根据题意,得:()20+301002650a a -≤,解得:35a ≥.∴至少购进A 种笔记本35本.【点睛】本题考查的是分式方程的应用和一元一次不等式的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.22.(1)5-;(2)3(2)(2)x y x y +-.【解析】【分析】(1)先算幂的运算,再算乘除,加减;(2)先提公因式,再运用平方差公式.【详解】(1)解:原式2133=-+193=-+5=-(2)解:原式223(4)x y =-3(2)(2)x y x y =+-【点睛】考核知识点:整式运算,因式分解.掌握基本方法是关键.23.(1)画图见解析;点1B 坐标为:(﹣2,﹣1);(2)画图见解析;点2C 的坐标为:(1,1)【解析】【分析】(1)直接利用平移的性质得出平移后对应点位置进而得出答案;(2)利用轴对称图形的性质得出对应点位置进而得出答案.【详解】解:(1)如图所示:△111A B C ,即为所求;点1B 坐标为:(﹣2,﹣1);(2)如图所示:△222A B C ,即为所求,点2C 的坐标为:(1,1).考点:作图-轴对称变换;作图-平移变换24.21x x+;﹣52 【解析】【分析】先分解括号内的第一部分,再算括号内的加法,同时把除法变成乘法,约分后代入求出即可.【详解】解:原式=[2(1)(1)(1)x x x -+-+1x ]÷11x + =(11x x -++1x)•(x +1) =21(1)x x x ++•(x +1) =21x x+, 当x =﹣2时,原式=2(2)12-+- =﹣52. 【点睛】本题考查了分式的混合运算和求值,主要考查学生的化简能力和计算能力,题目比较好.25.(1)小张跑步的平均速度为210米/分钟.(2)小张不能在演唱会开始前赶到奥体中心.【解析】试题分析:(1)设小张跑步的平均速度为x 米/分钟,则小张骑车的平均速度为1.5x 米/分钟,根据时间=路程÷速度结合小张骑车的时间比跑步的时间少用了4分钟,即可得出关于x 的分式方程,解之并检验后即可得出结论;(2)根据时间=路程÷速度求出小张跑步回家的时间,由骑车与跑步所需时间之间的关系可得出骑车的时间,再加上取票和寻找“共享单车”共用的5分钟即可求出小张赶回奥体中心所需时间,将其与23进行比较后即可得出结论.试题解析:(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,根据题意得:252025201.5x x=4,解得:x=210,经检验,x=210是原方程组的解,答:小张跑步的平均速度为210米/分钟;(2)小张跑步到家所需时间为2520÷210=12(分钟),小张骑车所用时间为12﹣4=8(分钟),小张从开始跑步回家到赶回奥体中心所需时间为12+8+5=25(分钟),∵25>23,∴小张不能在演唱会开始前赶到奥体中心.。

八年级上册数学期末考试试题含答案

八年级上册数学期末考试试题含答案

八年级上册数学期末考试试卷一、选择题(共12小题).1.﹣2021的相反数是()A.﹣2021B.﹣C.D.20212.下列英文字母中,是轴对称图形的是()A.B.C.D.3.若代数式有意义,则x的取值范围是()A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠2 4.小马虎在下面的计算中只做对了一道题,他做对的题目是()A.a3•a5=a15B.(﹣a3)2=a6C.(2y)3=6y3D.a6÷a3=a2 5.将0.000000076用科学记数法表示为()A.7.6×108B.0.76×10﹣9C.7.6×10﹣8D.0.76×1096.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.将分式中的x,y的值同时扩大到原来的3倍,则分式的值()A.扩大到原来的3倍B.缩小到原来的C.保持不变D.无法确定8.下列命题正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.有一个角是60°的等腰三角形是等边三角形C.有一组邻边相等的四边形是菱形D.对角线相等的四边形是矩形9.一副直角三角尺如图摆放,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=30°,∠F=45°,则∠CED的度数是()A.15°B.25°C.45°D.60°10.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD交AD于点E,AB=6,BC=10,则EF长为()A.1B.2C.3D.411.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x只,树为y棵,则可列出方程组为()A.B.C.D.12.如图,在Rt△ABC中,AB=AC,∠BAC=90°,D、E为BC上两点,∠DAE=45°,F为△ABC外一点,且FB⊥BC,FA⊥AE,则下列结论:①CE=BF;②BD2+CE2=DE2;③;④CE2+BE2=2AE2,其中正确的是()A.①②③④B.①②④C.①③④D.②③二、填空题(每题3分,共12分)13.分解因式:x2y﹣9y=.14.﹣=.15.如图,一圆柱体的底面周长为24cm,高AB为9cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,则蚂蚁爬行的最短路程是cm.16.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2021=.三、解答题(17、18、19题每小题各6分,20、21题各8分,22、23题每小题各9分)17..18.先化简,再求代数式÷(a﹣)的值,其中a=﹣1.19.利用所学的知识计算:(1)已知a>b,且a2+b2=13,ab=6,求a﹣b的值;(2)已知a、b、c为Rt△ABC的三边长,若a2+b2+25=6a+8b,求Rt△ABC的周长.20.今年受疫情影响,我市中小学生全体在家线上学习.为了了解学生在家主动锻炼身体的情况,某校随机抽查了部分学生,对他们每天的运动时间进行调查,并将调查统计的结果分为四类:每天运动时间t≤20分钟的学生记为A类,20分钟<t≤40分钟记为B类,40分钟<t≤60分钟记为C类,t>60分钟记为D类.收集的数据绘制两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)这次共抽取了名学生进行调查统计;(2)扇形统计图中D类所对应的扇形圆心角大小为;(3)将条形统计图补充完整;(4)如果该校共有3000名学生,请你估计该校B类学生约有多少人?21.笔直的河流一侧有一旅游地C,河边有两个漂流点A.B.其中AB=AC,由于某种原因,由C到A的路现在已经不通,为方便游客决定在河边新建一个漂流点H(A,H,B 在一条直线上),并新修一条路CH测得BC=5千米,CH=4千米,BH=3千米,(1)问CH是否为从旅游地C到河的最近的路线?请通过计算加以说明;(2)求原来路线AC的长.22.很多企业纷纷加入生产口罩的大军中来,长沙某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的1.5倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.(1)求甲、乙两厂房每天各生产多少箱口罩?(2)已知甲、乙两厂房生产这种口罩每天的生产费分别是1500元和1200元,现有15000箱口罩的生产任务,甲厂房单独生产一段时间后另有安排,剩余任务由乙厂房单独完成.如果总生产费不超过36300元,那么甲厂房至少生产了多少天?23.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.四、综合题(每小题各10分,共20分)24.定义:对于平面直角坐标系中的任意两点A(x1,y1)和B(x2,y2),我们把它们的横、纵坐标的差的平方和的算术平方根称作这两点的“湘一根”,记作Q[A,B],即.(1)若A(2,1)和B(﹣2,3),则Q[A,B]=;(2)若点M(1,2),N(a,a﹣3),其中a为任意实数,求Q[M,N]的最小值;(3)若m为常数,且m>0,点A的坐标为(0,5m),B点的坐标为(8m,﹣m),C 点的坐标为(x,0),求Q[A,C]+Q[B,C]的最小值以及Q[A,C]﹣Q[B,C]的最大值.(用含m的代数式表示)25.如图,在平面直角坐标系中,矩形ABCO的顶点O与坐标原点重合,顶点A、C在坐标轴上,B(8,4),将矩形沿EF折叠,使点A与点C重合.(1)求点E的坐标;(2)点P从O出发,沿折线O﹣A﹣E方向以每秒2个单位的速度匀速运动,到达终点E时停止运动,设点P的运动时间为t,△PCE的面积为S,求S与t的关系式,并直接写出t的取值范围.(3)在(2)的条件下.当PA=PE时,在平面直角坐标原中是否存在点Q.使得以点P、E、G、Q为顶点的四边形为平行四边形?若不存在,请说明理由;若存在,请求出点Q的坐标.参考答案一、选择题(共12小题).1.﹣2021的相反数是()A.﹣2021B.﹣C.D.2021解:﹣2021的相反数是:2021.故选:D.2.下列英文字母中,是轴对称图形的是()A.B.C.D.解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.3.若代数式有意义,则x的取值范围是()A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠2解:由分式及二次根式有意义的条件可得:x﹣1≥0,x﹣2≠0,解得:x≥1,x≠2,故选:D.4.小马虎在下面的计算中只做对了一道题,他做对的题目是()A.a3•a5=a15B.(﹣a3)2=a6C.(2y)3=6y3D.a6÷a3=a2解:A、a3•a5=a8,故本选项不合题意;B、(﹣a3)2=a6,故本选项符合题意;C、(2y)3=8y3,故本选项不合题意;D、a6÷a3=a3,故本选项不合题意;故选:B.5.将0.000000076用科学记数法表示为()A.7.6×108B.0.76×10﹣9C.7.6×10﹣8D.0.76×109解:将0.000000076用科学记数法表示为7.6×10﹣8,故选:C.6.不等式组的解集在数轴上表示正确的是()A.B.C.D.解:,由不等式①,得x<2,由不等式②,得x≥﹣1,故原不等式组的解集是﹣1≤x<2,故选:A.7.将分式中的x,y的值同时扩大到原来的3倍,则分式的值()A.扩大到原来的3倍B.缩小到原来的C.保持不变D.无法确定解:由题意得:=,无法确定,故选:D.8.下列命题正确的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.有一个角是60°的等腰三角形是等边三角形C.有一组邻边相等的四边形是菱形D.对角线相等的四边形是矩形解:A、一组对边平行,另一组对边相等的四边形不一定是平行四边形,原命题是假命题;B、有一个角是60°的等腰三角形是等边三角形,是真命题;C、有一组邻边相等的平行四边形是菱形,原命题是假命题;D、对角线相等的平行四边形是矩形.原命题是假命题;故选:B.9.一副直角三角尺如图摆放,点D在BC的延长线上,EF∥BC,∠B=∠EDF=90°,∠A=30°,∠F=45°,则∠CED的度数是()A.15°B.25°C.45°D.60°解:∵∠B=90°,∠A=30°,∴∠ACB=60°.∵∠EDF=90°,∠F=45°,∴∠DEF=45°.∵EF∥BC,∴∠CEF=∠ACB=60°,∴∠CED=∠CEF﹣∠DEF=60°﹣45°=15°.故选:A.10.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD交AD于点E,AB=6,BC=10,则EF长为()A.1B.2C.3D.4解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=10,DC=AB=6.∴∠AFB=∠FBC.∵BF平分∠ABC,∴∠ABF=∠FBC.∴∠AFB=∠ABF.∴AF=AB=6.同理可得DE=DC=6.∴EF=AF+DE﹣AD=6+6﹣10=2.故选:B.11.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”若诗句中谈到的鸦为x只,树为y棵,则可列出方程组为()A.B.C.D.解:设诗句中谈到的鸦为x只,树为y棵,则可列出方程组为:.故选:D.12.如图,在Rt△ABC中,AB=AC,∠BAC=90°,D、E为BC上两点,∠DAE=45°,F为△ABC外一点,且FB⊥BC,FA⊥AE,则下列结论:①CE=BF;②BD2+CE2=DE2;③;④CE2+BE2=2AE2,其中正确的是()A.①②③④B.①②④C.①③④D.②③解:①∵∠BAC=90°,FA⊥AE,∠DAE=45°,∴∠CAE=90°﹣∠DAE﹣∠BAD=45°﹣∠BAD,∠FAB=90°﹣∠DAE﹣∠BAD=45°﹣∠BAD,∴∠FAB=∠EAC,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵FB⊥BC,∴∠FBA=45°,∴△AFB≌△AEC,∴CE=BF,故①正确,②:由①中证明△AFB≌△AEC,∴AF=AE,∵∠DAE=45°,FA⊥AE,∴∠FAD=∠DAE=45°,∴△AFD≌△AED,连接FD,∵FB=CE,∴FB2+BD2=FD2=DE2,故②正确,③:如图,设AD与EF的交点为G,∵∠FAD=∠EAD=45°,AF=AE,∴AD⊥EF,EF=2EG,∴S△ADE=•AD•EG==,故③正确,④:∵FB2+BE2=EF2,CE=BF,∴CE2+BE2=EF2,在RT△AEF中,AF=AE,AF2+AE2=EF2,∴EF2=2AE2,∴CE2+BE2=2AE2,故④正确.故选:A.二、填空题(每小题3分,共12分)13.分解因式:x2y﹣9y=y(x+3)(x﹣3).解:原式=y(x2﹣9)=y(x+3)(x﹣3).故答案为:y(x+3)(x﹣3).14.﹣=.解:原式=3﹣2=,故答案为:.15.如图,一圆柱体的底面周长为24cm,高AB为9cm,BC是上底面的直径.一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,则蚂蚁爬行的最短路程是15cm.解:如图所示:由于圆柱体的底面周长为24cm,则AD=24×=12cm.又因为CD=AB=9cm,所以AC==15cm.故蚂蚁从点A出发沿着圆柱体的表面爬行到点C的最短路程是15cm.故答案为:15.16.如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2021=22020.解:如图,∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠2=∠3=60°,∵∠MON=30°,∴∠1=60°﹣30°=30°,又∵∠3=60°,∴∠OB1A2=60°+30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3是等边三角形,同理可得:OA2=B2A2=2,∴a2=2a1=2,同理:a3=4a1=4=22,a4=8a1=8=23,a5=16a1=16=24,…,以此类推:所以a2021=22020.故答案是:22020.三、解答题(17、18、19题每小题各6分,20、21题各8分,22、23题每小题各9分)17..解:原式=2+2﹣+4﹣1=7﹣.18.先化简,再求代数式÷(a﹣)的值,其中a=﹣1.解:原式=÷=•=,当a=﹣1时,原式==﹣6﹣3.19.利用所学的知识计算:(1)已知a>b,且a2+b2=13,ab=6,求a﹣b的值;(2)已知a、b、c为Rt△ABC的三边长,若a2+b2+25=6a+8b,求Rt△ABC的周长.解:(1)∵a2+b2=13,ab=6,∴(a﹣b)2=a2+b2﹣2ab=13﹣2×6=1,∵a>b,∴a﹣b=1;(2)∵a2+b2+25=6a+8b,∴a2﹣6a+9+b2﹣8b+16=0,∴(a﹣3)2+(b﹣4)2=0,∴a=3,b=4,当4是直角边时,斜边长==5,则Rt△ABC的周长=3+4+5=12,当4是斜边时,另一条直角边长==,则Rt△ABC的周长=3+4+=7+,综上所述,Rt△ABC的周长为12或7+.20.今年受疫情影响,我市中小学生全体在家线上学习.为了了解学生在家主动锻炼身体的情况,某校随机抽查了部分学生,对他们每天的运动时间进行调查,并将调查统计的结果分为四类:每天运动时间t≤20分钟的学生记为A类,20分钟<t≤40分钟记为B类,40分钟<t≤60分钟记为C类,t>60分钟记为D类.收集的数据绘制两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)这次共抽取了50名学生进行调查统计;(2)扇形统计图中D类所对应的扇形圆心角大小为36°;(3)将条形统计图补充完整;(4)如果该校共有3000名学生,请你估计该校B类学生约有多少人?解:(1)这次共抽取了15÷30%=50名学生进行调查统计,故答案为:50;(2)D类有学生:50﹣15﹣22﹣8=5(人),扇形统计图中D类所对应的扇形圆心角的度数是:360°×=36°,故答案为:36°;(3)补全条形统计图如下:(4)估计该校B类学生约有3000×=1320(人).21.笔直的河流一侧有一旅游地C,河边有两个漂流点A.B.其中AB=AC,由于某种原因,由C到A的路现在已经不通,为方便游客决定在河边新建一个漂流点H(A,H,B 在一条直线上),并新修一条路CH测得BC=5千米,CH=4千米,BH=3千米,(1)问CH是否为从旅游地C到河的最近的路线?请通过计算加以说明;(2)求原来路线AC的长.解:(1)CH是从旅游地C到河的最近的路线,理由是:在△CHB中,∵CH2+BH2=42+32=25,BC2=25,∴CH2+BH2=BC2∴△HBC是直角三角形且∠CHB=90°,∴CH⊥AB,所以CH是从旅游地C到河的最近的路线;(2)设AC=AB=x千米,则AH=(x﹣3)千米,在Rt△ACH中,由已知得AC=x,AH=x﹣3,CH=4,由勾股定理得:AC2=AH2+CH2∴x2=(x﹣3)2+42解这个方程,得x=,答:原来的路线AC的长为千米.22.很多企业纷纷加入生产口罩的大军中来,长沙某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的1.5倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.(1)求甲、乙两厂房每天各生产多少箱口罩?(2)已知甲、乙两厂房生产这种口罩每天的生产费分别是1500元和1200元,现有15000箱口罩的生产任务,甲厂房单独生产一段时间后另有安排,剩余任务由乙厂房单独完成.如果总生产费不超过36300元,那么甲厂房至少生产了多少天?解:(1)设乙厂房每天生产x箱口罩,则甲厂房每天生产1.5x箱口罩,依题意,得:﹣=5,解得:x=400,经检验,x=400是原分式方程的解,且符合题意,∴1.5x=600,答:甲厂房每天生产600箱口罩,乙厂房每天生产400箱口罩;(2)设甲厂房生产了m天,则乙厂房生产了天,依题意,得:1500m+1200×≤36300,解得:m≥29,答:甲厂房至少生产了29天.23.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC 交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.【解答】(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,∴AE=DE,在△AFE和△DBE中,∴△AFE≌△DBE(AAS);(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.∵AD为BC边上的中线∴DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=BC,∴四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S菱形ADCF=AC▪DF=×4×5=10.四、综合题(每小题各10分,共20分)24.定义:对于平面直角坐标系中的任意两点A(x1,y1)和B(x2,y2),我们把它们的横、纵坐标的差的平方和的算术平方根称作这两点的“湘一根”,记作Q[A,B],即.(1)若A(2,1)和B(﹣2,3),则Q[A,B]=2;(2)若点M(1,2),N(a,a﹣3),其中a为任意实数,求Q[M,N]的最小值;(3)若m为常数,且m>0,点A的坐标为(0,5m),B点的坐标为(8m,﹣m),C 点的坐标为(x,0),求Q[A,C]+Q[B,C]的最小值以及Q[A,C]﹣Q[B,C]的最大值.(用含m的代数式表示)解:(1)Q[A,B]==2,故答案为:2.(2)如图,由题意,点N在直线y=x﹣3上运动,根据垂线段最短可知,当MN⊥直线y=x﹣3时,MN的值最小,此时N(3,0),∵M(1,2),∴Q[M,N]的最小值==2.(3)如图1中,∵m>0,A(0,5m),∴B(8m,﹣m)在第四象限,A在y轴的正半轴上,∴当A,C,B共线时,Q[A.C]+Q[C,B]的值最小,最小值==10m.如图2中,作点B关于x轴的对称点B′,当点C在AB′的延长线上时,Q[A,C]﹣Q[B,C]的值最大,最大值=Q[A,B′]==4m.25.如图,在平面直角坐标系中,矩形ABCO的顶点O与坐标原点重合,顶点A、C在坐标轴上,B(8,4),将矩形沿EF折叠,使点A与点C重合.(1)求点E的坐标;(2)点P从O出发,沿折线O﹣A﹣E方向以每秒2个单位的速度匀速运动,到达终点E时停止运动,设点P的运动时间为t,△PCE的面积为S,求S与t的关系式,并直接写出t的取值范围.(3)在(2)的条件下.当PA=PE时,在平面直角坐标原中是否存在点Q.使得以点P、E、G、Q为顶点的四边形为平行四边形?若不存在,请说明理由;若存在,请求出点Q的坐标.解:(1)如图1,在矩形ABCO中,B(8,4),∴AB=8,BC=4,设AE=x,则EC=x,BE=8﹣x,Rt△EBC中,由勾股定理得:EB2+BC2=EC2,∴(8﹣x)2+42=x2,∴x=5,即AE=5,∴E(5,4);(2)分两种情况:①当P在OA上时,0≤t≤2,如图2,S=S矩形OABC﹣S△PAE﹣S△BEC﹣S△OPC,=8×4﹣×5(4﹣2t)﹣×3×4﹣×8×2t,=﹣3t+16,②当P在AE上时,2<t≤4.5,如图3,S=PE•BC=×4×(8﹣2t)=﹣4t+16.综上所述,S=;(3)存在,由PA=PE可知:P在AE上,如图4,过G作GH⊥OC于H,∵AP+PE=5,∴AP=3,PE=2,设OF=x,则FG=x,FC=8﹣x,由折叠得:∠CGF=∠AOF=90°,由勾股定理得:FC2=FG2+CG2,∴(8﹣x)2=x2+42,解得x=3,∴FG=3,FC=8﹣3=5,FC•GH=FG•CG,×5×GH=×3×4,GH=2.4,由勾股定理得:FH==1.8,∴OH=3+1.8=4.8,∴G(4.8,﹣2.4),∵点P、E、G、Q为顶点的四边形为平行四边形,且PE=2,∴Q(6.8,﹣2.4)或(2.8,﹣2.4).。

