汽车虚拟试验技术
汽车试验学第9章 汽车虚拟试验技术
二、整车系统NVH 分析 • (二)NVH分析 • 应用VPG技术,可在时域分析的基础上进行汽 车的振动、噪声和舒适性分析评价,获得模态/ 频率,噪声和声学响应分析的解决方案。 • 故整个分析过程的内容包括NVH分析模型的建 模方法、分析结果的FFT变换、关键频率的确定、 对应振型的显示方法、原设计的改进方法、改 进效果的评估等内容。
为结果和信息指定一个输出 (OUTPUT)文件
获取疲劳分析结果
二、整车系统NVH 分析
• NVH是指Noise(噪声)、Vibration(振动)和 Harshness(声振粗糙度),由于三者在车辆等机械中是 同时出现且密不可分。声振粗糙度是指噪声和振动的品 质,是描述人体对振动和噪声的主观感觉,不能直接用 客观测量方法来度量。由于声振粗糙度描述的是振动和 噪声使人不舒适的感觉,因此有人称Harshness为不平顺 性。又因为声振粗糙度经常用来描述冲击激励产生的使 人极不舒适的瞬态响应,因此也有人称Harshness为冲击 特性 • (一)汽车NVH特性研究的建模和评价方法 • 研究汽车的NVH特性首先必须利用CAE技术建立汽车动 力学模型,目前有多体系统动力学方法、有限元方法和 边界元方法等几种比较成熟的理论和方法。
第一节 汽车虚拟试验场
• VPG是ETA公司与各大汽车厂商合作,开发出的 整车仿真软件(如图),是专门针对整车分析而 开发的CAE仿真环境,可以进行整车的防撞性、 安全性、NVH和耐久性、等分析。VPG提供的模 型库、工具库及固化专家经验的自动化技术可将 整车仿真过程中的人员数量及其工作量降到最低。
汽车试验学
•
• • •
东北林业大学交通学院
主讲教师:
第九章
汽车虚拟试验技术
• 第一节 • 第二节
中职教育-《汽车试验技术》课件:第九章 虚拟仿真与实车结合试验简介.ppt
1. 物理模型 物理模型就是建立与实物具有相同的物理本质、仅在 形状和尺寸上存在一定差别的物理系统,通过各种试验手 段,准确测试物理系统的性能和各种参数之间的关系,从 而得到系统模型及各种性能。 2. 数学模型 数学模型是在物理系统与数学描述方程之间建立一组 法则,将一个或多个元素与运动结果联系起来。 (1)解析法 (2)数值法或定值法
第一节
虚拟仿真技术的发展
汽车工业是仿真技术得到应用的重要领域,针对汽 车的各项性能,在运动、应力、碰撞、耐久性、NVH、 热学、控制、液压、声学等诸多学科领域均有软件产品。 在汽车设计开发的初期,针对机构设计、整车虚拟样机 分析的CAE产品多为多体系统动力学软件。从广义的汽 车CAE角度来看,多体系统动力学软件在汽车领域可以 完成三项任务:
第九章 虚 拟 仿 真 与实车结合试验简介
第一节 第二节
虚拟仿真技术的发展 车辆系统动力学仿真
由于控制技术和计算机技术的高速发展,使得汽车 的部分试验能够在计算机上进行模拟测试和仿真分析, 即能开展虚拟试验技术。通过虚拟试验,研发人员可以 对车辆设计所需要的各项技术指标和参数进行模拟测试, 对汽车的各项性能进行仿真分析,在计算机模拟试验和 实车道路试验之间建立一定的相互关系,为实车道路试 验提供经济、有效的参考数据和方案。目前,许多发达 国家都在积极开展这方面的研究。
(1)对体现原始设计思想的系统进行性能预测; (2)对已有的系统进行仿真分析、性能评估; (3)对原有的设计进行结构改进与性能完善。
目前,应用于车辆虚拟样机开发的软件有MSC、 ADAMS、DADS、SIMPACK、Virtual Lab、VPG 等,这些 软件在汽车的机构干涉、悬架设计分析、操纵稳定性虚 拟试验、平顺性和舒适性分析、关键部件疲统动力学仿真
汽车数字化开发技术—第六章 汽车虚拟试验
42
43
倒车雷达
44
7)疲劳驾驶预警系统
• 利用多种传感器,如图像、激光雷达、压力、角 位移传感器等,对上述典型疲劳特征信息进行实 时采集和处理,运用各种信号处理方法提取和识 别驾驶疲劳特征信息, 应用多传感器信息融合理 论,对互补或冗余的疲劳特征信息进行有机融合 ,进而建立疲劳驾驶智能决策模型对驾驶员是否 疲劳驾驶进行准确可靠判断,最后输出报警模块 可将检测结果实时显示,并通过声光报警装置提 醒驾驶员注意行车安全。
8
6.1.3汽车虚拟样车技术
• 指汽车产品设计开发过程中,基于其数字化原型 ,按实车的拓扑结构及其动力学参数,在同一系 统中将汽车各零件部件设计和分析技术融合在计 算机上制造出汽车产品的整体模型,并针对汽车 在投入使用后的各种工况进行仿真分析,预测其 整车或系统性能,进而改进汽车零部件的设计, 以提高其性能的一种新技术。
28
6.4汽车主动安全系统开发
6.4.1控制器“V”字形开发模式 开发阶段和过程:
1)功能描述及设计 2)原型设计 3)产品级代码生成 4)系统测试及检验 5)系统整合
29
“V”形开发模式
30
6.4.2汽车安全新技术 1)先进汽车主动安全控制技术
2)智能乘员约束技术
3)汽车侧面碰撞保护技术
4)行人碰撞保护技术
