利用导数研究函数的图像(理科)
高中数学导数与函数图像的关系分析与讲解
高中数学导数与函数图像的关系分析与讲解在高中数学中,导数与函数图像是密不可分的。
导数是函数在某一点上的变化率,而函数图像则是函数在整个定义域上的变化规律的图形表示。
理解导数与函数图像之间的关系对于学习和应用数学知识都具有重要意义。
本文将通过具体的题目举例,分析导数与函数图像的关系,并给出解题技巧和使用指导。
一、导数与函数图像的关系导数与函数图像之间有着密切的联系。
函数的导数可以帮助我们确定函数图像的特征,如函数的增减性、极值点、拐点等。
下面通过几个具体的题目来说明导数与函数图像的关系。
例题1:已知函数$f(x)=x^3-3x^2+2x+1$,求函数在$x=1$处的导数。
解析:首先我们需要求出函数$f(x)$的导函数$f'(x)$。
根据导函数的定义,我们可以得到$f'(x)=3x^2-6x+2$。
然后,我们将$x=1$代入导函数中,得到$f'(1)=3(1)^2-6(1)+2=-1$。
这个结果告诉我们,在$x=1$处,函数$f(x)$的导数为-1。
通过这个例题,我们可以看出,函数$f(x)$在$x=1$处的导数为-1。
这意味着函数$f(x)$在$x=1$处的斜率为-1,即函数图像在该点的切线的斜率为-1。
这个信息可以帮助我们更好地理解函数图像的特征。
例题2:已知函数$g(x)=x^2-2x$,求函数$g(x)$的极值点。
解析:为了求函数$g(x)$的极值点,我们需要先求出函数$g(x)$的导函数$g'(x)$。
根据导函数的定义,我们可以得到$g'(x)=2x-2$。
然后,我们令$g'(x)=0$,得到$2x-2=0$,解得$x=1$。
这意味着函数$g(x)$的导数在$x=1$处为0,即函数图像在该点的切线的斜率为0。
通过这个例题,我们可以看出,函数$g(x)$的极值点出现在$x=1$处。
这个点处的切线斜率为0,意味着函数图像在该点处有一个极值。
这个极值可以是最大值或最小值,需要通过进一步的分析来确定。
2023年数学高考复习真题演练(2021-2022年高考真题)第2讲 函数与导数(含详解)
第2讲 函数与导数一、单选题 1.(2022·全国·高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .12.(2022·全国·高考真题(理))已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则221()k f k ==∑( )A .21-B .22-C .23-D .24-3.(2022·全国·高考真题)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤ )A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27]4.(2022·全国·高考真题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<5.(2022·全国·高考真题(文))如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是( )A .3231x xy x -+=+B .321x xy x -=+ C .22cos 1x x y x =+ D .22sin 1xy x =+ 6.(2022·全国·高考真题(文))函数()()cos 1sin 1f x x x x =+++在区间[]0,2π的最小值、最大值分别为( )A .ππ22-,B .3ππ22-, C .ππ222-+,D .3ππ222-+, 7.(2022·全国·高考真题(理))已知3111,cos ,4sin 3244a b c ===,则( ) A .c b a >> B .b a c >> C .a b c >> D .a c b >>8.(2022·全国·高考真题(理))函数()33cos x xy x-=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( )A .B .C .D .9.(2022·全国·高考真题(理))当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( ) A .1-B .12-C .12D .110.(2022·全国·高考真题(文))已知910,1011,89m m m a b ==-=-,则( ) A .0a b >>B .0a b >>C .0b a >>D .0b a >>11.(2021·全国·高考真题)已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( ) A .c b a <<B .b a c <<C .a c b <<D .a b c <<12.(2021·全国·高考真题)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( ) A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =13.(2021·全国·高考真题(理))设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .5214.(2021·全国·高考真题(理))设2ln1.01a =,ln1.02b =,1c =.则( )A .a b c <<B .b c a <<C .b a c <<D .c a b <<15.(2021·全国·高考真题(理))设B 是椭圆2222:1(0)x y C a b a b +=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )A .⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦16.(2021·全国·高考真题(文))设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( ) A .53-B .13-C .13D .5317.(2021·全国·高考真题(理))设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则( ) A .a b <B .a b >C .2ab a <D .2ab a >18.(2021·全国·高考真题)若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a < B .e a b < C .0e b a << D .0e a b <<二、多选题19.(2022·全国·高考真题)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像关于点2π,03⎛⎫ ⎪⎝⎭中心对称,则( )A .