必刷卷 06-2020-2021学年八年级数学上学期期末仿真必刷模拟卷(华东师大版)(解析版)

必刷卷 06-2020-2021学年八年级数学上学期期末仿真必刷模拟卷(华东师大版)(解析版)

2020-2021学年八年级上学期数学期末仿真必刷模拟卷【华东师大版】期末检测卷06姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共25题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.已知△ABC的三边a,b,c满足(a﹣4)2++|c﹣4|=0,那么△ABC是()A.不等边三角形B.等边三角形C.等腰三角形D.不能判断【解答】解:∵(a﹣4)2++|c﹣4|=0,∴a﹣4=0,b﹣4=0,c﹣4=0,∴a=b=c=4,∴△ABC的形状是等边三角形,故选:B.【知识点】非负数的性质:算术平方根、等腰三角形的判定、等边三角形的判定、非负数的性质:偶次方、非负数的性质:绝对值2.已知m=+,则()1/ 212 / 21A .4<m <5B .5<m <6C .6<m <7D .7<m <8【解答】解:m =+=4+,∵2<<3,∴6<4+<7,∴6<m <7, 故选:C .【知识点】估算无理数的大小3.某一餐桌的表面如图所示(单位:m ),设图中阴影部分面积S 1,餐桌面积为S 2,则=( )A .B .C .D .【解答】解:∵S 1=(a ﹣)(b ﹣b )+[(b •a )﹣(×)]=×+[ab ﹣]=ab ,S 2=ab ,∴==,故选:C .【知识点】整式的混合运算4.已知ab=﹣2,a﹣3b=5,则a3b﹣6a2b2+9ab3的值为()A.﹣10B.20C.﹣50D.40【解答】解:a3b﹣6a2b2+9ab3=ab(a2﹣6ab+9b2)=ab(a﹣3b)2,将ab=﹣2,a﹣3b=5代入得ab(a﹣3b)2=﹣2×52=﹣50.故a3b﹣6a2b2+9ab3的值为﹣50.故选:C.【知识点】提公因式法与公式法的综合运用5.已知:如图,∠MCN=42°,点P在∠MCN内部,P A⊥CM,PB⊥CN,垂足分别为A、B,P A=PB,则∠MCP的度数为()A.21°B.24°C.42°D.48°【解答】解:∵P A⊥CM,PB⊥CN,∴∠P AC=∠PBC=90°,3/ 21在Rt△P AC和Rt△PBC中,,∴Rt△P AC≌Rt△PBC(HL),∴∠PCM=∠PCN=∠MCN=21°;故选:A.【知识点】角平分线的性质、全等三角形的判定与性质6.在△ABC中,与∠A相邻的外角是130°,要使△ABC为等腰三角形,则∠B的度数是()A.50°B.65°C.50°或65°D.50°或65°或80°【解答】解:∠A=180°﹣130°=50°.当AB=AC时,∠B=∠C=(180°﹣50°)=65°;当BC=BA时,∠A=∠C=70°,则∠B=180°﹣50°﹣50°=80°;当CA=CB时,∠A=∠B=50°.∠B的度数为50°或65°或80°,故选:D.【知识点】等腰三角形的判定、三角形的外角性质7.在△ABC中,BC=a,AC=b,AB=c,根据下列条件不能判断△ABC是直角三角形的是()A.∠B=50°,∠C=40°B.∠A:∠B:∠C=1:2:2C.a=4,b=,c=5D.a :b :c =1:1:4/ 21【解答】解:A、∵∠B=50°,∠C=40°,∴∠A=180°﹣50°﹣40°=90°,∴△ABC是直角三角形;B、∵∠A:∠B:∠C=1:2:2∴∠A=36°,∠B=∠C=90°∴△ABC不是直角三角形;C、∵a=4,b=,c=5,∴a2+c2=b2,∴∠B=90°,∴△ABC是直角三角形.D、∵a:b:c=1:1:,∴可以假设a=b=k,c=k,∴a2+b2=c2,∴∠C=90°,∴△ABC是直角三角形,故选:B.【知识点】勾股定理的逆定理8.下列是勾股数的有()①3,4,5 ②5、12、13 ③9,40,41④13、14、15 ⑤⑥11、60、61A.6组B.5组C.4组D.3组5/ 216 / 21【解答】解:①32+42=52,是勾股数;②52+122=132,是勾股数; ③92+402=412,是勾股数; ④132+142≠152,不是勾股数; ⑤不是正整数,不是勾股数; ⑥32+42=52,是勾股数; 故是勾股数的有4组. 故选:C .【知识点】勾股数9.如图,AB ,BC 是⊙O 的两条弦,AO ⊥BC ,垂足为D ,若⊙O 的直径为5,BC =4,则AB 的长为( )A .2B .2C .4D .5【解答】解:连接OB ,∵AO ⊥BC ,AO 过O ,BC =4,∴BD=CD=2,∠BDO=90°,由勾股定理得:OD===,∴AD=OA+OD=+=4,在Rt△ADB中,由勾股定理得:AB===2,故选:A.【知识点】垂径定理、勾股定理10.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:估计出售2000件衬衣,其中次品大约是()A.50件B.100件C.150件D.200件【解答】解:2000×(1﹣)≈200件,故选:D.【知识点】频数(率)分布表、用样本估计总体二、填空题(本大题共6小题,每小题2分,共124分.不需写出解答过程,请把答案直接填写在横线上)11.﹣的立方根是﹣.【解答】解:∵(﹣)3=﹣,∴﹣的立方根是﹣.7/ 21故答案为:﹣.【知识点】立方根12.已知a﹣1=20172+20182,则=.【解答】解:∵a﹣1=20172+20182,∴a=20172+20182+1,∴=====4035.故答案为:4035.【知识点】算术平方根13.分解因式:﹣x2+4x﹣4=﹣﹣.【解答】解:﹣x2+4x﹣4=﹣(x2﹣4x+4)=﹣(x﹣2)2.故答案为:﹣(x﹣2)2.【知识点】因式分解-运用公式法14.如图,已知OP平分∠AOB,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.CP=,PD=6.如果点M是OP的中点,则DM的长是.8/ 219 / 21【解答】解:∵OP 平分∠AOB ,PD ⊥OA 于点D ,PE ⊥OB 于点E ,∴∠AOP =∠BOP ,PC =PD =6,∠PDO =∠PEO =90°, ∴CE ===,∵CP ∥OA , ∴∠OPC =∠AOP , ∴∠OPC =∠BOP , ∴CO =CP =,∴OE =CE +CO =+=8,∴OP ===10,在Rt △OPD 中,点M 是OP 的中点, ∴DM =OP =5; 故答案为:5.【知识点】角平分线的性质、直角三角形斜边上的中线、勾股定理的应用、等腰三角形的判定与性质15.直角三角形的两边长为3cm ,4cm ,则第三边边长为.10 / 21【解答】解:(1)若把两边都看作是直角边,那么据已知和勾股定理,设第三边长为xcm ,则:x 2=32+42=25, ∴x =5;(2)若把4cm 长的边看作斜边,设第三边长为xcm , 则:x 2+32=42, x 2=42﹣32=7, ∴x =.故答案为:5或.【知识点】勾股定理16.如图的折线统计图分别表示我市A 县和B 县在4月份的日平均气温的情况,记该月A 县和B 县日平均气温是12℃的天数分别为a 天和b 天,则a +b = .【解答】解:根据图表可得:a =7,b =5,则a +b =7+5=12. 故答案为:12.11 / 21【知识点】折线统计图三、解答题(本大题共7小题,共58分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CF 于点F . (1)求证:△ABC ≌△ADE ;(2)已知BF 的长为2,DE 的长为6,求CD 的长.【解答】(1)证明:∵∠BAD =∠CAE =90°∴∠BAC =90°﹣∠CAD ,∠DAE =90°∠CAD ,即∠BAC =∠DAE在△BAC 和△DAE 中,,∴△BAC ≌△DAE (SAS );(2)解:∵∠CAE =90°,AE =AC , ∴∠E =45°,由(1)可知:△ABC ≌△ADE ,∴∠BCA =∠E =45°,∠CBA =∠EDA ,CB =ED , 延长BF 到G ,使得FG =FB ,连接AG ,如图所示:12 / 21∵AF ⊥CF ,∴∠AFG =∠AFB =90°,在△AFB 和△AFG 中,,∴△AFB ≌△AFG (SAS ),∴AB =AG =AD ,∠ABF =∠G =∠CDA在△CGA 和△CDA 中,,∴△CGA ≌△CDA (AAS ), ∴CD =CG∴CD =CB +BF +FG =CB +2BF =DE +2BF =6+2×2=10.【知识点】等腰直角三角形、全等三角形的判定与性质18.在如图所示的正方形网格中,每个小正方形的边长都为1,△ABC 的顶点都在格点上(网格线的交点). (1)请在如图所示的网格平面内建立适当的平面直角坐标系,使点A 坐标为(﹣1,2),点B 的坐标为(﹣5,2);(画出直角坐标系)(2)点C 的坐标为( ﹣ , )(直接写出结果)(3)把△ABC 先向下平移6个单位后得到对应的△A 1B 1C 1,再将△A 1B 1C 1沿y 轴翻折至△A 2B 2C 2;13 / 21①请在坐标系中画出△A 2B 2C 2;②若点P (m ,n )是△ABC 边上任意一点,P 2是△A 2B 2C 2边上与P 对应的点,写出点P 2的坐标为( ﹣ , ﹣ );(直接写出结果)③试在y 轴上找一点Q ,使得点Q 到A 2,C 2两点的距离之和最小,此时,QA 2+QC 2的长度之和最小值为 .(在图中画出点Q 的位置,并直接写出最小值答案)【解答】解:(1)∵点A 坐标为(﹣1,2),点B 的坐标为(﹣5,2),如图所示:即为所画出的直角坐标系; (2)根据坐标系可知:14 / 21点C 的坐标为(﹣2,5), 故答案为:﹣2,5;(3)把△ABC 先向下平移6个单位后得到对应的△A 1B 1C 1, 再将△A 1B 1C 1沿y 轴翻折至△A 2B 2C 2; ①如图即为坐标系中画出的△A 2B 2C 2; ②点P (m ,n )是△ABC 边上任意一点, P 2是△A 2B 2C 2边上与P 对应的点, ∴点P 2的坐标为(﹣m ,n ﹣6), 故答案为:﹣m ,n ﹣6; ③根据对称性可知:在y 轴上找一点Q ,使得点Q 到A 2,C 2两点的距离之和最小, ∴连接A 2C 1交y 轴于点Q ,此时QA 2+QC 2的长度之和最小, 即为A 2C 1的长,A 2C 1=3,∴QA 2+QC 2的长度之和最小值为3.故答案为:3.【知识点】勾股定理、翻折变换(折叠问题)、作图-平移变换、轴对称-最短路线问题19.一辆卡车装满货物后,高4m 、宽2.4m ,这辆卡车能通过截面如图所示(上方是一个半圆)的隧道吗?15 / 21【解答】解:如图,由图形得半圆O 的半径为2m ,作弦EF ∥AD ,且EF =2.4m ,作OH ⊥EF 于H ,连接OF ,由OH ⊥EF ,得HF =1.2m , 在Rt △OHF 中,OH ===1.6m ,∵1.6+2=3.6<4,∴这辆卡车不能通过截面如图所示的隧道.【知识点】垂径定理、勾股定理的应用20.已知,在△ABC 中,AC =BC .分别过A ,B 点作互相平行的直线AM 和BN .过点C 的直线分别交直线AM ,BN 于点D ,E .(1)如图1.若CD =CE .求∠ABE 的大小;(2)如图2.∠ABC =∠DEB =60°.求证:AD +DC =BE .【解答】(1)解:如图1,延长AC 交BN 于点F ,∵AM∥BN,∴∠DAF=∠AFB,在△ADC和△FEC中,,∴△ADC≌△FEC(AAS),∴AC=FC,∵AC=BC,∴BC=AC=FC=AF,∴△ABF是直角三角形,∴∠ABE=90°;(2)证明:如图2,在EB上截取EH=EC,连CH,∵AC=BC,∠ABC=60°,∴△ABC为等边三角形,∵∠DEB=60°,∴△CHE是等边三角形,∴∠CHE=60°,∠HCE=60°,∴∠BHC=120°,∵AM∥BN,∴∠ADC+∠BEC=180°,∴∠ADC=120°,∴∠DAC+∠DCA=60°,又∵∠DCA+∠ACB+∠BCH+∠HCE=180°,∴∠DCA+∠BCH=60°,16/ 2117 / 21∴∠DAC =∠BCH ,在△DAC 与△HCB 中,,∴△DAC ≌△HCB (AAS ), ∴AD =CH ,DC =BH , 又∵CH =CE =HE , ∴BE =BH +HE =DC +AD , 即AD +DC =BE .【知识点】全等三角形的判定与性质21.甲、乙两个长方形的边长如图所示(m 为正整数),其面积分别为S 1,S 2.(1)填空:S 1﹣S 2=﹣(用含m 的代数式表示);(2)若一个正方形的周长等于甲、乙两个长方形的周长之和.①设该正方形的边长为x,求x的值(用含m的代数式表示);②设该正方形的面积为S3,试探究:S3与2(S1+S2)的差是否是常数?若是常数,求出这个常数,若不是常数,请说明理由,(3)若另一个正方形的边长为正整数n,并且满足条件1≤n<S1﹣S2的n有且只有4个,求m的值.【解答】解:(1)S1﹣S2=(m+7)(m+1)﹣(m+4)(m+2)=2m+1.故答案为2m+1.(2)①根据题意,得4x=2(m+7+m+1)+2(m+4+m+2)解得x=2m+7.答;x的值为2m+7.②∵S1+S2=2m2+14m+15,S3﹣2(S1+S2)=(2m+7)2﹣2(2m2+14m+15)=4m2+28m+49﹣4m2﹣28m﹣30=19.答:S3与2(S1+S2)的差是常数:19.(3)∵1≤n<2m﹣1,由题意,得5≤2m﹣1<6,解得3≤m<.∵m是整数,∴m=3.答:m的值为3.18/ 21【知识点】整式的加减、多项式乘多项式22.计算(1)﹣12+(﹣)﹣2×π0(2)1232﹣124×122(用简便方法计算)(3)(x+2y+3z)(x+2y﹣3z)(4)(4a3b﹣6a2b2+12b3)÷2ab【解答】解:(1)﹣12+(﹣)﹣2×π0=﹣1+4×1=﹣1+4=3;(2)1232﹣124×122=1232﹣(123+1)×(123﹣1)=1232﹣1232+1=1;(3)(x+2y+3z)(x+2y﹣3z)=[(x+2y)+3z][(x+2y)﹣3z]=(x+2y)2﹣9z2=x2+4xy+4y2﹣9z2;(4)(4a3b﹣6a 2b 2+12b3)÷2ab19/ 21=2a2﹣3ab+.【知识点】整式的混合运算、零指数幂、负整数指数幂、实数的运算23.计算:(1)4(x﹣1)2﹣(2x﹣5)(2x+5);(2)(﹣2)﹣2﹣(﹣1)2019﹣(π﹣2018)0;(3)(4a4b7﹣a6b7)÷(﹣ab2)3;(4)÷+•【解答】解:(1)4(x﹣1)2﹣(2x﹣5)(2x+5)=4(x2﹣2x+1)﹣(4x2﹣25)=4x2﹣8x+4﹣4x2+25=﹣8x+29(2)(﹣2)﹣2﹣(﹣1)2019﹣(π﹣2018)0;=+1﹣1=(3)(4a4b7﹣a6b7)÷(﹣ab2)3;=(4a4b7﹣a6b7)÷(﹣a3b6)=﹣4ab +a3b20/ 21(4)÷+•=×+•=+=【知识点】负整数指数幂、分式的混合运算、整式的混合运算、实数的运算、零指数幂21/ 21原创原创精品资源学科网独家享有版权,侵权必究!。