第6章 汽车虚拟试验
0
主要内容及要求
6.1汽车数字化仿真技术
掌握汽车虚拟样车技术概念及内容,了解具体仿真 流程。
6.2汽车虚拟试验
掌握汽车虚拟试验特点和优点,了解常用汽车虚拟 试验技术
6.3汽车碰撞安全仿真
掌握汽车碰撞安全仿真的研究内容、仿真过程,了 解发展趋势
6.4汽车主动安全系统开发
基于虚拟仿真的汽车碰撞仿真技术研究
基于虚拟仿真的汽车碰撞仿真技术研究随着汽车行业的不断发展,汽车碰撞安全成为一个备受关注的话题。
汽车碰撞实验是一项非常危险和昂贵的工作,而通过虚拟仿真技术,可以大大降低实验成本,提高实验安全性,并且还可以更精确地模拟不同情况下的碰撞情况,因此,基于虚拟仿真的汽车碰撞仿真技术越来越受到人们的关注和应用。
一、虚拟仿真技术的技术原理虚拟仿真技术是通过计算机软件模拟实际物理过程的技术。
在汽车碰撞实验中,虚拟仿真技术能够模拟汽车的碰撞过程,包括撞击力的大小和方向、车辆的运动状态、车体变形、碰撞后车辆停止运动位置等一系列参数。
虚拟仿真技术可以模拟不同速度、角度、型号的车辆在不同情况下的碰撞,帮助汽车制造商和研究人员更好地了解碰撞的物理过程,以及各种部件的相互作用和损伤情况,提供更好的产品和技术支持。
二、虚拟仿真技术在汽车碰撞实验中的应用1. 碰撞测试前设计验证在汽车制造过程中,通过虚拟仿真进行碰撞测试前设计验证,优化车身结构和材料的使用方式,降低车身重量,提高车身稳定性和安全性。
这种前期验证可节省实际测试成本,缩短实验周期,提高碰撞测试成效,并减小安全事故风险。
2. 碰撞测试现场参数验证在汽车碰撞测试现场,可以对车辆进行实时监测,并将情况反馈给虚拟仿真系统,以验证仿真模型的精准度。
可以对碰撞现场采集的数据进行回归,使得实际测试结果与虚拟仿真预测结果更加接近。
3. 碰撞实验数据预测通过虚拟仿真技术,可以预测车辆在不同碰撞情况下的轿车的变形和损坏情况。
这样做可以帮助汽车制造商预测可能的设计问题,并加以调整。
早期发现和纠正问题可以提高汽车的整体安全性和坚固性,降低制造成本和投资风险,免去日后损失。
三、汽车碰撞仿真技术的应用场景1. 汽车碰撞试验一些汽车制造商会在汽车生产前进行一系列的碰撞实验,以确定汽车的安全标准。
在这些实验中,虚拟仿真技术可以帮助工程师更好地理解汽车的关键部件在不同情况下的运作方式和相互作用。
这一技术使得工程师们能够更好地优化汽车的设计,提高汽车的整体性能。
车辆模拟试验技术在新能源汽车研发中的应用
车辆模拟试验技术在新能源汽车研发中的应用随着新能源汽车的发展,汽车行业中的技术研发也在不断推进,其中,车辆模拟试验技术在新能源汽车研发过程中的应用越来越广泛。
本文将从模拟试验的概念、技术特点、应用场景以及未来趋势等方面进行探讨,为读者深入了解车辆模拟试验技术在新能源汽车研发中的重要性与应用提供参考。
1. 模拟试验技术的概念车辆模拟试验技术,指的是通过模拟真实路况与各种复杂工况,在实验室中进行车辆测试,通过各种测试数据集成车辆可靠性、安全性、舒适性等多重指标的测试技术。
目前车辆模拟试验主要分为三类:基于虚拟仿真环境的仿真试验、基于硬件环境和仿真试验相结合的试验和纯硬件试验。
2. 模拟试验技术的技术特点车辆模拟试验技术具有高效、低成本、重现性好、安全性高等诸多优点。
不仅可以节约实际测试成本,同时可以提高测试的安全性和效率。
在新能源汽车中,车辆模拟试验技术可以检测电动车辆的电池循环寿命、电机效率等重要参数,也可以验证车辆的底盘结构设计是否合理,同时能够测试车辆在不同工况下的能耗情况。
3. 模拟试验技术的应用场景车辆模拟试验技术的应用场景十分广泛。
其中,在新能源汽车研发过程中,车辆模拟试验主要应用于车身结构、车辆底盘、动力系统、电池等方面的研究。
例如,模拟试验可以用于检测新能源汽车电池循环寿命、电池温度管理系统的设计是否合理、行驶过程中能耗情况的评估等。
车辆模拟试验还可以帮助开发新的电机控制策略,改善电动车辆的整车性能和驾驶体验,为新能源汽车增强竞争力。
4. 模拟试验技术的未来趋势随着技术的发展,车辆模拟试验技术将越来越智能化、自动化和模型化。
随着数据分析与机器学习等技术的广泛应用,大量收集的数据可以为模拟试验提供更多的参考信息,同时可以根据数据集的特点自动调整测试参数。
未来,车辆模拟试验技术将与智能网联等技术相结合,为新能源汽车的开发提供更多的支持,为车辆安全、环保等追求更高的目标提供更强有力的技术保障。
新能源车开发过程虚拟试验方案
新能源车开发过程虚拟试验方案一、背景随着环保意识的日益增强和能源问题的日益突出,新能源汽车逐渐成为了人们关注的焦点。
而在新能源汽车的研发过程中,虚拟试验技术已经成为了必不可少的一部分。
虚拟试验可以在真实试验之前对汽车进行模拟分析,从而提高研发效率、降低成本和风险。
二、目标本方案旨在通过虚拟试验技术,提高新能源汽车的开发效率和质量,并降低研发成本。
三、方案内容1.建立虚拟试验平台首先需要建立一个完整的虚拟试验平台。
该平台应包含以下模块:(1)建模模块:将汽车进行三维建模,并将其导入到虚拟环境中。