()f x 在区间5π0,12⎛⎫⎪⎝⎭单调递减B .()f x 在区间π11π,1212⎛⎫- ⎪⎝⎭有两个极值点C .直线7π6x =是曲线()y f x =的对称轴D .直线y x =是曲线()y f x =的切线 20.(2022·全国·高考真题)已知函数()f x 及其导函数()'f x 的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=21.(2022·全国·高考真题)已知函数3()1f x x x =-+,则( ) A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线22.(2022·全国·高考真题)曲线ln ||y x =过坐标原点的两条切线的方程为____________,____________. 23.(2022·全国·高考真题(文))若()1ln 1f x a b x++-=是奇函数,则=a _____,b =______. 四、填空题24.(2022·全国·高考真题(理))已知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是____________.25.(2022·全国·高考真题)若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________.26.(2021·全国·高考真题)已知函数12()1,0,0x f x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______. 27.(2021·全国·高考真题)写出一个同时具有下列性质①②③的函数():f x _______. ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()'f x 是奇函数. 28.(2021·全国·高考真题(理))曲线212x y x -=+在点()1,3--处的切线方程为__________. 29.(2021·全国·高考真题)已知函数()()322x xx a f x -=⋅-是偶函数,则=a ______.30.(2021·全国·高考真题)函数()212ln f x x x =--的最小值为______. 五、解答题31.(2022·全国·高考真题(文))已知函数1()(1)ln f x ax a x x=--+.(1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围.32.(2022·全国·高考真题)已知函数()e e ax x f x x =-. (1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围; (3)设n *∈N21ln(1)n n +>++.33.(2022·全国·高考真题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.34.(2022·全国·高考真题(理))已知函数()()ln 1e x f x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围. 35.(2022·全国·高考真题(理))已知函数()ln x f x x a xx e -=+-.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则环121x x <.36.(2021·全国·高考真题)已知函数2()(1)x f x x e ax b =--+. (1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 只有一个零点 ①21,222e a b a <≤>; ②10,22a b a <<≤.37.(2021·全国·高考真题(理))设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.38.(2021·全国·高考真题(理))已知0a >且1a ≠,函数()(0)ax x f x x a=>.(1)当2a =时,求()f x 的单调区间; (2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围.第2讲 函数与导数一、单选题 1.(2022·全国·高考真题)已知函数()f x 的定义域为R ,且()()()(),(1)1f x y f x y f x f y f ++-==,则221()k f k ==∑( )A .3-B .2-C .0D .1【答案】A 【解析】 【分析】根据题意赋值即可知函数()f x 的一个周期为6,求出函数一个周期中的()()()1,2,,6f f f 的值,即可解出.【详解】因为()()()()f x y f x y f x f y ++-=,令1,0x y ==可得,()()()2110f f f =,所以()02f =,令0x =可得,()()()2f y f y f y +-=,即()()f y f y =-,所以函数()f x 为偶函数,令1y =得,()()()()()111f x f x f x f f x ++-==,即有()()()21f x f x f x ++=+,从而可知()()21f x f x +=--,()()14f x f x -=--,故()()24f x f x +=-,即()()6f x f x =+,所以函数()f x 的一个周期为6.因为()()()210121f f f =-=-=-,()()()321112f f f =-=--=-,()()()4221f f f =-==-,()()()5111f f f =-==,()()602f f ==,所以一个周期内的()()()1260f f f +++=.由于22除以6余4,所以()()()()()221123411213k f k f f f f ==+++=---=-∑.故选:A .2.(2022·全国·高考真题(理))已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则221()k f k ==∑( )A .21-B .22-C .23-D .24-【答案】D 【解析】 【分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=-,()()()462210f f f +++=-,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.【详解】因为()y g x =的图像关于直线2x =对称, 所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-, 因为()(2)5f x g x +-=,所以()(2)5f x g x ++=, 代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-, 所以()()()()35212510f f f +++=-⨯=-,()()()()46222510f f f +++=-⨯=-.