2020--2021 学年上学期人教版 八年级数学试题

2020--2021 学年上学期人教版 八年级数学试题

2020-2021上学期人教版八年级数学期末试卷一.选择题(共12小题)1.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果高于海平面200米记为+200米,那么低于海平面300米应记为()A.﹣300米B.+500米C.+300米D.﹣100米2.设三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为0、、b的形式,则a2017+b2017的值为()A.0B.﹣1C.1D.23.设■,●,▲分别表示三种不同的物体,如图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么以下方案不正确的是()A.B.C.D.4.已知方程x2k﹣1+k=0是关于x的一元一次方程,则方程的解等于()A.﹣1B.1C.D.﹣5.点A的坐标(x,y)满足(x+3)2+|y+2|=0,则点A的位置在()A.第一象限B.第二象限C.第三象限D.第四象限6.如图,已知直线l1、l2经过坐标原点O,且l1与x轴所夹锐角为15°,l2与y轴所夹锐角为30°.在直线l1和l2之间依次构造正方形A1B1C1A2、正方形A2B2C2A3,正方形A3B3C3A4正方形A4B4C4A5…点A1、点A2、点A3、点A4、点A5…依次落在直线l1上,点B1、点B2、点B3、点B4…依次落在直线l2上,且A1B1=1,则点B2020的坐标为()A.(22018,22018)B.(22017,22017)C.(22018,22018)D.(22018,22018)7.如图形状的四张纸板,按图中线经过折叠可以围成一个直三棱柱的是()A.B.C.D.8.用一个平面去截正方体,截面图形不可能是()A.B.C.D.9.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(﹣2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为P n,则点P2020的坐标是()A.(0,1)B.(﹣2,4)C.(﹣2,0)D.(0,3)10.在△ABC中,AB=AC,点D在边AC上,连接BD,点E在边AB上,△BCD和△BED 关于BD对称,若△ADE是等腰三角形,则∠BAC=()A.36°B.72°C.90°D.108°11.以下调查中,最适宜采用普查方式的是()A.检测某批次汽车的抗撞击能力B.调查黄河的水质情况C.调查全国中学生视力和用眼卫生情况D.检查我国“神州八号”航天飞船各零部件的情况12.要将9个参加数学竞赛的名额分配给6所学校,每所学校至少要分得一个名额,那么不同的分配方案共有()A.56种B.36种C.28种D.72种二.填空题(共6小题)13.如果小明的爸爸收入10万元记作+10万元,那么小明的爸爸支出4万元记作万元.14.已知x=﹣3是方程ax﹣6=a+10的解,则a=.15.写出一个在x轴正半轴上的点坐标.16.如图,正方体的每条棱上放置相同数目的小球,设每条棱上的小球数为a,则正方体上小球总数为(用含a的代数式表示).17.如图,在6×6的正方形网格中,选取13个格点,以其中的三个格点A,B,C为顶点画△ABC,请你在图中以选取的格点为顶点再画出一个△ABP,使△ABP与△ABC成轴对称.这样的P点有个?(填P点的个数)18.进行数据的收集调查,一般可分为以下6个步骤,但它们的顺序弄乱了.正确的顺序是.(用字母按顺序写出即可).A.明确调查问题B.记录结果C.得出结论D.确定调查对象E.展开调查F.选择调查方法.三.解答题(共9小题)19.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫(A,B,C,D都在格点上).规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A→C(,),B→C(,),C→D(,);(2)若这只甲虫的行走路线为A→B→C→D,则该甲虫走过的路程是;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+3,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.(4)若图中另有两个格点M、N,且M→A(2﹣a,b﹣5),M→N(4﹣a,b﹣3),则N →A应记为什么?20.在数轴上点A表示数a,点B表示数b,点C表示数c;a是最大的负整数,a、b、c 满足|a+b|+(c﹣5)2=0.(1)填空:a=,b=,c=;(2)P为数轴上一动点,其对应的数是x,当P在线段AC上,且P A+PB+PC=7时,求x的值.(3)若点P,Q分别从A,C同时出发,匀速相向运动,点P的速度为3个单位/秒,点Q的速度为1个单位/秒.当点P运动到C后迅速以原速返回A;点Q运动至B点后停止运动,同时P点也停止运动.求在此运动过程中P,Q的相遇点在数轴上对应的数.21.我们规定,若关于x的一元一次方程mx=n(m≠0)的解为n﹣m,则称该方程为差解方程,例如:5x=的解为x=﹣5,则该方程5x=就是差解方程.请根据上边规定解答下列问题(1)若关于x的一元一次方程3x=a+1是差解方程,则a=.(2)若关于x的一元一次方程3x=a+b是差解方程且它的解为x=a,求代数式4a2b﹣[2a2﹣2(ab2﹣2a2b)]的值(提示:若m+n+1=m,移项合并同类项可以把含有m的项抵消掉,得到关于n的一元一次方程,求得n=﹣1)22.计算:(1)2+(﹣1)2019+(2+1)(﹣2﹣1)﹣|﹣3×|化简:(2)﹣3(2x2﹣xy)+4(x2+xy﹣6)解方程:(3)23.在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b′),给出如下定义:若b′=,则称点Q为点P的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(﹣2,﹣5)的限变点的坐标是(﹣2,5),点(1,3)的限变点的坐标是(1,3).(1)①点(,﹣1)的限变点的坐标是;②如图1,在点A(﹣2,1)、B(2,1)中有一个点是直线y=2上某一个点的限变点,这个点是;(填“A”或“B”)(2)如图2,已知点C(﹣2,﹣2),点D(2,2),若点P在射线OC和OD上,其限变点Q的纵坐标b的取值范围是b′≥m或b′≤n,其中m>n,令s=m﹣n,直接写出s的值.(3)如图3,若点P在线段EF上,点E(﹣2,﹣5),点F(k,k﹣3),其限变点Q的纵坐标b′的取值范围是﹣2≤b′≤5,直接写出k的取值范围.24.综合与实践某“综合与实践”小组开展了“长方体纸盒的制作”实践活动,他们利用边长为acm的正方形纸板制作出两种不同方案的长方体盒子(图1为无盖的长方体纸盒,图2为有盖的长方体纸盒),请你动手操作验证并完成任务.(纸板厚度及接缝处忽略不计)动手操作一:根据图1方式制作一个无盖的长方体盒子.方法:先在纸板四角剪去四个同样大小边长为bcm的小正方形,再沿虚线折合起来.问题解决:(1)该长方体纸盒的底面边长为cm;(请你用含a,b的代数式表示)(2)若a=24cm,b=6cm,则长方体纸盒的底面积为多少cm2;动手操作二:根据图2方式制作一个有盖的长方体纸盒.方法:先在纸板四角剪去两个同样大小边长为bcm的小正方形和两个同样大小的小长方形,再沿虚线折合起来.拓展延伸:(3)该长方体纸盒的体积为多少cm3?(请你用含a,b的代数式表示)25.如图,点P在∠AOB的内部,点C和点P关于OA对称,点P关于OB对称点是D,连接CD交OA于M,交OB于N.(1)①若∠AOB=60°,则∠COD=°;②若∠AOB=α,求∠COD的度数.(2)若CD=4,则△PMN的周长为.26.2020年注定是不平凡的一年,新年伊始,一场突如其来的疫情席卷全国,全国人民万众一心,抗战疫情.为了早日取得抗疫的胜利,各级政府、各大新闻媒体都加大了对防疫知识的宣传.某校为了了解初一年级共480名同学对防疫知识的掌握情况,对他们进行了防疫知识测试.现随机抽取甲、乙两班各15名同学的测试成绩(满分100分)进行整理分析,过程如下:【收集数据】甲班15名学生测试成绩分别为:78,83,89,97,98,85,100,94,87,90,93,92,99,95;100.乙班15名学生测试成绩中90≤x<95的成绩如下:91,92,94,90,93【整理数据】:班级75≤x<8080≤x<8585≤x<9090≤x<9595≤x≤100甲11346乙12354【分析数据】:班级平均数众数中位数方差甲92a9341.1乙9087b50.2【应用数据】:(1)根据以上信息,可以求出:a=分,b=分;(2)若规定测试成绩92分及其以上为优秀,请估计参加防疫知识测试的480名学生中成绩为优秀的学生共有多少人;(3)根据以上数据,你认为哪个班的学生防疫测试的整体成绩较好?请说明理由(一条理由即可).27.120人参加数学竞赛,试题共有5道大题,已知第1、2、3、4、5题分别有96、83、74、66、35人做对,如果至少做对3题便可获奖,问:这次竞赛至少有几人获奖?2020-2021上学期人教版八年级数学期末试卷参考答案与试题解析一.选择题(共12小题)1.【分析】根据相反意义的量可以用正负数来表示,高于海平面200米记为+200米,那么低于海平面300米应记为﹣300米.【解答】解:如果高于海平面200米记为+200米,那么低于海平面300米应记为﹣300米.故选:A.2.【分析】由题意三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为0、、b的形式,可知这两个三数组分别对应相等.从而判断出a、b的值.代入计算出结果.【解答】解:∵三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为0、、b的形式,∴这两个三数组分别对应相等.∴a+b、a中有一个是0,由于有意义,所以a≠0,则a+b=0,所以a、b互为相反数.∴=﹣1,b=1,a=﹣1.∴a2017+b2017=(﹣1)2017+12017=0.故选:A.3.【分析】根据第一个天平可得2●=▲+■,根据第二个天平可得●+▲=■,可得出答案.【解答】解:根据图示可得:2●=▲+■①,●+▲=■②,由①②可得●=2▲,■=3▲,则■+●=5▲=2●+▲=●+3▲.故选:A.4.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).根据定义可列出关于k的方程,求解即可.【解答】解:由一元一次方程的特点得,2k﹣1=1,解得:k=1,∴一元一次方程是:x+1=0解得:x=﹣1.故选:A.5.【分析】根据非负数的性质求得x,y的值,再进一步判断点的位置.【解答】解:∵(x+3)2+|y+2|=0,∴x=﹣3<0,y=﹣2<0.则点A在第三象限.故选:C.6.【分析】根据一次函数,得出OB1、OB2等的长度,继而得知B1、B2等点的坐标,从中找出规律,进而可求出点B2020的坐标.【解答】解:∵l1与x轴所夹锐角为15°,l2与y轴所夹锐角为30°,∴l1与l2所夹锐角为45°,l2与x轴所夹锐角为60°,∴△A1B1O,△A2B2O,△A3B3O,…都是等腰直角三角形,∴B1O=20,B2O=21,B3O=22,…,B n O=2n﹣1,∴点B2020的坐标为(22020﹣1×,22020﹣1×),即(22018,22018).故选:A.7.【分析】根据直三棱柱的特点作答.【解答】解:A、围成三棱柱时,两个三角形重合为同一底面,而另一底面没有,故不能围成直三棱柱;B、D的两底面不是三角形,故也不能围成直三棱柱;只有C经过折叠可以围成一个直三棱柱.故选:C.8.【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.据此选择即可.【解答】解:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此不可能是七边形,故选:D.9.【分析】按照反弹规律依次画图,写出点的坐标,再找出规律即可.【解答】解:如图,根据反射角等于入射角画图,可知光线从P2反射后到P3(0,3),再反射到P4(﹣2,4),再反射到P5(﹣4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环,2020÷6=336……4,即点P2020的坐标是(﹣2,4),故选:B.10.【分析】如图,设∠A=x.首先证明∠ABC=∠C=2x,利用三角形的内角和定理构建方程求出x即可.【解答】解:如图,设∠A=x.∵EA=ED,∴∠A=∠ADE=x,∵∠BED=∠A+∠ADE=2x,△BDE与△BDC关于BD对称,∴∠BED=∠C=2x,∵AB=AC,∴∠ABC=∠C=2x,∵∠A+∠ABC+∠C=180°,∴5x=180°,∴x=36°,∴∠A=36°,故选:A.11.【分析】检测某批次汽车的抗撞击能力不适宜用普查,可采用抽查;调查黄河的水质情况,不容易使用普查;调查全国中学生视力和用眼卫生情况,由于数量多,分布不均等因素,不适合普查,检查我国“神州八号”航天飞船各零部件的情况,必须使用普查,【解答】解:检测某批次汽车的抗撞击能力不适宜用普查,可采用抽查;调查黄河的水质情况,不容易使用普查;调查全国中学生视力和用眼卫生情况,由于数量多,分布不均等因素,不适合普查,检查我国“神州八号”航天飞船各零部件的情况,必须使用普查,故选:D.12.【分析】可以将问题转化为9个人站成一排,每所学校至少要1名,就有8个空然后插入5个板子把他们隔开,从8个里选5个即可答案.【解答】解:可以利用9个人站成一排,每所学校至少要1名,就有8个空,然后插入5个板子把他们隔开,从8个里选5个,就是C85==56,故选:A.二.填空题(共6小题)13.【分析】用正负数来表示具有意义相反的两种量:收入记作正,则支出就记为负,由此得出小明的爸爸支出4万元,记作﹣4万元.【解答】解:如果小明的爸爸收入10万元记作+10万元,那么小明的爸爸支出4万元记作﹣4万元.故答案为:﹣4.14.【分析】根据方程解的定义,将方程的解代入方程可得关于字母系数a的一元一次方程,解方程可求出a的值.【解答】解:把x=﹣3代入方程ax﹣6=a+10,得:﹣3a﹣6=a+10,解方程得:a=﹣4.故填:﹣4.15.【分析】根据x的正半轴上点的横坐标大于零,纵坐标等于零,可得答案.【解答】解:写出一个在x轴正半轴上的点坐标(1,0),故答案为:(1,0).16.【分析】每条棱上有a个小球,12条棱就有12a个小球,这时,每个顶点处的小球被多计算了2次,于是可得答案.【解答】解:因为正方体有12条棱,所以12条棱上有12a个小球,但每个顶点处的小球被多计算2次,8个顶点就被多计算2×8=16次,所以正方体上小球总数为12a﹣16,故答案为:12a﹣16.17.【分析】根据轴对称图形的性质画出图形即可.【解答】解:如图,满足条件的△ABP有2个,故答案为2.18.【分析】根据数据的收集调查的步骤,即可解答.【解答】解:进行数据的收集调查,一般可分为以下6个步骤:明确调查问题,确定调查对象,选择调查方法,展开调查,记录结果,得出结论;故答案为:ADFEBC.三.解答题(共9小题)19.【分析】(1)根据规定及实例可知A→C记为(+4,+4),B→C记为(+3,0),C→D 记为(+1,﹣3);(2)根据点的运动路径,表示出运动的距离,相加即可得到行走的总路径长;(3)按题目所示平移规律,通过平移即可得到点P的坐标,在图中标出即可.(4)根据M→A(2﹣a,b﹣5),M→N(4﹣a,b﹣3),可知4﹣a﹣(2﹣a)=2,b﹣3﹣(b﹣5)=2,从而得到点A向右走2个格点,向上走2个格点到点N,从而得到N→A应记为什么.【解答】解:(1)∵规定:向上向右走为正,向下向左走为负,∴A→C记为(+4,+4),B→C记为(+3,0),C→D记为(+1,﹣3);故答案为:+4;+4;+3;0;+1;﹣3;(2)据已知条件可知:A→B表示为:(+1,+4),B→C记为(+3,0),C→D记为(+1,﹣3);∴该甲虫走过的路线长为1+4+3+1+3=12.故答案为:12;(3)P点位置如图所示.(4)∵M→A(2﹣a,b﹣5),M→N(4﹣a,b﹣3),∴4﹣a﹣(2﹣a)=2,b﹣3﹣(b﹣5)=2,∴从而得到点A向右走2个格点,向上走2个格点到点N,∴N→A应记为(﹣2,﹣2).20.【分析】(1)由a是最大的负整数可得a为﹣1,再结合|a+b|+(c﹣5)2=0,可求得b 与c的值;(2)由P A+PB+PC=7,结合数轴上的两点所表示的距离的含义,分类去掉绝对值号,并分别解得x的值即可.(3)设运动时间为t,分两种情况分别得出关于t的方程并求解即可:①当P、Q第一次相遇时;②当P到达C点返回追上Q时.【解答】解:(1)∵a是最大的负整数,∴a=﹣1;∵|a+b|+(c﹣5)2=0,|a+b|≥0,(c﹣5)2≥0,∴a+b=0,c﹣5=0,∴b=﹣a=﹣(﹣1)=1,c=5.故答案为:﹣1,1,5;(2)∵P A+PB+PC=7,∴|x+1|+|x﹣1|+|x﹣5|=7,①当点P在线段AB上,即当﹣1≤x<1时,x+1+1﹣x+5﹣x=7,解得:x=0;②当点P在线段BC上,即当1≤x≤5时,x+1+x﹣1+5﹣x=7,解得:x=2.综上所述,x的值是0或2.(3)设运动时间为t,①当P、Q第一次相遇时,有:3t+t=5﹣(﹣1),解得:t=1.5,此时,相遇点在数轴上对应的数为5﹣1.5=3.5;②当P到达C点返回追上Q时,有:3t﹣t=5﹣(﹣1)解得:t=3,此时,相遇点在数轴上对应的数为5﹣3=2.∴在此运动过程中P,Q的相遇点在数轴上对应的数是3.5或2.21.【分析】(1)根据差解方程的定义,得到关于a的新方程,求解即可;(2)根据差解方程的定义,先求出a、b的值,再化简代数式,把a、b的值代入计算即可.【解答】解:(1)∵关于x的一元一次方程3x=a+1是差解方程,∴=a+1﹣3解,得故答案为:(2)∵关于x的一元一次方程3x=a+b是差解方程且它的解为x=a,∴a==a+b﹣3解,得,b=3.4a2b﹣[2a2﹣2(ab2﹣2a2b)]=4a2b﹣(2a2﹣2ab2+4a2b)=4a2b﹣2a2+2ab2﹣4a2b=﹣2a2+2ab2当,b=3时,原式=﹣2×+2××9=.22.【分析】(1)根据有理数的混合运算的顺序和计算方法进行计算即可;(2)按照整式加减的计算方法进行计算;(3)依照一元一次方程的求解步骤求解即可.【解答】解:(1)原式=2+(﹣1)+(﹣9)﹣1=﹣9;(2)原式=﹣6x2+3xy+4x2+4xy﹣24=﹣2x2+7xy﹣24;(3)去分母得4(7x﹣1)﹣6(5x+1)=24﹣3(3x+2)去括号得28x﹣4﹣30x﹣6=24﹣9x﹣6移项得28x﹣30x+9x=24﹣6+4+6合并同类项得7x=28系数化为1得x=4.23.【分析】(1)①利用限变点的定义直接解答即可;②先利用逆推原理求出限变点A(﹣2,1)、B(2,1)对应的原来点坐标,然后把原来点坐标代入到y=2,满足解析式的就是答案;(2)先OC,OD的关系式,再求出点P的限变点Q满足的关系式,然后根据图象求出m,n的值,从而求出S即可;(3)先求出线段的关系式,再求出点P的限变点所满足的关系式,根据图象求解即可.【解答】(1)①∵a=<2,∴b′=|b|=|﹣1|=1,∴坐标为(,1).故答案为(,1).②s=3.∵对于限变点来说,横坐标保持不变,∴限变点A(﹣2,1)对应的原来点的坐标为:(﹣2,1)或(﹣2,﹣1),限变点B(2,1]对应的原来点的坐标为:(2.2),∵(2,2)满足y=2,∴这个点是B,故答案为:B;(2)∵点C的坐标为(﹣2,﹣2),∴OC的关系式为:y=x(x≤0),∵点D的坐标为(2,﹣2),∴OD的关系式为:y=﹣x(x≥0),∴点P满足的关系式为:y=,当x≥2时:b'=一x﹣1,当0<x<2时:b'=﹣x﹣1,当x≤0时,b=|x|=﹣x,图象如图1所示,通过图象可以得出:当x≥2时,b'≤﹣3,n=﹣3,当x<2时,b'≥0,∴m=0,∴s=m﹣n=0﹣(﹣3)=3;(3)设线段E的关系式为:y=ax+c(a≠0,﹣2≤x≤k,k>﹣2),把E(﹣2,﹣5),F(k,k﹣3)代入,得,解得,∴线段EP的关系式为y=x一3(﹣2≤x≤k,k>﹣2),∴线段E上的点P的限变点Q的纵坐标满足的关系式b'=,图象如图2所示:当x=2时,b'取最小值,b'=2﹣4=﹣2,当b'=5时,x﹣4=5或﹣x+3=5,解得:x=9或x=﹣2,当b'=1时,x﹣4=1,解得:x=5,∵﹣2≤b'<5,∴由图象可知,k的取值范围是:5≤k≤9.24.【分析】(1)根据折叠可得答案;(2)将a=24,b=6代入底面积的代数式计算即可;(3)根据图2的裁剪,折叠后,表示出长、宽、高进而用代数式表示体积.【解答】解:(1)根据折叠可知,底面是边长为(a﹣2b)(cm)的正方形,故答案为:(a﹣2b);(2)将a=24,b=6代入得,(a﹣2b)2=(24﹣2×6)2=144(cm2)答:长方体纸盒的底面积为144cm2;(3)裁剪后折叠成长方体的长为:(a﹣2b)cm,宽为cm,高为bcm,所以,折叠后长方体的体积为(a﹣2b)××b,即,b(a﹣2b)2,答:长方体的体积为b(a﹣2b)2.25.【分析】(1)根据轴对称的性质,可知∠AOC=∠AOP,∠BOD=∠BOP,可以求出∠COD的度数;(2)根据轴对称的性质,可知CM=PM,DN=PN,根据周长定义可以求出△PMN的周长;【解答】解:(1)①∵点C和点P关于OA对称,∴∠AOC=∠AOP,∵点P关于OB对称点是D,∴∠BOD=∠BOP,∴∠COD=∠AOC+∠AOP+∠BOP+∠BOD=2(∠AOP+∠BOP)=2∠AOB=2×60°=120°,故答案为:120°.②∵点C和点P关于OA对称.∴∠AOC=∠AOP,∵点P关于OB对称点是D,∴∠BOD=∠BOP,∴∠COD=∠AOC+∠AOP+∠BOP+∠BOD=2(∠AOP+∠BOP)=2∠AOB=2α.(2)根据轴对称的性质,可知CM=PM,DN=PN,所以△PMN的周长为:PM+PN+MN=CM+DN+MN=CD=4,故答案为:426.【分析】由收集的数据即可得;(1)根据众数和中位数的定义求解可得;(2)用总人数乘以乙班样本中合格人数所占比例可得;(3)甲、乙两班的方差判定即可.【解答】解:(1)在78,83,89,97,98,85,100,94,87,90,93,92,99,95,100,这组数据中,100出现的次数最多,故a=100分;乙班15名学生测试成绩中,中位数是第8个数,即出现在90≤x<95这一组中,故b=91分;故答案为:100,91;(2)480×=256(人),即480名学生中成绩为优秀的学生共有256人;(3)甲班的学生掌握防疫测试的整体水平较好,∵甲班的方差<乙班的方差,∴甲班的学生掌握疫情防疫相关知识的整体水平较好.27.【分析】首先算出每一道题做错的人数,分为五个组,用不同的颜色表示,转化为染色问题,构造抽屉解决问题.【解答】解:将这120人分别编号为P1,P2,…,P120,并视为数轴上的120个点,用A k表示这120人之中未答对第k题的人所成的组,|A k|为该组人数,k=1,2,3,4,5,则|A1|=24,|A2|=37,|A3|=46,|A4|=54,|A5|=85,将以上五个组分别赋予五种颜色,如果某人未做对第k题,则将表示该人点染第k色,k=1,2,3,4,5,问题转化为,求出至少染有三色的点最多有几个?由于|A1|+|A2|+|A3|+|A4|+|A5|=246,故至少染有三色的点不多于=82个,图是满足条件的一个最佳染法,即点P1,P2,…,P85这85个点染第五色;点P1,P2,…,P37这37个点染第二色;点P38,P39,…,P83这46个点染第四色;点P1,P2,…,P24这24个点染第一色;点P25,P26,…,P78这54个点染第三色;于是染有三色的点最多有78个.因此染色数不多于两种的点至少有42个,即获奖人数至少有42个人(他们每人至多答错两题,而至少答对三题,例如P79,P80,…,P120这42个人).答:获奖人数至少有42个人.。