(2)仿真模块:对汽车进行各种仿真分析,包括碰撞测试、动力学分析、流体力学分析等。
(3)数据处理模块:对仿真结果进行处理和分析,提取有用信息。
(4)优化设计模块:根据数据处理结果对汽车进行优化设计。
2. 确定试验方案在建立好虚拟试验平台后,需要根据实际情况确定试验方案。
试验方案应包括以下内容:(1)仿真类型:根据实际需求确定需要进行的仿真类型,如碰撞测试、动力学分析、流体力学分析等。
(2)仿真参数:确定各种仿真参数,如速度、质量、材料等。
(3)试验结果评估标准:制定评估标准,对试验结果进行评估和分析。
3. 进行虚拟试验在确定好试验方案后,就可以进行虚拟试验了。
在虚拟试验过程中需要注意以下几点:(1)保证模型的精度和可靠性:模型精度和可靠性是虚拟试验的基础。
(2)合理设置仿真参数:根据实际情况合理设置各种仿真参数,确保仿真结果的可靠性。
(3)数据处理和分析:对仿真结果进行数据处理和分析,提取有用信息,并根据评估标准对结果进行评估和分析。
4. 优化设计在完成虚拟试验后,根据数据处理和分析的结果对汽车进行优化设计。
优化设计应包括以下几个方面:(1)结构优化:通过改变汽车结构,提高其性能和安全性。
(2)材料优化:选择更优质的材料,提高汽车的质量和性能。
(3)动力系统优化:优化动力系统,提高汽车的动力性和燃油效率。
5. 验证试验在完成虚拟试验和优化设计后,需要进行验证试验。
计算机技术辅助设计在汽车设计中的应用
计算机技术辅助设计在汽车设计中的应用随着计算机技术的不断发展,其在各个领域的应用也日益广泛。
汽车设计作为一个重要的行业,也不例外。
计算机技术辅助设计在汽车设计中起到了举足轻重的作用。
本文将分析计算机技术辅助设计在汽车设计中的应用,并探讨其对汽车行业的影响。
一、三维建模技术在汽车设计中的应用三维建模技术是计算机辅助设计中最为重要的技术之一,它可以将设计师的创意转化为可视化的模型。
在汽车设计中,设计师可以利用三维建模技术快速创建、修改和评估汽车的外观和结构。
通过这种技术,设计师可以更好地理解设计方案,并进行相应的优化。
三维建模技术还可以使设计师与客户之间的沟通更加直观和有效。
设计师可以将三维模型呈现给客户,让客户更好地了解设计方案,提出意见和建议。
这样可以减少设计修改的次数,提高设计效率。
二、虚拟现实技术在汽车设计中的应用虚拟现实技术是计算机辅助设计中的一项重要技术,它可以模拟真实世界的场景,并让用户通过交互方式与虚拟环境进行互动。
在汽车设计中,设计师可以利用虚拟现实技术创建一个虚拟的驾驶舱环境,让用户感受到真实驾驶的体验。
通过虚拟现实技术,设计师可以在设计初期就对驾驶舱进行评估和修改。
设计师可以调整座椅的位置、仪表盘的布局、控制台的设计等,以提高驾驶舱的舒适性和人机交互性。
此外,虚拟现实技术还可以用于测试用户在驾驶舱中操作的便捷性和可靠性,以提供更好的用户体验。
三、计算流体力学在汽车设计中的应用计算流体力学是一种通过数值模拟方法对流体运动进行计算和分析的技术。
在汽车设计中,计算流体力学可以帮助设计师评估汽车的气动性能。
设计师可以通过计算流体力学模拟汽车在不同速度下的气动特性,包括空气阻力、升力分布等。
通过计算流体力学,设计师可以优化汽车的外形,以减少阻力和空气湍流。
这可以提高汽车的燃油经济性和行驶稳定性。
此外,计算流体力学还可以帮助设计师评估空气动力学对车身附件的影响,如后视镜、雨刮器等。
四、虚拟试验技术在汽车设计中的应用虚拟试验技术是计算机辅助设计中的一项重要技术,它可以通过数值模拟和仿真来评估汽车的性能和可靠性。
汽车CAE技术的新进展——虚拟试验场(VPG)技术
汽车CAE技术的新进展——虚拟试验场(VPG)技术CAE技术在飞速发展,非线性软件功能有了很大的提高,计算机硬件也提供了足够的支持,所以CAE技术满足上述汽车现代设计要求是可能的。
美国工程技术合作公司(ETA公司)推出的虚拟试验场技术(VIRTUAL PROVING GROUND ,以下简称VPG技术)即是针对上述要求发展的实用软件。
一、概述现代汽车对结构设计提出了越来越高的要求,汽车结构分析已不满足于结构线性弹性分析。
实际上汽车结构系统中大量存在非线性结构,例如发动机、驾驶室橡胶支承、悬挂大变形、零部件间连接的能量缓冲等。
在产品要求精益设计的条件下,只应用线性分析普遍感到不足。
产品开发要求CAE更多地考虑非线性影响。
其次,汽车零部件结构分析的一个难点是分析载荷的不定因素,大量零部件结构实际所受到的载荷到底是多大,往往很难明确给出。
对此过去往往应用对比分析法,但这越来越不适应越来越高的设计要求。
第三,汽车产品设计已进入有限寿命设计阶段,这要求汽车在设计的使用期内,整车和零部件完好,不产生疲劳破坏,而达到使用期后(例如轿车一般设计寿命为八年),零部件尽可能多地达到损伤,以求产品轻量化,节约材料和节省能源。
这也对CAE分析提出了使用真实载荷的要求。
汽车整车性能,如舒适性、行驶操纵稳定性分析也不仅仅满足于结构刚性简化,还要求考虑结构变形刚度影响,进行整车非线性系统分析,以达到动态参数设计的目标。