因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-. 因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=, 联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R , 所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-. 所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑.故选:D 【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.3.(2022·全国·高考真题)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤ )A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27]【答案】C 【解析】 【分析】设正四棱锥的高为h ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围. 【详解】∵ 球的体积为36π,所以球的半径3R =,设正四棱锥的底面边长为2a ,高为h ,则2222l a h =+,22232(3)a h =+-, 所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,所以5233112449696l l V l l ⎛⎫⎛⎫-'=-= ⎪ ⎪⎝⎭⎝⎭,当3l ≤≤0V '>,当l ≤0V '<,所以当l =V 取最大值,最大值为643,又3l =时,274V =,l =814V =,所以正四棱锥的体积V 的最小值为274, 所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C.4.(2022·全国·高考真题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】C 【解析】 【分析】构造函数()ln(1)f x x x =+-, 导数判断其单调性,由此确定,,a b c 的大小. 【详解】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++, 当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1()(0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11x xx g x x x x -+'=+=--,令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当01x <时,()0h x '<,函数2()e (1)+1x h x x =-单调递减,11x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当01x <<时,()0h x <,所以当01x <<时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增,所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C.5.(2022·全国·高考真题(文))如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是( )A .3231x xy x -+=+B .321x xy x -=+ C .22cos 1x x y x =+D .22sin 1xy x =+ 【答案】A 【解析】 【分析】由函数图像的特征结合函数的性质逐项排除即可得解. 【详解】设()321x xf x x -=+,则()10f =,故排除B;设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<, 所以()222cos 2111x x xh x x x =<≤++,故排除C; 设()22sin 1xg x x =+,则()2sin 33010g =>,故排除D. 故选:A.6.(2022·全国·高考真题(文))函数()()cos 1sin 1f x x x x =+++在区间[]0,2π的最小值、最大值分别为( )A .ππ22-,B .3ππ22-, C .ππ222-+,D .3ππ222-+, 【答案】D 【解析】 【分析】利用导数求得()f x 的单调区间,从而判断出()f x 在区间[]0,2π上的最小值和最大值. 【详解】()()()sin sin 1cos 1cos f x x x x x x x '=-+++=+,所以()f x 在区间π0,2⎛⎫ ⎪⎝⎭和3π,2π2⎛⎫ ⎪⎝⎭上()0f x '>,即()f x 单调递增;在区间π3π,22⎛⎫⎪⎝⎭上()0f x '<,即()f x 单调递减,又()()02π2f f ==,ππ222f ⎛⎫=+ ⎪⎝⎭,3π3π3π11222f ⎛⎫⎛⎫=-++=- ⎪ ⎪⎝⎭⎝⎭,所以()f x 在区间[]0,2π上的最小值为3π2-,最大值为π22+. 故选:D7.(2022·全国·高考真题(理))已知3111,cos ,4sin 3244a b c ===,则( ) A .c b a >> B .b a c >>C .a b c >>D .a c b >>【答案】A 【解析】 【分析】 由14tan 4c b =结合三角函数的性质可得c b >;构造函数21()cos 1,(0,)2f x x x x =+-∈+∞,利用导数可得b a >,即可得解. 【详解】 因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭所以11tan44>,即1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞, ()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->,所以b a >,所以c b a >>, 故选:A8.(2022·全国·高考真题(理))函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解. 【详解】令()()33cos ,,22x xf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos x x x xf x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A.9.