2020—2021年人教版八年级数学上册期末试卷(及答案)

2020—2021年人教版八年级数学上册期末试卷(及答案)

2020—2021年人教版八年级数学上册期末试卷(及答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-2.若3a b +=,则226a b b -+的值为( )A .3B .6C .9D .123.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为(( )A .﹣3B .﹣5C .1或﹣3D .1或﹣54.在△ABC 中,AB=10,AC=210,BC 边上的高AD=6,则另一边BC 等于( )A .10B .8C .6或10D .8或105.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于( )A .55°B .70°C .110°D .125°7.一次函数y =kx +b (k ≠0)的图象经过点B (﹣6,0),且与正比例函数y =13x 的图象交于点A (m ,﹣3),若kx ﹣13x >﹣b ,则( )A .x >0B .x >﹣3C .x >﹣6D .x >﹣98.如图,在△ABC 中,AB=AC ,∠BAC=100°,AB 的垂直平分线DE 分别交AB 、BC 于点D 、E ,则∠BAE=( )A .80°B .60°C .50°D .40°9.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.如图,在平面直角坐标系中,矩形ABCD 的顶点A 点,D 点分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数(0,0)ky k x x=>>的图象经过矩形对角线的交点E ,若点A(2,0),D(0,4),则k 的值为( )A .16B .20C .32D .40二、填空题(本大题共6小题,每小题3分,共18分)1x 2-x 的取值范围是________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.328n n 为________.4.如图,▱ABCD 中,AC 、BD 相交于点O ,若AD=6,AC+BD=16,则△BOC 的周长为________.5.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB ︒∠=,则AED '∠等于________.6.如图一个圆柱,底圆周长10cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行_______cm .三、解答题(本大题共6小题,共72分)1.解方程:(1)4342312x y x y ⎧+=⎪⎨⎪-=⎩ (2)1263()46x y y x y y +⎧-=⎪⎨⎪+-=⎩2.先化简:221-21-11a a a a a a ⎛⎫++÷ ⎪++⎝⎭,再从-1,0,1中选取一个数并代入求值.3.已知关于x 的一元二次方程22240x x k ++-=有两个不相等的实数根(1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.4.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数.5.已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?6.“绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:村庄清理养鱼网箱人数/人清理捕鱼网箱人数/人总支出/元A 15 9 57000(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、A4、C5、B6、B7、D8、D9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、x 2≥2、22()1y x =-+3、74、145、50°6三、解答题(本大题共6小题,共72分)1、(1)1083x y =⎧⎪⎨=⎪⎩;(2)20x y =⎧⎨=⎩.2、13、(1)k <52(2)24、略(2)∠EBC=25°5、(1)1,20 km/h ;(2)95. 6、(1)清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;(2)分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;方案二:19人清理养鱼网箱,21人清理捕鱼网箱.。

2020-2021学年山东省青岛市市北区八年级(上)期中数学试卷

2020-2021学年山东省青岛市市北区八年级(上)期中数学试卷

2020-2021学年山东省青岛市市北区八年级(上)期中数学试卷题号一二三四总分得分一、选择题(本大题共6小题,共18.0分)1.下列说法:①1的平方根与算术平方根都是1;②√16=±4;③42的平方根是4;④(−4)3的立方根是−4.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个2.若点A(−1,m),B(−4,n)在一次函数y=−2x+3图象上,则m与n的大小关系是()A. m<nB. m>nC. m=nD. 无法确定3.a、b、c为△ABC三边,下列条件不能判断它是直角三角形的是()A. a2=c2−b2B. a=3,b=4,c=5C. ∠A:∠B:∠C=3:4:5D. a=5k,b=12k,c=13k(k为正整数)4.如图,有A,B,C三点,如果A点用(1,1)来表示,B点用(2,3)表示,则C点的坐标的位置可以表示为().A. (6,2)B. (5,3)C. (5,2)D. (2,5)5.直角三角形两边长分别为a,b,满足a2−6a+9+|b−4|=0,该直角三角形的第三边长为()A. 5B. √7C. 4D. 5或√76.在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx−k不经过的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题(本大题共8小题,共24.0分)7.在−227,0,√32,√81,3.14159,1.010010001…(两个1之间依次多1个0),−π,√−83中,无理数有______个.8.已知函数y=(m−1)x+m2−1是正比例函数,则m=____________.9.比较大小:−5______−√26(填“>”“=”或“<”).10.若直线y=kx+b与直线y=2x平行,且与y轴相交于点(0,−3),则直线的函数表达式是______.11.如图,折叠长方形纸片ABCD,使点D落在边BC上的点F处,折痕为AE.已知AB=3cm,BC=5cm.则EC的长为______cm.12.如图,数轴上点A、B对应的数分别是1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径作圆弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,当点M在点B的右侧时,点M对应的数是______.13.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_______cm.14.如图,在直角坐标系中,ABCD的四个顶点的坐标分别为A(0,8),B(−6,8),C(−6,0),D(0,0),现有动点P在线段CB上运动,当△ADP为等腰三角形时,P点坐标为______.三、计算题(本大题共1小题,共16.0分) 15. 计算:(1)√17×√28+√700(2)(√3−1)2−(3+√5)(3−√5)四、解答题(本大题共7小题,共62.0分)16. 如图,在长度为1个单位的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与△ABC 关于直线MN 成轴对称的△A 1B 1C 1;(不写画法) (2)请你判断△ABC 的形状,并求出AC 边上的高.17.求下列各式中x的值:(1)−2x2+8=0(2)(x−3)3+64=018.按下列要求写出点的坐标.(1)F在第三象限,F到x轴距离为4,到y轴距离为6;(2)直线AB,点A(−2,y),B(x,3).若AB//x轴,且A,B之间距离为6个单位,写出A,B的坐标.19.某一品牌的乒乓球在甲、乙两个商场的标价都是每个3元,在销售时都有一定的优惠.甲商场的优惠条件是购买不超过10个按原价销售,超过10个,超出部分按8折优惠;乙商场的优惠条件是无论买多少个都按9折优惠.(1)分别写出在甲、乙两个商场购买这种乒乓球应付金额y元与购买个数x(x>10)个之间的函数关系式;(2)若要购买30个乒乓球,到哪家商场购买合算?请说明理由.20.观察下列各式:√1+112+122=1+11−12=112;√1+122+132=1+12−13=116;√1+132+142=1+1 3−14=1112,…请你根据以上三个等式提供的信息解答下列问题①猜想:√1+172+182=______=______;②归纳:根据你的观察,猜想,请写出一个用n(n为正整数)表示的等式:______;③应用:计算√8281+1100;④证明②中的猜想.21.如图,在△ABC中,D为边BC边上的一点,已知AB=13,AD=12,BD=5,AC=15,求CD的长?22.一辆客车从甲地开往乙地,一辆轿车从乙地开往甲地,两车同时出发,两车行驶x小时后,记客车离甲地的距离为y1千米,轿车离甲地的距离为y2千米,y1、y2关于x的函数图像如图所示:(1)根据图像,分别求出y1、y2关于x的函数关系式;(2)当两车相遇时,求此时客车行驶的时间;(3)两车相距200千米时,求客车行驶的时间.答案和解析1.【答案】A【解析】【分析】本题考查平方根、算术平方根、立方根的定义,熟练掌握基本概念是解题的关键.根据平方根、算术平方根、立方根的定义即可判断.【解答】解::①错误.1的平方根是±1,1的算术平方根都是1;②错误.√16=4;③错误.42的平方根是±4;④正确.(−4)3的立方根是−4;故选A.2.【答案】A【解析】【分析】本题主要考查一次函数的增减性,即:一次函数y=kx+b,当k>0时,y随x的增大而增大;k<0时,y随x的增大而减小的性质,掌握和理解性质是解决问题的前提,一次函数y=−2x+3,k<0,y随x的增大而减小,再根据A(−1,m),B(−4,n)的横坐标的大小,判断纵坐标的大小即可.【解答】解:∵一次函数y=−2x+3∴y随x的增大而减小,又∵−1>−4,∴m<n故选A.3.【答案】C【解析】【分析】本题考查的是三角形内角和定理、勾股定理的逆定理的应用,勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.根据三角形内角和定理、勾股定理的逆定理对各个选项分别进行计算即可.【解答】解:A.a2=c2−b2,则a2+b2=c2,△ABC是直角三角形,B.a=3,b=4,c=5,32+42=52,△ABC是直角三角形,C.∠A:∠B:∠C=3:4:5,设∠A、∠B、∠C分别为3x、4x、5x,则3x+4x+5x=180°,解得,x=15°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;D.a=5k,b=12k,c=13k(k为正整数),(5k)2+(12k)2=(13k)2,△ABC是直角三角形.故选C.4.【答案】C【解析】【分析】根据已知两点的坐标确定符合条件的平面直角坐标系,然后确定其它点的坐标.由已知条件正确确定坐标轴的位置是解决本题的关键.解决此类问题需要先确定原点的位置,再求未知点的位置,或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.【解答】解:由A位置点的坐标为(1,1),B点的坐标为(2,3)可以确定平面直角坐标系中x轴与y 轴的位置.根据所建坐标系从而可以确定C点的坐标(5,2).故选C.5.【答案】D【解析】【分析】本题考查了勾股定理,非负数的性质:几个非负数的和为0时,这几个非负数都为0.根据非负数的性质列出方程求出a、b的值,根据勾股定理即可得到结论.【解答】解:∵a2−6a+9+|b−4|=(a−3)2+|b−4|=0,∴a=3,b=4,∴直角三角形的第三边长=√42+32=5,或直角三角形的第三边长=√42−32=√7,∴直角三角形的第三边长为5或√7,故选D.6.【答案】A【解析】【分析】本题考查一次函数图象与系数的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:由一次函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0,∴直线y=bx−k经过第二、三、四象限,∴直线y=bx−k不经过第一象限.故选A.7.【答案】3【解析】解:√81=9,√−83=−2,∴−227,0,√81,3.14159,√−83是有理数,无理数有:√32,1.010010001…(两个1之间依次多1个0),−π共3个.故答案为:3根据无理数是无限不循环小数,可得答案.本题考查了无理数,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,√2,0.8080080008…(每两个8之间依次多1个0)等形式.8.【答案】−1【解析】解:由正比例函数的定义可得:m2−1=0,且m−1≠0,解得:m=−1,故答案为:−1.由正比例函数的定义可得m2−1=0,且m−1≠0.本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y= kx的定义条件是:k为常数且k≠0,自变量次数为1.9.【答案】>【解析】解:(−5)2=25,(−√26)2=26,∵25<26,∴−5>−√26.故答案为:>.首先比较两个数的平方的大小关系;然后根据实数大小比较的方法判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.10.【答案】y=2x−3【解析】解:∵直线y=kx+b与直线y=2x平行,∴k=2,把点(0,−3)代入y=2x+b得:b=−3,∴所求直线解析式为y=2x−3.故答案为:y=2x−3.根据两条直线平行问题得到k=2,然后把点(0,−3)代入y=2x+b可求出b的值,从而可确定所求直线解析式.本题考查了待定系数法求函数解析式以及两条直线相交或平行问题,解题时注意:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2.11.【答案】43【解析】解:∵△AEF由△AED折叠而来,∴AD=AF,DE=FE.在Rt△ABF中,AB=3cm,AF=AD=BC=5cm,∴BF=√52−32=4cm,∴CF=BC−BF=1cm.设EC=xcm,则EF=ED=(3−x)cm,在Rt△CEF中,EF2=CE2+CF2,即(3−x)2=x2+12,解得:x=4.3.故答案为:43根据折叠的性质可得出AD=AF、DE=FE,在Rt△ABF中利用勾股定理可求出BF的长度,进而可得出CF的长度,设EC=xcm,则EF=ED=(3−x)cm,在Rt△CEF中利用勾股定理即可得出关于x的一元一次方程,解之即可得出结论.本题考查了翻折变换、矩形的性质、勾股定理以及解一元一次方程,在Rt△CEF中利用勾股定理找出关于EC长度的一元一次方程是解题的关键.12.【答案】√5【解析】解:由题意得可知:OB=2,BC=1,依据勾股定理可知:OC=√OB2+BC2=√5.∴OM=√5.故答案为:√5.先依据勾股定理可求得OC的长,从而得到OM的长,于是可得到点M对应的数.本题主要考查的是实数与数轴,熟练掌握相关知识是解题的关键.13.【答案】10【解析】【分析】本题考查了平面展开−最短路径问题,本题就是把长方体的侧面展开“化立体为平面”,用勾股定理解决.要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′=√82+62=10cm.∴所用细线最短需要10cm.故答案为10.14.【答案】(−6,4)或(−6,2√7)或(−6,8−2√7)【解析】【分析】本题考查了等腰三角形的性质,坐标与图形性质,属于中档题.分类讨论,根据勾股定理即可得到结论.【解答】解:如图,当AP=PD时,点P在AD的垂直平分线上,∴P(−6,4),当AP=AD=8时,BP=√AP2−AB2=2√7,∴P(−6,8−2√7),当DP=AD=8时,PC=2√7,∴P(−6,2√7),∴P点坐标为(−6,4)或(−6,2√7)或(−6,8−2√7).故答案为:(−6,4)或(−6,2√7)或(−6,8−2√7).15.【答案】解:(1)原式=√17×28+10√7=2+10√7;(2)原式=4−2√3−(9−5)=−2√3.【解析】(1)直接利用二次根式的混合运算法则结合二次根式的性质化简得出答案;(2)直接利用乘法公式化简得出答案.此题主要考查了二次根式的混合运算,正确掌握运算法则是解题关键.16.【答案】解:(1)△A1B1C1如图所示.(2)∵AB=√12+42=√17,BC=√12+42=√17,AC=√32+52=√34,∴AB2+BC2=AC2,AB=BC,∴△ABC是等腰直角三角形.设AC边上的高为h,则有:12⋅√17⋅√17=12√34⋅ℎ,∴ℎ=√342.∴AC边上的高为√342.【解析】本题考查作图−轴对称变换,勾股定理,勾股定理的逆定理、三角形的面积公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.(1)分别作出A,B,C的对应点A1,B1,C1即可;(2)利用勾股定理以及勾股定理的逆定理判断出三角形ABC的形状,利用三角形的面积公式求出AC边上的高;17.【答案】解:(1)−2x2+8=0−2x2=−8x2=4x=±2.(2)(x−3)3+64=0(x−3)3=−64x−3=−4x=−1.【解析】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.(1)先整理成x2=a的形式,再开平方即可解答;(2)先先整理成x3=a的形式,再开立方,最后求出x的值即可.18.【答案】解:(1)∵F在第三象限,P到x轴距离为4,到y轴距离为6,∴点F的横坐标为−6,纵坐标为−4,∴点F(−6,−4);(2)∵AB//x轴,∴y=3,∴点A(−2,3),点B在点A的左边时,x=−2−6=−8,点B的坐标为(−8,3),点B在点A的右边时,x=−2+6=4,点B的坐标为(4,3),所以,点A(−2,3),B(−8,3)或(4,3).【解析】(1)根据第三象限的点的横坐标与纵坐标都是负数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答;(2)根据平行于x轴的直线上的点的纵坐标相同求出y的值,再分点B在点A的左边和右边两种情况讨论求解.本题考查了坐标与图形性质,主要利用了各象限内点的坐标特征,平行于x轴的直线上的点的纵坐标相同的性质,难点在于(2)要分情况讨论.19.【答案】解:(1)y 甲=3×10+3(x −10)×0.8=2.4x −6,y 乙=3x ⋅0.9=2.7x ,所以在甲商场购买这种乒乓球应付金额y 甲=2.4x +6,在甲、乙两个商场购买这种乒乓球应付金额y 乙=2.7x ;(2)到甲商店购买合算,理由如下:当x =30时,y 甲=2.4×30+6=78(元),y 乙=2.7×30=81(元)∵y 甲<y 乙,∴到甲商店购买合算.【解析】(1)先根据题意列出算式y 甲=3×10+3(x −10)×0.8,y 乙=3x ⋅0.9,再求出即可;(2)把x =30代入(1)中的算式,求出结果,再比较即可.本题考查了一次函数的应用,能够根据题意列出算式是解此题的关键.20.【答案】解:①1+17−18,1156;②√1+1n 2+1(n+1)2=1+1n −1n+1=n 2+n+1n 2+n ; ③应用:√82+1 =√1+181+1100=√1+192+1102 =1+19−110=1190;④证明如下:√1+1n 2+1(n +1)2=√n 2(n +1)2+(n +1)2+n 2n 2(n +1)2=√(n 2+n +1)2n 2(n +1)2=1+1n −1n+1=n 2+n+1n 2+n .故猜想成立.【解析】【分析】此题主要考查了二次根式的性质与化简,正确发现数字变化规律是解题的关键. ①直接利用利用已知条件才想得出答案;②直接利用已知条件规律用n(n 为正整数)表示的等式即可;③利用发现的规律将原式变形得出答案;④利用二次根式的化简进行证明即可.【解答】解:①猜想:√1+172+182=1+17−18=1156; 故答案为1+17−18,1156;②猜想的等式为√1+1n 2+1(n+1)2=1+1n −1n+1=n 2+n+1n 2+n ; 故答案为√1+1n 2+1(n+1)2=1+1n −1n+1=n 2+n+1n 2+n ;21.【答案】解:∵AB =13,AD =12,BD =5,∴AB 2=AD 2+BD 2,∴△ADB 是直角三角形,∠ADB =90°,∴△ADC 是直角三角形,在Rt △ADC 中,CD =√AC 2−AD 2=9.【解析】本题主要考查了勾股定理和勾股定理的逆定理.根据勾股定理的逆定理可判断出△ADB 为直角三角形,即∠ADB =90°,在Rt △ADC 中利用勾股定理可得出CD 的长度.22.【答案】解:(1)设y 1=kx ,则将(10,600)代入得出:600=10k ,解得:k =60,∴y 1=60x (0≤x ≤10);设y 2=ax +b ,则将(0,600),(6,0)代入得出:{b =6006a +b =0, 解得:{a =−100b =600, ∴y 2=−100x +600 (0≤x ≤6);(2)当两车相遇时,y 1=y 2,即60x =−100x +600,解得:x =154,∴当两车相遇时,此时客车行驶了154小时;(3)若相遇前两车相距200千米,则y 2−y 1=200,∴−100x +600−60x =200,解得:x =52,若相遇后相距200千米,则y 1−y 2=200,即60x +100x −600=200,解得:x =5,∴两车相距200千米时,客车行驶的时间为52小时或5小时.【解析】此题主要考查了待定系数法求一次函数解析式,综合运用一次函数性质进行计算是解此题的关键,通过做此题培养了学生的分析问题和解决问题的能力,题目较好,但是有一定的难度.(1)根据图象得出点的坐标,进而利用待定系数法求一次函数解析式即可;(2)当两车相遇时,y 1=y 2,进而求出即可;(3)分别根据若相遇前两车相距200千米,则y 2−y 1=200,若相遇后相距200千米,则y 1−y 2=200,分别求出即可.。