CAE技术在飞速发展,非线性软件功能有了很大的提高,计算机硬件也提供了足够的支持,所以CAE技术满足上述汽车现代设计要求是可能的。
美国工程技术合作公司(ETA公司)推出的虚拟试验场技术(VIRTUAL PROVING GROUND ,以下简称VPG技术)即是针对上述要求发展的实用软件。
二、VPG技术VPG技术是汽车CAE技术领域中一个很有代表性的进展。
1.分析对象不再是分开的各个零部件,而是包括车身FEM模型、悬挂系(弹簧、减振器、动力控制臂)、转向梯形、车轮轮胎等整车非线性系统模型。
虚拟仿真技术在汽车工程中的应用
虚拟仿真技术在汽车工程中的应用随着科技的不断发展,虚拟仿真技术在各个领域中的应用也日益广泛。
而在汽车工程领域中,虚拟仿真技术的应用更是为汽车研发和生产带来了革命性的变化。
本文将探讨虚拟仿真技术在汽车工程中的应用以及对汽车行业的影响。
首先,虚拟仿真技术在汽车设计过程中发挥了重要作用。
传统的汽车设计过程需要大量的实际概念验证和模型制作,耗时费力。
而借助虚拟仿真技术,工程师们可以使用计算机软件进行各种仿真实验,快速准确地评估设计方案的性能、安全性和可靠性。
例如,借助计算流体力学仿真软件,工程师们可以模拟气流在汽车外形上的分布情况,优化汽车的空气动力学性能,降低风阻和气动噪声。
通过这种方式,汽车设计过程更加高效和精确,大大提高了产品研发的效率。
其次,虚拟仿真技术在汽车制造过程中也起到了至关重要的作用。
传统的汽车生产需要大量的实际物理试验和样车生产,不仅耗时费力,而且成本高昂。
而借助虚拟仿真技术,汽车制造企业可以进行数字化生产线设计和工艺规划,模拟整个生产过程中的物料流动、装配工艺和质量控制。
这不仅可以降低生产成本,还可以提高生产线的效率和灵活性,以及保证产品的质量和可靠性。
此外,虚拟仿真技术还可用于培训生产线员工,通过虚拟现实技术再现生产过程,帮助员工更好地掌握操作技能,减少操作错误和事故发生的可能性。
此外,虚拟仿真技术还对汽车性能评估和安全测试产生了深远的影响。
传统的汽车性能评估和安全测试通常需要在实际道路条件下进行,不仅耗时费力,而且有一定的风险。
然而,虚拟仿真技术可以通过模拟各种驾驶条件和道路情况,对汽车的性能和安全性进行全面准确的评估。
通过虚拟仿真技术,工程师们可以在计算机中模拟各种紧急情况和碰撞测试,预测车辆的受损程度和乘员的安全性。
这不仅可以减少实际测试的数量和危险,还可以提高测试的准确性和可靠性。
最后,虚拟仿真技术还对汽车维修和售后服务产生了积极的影响。
借助虚拟仿真技术,汽车制造商可以为技术支持和培训提供更好的服务。
汽车虚拟仿真实习报告
一、实习背景随着科技的飞速发展,虚拟现实(VR)技术在各个领域得到了广泛应用。
在汽车行业,虚拟仿真实习作为一种新型的实习方式,为学生们提供了身临其境的学习体验。
2023年,我有幸参加了为期一个月的汽车虚拟仿真实习,通过这次实习,我对汽车行业有了更加深入的了解。
二、实习目的1. 培养学生对汽车行业的兴趣,激发学习热情。
2. 使学生掌握汽车虚拟仿真实习的基本技能,提高动手能力。
3. 了解汽车行业的发展趋势,为未来就业打下坚实基础。
三、实习内容1. 虚拟仿真软件操作培训实习的第一周,我们学习了汽车虚拟仿真软件的基本操作。
通过学习,我们掌握了如何搭建虚拟汽车模型、设置仿真参数、进行仿真实验等基本技能。
2. 汽车结构及原理学习在第二周,我们通过虚拟仿真软件,学习了汽车的结构及原理。
我们了解了汽车发动机、底盘、车身、电气系统等各个部分的功能和相互关系,并通过仿真实验,加深了对这些知识的理解。
3. 汽车设计及制造过程体验在第三周,我们参与了汽车设计及制造过程的虚拟仿真实验。
我们学习了如何根据客户需求,设计出满足性能、安全、环保等要求的汽车;同时,我们还了解了汽车制造过程中的关键环节,如冲压、焊接、涂装等。
4. 汽车故障诊断与维修在第四周,我们学习了汽车故障诊断与维修的虚拟仿真。
通过模拟实际故障案例,我们学会了如何运用诊断工具,快速准确地找到故障原因,并进行维修。
四、实习体会1. 身临其境的学习体验通过虚拟仿真实习,我们仿佛置身于真实的汽车制造现场,感受到了汽车行业的魅力。
这种身临其境的学习体验,让我们对汽车行业产生了浓厚的兴趣。
2. 提高动手能力在虚拟仿真实验中,我们需要自己动手搭建虚拟汽车模型、设置仿真参数、进行仿真实验等。
这些实践操作,使我们提高了动手能力,为将来从事汽车行业打下了坚实基础。
3. 拓宽知识面通过学习汽车虚拟仿真,我们不仅了解了汽车的结构及原理,还掌握了汽车设计、制造、维修等方面的知识。
这些知识为我们拓宽了知识面,提高了综合素质。
汽车碰撞安全性能的虚拟试验技术
车 碰撞 安 全法 规 、欧 洲 的 E E和 E C汽 车碰 撞 安 C E
全法规 以及 日 本保安基准汽车碰撞法规 T IS等。 RA 我国也颁布了 G B和 C V R等一系列强制汽车碰 M D 撞 安全 标准 , 及到 的部 件有 安全 带 、 涉 座椅 、 头枕 、 转 向系统 、 车门锁等 , 整车碰撞试验有正面、 侧面 、 追尾 和偏置碰撞等。 早期的被动安全性研究主要采取反复试验的方 法 ,汽车结构耐撞性和乘员保护系统的性能检测 主