(2022·全国·高考真题(理))当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( ) A .1- B .12-C .12D .1【答案】B 【解析】【分析】根据题意可知12f ,()10f '=即可解得,a b ,再根据()f x '即可解出.【详解】因为函数()f x 定义域为()0,∞+,所以依题可知,12f ,()10f '=,而()2a bf x x x '=-,所以2,0b a b =--=,即2,2a b =-=-,所以()222f x x x'=-+,因此函数()f x 在()0,1上递增,在()1,+∞上递减,1x =时取最大值,满足题意,即有()112122f '=-+=-. 故选:B.10.(2022·全国·高考真题(文))已知910,1011,89m m m a b ==-=-,则( ) A .0a b >>B .0a b >>C .0b a >>D .0b a >>【答案】A 【解析】 【分析】根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出.【详解】由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m >, 所以8log 989890m b =-<-=.综上,0a b >>. 故选:A.11.(2021·全国·高考真题)已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( ) A .c b a << B .b a c <<C .a c b <<D .a b c <<【答案】C 【解析】 【分析】对数函数的单调性可比较a 、b 与c 的大小关系,由此可得出结论. 【详解】55881log 2log log log 32a b =<==,即a c b <<. 故选:C.12.(2021·全国·高考真题)已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则( ) A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =【答案】B 【解析】 【分析】推导出函数()f x 是以4为周期的周期函数,由已知条件得出()10f =,结合已知条件可得出结论. 【详解】因为函数()2f x +为偶函数,则()()22f x f x +=-,可得()()31f x f x +=-, 因为函数()21f x +为奇函数,则()()1221f x f x -=-+,所以,()()11f x f x -=-+,所以,()()()311f x f x f x +=-+=-,即()()4f x f x =+, 故函数()f x 是以4为周期的周期函数,因为函数()()21F x f x =+为奇函数,则()()010F f ==, 故()()110f f -=-=,其它三个选项未知. 故选:B.13.(2021·全国·高考真题(理))设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x ∈时,2()f x ax b =+.若()()036f f +=,则92f ⎛⎫= ⎪⎝⎭( )A .94-B .32-C .74D .52【答案】D 【解析】 【分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案. 【详解】因为()1f x +是奇函数,所以()()11f x f x -+=-+①; 因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+,因为()()036f f +=,所以()462a b a b a -+++=⇒=-,令0x =,由①得:()()()11102f f f b =-⇒=⇒=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1335112222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭511322=2222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫-=-+=--+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以935222f f ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭. 思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =. 所以91352222f f f ⎛⎫⎛⎫⎛⎫==-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:D . 【点睛】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果.14.(2021·全国·高考真题(理))设2ln1.01a =,ln1.02b =,1c =.则( ) A .a b c << B .b c a <<C .b a c <<D .c a b <<【答案】B 【解析】 【分析】利用对数的运算和对数函数的单调性不难对a ,b 的大小作出判定,对于a 与c ,b 与c 的大小关系,将0.01换成x ,分别构造函数()()2ln 11f x x =+,()()ln 121g x x =+,利用导数分析其在0的右侧包括0.01的较小范围内的单调性,结合f (0)=0,g (0)=0即可得出a 与c ,b 与c 的大小关系. 【详解】()()2222ln1.01ln1.01ln 10.01ln 120.010.01ln1.02a b ===+=+⨯+>=, 所以b a <;下面比较c 与,a b 的大小关系.记()()2ln 11f x x =+,则()00f =,()2121x f x x -='+,由于()()2214122x x x x x x +-+=-=-所以当0<x <2时,()21410x x +-+>,()1x >+,()0f x '>,所以()f x 在[]0,2上单调递增,所以()()0.0100f f >=,即2ln1.011>,即a c >;令()()ln 121g x x =+,则()00g =,()212212x g x x -==+', 由于()2214124x x x +-+=-,在x >0时,()214120x x +-+<,所以()0g x '<,即函数()g x 在[0,+∞)上单调递减,所以()()0.0100g g <=,即ln1.021,即b <c ; 综上,b c a <<, 故选:B. 