北师大新版2020-2021学年八年级上册数学期末复习试题(有答案)

北师大新版2020-2021学年八年级上册数学期末复习试题(有答案)

北师大新版2020-2021学年八年级上册数学期末复习试题一.选择题(共12小题,满分48分,每小题4分)1.点P(a﹣2,a+1)在x轴上,则a的值为()A.2B.0C.1D.﹣12.有一组数据:2,5,3,4,5,3,4,5,则这组数据的众数是()A.5B.4C.3D.23.在数轴上表示不等式组﹣1<x≤3,正确的是()A.B.C.D.4.已知正比例函数y=kx(k≠0)的图象经过点(1,﹣2),则正比例函数的解析式为()A.y=2x B.y=﹣2x C.y=x D.y=﹣x5.直线a∥b,A、B分别在直线a、b上,△ABC为等边三角形,点C在直线a、b之间,∠1=10〫,则∠2=()A.30〫B.40〫C.50〫D.70〫6.如图,已知△ABC的周长是16,MB和MC分别平分∠ABC和∠ACB,过点M作BC的垂线交BC于点D,且MD=4,则△ABC的面积是()A.64B.48C.32D.427.如图,正比例函数y1=ax与一次函数y2=x+b的图象交于点P.下面四个结论:①a <0;②b<0;③不等式ax>x+b的解集是x<﹣2;④当x>0时,y1y2>0.其中正确的是()A.①②B.②③C.①④D.①③8.如图,在△ABC中,AB=AC=2,点D在BC边上,过点D作DE∥AB交AC于点E,连结AD,DE,若∠ADE=∠B=30°,则线段CE的长为()A.B.C.D.9.正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=x﹣k的图象大致是()A.B.C.D.10.如图,∠AOB=90°,∠AOC是∠BOC的2倍,设∠AOC、∠BOC的度数分别为x、y,则可列方程组()A .B .C .D .11.将6×6的正方形网格如图所示的放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是1,正方形ABCD 的顶点都在格点上,若直线y =kx (k ≠0)与正方形ABCD 有公共点,则k 的值不可能是( )A .B .1C .D .12.如图所示,A (﹣,0)、B (0,1)分别为x 轴、y 轴上的点,△ABC 为等边三角形,点P (3,a )在第一象限内,且在直线AB 的下方,满足2S △ABP =S △ABC ,则a 的值为( )A .B .C .D .2二.填空题(共6小题,满分24分,每小题4分)13.不等式3﹣2x>7的解集为.14.甲、乙、丙、丁四位同学在五次数学测验中他们成绩的平均分相等,方差分别是2.3,3.8,5.2,6.2,则成绩最稳定的同学是.15.在△ABC中,∠C=35°,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD=度.16.如图,在等边△ABC中,AB=8,E是BA延长线上一点,且EA=4,D是BC上一点,且DE=EC,则BD的长为.17.甲乙两人同解方程组时,甲正确解得,乙因抄错c而得,则a+c=.18.如图,直线y=﹣x+3与坐标轴分别交于点A,B,与直线y=x交于点C,线段OA 上的点Q以每秒1个长度单位的速度从点O出发向点A作匀速运动,运动时间为t秒,连结CQ.(1)求出点C的坐标;(2)若△OQC是等腰直角三角形,则t的值为;(3)若CQ平分△OAC的面积,求直线CQ对应的函数关系式.三.解答题(共9小题,满分78分)19.解方程组(1)(2)20.解不等式组:,并求出所有整数解之和.21.如图,一条直线分别与直线AF、直线DF、直线AE、直线CE相交于点B,H,G,D 且∠1=∠2,∠A=∠D.求证:∠B=∠C.22.现有学生若干人,分住若干宿舍.如果每间住4人,那么还余20人;如果每间住6人,那么有一间宿舍只住了2人.试求学生人数和宿舍间数.23.如图,已知在△ABC中,∠C=90°,BE平分∠ABC,且BE∥AD,∠BAD=20°,求∠AEB的度数.24.世界卫生组织预计:到2025年,全世界将会有一半人面临用水危机.为了倡导“节约用水,从我做起”,某县政府决定对县直属机关500户家庭一年的月平均用水量进行调查,调查小组随机抽查了部分家庭的月平均用水量(单位:吨),并将调查结果绘制成如图所示的条形统计图和扇形统计图根据以上提供的信息,解答下列问题:(1)将条形统计图补充完整;(2)求被调查家庭的月平均用水量的中位数和众数;(3)估计该县直属机关500户家庭的月平均用水量不少于12吨的约有多少户?25.如图,直线l1:y=kx+b经过点Q(2,﹣2),与x轴交于点A(6,0),直线l2:y=﹣2x+8与x轴相交于点B,与直线l1相交于点C.(1)求直线l1的表达式;(2)M的坐标为(a,2),当MA+MB取最小时.①求M点坐标;②横,纵坐标都是整数的点叫做整点.直接写出线段AM、BM、BC、AC围成区域内(不包括边界)整点的坐标.26.已知四边形ABCD中,∠A=∠C=90°,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.当∠MBN绕B点旋转到AE=CF时(如图1),易证AE+CF=EF;当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需证明.27.如图,在平面直角坐标系中,直线AB经过点A(,)和B(2,0),且与y 轴交于点D,直线OC与AB交于点C,且点C的横坐标为.(1)求直线AB的解析式;(2)连接OA,试判断△AOD的形状;(3)动点P从点C出发沿线段CO以每秒1个单位长度的速度向终点O运动,运动时间为t秒,同时动点Q从点O出发沿y轴的正半轴以相同的速度运动,当点Q到达点D 时,P,Q同时停止运动.设PQ与OA交于点M,当t为何值时,△OPM为等腰三角形?求出所有满足条件的t值.参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.解:∵点P(a﹣2,a+1)在x轴上,∴a+1=0,解得:a=﹣1,故选:D.2.解:这组数据中出现次数最多的是5,所以众数为5,故选:A.3.解:∵﹣1<x≤3,∴在数轴上表示为:故选:C.4.解:把点(1,﹣2)代入y=kx得k=﹣2,所以正比例函数解析式为y=﹣2x.故选:B.5.解:作CE∥a.∵a∥b,∴CE∥b,∴∠2=∠ACE,∠1=∠ECB,∵△ACB是等边三角形,∴∠ACB=60°,∴∠1+∠2=60°,∵∠1=10°,∴∠2=50°, 故选:C .6.解:连接AM ,过M 作ME ⊥AB 于E ,MF ⊥AC 于F ,∵MB 和MC 分别平分∠ABC 和∠ACB ,MD ⊥BC ,MD =4, ∴ME =MD =4,MF =MD =4, ∵△ABC 的周长是16, ∴AB +BC +AC =16,∴△ABC 的面积S =S △AMC +S △BCM +S △ABM ==×AC ×4++=2(AC +BC +AB ) =2×16=32, 故选:C .7.解:因为正比例函数y 1=ax 经过二、四象限,所以a <0,①正确; 一次函数y 2=x +b 经过一、二、三象限,所以b >0,②错误; 由图象可得:不等式ax >x +b 的解集是x <﹣2,③正确; 当x >0时,y 1y 2<0,④错误; 故选:D . 8.解:∵AB =AC , ∴∠B =∠C =30°, ∵DE ∥AB ,∴∠CDE =∠B =30°, ∴∠AED =∠CDE +∠C =60°,∵∠ADE =30°, ∴∠DAE =90°, ∴AD =AC •tan30°=2×=,∴AE =AD •tan30°=, ∴CE =AC ﹣AE =2﹣=. 故选:D .9.解:∵正比例函数y =kx (k ≠0)的函数值y 随x 的增大而减小, ∴k <0,∵一次函数y =x ﹣k 的一次项系数大于0,常数项大于0,∴一次函数y =x +k 的图象经过第一、三象限,且与y 轴的正半轴相交. 故选:A .10.解:设∠AOC 、∠BOC 的度数分别为x 、y , 根据题意得:故选:C .11.解:由图象可知A (1,2),C (2,1), 把A 的坐标代入y =kx 中,求得k =2, 把C 的坐标代入y =kx 中,求得k =, 根据图象,当时,直线y =kx (k ≠0)与正方形ABCD 有公共点, 所以,k 的值不可能是D , 故选:D .12.解:过P 点作PD ⊥x 轴,垂足为D , 由A (﹣,0)、B (0,1),得OA =,OB =1,∵△ABC 为等边三角形, 由勾股定理,得AB ==2,∴S △ABC =×2×=,又∵S △ABP =S △AOB +S 梯形BODP ﹣S △ADP=××1+×(1+a)×3﹣×(+3)×a,=,由2S△ABP =S△ABC,得=,∴a=.故选:C.二.填空题(共6小题,满分24分,每小题4分)13.解:3﹣2x>7移项得:﹣2x>7﹣3,合并同类项:﹣2x>4,解得:x<﹣2.故答案为:x<﹣2.14.解:∵2.3<3.8<5.2<6.2,∴甲发挥最稳定,故答案为:甲.15.解:在△ABC中,∠A=180°﹣∠C﹣∠ABC=35°,∵DE是线段AB的垂直平分线,∴DA=DB,∴∠ABD=∠A=35°,故答案为:35.16.解:过点E作EF⊥BC于F;如图所示:则∠BFE=90°,∵△ABC是等边三角形,∴∠B=60°,BC=AB=8,∴∠FEB=90°﹣60°=30°,∵BE=AB+AE=8+4=12,∴BF=BE=6,∴CF=BC﹣BF=2,∵ED=EC,EF⊥BC,∴DF=CF=2,∴BD=BF﹣DF=4;故答案为:4.17.解:把代入②得:3c+14=8,解得:c=﹣2,把和代入①得:,解得:,所以a+c=4+(﹣2)=2,故答案为:2.18.解:(1)∵由,得,∴C(2,2);(2)如图1,当∠CQO=90°,CQ=OQ,∵C(2,2),∴OQ=CQ=2,∴t=2,②如图2,当∠OCQ=90°,OC=CQ,过C作CM⊥OA于M,∵C(2,2),∴CM=OM=2,∴QM=OM=2,∴t=2+2=4,即t的值为2或4,故答案为:2或4;(3)令﹣x+3=0,得x=6,由题意:Q(3,0),设直线CQ的解析式是y=kx+b,把C(2,2),Q(3,0)代入得:,解得:k=﹣2,b=6,∴直线CQ对应的函数关系式为:y=﹣2x+6.故答案为:(1)(2,2);(3)y=﹣2x+6.三.解答题(共9小题,满分78分)19.解:(1),①﹣②×4得:11y=﹣11,解得:y=﹣1,把y=﹣1代入②得:x=2,则方程组的解为;(2)方程组整理得:,①×2﹣②得:3y=9,解得:y=3,把y=3代入①得:x=5,则方程组的解为.20.解:,解不等式①得x>﹣3,解不等式②得x≤1,∴原不等式组的解集是﹣3<x≤1,∴原不等式组的整数解是﹣2,﹣1,0,1,∴所有整数解的和﹣2﹣1+0+1=﹣2.21.证明:∵∠1=∠2,∴AE∥DF,∴∠AEC=∠D.又∵∠A=∠D,∴∠AEC=∠A,∴AB∥CD,∴∠B=∠C.22.解:设学生有x人,宿舍有y间,依题意,得:,解得:.答:学生有68人,宿舍有12间.23.解:∵BE∥AD,∴∠ABE=∠BAD=20°,∵BE平分∠ABC,∴∠EBC=∠ABE=20°,∵∠C=90°,∴∠AEB=∠C+∠CBE=90°+20°=110°.24.解:(1)本次调查的户数为:10÷20%=50,用水11吨的住户有:50×40%=20(户),补全的条形统计图如右图所示;(2)由统计图中的数据可知,中位数是11吨、众数是11吨;(3)500×(10%+20%+10%)=500×40%=200(户)答:该县直属机关500户家庭的月平均用水量不少于12吨的约有200户.25.解:(1)将Q(2,﹣2)和A(6,0)代入y=kx+b,有解得所以,直线l1的表达式为y=x﹣3;(2)①如图,作点B关于直线y=2的对称点B′,连接AB′交直线y=2于M点,∵点B和点B′关于直线y=2的对称,点B坐标为(4,0),∴B′(4,4),设AB′的解析式为y=mx+n,则有:,解得,∴AB′的解析式为y=﹣2x+12,∵当y=2时,x=5,∴点M的坐标为(5,2);②连接AM、BM、B C、AC,如图可知整点为(5,0),(5,1).26.解:∵AB⊥AD,BC⊥CD,AB=BC,AE=CF,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS);∴∠ABE=∠CBF,BE=BF;∵∠ABC=120°,∠MBN=60°,∴∠ABE=∠CBF=30°,∴AE=BE,CF=BF;∵∠MBN=60°,BE=BF,∴△BEF为等边三角形;∴AE+CF=BE+BF=BE=EF;图2成立,图3不成立.证明图2.延长DC至点K,使CK=AE,连接BK,在△BAE和△BCK中,则△BAE≌△BCK,∴BE=BK,∠ABE=∠KBC,∵∠FBE=60°,∠ABC=120°,∴∠FBC+∠ABE=60°,∴∠FBC+∠KBC=60°,∴∠KBF=∠FBE=60°,在△KBF和△EBF中,∴△KBF≌△EBF,∴KF=EF,∴KC+CF=EF,即AE+CF=EF.图3不成立,AE、CF、EF的关系是AE﹣CF=EF.27.解:(1)将点A、B的坐标代入一次函数表达式:y=kx+b得:,解得:,故直线AB的表达式为:y=﹣x+2;(2)直线AB的表达式为:y=﹣x+2,则点D(0,2),由点A、B、D的坐标得:AD2=1,AO2=3,DO2=4,故DO2=OA2+AD2,故△AOD为直角三角形;(3)直线AB的表达式为:y=﹣x+2,故点C(,1),则OC=2,则直线AB的倾斜角为30°,即∠DBO=30°,则∠ODA=60°,则∠DOA=30°故点C(,1),则OC=2,则点C是BD的中点,故∠COB=∠DBO=30°,则∠AOC=30°,∠DOC=60°,OQ=CP=t,则OP=OC﹣PC=2﹣t,①当OP=OM时,如图1,则∠OMP=∠MPO=(180°﹣∠AOC)=75°,故∠OQP=45°,过点P作PH⊥y轴于点H,则OH=OP=(2﹣t),由勾股定理得:PH=(2﹣t)=QH,OQ=QH+OH=(2﹣t)+(2﹣t)=t,解得:t=;②当MO=MP时,如图2,则∠MPO=∠MOP=30°,而∠QOP=60°,∴∠OQP=90°,故OQ=OP,即t=(2﹣t),解得:t=;③当PO=PM时,则∠OMP=∠MOP=30°,而∠MOQ=30°,而∠MOQ为外角,故这种情况不存在;综上,t=或.。