尺寸和车辆类型等基本信息 , 然后根据零部件 的外 形尺寸建立汽车的几何实体模型。然后需要根据碰 撞试验项 目 将几何模型网格化 。对整个碰撞变形模
的规 律性认 识 。虚拟 试验 可在 虚拟 环境 中完成 多种
每年汽车交通事故中人员伤亡数都远远超过局部战 争人员死伤的总和, 过去着重提高的动力性 、 操纵稳
定性和制动性等主动安全性能 已经不能满足要求 , 汽车碰撞安全等被动安全性能指标越来越受到人们
的重视 。
试验 ,甚至可 以完成在真实环境 中无法进行 的项 目, 并取得接近于真实试验的数据结果 。 将 虚拟 试验 技 术用 于 汽车安 全 性 检测 , 产 品 在 设计 阶段就可以进行碰撞形式 的分析 , 以便研究汽 车内各个关键部件 的应力变形情况 , 从而缩短开发 周期 、 降低研制费用 ; 对设计完成 的整车可以进行 安全性能模拟试验 ,分析 比较各项安全性能指标 , 在 得 到精 确数 据 的 同时 , 大减 少 了样 车试 验 的 次 大
和多媒体技术于一体的综合系统技术——虚拟现 实技术。 虚拟现实技术是利用计算机创建一种虚拟 环境 , 人可以通过视觉 、 听觉 和触觉 等和虚拟环境
汽车制造行业中的虚拟试验技术使用指南
汽车制造行业中的虚拟试验技术使用指南在汽车制造行业中,虚拟试验技术已经成为了不可或缺的一部分。
随着科技的发展和应用,在传统的汽车制造和测试过程中,虚拟试验技术的应用已经取得了显著的成效。
本文将为您介绍汽车制造行业中虚拟试验技术的使用指南,以帮助您更加高效地应用这项技术。
首先,让我们了解虚拟试验技术的基本概念。
虚拟试验技术是指利用计算机仿真模拟的方式,重现汽车在实际使用过程中的各种工况、环境和载荷,从而准确地预测汽车的性能和可靠性。
通过虚拟试验技术,汽车制造企业可以大大降低试验成本和时间,并且在产品研发过程中提高准确性和可靠性。
在应用虚拟试验技术时,首先需要进行数值建模。
数值建模是将实际汽车结构、零部件和系统转化为数学方程,从而形成一个模型。
这个模型可以准确地描述汽车在各种载荷和条件下的受力和变形情况。
通过数值建模,汽车制造企业可以在计算机上对整个汽车或者其特定部件进行仿真试验,从而评估其性能和可靠性。
其次,虚拟试验技术还需要进行计算机仿真。
计算机仿真是对数值建模后的模型进行求解和分析,以模拟车辆在不同工况和环境下的行为。
通过虚拟仿真,汽车制造企业可以预测汽车在实际使用过程中的性能、安全性和舒适性,从而对设计进行优化。
同时,在进行虚拟试验时,还可以通过改变不同参数、条件和材料来探索不同设计方案的优劣,降低试验成本和时间。
虚拟试验技术还可以应用于车辆碰撞仿真。
通过数值建模和计算机仿真,汽车制造企业可以模拟车辆在碰撞事故中的受力和变形情况,从而评估车辆的安全性能。
虚拟碰撞试验不仅可以减少实际试验的成本和时间,还可以提供更多的数据和信息,以指导设计改进和安全性能的优化。
另外,虚拟试验技术还可以应用于车辆动力学仿真。
通过数值建模和计算机仿真,汽车制造企业可以模拟车辆在不同路况和驾驶条件下的运动行为,从而评估车辆的稳定性和操控性能。
虚拟动力学试验可以帮助企业优化车辆的悬挂系统、操控系统和动力系统,提高整车的性能和驾驶舒适性。
虚拟现实技术在汽修专业信息化教学中的应用
虚拟现实技术在汽修专业信息化教学中的应用
虚拟现实技术(Virtual Reality, VR)是一种新型的模拟技术,利用计算机生成的三维虚拟环境来模拟真实情境,通过仿真操作等方式使用户产生身临其境的感觉。
虚拟现实技术在汽修专业信息化教学中应用广泛。
以下简要介绍虚拟现实技术在汽修专业信息化教学中的几种应用。
一、虚拟实验室
虚拟实验室是将真实的汽修实验室建模、生成虚拟环境。
学生可以在虚拟环境下操作各种汽车部件,进行汽车检修、维修、保养等实验操作。
这种虚拟实验室不受时间、空间限制,可以随时随地进行,节省了实验成本,同时提高了学生的实验操作能力。
二、虚拟展示
虚拟展示是将汽车的内部结构、构造等进行三维建模,呈现给学生,学生可以自由地查看和分析汽车内部结构,了解汽车工作原理和构造设计原理。
这种虚拟展示可以提高学生的认知水平和对汽车内部构造的理解。
三、虚拟课堂
虚拟课堂是利用虚拟现实技术,在电脑端或者VR眼镜上呈现教师授课画面,学生可以在虚拟环境下听课、参与互动。
这种虚拟课堂也可以实现异地远程教学,让师生没有时间和空间上的限制。
虚拟现实技术在汽修专业信息化教学中的应用可以提高汽修专业课程的实用性和趣味性,有助于提高学生对汽修专业的理解和科学认知,同时也可以提高学生的实操能力,培养合格的汽修技术人才。
汽车CAE技术的新进展虚拟试验场PG技术
汽车CAE技术的新进展虚拟试验场PG技术newmaker在现代设计流程中,CAE是创造价值的中心环节,要使CAE的作用达到最大化,需将其融入到设计全流程中,并对复杂设计对象进行“真实模拟”。
VPG技术已使这样的设计流程变为现实。
并且VPG技术和传统CAE技术相比有很大的进步,分析使用方法也大为简化和方便了。
一、概述现代汽车对结构设计提出了越来越高的要求,汽车结构分析已不满足于结构线性弹性分析。
实际上汽车结构系统中大量存在非线性结构,例如发动机、驾驶室橡胶支承、悬挂大变形、零部件间连接的能量缓冲等。
在产品要求精益设计的条件下,只应用线性分析普遍感到不足。
产品开发要求CAE更多地考虑非线性影响。
其次,汽车零部件结构分析的一个难点是分析载荷的不定因素,大量零部件结构实际所受到的载荷到底是多大,往往很难明确给出。
对此过去往往应用对比分析法,但这越来越不适应越来越高的设计要求。
第三,汽车产品设计已进入有限寿命设计阶段,这要求汽车在设计的使用期内,整车和零部件完好,不产生疲劳破坏,而达到使用期后(例如轿车一般设计寿命为八年),零部件尽可能多地达到损伤,以求产品轻量化,节约材料和节省能源。
这也对CAE分析提出了使用真实载荷的要求。
汽车整车性能,如舒适性、行驶操纵稳定性分析也不仅仅满足于结构刚性简化,还要求考虑结构变形刚度影响,进行整车非线性系统分析,以达到动态参数设计的目标。
CAE技术在飞速发展,非线性软件功能有了很大的提高,计算机硬件也提供了足够的支持,所以CAE技术满足上述汽车现代设计要求是可能的。
美国工程技术合作公司(ETA公司)推出的虚拟试验场技术(VIRTUAL PROVING GROUND ,以下简称VPG技术)即是针对上述要求发展的实用软件。
二、VPG技术VPG技术是汽车CAE技术领域中一个很有代表性的进展。
1.分析对象不再是分开的各个零部件,而是包括车身FEM模型、悬挂系(弹簧、减振器、动力控制臂)、转向梯形、车轮轮胎等整车非线性系统模型。
汽车虚拟仿真实验报告心得
汽车虚拟仿真实验报告心得# 汽车虚拟仿真实验报告心得## 引言汽车虚拟仿真实验是计算机辅助设计与仿真专业的一门重要课程,通过模拟现实世界中汽车的运行与行驶过程,帮助我们学习汽车的原理、结构与性能,提高我们的设计能力和实践能力。
在本次实验中,我通过使用虚拟仿真软件对汽车进行了设计与测试,并在此过程中获得了很多宝贵的经验与心得。
## 正文### 1. 基本概念的理解在实验中,我首先对汽车的基本概念有了更深入的理解。
比如,汽车的传动系统、悬挂系统以及刹车系统等。
通过对虚拟汽车的设计和调整,我更加熟悉了这些系统的工作原理和互动关系。
这使我能够更好地理解汽车运行中各个系统之间的联系,对于以后的汽车设计和维护工作有很大的帮助。
### 2. 分析和解决问题的能力在进行汽车虚拟仿真实验时,我们可能会面临一些问题,例如汽车在行驶过程中出现的偏移、不平稳等情况。
针对这些问题,我们需要能够分析问题的原因并提出解决方案。
通过实验,我不断调整和优化汽车的参数,比如悬挂系统的刚度、汽车的重心位置等,以最大程度地减少不稳定因素,并提高汽车的行驶稳定性。
这种分析和解决问题的能力对于我今后的工作也非常重要。
### 3. 团队合作与沟通在实验过程中,我们需要与团队成员进行密切的合作与沟通。
我们需要共同讨论和确定汽车的设计参数,并通过不断的调整和改进来达到理想的效果。
这个过程需要我们有良好的团队合作意识和沟通能力。
通过与团队成员共同努力,我学会了倾听他人的意见,与他人进行有效的沟通,并在团队中提供自己的建议和方案。
这让我认识到了在实际工作中,与他人的合作和沟通是取得成功的关键。
### 4. 工程实践能力的提升通过进行汽车虚拟仿真实验,我深刻地意识到理论学习和实际应用的紧密结合是非常重要的。
在实验中,我需要运用学到的知识来解决实际问题,同时也会遇到一些理论上没有涉及到的新问题。
这就要求我需要具备一定的工程实践能力,能够从实际问题出发进行分析、推理和解决。
汽车虚拟仿真
汽车虚拟仿真汽车虚拟仿真是一种基于计算机技术的模拟方法,用于模拟汽车的设计、制造和性能等方面。
通过将现实世界中的汽车数字化成虚拟模型,可以进行各种测试和分析,以评估汽车在不同条件下的表现。
这种虚拟仿真技术在汽车工业中扮演着越来越重要的角色,可以帮助汽车制造商提高产品的质量、降低成本并缩短开发周期。
虚拟仿真技术的应用汽车虚拟仿真技术主要应用于以下几个方面:1. 设计优化通过虚拟仿真技术,工程师可以对汽车的设计进行优化。
他们可以在计算机上创建不同的汽车模型,然后模拟汽车在不同路况和环境下的运行情况。
通过这种方式,工程师可以及早发现设计中的问题并进行修正,从而提高汽车的性能和安全性。
2. 性能测试使用虚拟仿真技术,工程师可以对汽车的各项性能进行测试。
他们可以模拟汽车在高速公路、市区以及极端天气条件下的行驶情况,以评估汽车的操控性、燃油效率、加速性能等指标。
这种测试可以帮助工程师优化汽车的性能并满足客户的需求。
3. 碰撞模拟虚拟仿真技术还广泛应用于汽车碰撞模拟领域。
工程师可以在计算机上模拟汽车在碰撞事故中的表现,评估汽车在不同碰撞情况下的安全性能。
这种模拟可以帮助汽车制造商设计更安全的汽车结构,减少碰撞事故对驾驶员和乘客造成的伤害。