2020—2021年人教版八年级数学上册期末考试(带答案)

2020—2021年人教版八年级数学上册期末考试(带答案)

2020—2021年人教版八年级数学上册期末考试(带答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列说法中正确的是( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01± 2.若a b c d ,,,满足a b c d b c d a ===,则2222ab bc cd da a b c d ++++++的值为( ) A .1或0 B .1- 或0 C .1或2- D .1或1-3.在圆的周长C =2πR 中,常量与变量分别是( )A .2是常量,C 、π、R 是变量B .2π是常量,C,R 是变量C .C 、2是常量,R 是变量D .2是常量,C 、R 是变量4.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(2,3)B .(-2,-3)C .(-3,2)D .(3,-2)5.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.估计(130246的值应在( ) A .1和2之间 B .2和3之间 C .3和4之间D .4和5之间7.下列图形中,是轴对称图形的是( )A .B .C .D .8.三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数是( )A .90B .120C .135D .1809.如图,AB ∥CD ,点E 在线段BC 上,CD=CE,若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30°10.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56°二、填空题(本大题共6小题,每小题3分,共18分)1.若0xy >,则二次根式2y x x -________. 2.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是__________.3.若一个正数的两个平方根分别是a +3和2﹣2a ,则这个正数的立方根是________.4.如图,平行四边形ABCD 中,CE AD ⊥于E ,点F 为边AB 中点,12AD CD =,40CEF ∠=︒,则AFE ∠=_________。

人教版2020-2021学年八年级数学上册期末试卷及答案

人教版2020-2021学年八年级数学上册期末试卷及答案

2020-2021学年八年级数学上册期末试卷一.选择题(共8小题)1.使分式有意义的x的取值范围为()A.x≠﹣2B.x≠2C.x≠0D.x≠±22.下列多项式中能用完全平方公式分解的是()A.x2﹣x+1B.1﹣2x+x2C.﹣a2+b2﹣2ab D.4x2+4x﹣13.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长是()A.8B.10C.12D.144.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.55.二班学生某次测试成绩统计如下表:则得分的众数和中位数分别是()得分(分)60708090100人数(人)7121083A.70分,70分B.80分,80分C.70分,80分D.80分,70分6.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,Q为对角线AC 上的动点,则△BEQ周长的最小值为()A.5B.6C.D.87.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形8.如图,在▱ABCD中,AD=2AB,F是AD的中点,E是AB上一点,连接CF、EF、EC,且CF=EF,下列结论正确的个数是()①CF平分∠BCD;②∠EFC=2∠CFD;③∠ECD=90°;④CE⊥AB.A.1个B.2个C.3个D.4个二.填空题(共6小题)9.若代数式的值为零,则x的取值应为.10.某校规定学生的期末学科成绩由三部分组成,将课堂、作业和考试三项得分按1:3:6的权重确定每个人的期末成绩.小明同学本学期数学这三项得分分别是:课堂98分,作业95分,考试85分,那么小明的数学期末成绩是分.11.如果x+=3,则的值等于12.如图,△ABC中,∠ACB=90°,∠A=25°,将△ABC绕点C逆时针旋转至△DEC 的位置,点B恰好在边DE上,则∠θ=度.13.在菱形ABCD中,对角线AC、BD交于点O,若△ABC的周长为32,BD=16,则菱形ABCD的面积为14.已知:如图,△ABC的面积为12,将△ABC沿BC方向移到△A′B′C′的位置,使B′与C重合,连结AC′交A′C于D,则△C′DC的面积为.三.解答题(共10小题)15.如图,方格纸上每个小方格的边长都是1,△ABC是通过△A1B1C1旋转得到.(1)在图中标出旋转中心点O;(2)画出△ABC向下平移4个单位长度,再向右平移4个单位长度得到的△A2B2C2.16.因式分解(1)a3﹣16a;(2)8a2﹣8a3﹣2a17.计算:(1)+(﹣2bc)×;(2)先化简,再求值:(﹣1)•,其中x=﹣5.18.解分式方程(1)(2)19.某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.(1)根据图示填写下表:平均数/分中位数/分众数/分A校85B校85100(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.20.如图,在▱ABCD中,G是CD上一点,连接BG且延长交AD的延长线于点E,AF=CG,∠E=30°,∠C=50°,求∠BFD的度数.21.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)试判断四边形ADCF的形状,并证明;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明.22.小明元旦前到文具超市用15元买了若干练习本,元旦这一天,该超市开展优惠活动,同样的练习本比元旦前便宜0.2元,小明又用20.7元钱买练习本,所买练习本的数量比上一次多50%,小明元旦前在该超市买了多少本练习本?23.(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数;②线段OD的长;③求∠BDC的度数.(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.24.在正方形ABCD中,BD是一条对角线,点P在CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QM⊥BD于M,连接AM,PM (如图1).(1)判断AM与PM的数量关系与位置关系并加以证明;(2)若点P在线段CD的延长线上,其它条件不变(如图2),(1)中的结论是否仍成立?请说明理由.参考答案与试题解析一.选择题(共8小题)1.使分式有意义的x的取值范围为()A.x≠﹣2B.x≠2C.x≠0D.x≠±2【分析】根据分式有意义的条件即可求出答案.【解答】解:x+2≠0,∴x≠﹣2故选:A.2.下列多项式中能用完全平方公式分解的是()A.x2﹣x+1B.1﹣2x+x2C.﹣a2+b2﹣2ab D.4x2+4x﹣1【分析】根据完全平方公式:a2±2ab+b2=(a±b)2可得答案.【解答】解:A、x2﹣x+1不能用完全平方公式分解,故此选项错误;B、1﹣2x+x2能用完全平方公式分解,故此选项正确;C、﹣a2+b2﹣2ab不能用完全平方公式分解,故此选项错误;D、4x2+4x﹣1不能用完全平方公式分解,故此选项错误;故选:B.3.如图,将周长为8的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长是()A.8B.10C.12D.14【分析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【解答】解:根据题意,将周长为8个单位的△ABC沿边BC向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=8,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10.故选:B.4.关于x的方程无解,则m的值为()A.﹣5B.﹣8C.﹣2D.5【分析】分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.【解答】解:去分母得:3x﹣2=2x+2+m,由分式方程无解,得到x+1=0,即x=﹣1,代入整式方程得:﹣5=﹣2+2+m,解得:m=﹣5,故选:A.5.二班学生某次测试成绩统计如下表:则得分的众数和中位数分别是()得分(分)60708090100人数(人)7121083A.70分,70分B.80分,80分C.70分,80分D.80分,70分【分析】根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,则中间的数(或中间两个数据的平均数)就是这组数据的中位数解答即可.【解答】解:由于总人数为7+12+10+8+3=40人,所以中位数为第20、21个数据平均数,即中位数为=80(分),因为70分出现次数最多,所以众数为70分,故选:C.6.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,Q为对角线AC 上的动点,则△BEQ周长的最小值为()A.5B.6C.D.8【分析】连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE 的长即为BQ+QE的最小值,进而可得出结论.【解答】解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE==5,∴△BEQ周长的最小值=DE+BE=5+1=6.故选:B.7.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形【分析】由矩形的判定和菱形的判定即可得出结论.【解答】解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.8.如图,在▱ABCD中,AD=2AB,F是AD的中点,E是AB上一点,连接CF、EF、EC,且CF=EF,下列结论正确的个数是()①CF平分∠BCD;②∠EFC=2∠CFD;③∠ECD=90°;④CE⊥AB.A.1个B.2个C.3个D.4个【分析】①只要证明DF=DC,利用平行线的性质可得∠DCF=∠DFC=∠FCB;②延长EF和CD交于M,根据平行四边形的性质得出AB∥CD,根据平行线的性质得出∠A=∠FDM,证△EAF≌△MDF,推出EF=MF,求出CF=MF,求出∠M=∠FCD =∠CFD,根据三角形的外角性质求出即可;③④求出∠ECD=90°,根据平行线的性质得出∠BEC=∠ECD,即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∵AF=DF,AD=2AB,∴DF=DC,∴∠DCF=∠DFC=∠FCB,∴CF平分∠BCD,故①正确,延长EF和CD交于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠FDM,在△EAF和△MDF中,,∴△EAF≌△MDF(ASA),∴EF=MF,∵EF=CF,∴CF=MF,∴∠FCD=∠M,∵由(1)知:∠DFC=∠FCD,∴∠M=∠FCD=∠CFD,∵∠EFC=∠M+∠FCD=2∠CFD;故②正确,∵EF=FM=CF,∴∠ECM=90°,∵AB∥CD,∴∠BEC=∠ECM=90°,∴CE⊥AB,故③④正确,故选:D.二.填空题(共6小题)9.若代数式的值为零,则x的取值应为2.【分析】分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.【解答】解:若代数式的值为零,则(x﹣2)=0或(x﹣1)=0,即x=2或1,∵|x|﹣1≠0,x≠1,∴x的取值应为2,故代数式的值为零,则x的取值应为2.10.某校规定学生的期末学科成绩由三部分组成,将课堂、作业和考试三项得分按1:3:6的权重确定每个人的期末成绩.小明同学本学期数学这三项得分分别是:课堂98分,作业95分,考试85分,那么小明的数学期末成绩是89.3分.【分析】因为数学期末成绩由课堂、作业和考试三部分组成,并按1:3:6的比例确定,所以利用加权平均数的公式即可求出答案.【解答】解:小明的数学期末成绩是=89.3(分),故答案为:89.3.11.如果x+=3,则的值等于【分析】由x+=3得x2+2+=9,即x2+=7,整体代入原式==,计算可得.【解答】解:∵x+=3,∴(x+)2=9,即x2+2+=9,则x2+=7,∵x≠0,∴原式====,故答案为:.12.如图,△ABC中,∠ACB=90°,∠A=25°,将△ABC绕点C逆时针旋转至△DEC 的位置,点B恰好在边DE上,则∠θ=50度.【分析】根据三角形内角和定理求出∠ABC,根据旋转变换的性质得到∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,计算即可.【解答】解:∵∠ACB=90°,∠A=25°,∴∠ABC=65°,由旋转的性质可知,∠E=∠ABC=65°,CE=CB,∠ECB=∠DCA,∴∠ECB=50°,∴∠θ=50°,故答案为:50.13.在菱形ABCD中,对角线AC、BD交于点O,若△ABC的周长为32,BD=16,则菱形ABCD的面积为96【分析】可设菱形ABCD的边长为x,则AC=32﹣2x,根据菱形可得AO=16﹣x,BO =8,根据勾股定理可求x,进一步得到AC,再根据菱形的面积公式即可求解.【解答】解:如图,设菱形ABCD的边长为x,则AC=32﹣2x,AO=16﹣x,BO=8,依题意有(16﹣x)2+82=x2,解得x=10,AC=32﹣2x=12,则菱形ABCD的面积为16×12÷2=96.故答案为:96.14.已知:如图,△ABC的面积为12,将△ABC沿BC方向移到△A′B′C′的位置,使B′与C重合,连结AC′交A′C于D,则△C′DC的面积为6.【分析】根据题意,可求得D为A′B′的中点,则可知△C′DC的面积为△ABC的面积的一半.【解答】解:∵将△ABC沿BC方向移到△A′B′C′的位置,使B′与C重合,∴AB∥A′B′,∵BC=CC′,∴D为A′B′的中点,∴△C′DC的面积为△ABC的面积的一半,即为6.故答案为:6.三.解答题(共10小题)15.如图,方格纸上每个小方格的边长都是1,△ABC是通过△A1B1C1旋转得到.(1)在图中标出旋转中心点O;(2)画出△ABC向下平移4个单位长度,再向右平移4个单位长度得到的△A2B2C2.【分析】(1)连接AA,BB 1,作线段AA1,BB1的垂直平分线交于点O,点O即为所求.(2)分别作出A,B,C的对应点A2,B2,C2即可.【解答】解:(1)如图,点O即为所求.(2)如图,△A2B2C2即为所求.16.因式分解(1)a3﹣16a;(2)8a2﹣8a3﹣2a【分析】(1)首先提公因式a,再利用平方差进行分解即可;(2)首先提公因式﹣2a,再利用完全平方公式进行分解即可.【解答】解:(1)原式=a(a2﹣16)=a(a+4)(a﹣4);(2)原式=﹣2a(4a2﹣4a+1)=﹣2a(2a﹣1)2.17.计算:(1)+(﹣2bc)×;(2)先化简,再求值:(﹣1)•,其中x=﹣5.【分析】(1)先计算乘法,再计算加法即可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:(1)原式=﹣=﹣=;(2)原式=•=•=﹣,当x=﹣5时,原式=﹣=﹣.18.解分式方程(1)(2)【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x﹣1=﹣1﹣2x+4,移项合并得:3x=4,解得:x=,经检验x=是分式方程的解;(2)去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.19.某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.(1)根据图示填写下表:平均数/分中位数/分众数/分A校858585B校8580100(2)结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;(3)计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.【分析】(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答;(2)根据平均数和中位数的统计意义分析得出即可;(3)分别求出A校、B校的方差即可.【解答】解:(1)A校平均数为:×(75+80+85+85+100)=85(分),众数85(分);B校中位数80(分).填表如下:平均数/分中位数/分众数/分A校858585B校8580100故答案为:85;85;80.(2)A校成绩好些.因为两个队的平均数都相同,A校的中位数高,所以在平均数相同的情况下中位数高的A校成绩好些.(3)∵A校的方差s12=×[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70,B校的方差s22=×[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160.∴s12<s22,因此,A校代表队选手成绩较为稳定.20.如图,在▱ABCD中,G是CD上一点,连接BG且延长交AD的延长线于点E,AF=CG,∠E=30°,∠C=50°,求∠BFD的度数.【分析】先根据平行四边形的性质和三角形的内角和定理求出∠ABC与∠ABE度数,据此得出∠CBG度数,再证△BCG≌△EAF得出∠AEF=∠CBG,继而由三角形外角性质可得答案.【解答】解:∵四边形ABCD是平行四边形,∠C=50°,∴∠A=∠C=50°,∠ABC=180°﹣∠C=130°,AE=BC,∵∠E=30°,∴∠ABE=180°﹣∠A﹣∠E=100°,∴∠CBG=30°,在△BCG和△EAF中,∵,∴△BCG≌△EAF(SAS),∴∠CBG=∠AEF=30°,则∠BFD=∠A+∠AEF=80°.21.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)试判断四边形ADCF的形状,并证明;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明.【分析】(1)由E是AD的中点,过点A作AF∥BC,易证得△AFE≌△DBE,然后证得AF=BD=CD,即可证得四边形ADCF是平行四边形;(2)由AB⊥AC,AD是BC边上的中线,可得AD=CD=BC,然后由四边形ADCF 是平行四边形,证得四边形ADCF是菱形.【解答】(1)解:四边形CDAF是平行四边形,理由如下:∵E是AD的中点,∴AE=ED,∵AF∥BC,∴∠AFE=∠DBE,∠F AE=∠BDE,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS),∴AF=BD,∵AD是BC边中线,∴CD=BD,∴AF=CD,∴四边形CDAF是平行四边形;(2)四边形ADCF是菱形,∵AC⊥AB,AD是斜边BC的中线,∴AD=BC=DC,∵四边形ADCF是平行四边形,∴平行四边形ADCF是菱形.22.小明元旦前到文具超市用15元买了若干练习本,元旦这一天,该超市开展优惠活动,同样的练习本比元旦前便宜0.2元,小明又用20.7元钱买练习本,所买练习本的数量比上一次多50%,小明元旦前在该超市买了多少本练习本?【分析】设小明元旦前在该超市买了x本练习本,则元旦这一天在该超市买了1.5x本练习本,根据单价=总价÷数量结合元旦这天的单价比元旦前便宜0.2元,即可得出关于x 的分式方程,解之经检验后即可得出结论.【解答】解:设小明元旦前在该超市买了x本练习本,则元旦这一天在该超市买了1.5x 本练习本,根据题意得:﹣=0.2,解得:x=6,经检验,x=6是原方程的解,且符合题意.答:小明元旦前在该超市买了6本练习本.23.(1)如图1,O是等边△ABC内一点,连接OA、OB、OC,且OA=3,OB=4,OC=5,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.求:①旋转角的度数;②线段OD的长;③求∠BDC的度数.(2)如图2所示,O是等腰直角△ABC(∠ABC=90°)内一点,连接OA、OB、OC,将△BAO绕点B顺时针旋转后得到△BCD,连接OD.当OA、OB、OC满足什么条件时,∠ODC=90°?请给出证明.【分析】(1)①根据等边三角形的性质得BA=BC,∠ABC=60°,再根据旋转的性质得∠OBD=∠ABC=60°,于是可确定旋转角的度数为60°;②由旋转的性质得BO=BD,加上∠OBD=60°,则可判断△OBD为等边三角形,所以OD=OB=4;③由△BOD为等边三角形得到∠BDO=60°,再利用旋转的性质得CD=AO=3,然后根据勾股定理的逆定理可证明△OCD为直角三角形,∠ODC=90°,所以∠BDC=∠BDO+∠ODC=150°;(2)根据旋转的性质得∠OBD=∠ABC=90°,BO=BD,CD=AO,则可判断△OBD 为等腰直角三角形,则OD=OB,然后根据勾股定理的逆定理,当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°.【解答】解:(1)①∵△ABC为等边三角形,∴BA=BC,∠ABC=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=60°,∴旋转角的度数为60°;②∵△BAO绕点B顺时针旋转后得到△BCD,∴BO=BD,而∠OBD=60°,∴△OBD为等边三角形;∴OD=OB=4;③∵△BOD为等边三角形,∴∠BDO=60°,∵△BAO绕点B顺时针旋转后得到△BCD,∴CD=AO=3,在△OCD中,CD=3,OD=4,OC=5,∵32+42=52,∴CD2+OD2=OC2,∴△OCD为直角三角形,∠ODC=90°,∴∠BDC=∠BDO+∠ODC=60°+90°=150°;(2)OA2+2OB2=OC2时,∠ODC=90°.理由如下:∵△BAO绕点B顺时针旋转后得到△BCD,∴∠OBD=∠ABC=90°,BO=BD,CD=AO,∴△OBD为等腰直角三角形,∴OD=OB,∵当CD2+OD2=OC2时,△OCD为直角三角形,∠ODC=90°,∴OA2+2OB2=OC2,∴当OA、OB、OC满足OA2+2OB2=OC2时,∠ODC=90°.24.在正方形ABCD中,BD是一条对角线,点P在CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QM⊥BD于M,连接AM,PM (如图1).(1)判断AM与PM的数量关系与位置关系并加以证明;(2)若点P在线段CD的延长线上,其它条件不变(如图2),(1)中的结论是否仍成立?请说明理由.【分析】(1)先判断出△DMQ是等腰直角三角形,再判断出△MDP≌△MQC(SAS),最后进行简单的计算即可;(2)先判断出△DMQ是等腰直角三角形,再判断出△MDP≌△MQC(SAS),最后进行简单的计算即可.【解答】解:(1)连接CM,∵四边形ABCD是正方形,QM⊥BD,∴∠MDQ=45°,∴△DMQ是等腰直角三角形.∵DP=CQ,在△MDP与△MQC中∴△MDP≌△MQC(SAS),∴PM=CM,∠MPC=∠MCP.∵BD是正方形ABCD的对称轴,∴AM=CM,∠DAM=∠MCP,∴∠AMP=180°﹣∠ADP=90°,∴AM=PM,AM⊥PM.(2)成立,理由如下:连接CM,∵四边形ABCD是正方形,QM⊥BD,∴∠MDQ=45°,∴△DMQ是等腰直角三角形.∵DP=CQ,在△MDP与△MQC中∴△MDP≌△MQC(SAS),∴PM=CM,∠MPC=∠MCP.∵BD是正方形ABCD的对称轴,∴AM=CM,∠DAM=∠MCP,∴∠DAM=∠MPC,∵∠PND=∠ANM∴∠AMP=∠ADP=90°∴AM=PM,AM⊥PM.1、三人行,必有我师。