虚拟仿真技术的优势相比传统的实验和测试方法,汽车虚拟仿真技术具有以下几点优势:•成本效益:虚拟仿真技术可以降低实验和测试的成本,节约时间和资源。
•快速迭代:工程师可以快速修改汽车模型并进行仿真,以实现快速迭代和优化。
•准确性:虚拟仿真技术可以模拟真实世界中的各种条件和情况,提供准确的数据和分析结果。
•安全性:通过虚拟仿真技术,可以预测汽车在不同情况下的表现,提高汽车的安全性。
结语汽车虚拟仿真技术为汽车制造商提供了一种全新的设计、测试和评估方法。
它不仅可以帮助汽车制造商提高产品的质量和性能,还可以减少开发成本和缩短开发时间。
随着计算机技术的不断进步,汽车虚拟仿真技术将在未来发挥更加重要的作用,推动汽车工业向更高水平发展。
虚拟仿真技术在汽车实训中的应用
虚拟仿真技术在汽车实训中的应用随着科技的不断发展,虚拟仿真技术已经成为了汽车实训中的重要组成部分。
虚拟仿真技术是一种将现实世界的某些物理特性通过计算机模拟实现的技术,它能够对一些复杂的系统进行模拟,使得在实际系统中进行实验变得更加安全和经济。
在汽车实训中,虚拟仿真技术可以应用在诸多方面:从汽车设计到汽车维护,在各个领域都能够发挥出强大的作用。
首先,虚拟仿真技术在汽车设计中的应用非常广泛。
它能够通过建立虚拟三维模型,直观地呈现汽车的外观和内部设计,包括底盘,发动机和车身结构等方面。
汽车制造商可以使用虚拟仿真技术优化汽车设计,以达到更好的性能和更高的性价比。
其次,虚拟仿真技术可以用于汽车驾驶仿真。
这项技术能够模拟不同驾驶条件下汽车的性能和行为。
这对新手和经验不足的司机来说非常有帮助,因为他们可以在虚拟环境中进行驾驶练习,避免了在实际场景中出现危险情况的风险。
此外,汽车制造商可以通过驾驶仿真改进车辆的驾驶特性,并为司机提供更好的驾驶体验。
再次,虚拟仿真技术也可以用于汽车维护方面。
汽车维修技术人员可以使用虚拟现实技术进行汽车维护技能的培训,相比于传统的培训方式,这种方法更加直观和高效。
例如,维修人员可以通过虚拟建模学习汽车的工作原理,也可以在虚拟环境中进行维修操作,使他们更加健全的应对现实中的问题。
最后,虚拟仿真技术可以用于汽车安全性评估方面。
它能够模拟不同的碰撞场景,并评估车辆在不同场景下的碰撞安全性能。
这对于汽车制造商来说,是一种经济且实用的方法,他们可以通过虚拟仿真技术评估汽车的安全性能,从而改善其产品的安全性能。
总之,虚拟仿真技术在汽车实训中的应用非常广泛,涉及到汽车制造,驾驶练习,维修技能培训和汽车安全性评估等多个方面。
它为汽车行业提供了新的机遇和挑战,我们有理由相信在未来的发展中,虚拟仿真技术将成为汽车行业的重要工具和技能。
整车偏频虚拟实验
一、整车试验方法介绍
按照GB4783-84汽车悬挂系统的固有频率测定方法:
滚下法:将汽车测试端的车轮,沿斜坡驶上凸块(凸块断面如下图所示,其高度根据汽车类型与悬挂结构可选取60、90、120mm,横向宽度要保证车轮全部置于凸块上),在停车挂空档发动机熄火后,再将汽车车轮从凸块上推下、滚下时应尽量保证左、右轮同时落地。
二、在ride模块下实现
在ride中打开整车模型,整车模型和工况设定见上图所示。
上一页 1 2下一页
分析后后处理中找出前轴上下点的加速度时域信号(见上图所示),然后通过在后处理中使用fft变换,求出其频域特性,也可以按照国标算法找出其频率值,其中在adams/postprocessor得出结果见下图所示。
三、在ride模块下实现
标准工况定义中实现偏频测量,必须条件是完整的整车模型(同上模型)、定义工况、台阶路面。
注意:1.在adms中使用工况定义使用straight-line maintain工况定义;2.其中路面必须按照GB4783-84编制,下图路面文件可做参考;3.定义车速应该尽量低,计算之前必须进行静平衡,不然会产生误差;4.然后点击ok计算,得出分析结果,在adams/postprocessor的数据处理方法同上述,不在累赘。
上一页1 2 下一页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 全量取样法 全量取样法就是将汽车排气试验中的全部排气采集 到一个有足够大容积的气袋中以供分析。
2020/3/4
3. 定容取样(CVS)法 定容取样法是一种接近于汽车排气扩散到大气中的 实际状态的取样法。它是用经过滤的清洁空气对样气进 行稀释,经热交换器保持恒温,使稀释样气密度保持不 变,然后在定容泵作用下,抽取固定容积流量的样气送 入大气,在定容泵入口前的流路上,将稀释样气经滤清 器、取样泵、针形阀、流量计、电磁阀抽入气袋中。取 样气体和定容泵的流量之间有严格的比例关系。
2020/3/4
2. 与国际接轨的现行国家排放标准 国家技术监督局曾于1999年3月10日颁布了4项国家汽车排 放标准。分别是«汽车排放污染物限值及测试方法»(GB14761— 1999)、«压燃式发动机和装用压燃式发动机的车辆排放污染物 排放限值及测试方法»(GB17691—1999)、«压燃式发动机和装 用燃式发动机的车辆排气可见污染物排放限值及测试方法 »(GB3847—1999)、«汽车用发动机净功率测试验方法»(GB/ T 17692—1999)。