2020--2021学年上学 期人教版 八年级 数学试题

2020--2021学年上学 期人教版 八年级 数学试题

2020-2021上学期人教版八年级数学期末试卷一.选择题(共12小题)1.给出下列说法:(1)等边三角形是等腰三角形;(2)三角形按边的相等关系分类可分为等腰三角形、等边三角形和不等边三角形;(3)三角形按角的大小分类可分为锐角三角形、直角三角形和钝角三角形.其中,正确的有()个.A.1B.2C.3D.02.有两条高在三角形外部的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定3.下列图形中,不具有稳定性的是()A.B.C.D.4.如图所示的2×2正方形网格中,∠1+∠2等于()A.105°B.90°C.85°D.95°5.如图,△ABC≌△DEC,点E在边AB上,∠DEC=75°,则∠BCE的度数是()A.25°B.30°C.40°D.75°6.如图,AE=AC,若要判断△ABC≌△ADE,则不能添加的条件为()A.DC=BE B.AD=AB C.DE=BC D.∠C=∠E7.如图,△ABC中,∠C=90°,ED垂直平分AB,若AC=12,EC=5,且△ACE的周长为30,则BE的长为()A.5B.10C.12D.138.在平面直角坐标系中,等腰△ABC的顶点A、B的坐标分别为(0,0)、(2,2),若顶点C落在坐标轴上,则符合条件的点C有()个.A.5B.6C.7D.89.已知关于与x,y的方程组,则下列结论中正确的是()①当x,y的值互为相反数时,a=20;②当2x•2y=16时,a=18;③当不存在一个实数a,使得x=y.A.①②B.①③C.②③D.①②③10.下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A.0个B.1个C.2个D.3个11.某种病毒近似于球体,它的半径约为0.000000005米,用科学记数法表示为()A.5×108B.5×109C.5×10﹣8D.5×10﹣912.在代数式,,xy+x2,中分式有()个.A.1B.2C.3D.4二.填空题(共6小题)13.如图,在△ABC中,AD⊥BC于D,那么图中以AD为高的三角形共有个.14.如图,BD是△ABC的中线,AB=6cm,BC=4cm,则△ABD和△BCD的周长差为cm.15.如图,在由6个相同的小正方形拼成的网格中,∠1+∠2=°.16.如图,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,则∠DAE=.17.若x m=2,x n=3,则x m+2n的值为.18.科学家在实验中检测处某微生物约为0.0000025米长,用科学记数法表示0.0000025为.三.解答题(共9小题)19.观察以下图形,回答问题:(1)图②有个三角形;图③有个三角形;图④有个三角形;…猜测第七个图形中共有个三角形.(2)按上面的方法继续下去,第n个图形中有个三角形(用含n的代数式表示结论).20.如图,在△ABC中(AC>AB),AC=2BC,BC边上的中线AD把△ABC的周长分成60和40两部分,求AC和AB的长.21.如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.22.如图,AB=CD,DE⊥AC,BF⊥AC,E、F是垂足,DE=BF.求证:△ABF≌△CDE.23.已知:如图,∠AOB及M、N两点.请你在∠AOB内部找一点P,使它到角的两边和到点M、N的距离分别相等(保留作图痕迹).24.已知:如图,在△ABC中,AB=AC=6,BC=4,AB的垂直平分线交AB于点E,交BC的延长线于点D.(1)求CD的长;(2)求点C到ED的距离.25.对数运算是高中常用的一种重要运算,它的定义为:如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作:x=log a N,例如:32=9,则log39=2,其中a=10的对数叫做常用对数,此时log10N可记为lgN.当a>0,且a≠1,M>0,N>0时,log a(M•N)=log a M+log a N.(I)解方程:log x4=2;(Ⅱ)求值:log48;(Ⅲ)计算:(lg2)2+lg2•1g5+1g5﹣2018.26.x2•(﹣x)2•(﹣x)2+(﹣x2)327.我们知道,假分数可以化为整数与真分数的和的形式,例如:=1+.在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.例如:像,,…,这样的分式是假分式;像,,…,这样的分式是真分式,类似的,假分式也可以化为整式与真分式的和的形式.例如:==1+;==x﹣2+.解决下列问题:(1)将分式化为整式与真分式的和的形式为:.(直接写出结果即可)(2)如果分式的值为整数,求x的整数值.2020-2021上学期人教版八年级数学期末试卷参考答案与试题解析一.选择题(共12小题)1.【分析】根据三角形的分类、三角形的三边关系进行判断.【解答】解:(1)等边三角形是一特殊的等腰三角形,正确;(2)三角形按边分类可以分为不等边三角形和等腰三角形,错误;(3)三角形按角分类应分为锐角三角形、直角三角形和钝角三角形,正确.综上所述,正确的结论2个.故选:B.2.【分析】根据三角形的高的概念,通过具体作高.发现:锐角三角形的三条高都在三角形的内部;直角三角形有两条高即三角形的两条直角边,一条在内部;钝角三角形有两条高在三角形的外部,一条在内部.【解答】解:有两条高在三角形外部的是钝角三角形.故选:C.3.【分析】根据三角形具有稳定性,四边形不具有稳定性即可判断.【解答】解:因为三角形具有稳定性,四边形不具有稳定性,故选:D.4.【分析】标注字母,然后利用“边角边”求出△ABC和△DEA全等,根据全等三角形对应角相等可得∠2=∠3,再根据直角三角形两锐角互余求解.【解答】解:如图,在△ABC和△DEA中,,∴△ABC≌△DEA(SAS),∴∠2=∠3,在Rt△ABC中,∠1+∠3=90°,∴∠1+∠2=90°.故选:B.5.【分析】利用等腰三角形的性质以及三角形的内角和定理求解即可.【解答】解:∵△ABC≌△DEC,∴∠B=∠DEC=75°,CE=CB,∴∠CEB=∠B=75°,∠B=∠CEB,∴∠BCE=180°﹣2×75°=30°,故选:B.6.【分析】根据全等三角形的判定方法一一判断即可.【解答】解:A、根据SAS可以判定两个三角形全等,本选项不符合题意.B、根据SAS可以判定两个三角形全等,本选项不符合题意.C、SSA不可以判定两个三角形全等,本选项符合题意.D、根据ASA可以判定两个三角形全等,本选项不符合题意.故选:C.7.【分析】根据线段垂直平分线的性质得出AE=BE,求出BE长即可.【解答】解:∵ED垂直平分AB,∴BE=AE,∵AC=12,EC=5,且△ACE的周长为30,∴12+5+AE=30,∴AE=13,∴BE=AE=13,故选:D.8.【分析】要使△ABC是等腰三角形,可分三种情况(①若AC=AB,②若BC=BA,③若CA=CB)讨论,通过画图就可解决问题.【解答】解:①若AC=AB,则以点A为圆心,AB为半径画圆,与坐标轴有4个交点;②若BC=BA,则以点B为圆心,BA为半径画圆,与坐标轴有2个交点(A点除外);③若CA=CB,则点C在AB的垂直平分线上,∵A(0,0),B(2,2),∴AB的垂直平分线与坐标轴有2个交点.综上所述:符合条件的点C的个数有8个.故选:D.9.【分析】已知关于与x,y的方程组,则下列结论中正确的是(①②③)①当x,y的值互为相反数时,a=20;解方程组得,根据互为相反数的两个数和为0,可得结论.②当2x•2y=16时,a=18;根据同底数幂的乘法法则得x+y=4,可得结论.③当不存在一个实数a,使得x=y.当x=y时,等式不成立,可得结论.【解答】解:已知关于与x,y的方程组,则下列结论中正确的是(①②③)①当x,y的值互为相反数时,a=20;解得:∵x,y的值互为相反数,∴x+y=0∴25﹣a+15﹣a=0解得:a=20故①正确;②当2x•2y=16时,a=18;∵2x•2y=2 x+y=24∴x+y=25﹣a+15﹣a=4解得:a=18故②正确;③当不存在一个实数a,使得x=y.若x=y,得25﹣a=15﹣a此方程无解.∴不存在一个实数a,使得x=y.故③正确.故选:D.10.【分析】①利用合并同类项来做;②③都是利用同底数幂的乘法公式做(注意一个负数的偶次幂是正数,奇次幂是负数);④利用乘法分配律的逆运算.【解答】解:①∵a5+a5=2a5,故①的答案不正确;②∵(﹣a)6•(﹣a)3•a=﹣a10故②的答案不正确;③∵﹣a4•(﹣a)5=a9,故③的答案不正确;④25+25=2×25=26.所以正确的个数是1,故选:B.11.【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000005=5×10﹣9.故选:D.12.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:这1个式子分母中含有字母,因此是分式.其它式子分母中均不含有字母,是整式,而不是分式.故选:A.二.填空题(共6小题)13.【分析】由于AD⊥BC于D,图中共有6个三角形,它们都有一边在直线CB上,由此即可确定以AD为高的三角形的个数.【解答】解:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有6个,∴以AD为高的三角形有6个.故答案为:614.【分析】根据三角形的中线得出AD=CD,根据三角形的周长求出即可.【解答】解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长的差是:(AB+BD+AD)﹣(BC+BD+CD)=AB﹣BC=6﹣4=2cm.故答案为:2.15.【分析】连接AC,利用全等三角形的性质解答即可.【解答】解:如图所示:由图可知△ACE与△ABD与△ACF全等,∴AB=AC,∠1=∠CAE=∠ACF,∵∠CAE+∠DAC=90°,∴∠1+∠DAC=∠BAC=90°,∴△ABC是等腰直角三角形,∴∠2+∠ACF=45°,∴∠1+∠2=45°,故答案为:45.16.【分析】根据线段的垂直平分线得出AD=BD,AE=CE,推出∠B=∠BAD,∠C=∠CAE,求出∠BAD+∠CAE的度数即可得到答案.【解答】解:∵点D、E分别是AB、AC边的垂直平分线与BC的交点,∴AD=BD,AE=CE,∴∠B=∠BAD,∠C=∠CAE,∵∠B=40°,∠C=45°,∴∠B+∠C=85°,∠BAC=95°,∴∠BAD+∠CAE=85°,∴∠DAE=∠BAC﹣(∠BAD+∠CAE)=95°﹣85°=10°,故答案为:10°17.【分析】先把x m+2n变形为x m(x n)2,再把x m=2,x n=3代入计算即可.【解答】解:∵x m=2,x n=3,∴x m+2n=x m x2n=x m(x n)2=2×32=2×9=18;故答案为:18.18.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:用科学记数法表示0.0000025为2.5×10﹣6,故答案为:2.5×10﹣6.三.解答题(共9小题)19.【分析】(1)根据观察可得:图②有3个三角形;图③有5个三角形;图④有7个三角形;由此可以猜测第七个图形中共有13个三角形(2)按照(1)中规律如此画下去,三角形的个数等于图形序号的2倍减去1,据此求得第n个图形中的三角形的个数.【解答】解:(1)图②有3个三角形;图③有5个三角形;图④有7个三角形;…猜测第七个图形中共有13个三角形.(2)∵图②有3个三角形,3=2×2﹣1;图③有5个三角形,5=2×3﹣1;图④有7个三角形,7=2×4﹣1;∴第n个图形中有(2n﹣1)个三角形.故答案为3,5,7,13,(2n﹣1).20.【分析】先根据AD是BC边上的中线得出BD=CD,设BD=CD=x,AB=y,则AC=4x,根据题意得出方程组,求出方程组的解,再根据三角形的三边关系定理判断即可.【解答】解:设BD=CD=x,AB=y,则AC=2BC=4x,∵BC边上的中线AD把△ABC的周长分成60和40两部分,AC>AB,∴AC+CD=60,AB+BD=40,即,解得:,当AB=28,BC=24,AC=48时,符合三角形三边关系定理,能组成三角形,所以AC=48,AB=28.21.【分析】根据全等三角形对应角相等可得∠AED=∠ACB,∠D=∠B,再根据邻补角的定义求出∠ACF,然后根据三角形的内角和定理列出方程求解即可.【解答】解:∵△ABC≌△ADE,∴∠AED=∠ACB=105°,∠D=∠B=30°,∴∠ACF=180°﹣∠ACB=180°﹣105°=75°,由三角形的内角和定理得,∠1+∠D=∠CAD+∠ACF,∴∠1+30°=15°+75°,解得∠1=60°.22.【分析】求出∠DEC=∠BF A=90°,根据HL定理推出即可.【解答】证明:∵DE⊥AC,BF⊥AC,∴∠DEC=∠BF A=90°,在Rt△ABF和Rt△CDE中,,∴Rt△ABF≌Rt△CDE(HL).23.【分析】点P是∠AOB的平分线与线段MN的中垂线的交点.【解答】解:点P就是所求的点.(2分)如果能正确画出角平分线和中垂线的给满分24.【分析】(1)过A点作AF⊥BC于点F.根据AB=AC=6,BC=4,AF⊥BC,可得BF =FC=2,∠BF A=90°,再根据三角函数即可求出CD的长;(2)过C点作CH⊥ED于点H,根据CH⊥ED,AB⊥ED,可得∠DEB=∠DHC=90°,即CH∥AB,对应边成比例即可求出CH的长.【解答】解:如图,(1)过A点作AF⊥BC于点F.∵AB=AC=6,BC=4,AF⊥BC,∴BF=FC=2,∠BF A=90°,∴在Rt△ABF中,,∵AB的垂直平分线交AB于点E,AB=6,∴AE=BE=3,∠DEB=90°,在Rt△DEB中,,∴BD=9,∴CD=5.(2)过C点作CH⊥ED于点H,∵CH⊥ED,AB⊥ED,∴∠DEB=∠DHC=90°,∴CH∥AB,∴,∵BE=3,BD=9,CD=5,∴.∴点C到ED的距离CH为.25.【分析】(I)根据题中的新定义化简为:x2=4,解方程即可得到结果;(II)解法一:利用对数的公式:log a(M•N)=log a M+log a N,把8=4×2代入公式,即可得到结果;解法二:设log48=x,根据对数的定义得4x=8,化为底数为2的式子,可得结果;(II)(lg2)2+lg2•1g5+1g5﹣2018,=lg2(lg2+1g5)+lg5﹣2018,=lg2•1g10+lg5﹣2018(III)知道lg2+1g5=1g10=1,提公因式后利用已知的新定义化简即可得到结果.【解答】解:(I)log x4=2;∴x2=4,∵x>0,∴x=2;(II)解法一:log48=log4(4×2)=log44+log42=1+=;解法二:设log48=x,则4x=8,∴(22)x=23,∴2x=3,x=,即log48=;(II)(lg2)2+lg2•1g5+1g5﹣2018,=lg2(lg2+1g5)+lg5﹣2018,=lg2•1g10+lg5﹣2018,=lg2+1g5﹣2018,=1g10﹣2018,=1﹣2018,=﹣2017.26.【分析】根据幂的乘方和积的乘方的计算方法进行计算即可.【解答】解:原式=x2•x2•x2﹣x6=x6﹣x6=0.27.【分析】(1)由“真分式”的定义,可仿照例题得结论;(2)先把分式化为真分式,再根据分式的值为整数确定x的值.【解答】解:(1)==﹣=1﹣故答案为:1﹣(2)原式===x﹣1+因为x的值是整数,分式的值也是整数,所以x+3=±1或x+3=±3,所以x=﹣4、﹣2、0、﹣6.所以分式的值为整数,x的值可以是:﹣4、﹣2、0、﹣6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021青岛市八年级数学上期末一模试题带答案一、选择题1.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为( )A .5.6×10﹣1B .5.6×10﹣2C .5.6×10﹣3D .0.56×10﹣1 2.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别一点M N 、为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P . 若点P 的坐标为11,423a a ⎛⎫ ⎪-+⎝⎭,则a 的值为( )A .1a =-B .7a =-C .1a =D .13a = 3.如图,将边长相等的正方形、正五边形、正六边形纸板,按如图方式放在桌面上,则a ∠的度数是( )A .42B .40C .36D .32 4.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( ) A .1B .2C .3D .8 5.