2020/3/4
2020/3/4
第三节 汽车排放标准
1 国外汽车排放法规与控制历程
汽车排放控制最早起源于美国的加利福尼亚州, 1960年,美国加利福尼亚州颁布了世界上第一部汽车排放 法规。 1963年美国政府制定了«大气清洁法»,其后进行 了多次修订和补充,逐步严格化。从1968年起美国才有了 联邦汽车排放标准,之后几乎是逐年严格化。
• 一、VPG技术简介 • 1995年ETA(Engineering Technology Associates,
Inc.)公司提出VPG(Virtual Proving Ground,汽 车虚拟试验场)技术,构制统一平台,简化建模 过程,引入虚拟试验场,从而只需建立一个整车 模型(过程简单),能在汽车真实试验条件(真 实路面载荷)下,进行整车非线性虚拟样机仿真, 达到动态参数设计的目的。
2020/3/4
2. 发动机台架 对于重型汽车,要求将其发动机装在台架上进行稳
态或瞬态试验,测试排放污染物的浓度,再进行计算。 发动机台架试验系统的主要设备是测功机,常用的有水 力测功机、电力测功机和电涡流测功机。
2020/3/4
2 采样方式
1. 直接取样法 将取样探头直接插入汽车排气管内,用取样泵直接采 取一定量的气样,经过粗、细滤器,滤去气体中的灰尘, 供排气分析仪分析。为了防止气样中的水分对分析仪的干 扰,一般在系统中加由冷凝器和排水装置组成的水分离器 ,用冷凝法除湿。
2 我国汽车排放标准
1. 我国汽车排放标准的建立和完善 我国从1981年开始制定标准,于1983年首次发布了国 家汽车排放标准GB3842 ~3847—1983,并于1984年4月1日 起执行。标准的排放物限值见表2-18~ 表2-20,GB3845 ~3847为与上述标准相对应的测量方法。
2020/3/4
第一节 汽车虚拟试验场
• VPG是ETA公司与各大汽车厂商合作,开发出的 整车仿真软件(如图),是专门针对整车分析而 开发的CAE仿真环境,可以进行整车的防撞性、 安全性、NVH和耐久性、等分析。VPG提供的模 型库、工具库及固化专家经验的自动化技术可将 整车仿真过程中的人员数量及其工作量降到最低。
2020/3/4
2 汽车排放试验规范
由汽车排放标准可以看出,各国的排放污染物限值有较大差异,这种差 异主要是来源于各国汽车排放试验规范的不同。
2020/3/4
第四节 汽车排放检测与试验技术
1 运行工况模拟
1. 底盘测功机 底盘测功机的测试系统如图2-17所示,包括转
鼓、惯性质量、测功机、行驶监视仪、控制台、排气采 样及分析仪、记录仪等。以转鼓表面来代替路面,并通 过加载装置给转鼓轴施加行驶阻力。
2 碳氢化合物 碳氢化合物(HC)主要是未燃和未完全燃烧的燃
油、润滑油及其裂解产物和部分氧化物。 饱和烃危害不大,不饱和烃危害性很大,甲烷
气体无毒性。
2020/3/4
3 氮氧化合物 氮氧化物(NOX)是燃料高温燃烧过程中剩余的氧与
氮化合形成的产物,其主要成分有NO、NO2、N2O3、 N2O5等,总称为NOX。
2020/3/4
第二节 汽车主要污染物的产生与危害
1 一氧化碳
汽车尾气中一氧化碳(CO)是烃燃料燃烧的中间产物, 主要是在局部缺氧或低温条件下,由于烃不能完全燃烧而 产生的。当汽车负重过大、慢速行驶时或空挡运转时,燃 料不能充分燃烧,废气中CO含量会明显增加,是汽车及内 燃机排气中有害浓度最大的产物。
第一 节
汽车污染源及主要污染物
1 汽车大气污染源
汽车的有害气体主要通过汽车尾气排放,曲轴箱 窜气和汽油蒸汽3个途径进入大气中,造成对大气的 污染。
2 汽车主要污染物
直接由汽车排放的污染物以及与交通源相关的主 要污染物有:一氧化碳、碳氢化合物(包括苯、苯并芘 等)、氮氧化物(NO、NO2等)、炭烟(主要是2.5μm 以下的细微颗粒物及其上附着的高分子碳氢化合物和 二氧化硫等)、二氧化硫、二氧化碳、醛类等。
第九章 汽车虚拟试验技术
• 第一节 汽车虚拟试验场 • 第二节 汽车虚拟试验
第九章 汽车虚拟试验技术
• 第一节 汽车虚拟试验场 • 一、VPG技术简介 • 二、VPG组成
第一节 汽车虚拟试验场
• 采用CAE分析可在尚未做出样车之前模拟部件甚 至整车的性能,避免了反复进行“设计—试制— 测试—改进—再试制”的过程,缩短了开发周期, 提高了设计质量,降低了开发成本。
溶于水,只有轻度刺激 性,毒性不大,高浓度时会造成中枢神经轻度障碍, NO可被氧化成NO2 。
2020/3/4
4 光化学烟雾
光 化 学 烟 雾 是 汽 车 排 放 到 大 气 中 的 HC 和 NOX在太阳光能(作用下进行光化学反应生成臭氧、 醛类和过氧化酰基硝酸盐等形成的一种浅蓝色烟雾 ,它是一种强刺激性有害气体的二次污染物, 这 种污染事件最早出现在美国洛杉矶,所以又称洛杉 矶光化学烟雾。