下列运算正确的是( ) A .a 2+2a =3a 3 B .(﹣2a 3)2=4a 5C .(a+2)(a ﹣1)=a 2+a ﹣2D .(a+b)2=a 2+b 2 6.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1 B .1 C .-1或1 D .1或07.下列各式中不能用平方差公式计算的是( )A .()2x y)x 2y -+( B .() 2x y)2x y -+--( C .() x 2y)x 2y ---( D .()2x y)2x y +-+(8.如图,AE ⊥AB 且AE =AB ,BC ⊥CD 且BC =CD ,请按图中所标注的数据,计算图中实线所围成的面积S 是( )A .50B .62C .65D .68 9.如图,在△ABC 中,AB =AC ,∠A =30°,AB 的垂直平分线l 交AC 于点D ,则∠CBD 的度数为( )A .30°B .45°C .50°D .75° 10.若代数式4x x -有意义,则实数x 的取值范围是( ) A .x =0B .x =4C .x ≠0D .x ≠4 11.23x 可以表示为( ) A .x 3+x 3B .2x 4-xC .x 3·x 3D .62x ÷x 2 12.若关于x 的方程244x a x x =+--有增根,则a 的值为( ) A .-4 B .2 C .0 D .4二、填空题13.如图,已知△ABC 中,BC=4,AB 的垂直平分线交AC 于点D ,若AC=6,则△BCD 的周长=_________14.关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是_____. 15.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.16.若分式221x x -+的值为零,则x 的值等于_____. 17.若=2m x ,=3n x ,则2m n x +的值为_____.18.计算:(x -1)(x +3)=____.19.如图,AC =DC ,BC =EC ,请你添加一个适当的条件:______________,使得△ABC ≌△DEC .20.若a ,b 互为相反数,则a 2﹣b 2=_____.三、解答题21.计算: 22142a a a ---. 22.分解因式:(1)(a ﹣b )2+4ab ;(2)﹣mx 2+12mx ﹣36m .23.已知:如图,在△ABC 中,AB=AC ,∠BAC=90°,D 是BC 上一点,EC ⊥BC ,EC=BD ,DF=FE .求证:(1)△ABD ≌△ACE ;(2)AF ⊥DE .24.先化简,再求值:(a ﹣2b )(a+2b )﹣(a ﹣2b )2+8b 2,其中a=﹣2,b=12. 25.如图,△ABC 中,∠C =90°,∠A =30°.(1)用尺规作图作AB 边上的中垂线DE ,交AC 于点D ,交AB 于点E .(保留作图痕迹,不要求写作法和证明);(2)连接BD ,求证:BD 平分∠CB A .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【详解】2.D解析:D【解析】【分析】根据作图过程可得P在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得11=423a a-+,再根据P点所在象限可得横纵坐标的和为0,进而得到a的数量关系.【详解】根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,故11+423a a-+=0,解得:a=1 3 .故答案选:D.【点睛】本题考查的知识点是作图—基本作图, 坐标与图形性质, 角平分线的性质,解题的关键是熟练的掌握作图—基本作图, 坐标与图形性质, 角平分线的性质作图—基本作图, 坐标与图形性质, 角平分线的性质.3.A解析:A【解析】根据正多边形的内角,角的和差,可得答案.【详解】解:正方形的内角为90°,正五边形的内角为(52)1801085︒︒-⨯=,正六边形的内角为(62)1801206︒︒-⨯=,∠1=360°-90°-108°-120°=42°, 故选:A .【点睛】本题考查多边形的内角与外角,解题关键是利用正多边形的内角进行计算.4.C解析:C【解析】【分析】根据三角形三边关系可得5﹣3<a <5+3,解不等式即可求解.【详解】由三角形三边关系定理得:5﹣3<a <5+3,即2<a <8,由此可得,符合条件的只有选项C ,故选C .【点睛】本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a <5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.5.C解析:C【解析】【分析】根据整式的混合运算法则与完全平方公式进行判断即可.【详解】解:A.a 2与2a 不是同类项,不能合并,故本选项错误;B.326 (2a )4a -=,故本选项错误;C.()()2a 2a 1a a 2+-=+-,正确; D.222 (a b)a 2ab b +=++,故本选项错误.故选C.【点睛】本题主要考查了整式的混合运算与完全平方公式,属于基础题,熟练掌握其知识点是解此题的关键.6.B【解析】【分析】根据分式的值为零的条件可以求出x的值.【详解】根据题意,得|x|-1=0且x+1≠0,解得,x=1.故选B.【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.7.A解析:A【解析】【分析】根据公式(a+b)(a-b)=a2-b2的左边的形式,判断能否使用.【详解】解:A、由于两个括号中含x、y项的系数不相等,故不能使用平方差公式,故此选项正确;B、两个括号中,含y项的符号相同,1的符号相反,故能使用平方差公式,故此选项错误;C、两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,故此选项错误;D、两个括号中,y相同,含2x的项的符号相反,故能使用平方差公式,故此选项错误;故选:A.【点睛】本题考查了平方差公式.注意两个括号中一项符号相同,一项符号相反才能使用平方差公式.8.A解析:A【解析】【分析】由AE⊥AB,EF⊥FH,BG⊥AG,可以得到∠EAF=∠ABG,而AE=AB,∠EFA=∠AGB,由此可以证明△EFA≌△AGB,所以AF=BG,AG=EF;同理证得△BGC≌△CHD,GC=DH,CH=BG.故可求出FH的长,然后利用面积的割补法和面积公式即可求出图形的面积.【详解】∵如图,AE⊥AB且AE=AB,EF⊥FH,BG⊥FH⇒∠EAB=∠EFA=∠BGA=90º,∠EAF+∠BAG=90º,∠ABG+∠BAG=90º⇒∠EAF=∠ABG,∴AE=AB,∠EFA=∠AGB,∠EAF=∠ABG⇒△EFA≌△AGB,∴AF=BG,AG=EF.同理证得△BGC≌△CHD得GC=DH,CH=BG.故FH=FA+AG+GC+CH=3+6+4+3=16故S=12(6+4)×16−3×4−6×3=50.故选A.【点睛】此题考查全等三角形的性质与判定,解题关键在于证明△EFA≌△AGB和△BGC≌△CHD. 9.B解析:B【解析】试题解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.10.D解析:D【解析】由分式有意义的条件:分母不为0,即x-4≠0,解得x≠4,故选D.11.A解析:A【解析】【分析】根据整式的运算法则即可求出答案.【详解】B、原式=42x x-,故B的结果不是32x .C、原式=6x,故C的结果不是32x.D、原式=42x,故D的结果不是32x.故选A.【点睛】本题主要考查整式的运算法则,熟悉掌握是关键.12.D解析:D【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.让最简公分母x-4=0,得到x=4.再将x=4代入去分母后的方程即可求出a=4.【详解】解:由分式方程的最简公分母是x-4,∵关于x 的方程244x a x x =+--有增根, ∴x-4=0,∴分式方程的增根是x=4. 关于x 的方程244x a x x =+--去分母得x=2(x-4)+a, 代入x=4得a=4 故选D .【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.二、填空题13.10【解析】【分析】根据AB 的垂直平分线交AC 于点D 得DA=DB 再代入数值即可得出结论【详解】如图所示AB 的垂直平分线交AC 于点D 则DA=DB ∵BC=4AC=6∴BC+CD+DB=BC+CD+DA=解析:10【解析】【分析】根据AB 的垂直平分线交AC 于点D ,得DA=DB ,再代入数值即可得出结论.【详解】如图所示,AB 的垂直平分线交AC 于点D ,则DA=DB ,∵BC=4,AC=6,∴BC+CD+DB=BC+CD+DA=BC+AC=10.则△BCD 的周长为10.故答案为10.【点睛】本题考查了线段垂直平分线的性质,解题的关键是熟练的掌握线段垂直平分线的性质.14.且【解析】【分析】直接解分式方程进而利用分式方程的解是正数得出的取值范围进而结合分式方程有意义的条件分析得出答案【详解】去分母得:解得:解得:当时不合题意故且故答案为:且【点睛】此题主要考查了分式方解析:5a <且3a ≠【解析】【分析】直接解分式方程,进而利用分式方程的解是正数得出a 的取值范围,进而结合分式方程有意义的条件分析得出答案.【详解】去分母得:122a x -+=-,解得:5x a =-,50a ->,解得:5a <,当52x a =-=时,3a =不合题意,故5a <且3a ≠.故答案为:5a <且3a ≠.【点睛】此题主要考查了分式方程的解,注意分式的解是否有意义是解题关键.15.30【解析】【分析】根据角平分线的定义可得∠PBC=20°∠PCM=50°根据三角形外角性质即可求出∠P 的度数【详解】∵BP 是∠ABC 的平分线CP 是∠ACM 的平分线∠ABP=20°∠ACP=50°∴解析:30【解析】【分析】根据角平分线的定义可得∠PBC=20°,∠PCM=50°,根据三角形外角性质即可求出∠P 的度数.【详解】∵BP 是∠ABC 的平分线,CP 是∠ACM 的平分线,∠ABP=20°,∠ACP=50°, ∴∠PBC=20°,∠PCM=50°,∵∠PBC+∠P=∠PCM ,∴∠P=∠PCM-∠PBC=50°-20°=30°,故答案为:30【点睛】本题考查及角平分线的定义及三角形外角性质,三角形的外角等于和它不相邻的两个内角的和,熟练掌握三角形外角性质是解题关键.16.2【解析】根据题意得:x ﹣2=0解得:x=2此时2x+1=5符合题意故答案为2 解析:2【解析】根据题意得:x ﹣2=0,解得:x=2.此时2x +1=5,符合题意,故答案为2.17.18【解析】【分析】先把xm+2n 变形为xm (xn )2再把xm=2xn=3代入计算即可【详解】∵xm=2xn=3∴xm+2n=xmx2n=xm (xn )2=2×32=2×9=18;故答案为18【点睛】解析:18【解析】【分析】先把x m+2n变形为x m(x n)2,再把x m=2,x n=3代入计算即可.【详解】∵x m=2,x n=3,∴x m+2n=x m x2n=x m(x n)2=2×32=2×9=18;故答案为18.【点睛】本题考查同底数幂的乘法、幂的乘方,熟练掌握运算性质和法则是解题的关键.18.x2+2x-3【解析】【分析】多项式与多项式相乘的法则:多项式与多项式相乘先用一个多项式的每一项乘另外一个多项式的每一项再把所得的积相加依此计算即可求解【详解】(x-1)(x+3)=x2+3x-x-解析:x2+2x-3【解析】【分析】多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.依此计算即可求解.【详解】(x-1)(x+3)=x2+3x-x-3 =x2+2x-3.故答案为x2+2x-3.【点睛】本题考查了多项式乘多项式,运用法则时应注意以下两点:①相乘时,按一定的顺序进行,必须做到不重不漏;②多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.19.CE=BC本题答案不唯一【解析】再加利用SSS证明≌故答案为解析:C E=BC.本题答案不唯一.【解析】=,再加AB DEAC DC=,BC EC=,利用SSS,证明ABC≌DEC.=.故答案为AB DE20.0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案【详解】∵ab互为相反数∴a+b=0∴a2﹣b2=(a+b)(a﹣b)=0故答案为0【点睛】本题考查了公式法分解因式以及相解析:0【解析】【分析】直接利用平方差公式分解因式进而结合相反数的定义分析得出答案.【详解】∵a,b互为相反数,∴a+b=0,∴a 2﹣b 2=(a+b )(a ﹣b )=0,故答案为0.【点睛】本题考查了公式法分解因式以及相反数的定义,正确分解因式是解题关键.三、解答题21.12a + 【解析】【分析】先寻找2个分式分母的最小公倍式(最小公倍是用因式分解的方法去寻找),将最小公倍式作为结果的分母;然后在进行减法计算最后进行化简【详解】解:原式=21(2)(2)2a a a a -+-- = ()()22(2)(2)22a a a a a a +-+-+- = 2-(2)(2)(-2)a a a a ++ =-2(2)(-2)a a a + = 1+2a . 【点睛】本题是对分式计算的考察,正确化简是关键22.(1)(a +b )2;(2)﹣m (x ﹣6)2【解析】【分析】(1)先进行去括号,然后合并同类项,最后根据公式法进行因式分解即可.(2)先提取公因式,然后运用公式法,即可得出答案.【详解】解:(1)(a ﹣b )2+4ab=a 2﹣2ab +b 2+4ab=a 2+2ab +b 2=(a +b )2;(2)﹣mx 2+12mx ﹣36m=﹣m (x 2﹣12xy +36)=﹣m (x ﹣6)2.【点睛】本题主要考察了因式分解,解题的关键是灵活运用因式分解与整式的乘除.23.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据等腰三角形两底角相等求出∠B=∠BCA=45°,再求出∠ACE=45°,从而得到∠B=∠ACE,然后利用“边角边”即可证明△ABD≌△ACE;(2)根据全等三角形对应边相等可得AD=AE,然后利用等腰三角形三线合一的性质证明即可.【详解】(1)∵AB=AC,∠BAC=90°,∴∠B=∠BCA=45°,∵EC⊥BC,∴∠ACE=90°﹣45°=45°,∴∠B=∠ACE,在△ABD和△ACE中,AB ACB ACE BD EC=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△ACE(SAS);(2)由(1)知,△ABD≌△ACE,∴AD=AE,等腰△ADE中,∵DF=FE,∴AF⊥DE.【点睛】本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,熟练掌握三角形全等的判定方法以及等腰三角形的性质是解题的关键.24.4ab,﹣4.【解析】【分析】原式利用平方差公式,以及完全平方公式进行展开,去括号合并得到最简结果,把a与b 的值代入计算即可求出值.【详解】(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2=a2﹣4b2﹣a2+4ab﹣4b2+8b2=4ab,当a=﹣2,b=12时,原式=﹣4.【点睛】本题考查了整式的混合运算﹣化简求值,熟练掌握乘法公式以及整式混合运算的运算顺序及运算法则是解本题的关键.25.(1)作图见解析;(2)证明见解析.【解析】【分析】(1)分别以A、B为圆心,以大于12AB的长度为半径画弧,过两弧的交点作直线,交AC于点D,AB于点E,直线DE就是所要作的AB边上的中垂线;(2)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠ABD=∠A=30°,然后求出∠CBD=30°,从而得到BD平分∠CBA.【详解】(1)解:如图所示,DE就是要求作的AB边上的中垂线;(2)证明:∵DE是AB边上的中垂线,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣∠A=90°﹣30°=60°,∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠ABD=∠CBD,∴BD平分∠CB A.【点睛】考查线段的垂直平分线的作法以及角平分线的判定,熟练掌握线段的垂直平分弦的作法是解题的关键.。

相关文档
最新文档