【点睛】本题考查比较大小问题,难度较大,关键难点是将各个值中的共同的量用变量替换,构造函数,利用导数研究相应函数的单调性,进而比较大小,这样的问题,凭借近似估计计算往往是无法解决的.15.(2021·全国·高考真题(理))设B 是椭圆2222:1(0)x y C a b a b +=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )A .⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .2⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C【分析】设()00,P x y ,由()0,B b ,根据两点间的距离公式表示出 PB ,分类讨论求出PB 的最大值,再构建齐次不等式,解出即可. 【详解】设()00,P x y ,由()0,B b ,因为 2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32b b c-≤-,即 22b c ≥时,22max 4PB b =,即 max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即 0e <≤当32b b c ->-,即22b c <时, 42222max b PB a b c =++,即422224b a b b c ++≤,化简得,()2220c b -≤,显然该不等式不成立. 故选:C . 【点睛】本题解题关键是如何求出PB 的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.16.(2021·全国·高考真题(文))设()f x 是定义域为R 的奇函数,且()()1f x f x +=-.若1133f ⎛⎫-= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( ) A .53-B .13-C .13D .53【答案】C 【解析】 【分析】由题意利用函数的奇偶性和函数的递推关系即可求得53f ⎛⎫⎪⎝⎭的值.【详解】由题意可得:522213333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 而21111133333f f f f⎛⎫⎛⎫⎛⎫⎛⎫=-==--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故5133f ⎛⎫= ⎪⎝⎭.【点睛】关键点点睛:本题主要考查了函数的奇偶性和函数的递推关系式,灵活利用所给的条件进行转化是解决本题的关键.17.(2021·全国·高考真题(理))设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则( ) A .a b < B .a b > C .2ab a < D .2ab a >【答案】D 【解析】【分析】先考虑函数的零点情况,注意零点左右附近函数值是否变号,结合极大值点的性质,对进行分类讨论,画出图象,即可得到,a b 所满足的关系,由此确定正确选项.【详解】若a b =,则()()3f x a x a =-为单调函数,无极值点,不符合题意,故ab .()f x ∴有x a =和x b =两个不同零点,且在x a =左右附近是不变号,在x b =左右附近是变号的.依题意,为函数的极大值点,∴在x a =左右附近都是小于零的.当0a <时,由x b >,()0f x ≤,画出()f x 的图象如下图所示:由图可知b a <,0a <,故2ab a >.当0a >时,由x b >时,()0f x >,画出()f x 的图象如下图所示:由图可知b a >,0a >,故2ab a >.综上所述,2ab a >成立. 故选:D 【点睛】本小题主要考查三次函数的图象与性质,利用数形结合的数学思想方法可以快速解答. 18.(2021·全国·高考真题)若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a < B .e a b < C .0e b a << D .0e a b <<【答案】D 【解析】 【分析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果; 解法二:画出曲线x y e =的图象,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线. 【详解】在曲线x y e =上任取一点(),tP t e ,对函数x y e =求导得e x y '=,所以,曲线x y e =在点P 处的切线方程为()t t y e e x t -=-,即()1t ty e x t e =+-,由题意可知,点(),a b 在直线()1t ty e x t e =+-上,可得()()11t t t b ae t e a t e =+-=+-, 令()()1t f t a t e =+-,则()()tf t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增, 当t a >时,()0f t '<,此时函数()f t 单调递减,所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点. 故选:D.解法二:画出函数曲线x y e =的图象如图所示,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.由此可知0a b e <<.故选:D.【点睛】解法一是严格的证明求解方法,其中的极限处理在中学知识范围内需要用到指数函数的增长特性进行估计,解法二是根据基于对指数函数的图象的清晰的理解与认识的基础上,直观解决问题的有效方法.19.(2022·全国·高考真题)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像关于点2π,03⎛⎫⎪⎝⎭中心对称,则( )A .()f x 在区间5π0,12⎛⎫⎪⎝⎭单调递减B .()f x 在区间π11π,1212⎛⎫- ⎪⎝⎭有两个极值点C .直线7π6x =是曲线()y f x =的对称轴D .直线y x =是曲线()y f x =的切线 【答案】AD 【解析】 【分析】根据三角函数的性质逐个判断各选项,即可解出. 【详解】由题意得:2π4πsin 033f ϕ⎛⎫⎛⎫=+= ⎪⎪⎝⎭⎝⎭,所以4ππ3k ϕ+=,k ∈Z , 即4ππ,3k k ϕ=-+∈Z , 又0πϕ<<,所以2k =时,2π3ϕ=,故2π()sin 23f x x ⎛⎫=+ ⎪⎝⎭.对A ,当5π0,12x ⎛⎫∈ ⎪⎝⎭时,2π2π3π2,332x ⎛⎫+∈ ⎪⎝⎭,由正弦函数sin y u =图象知()y f x =在5π0,12⎛⎫ ⎪⎝⎭上是单调递减; 对B ,当π11π,1212x ⎛⎫∈- ⎪⎝⎭时,2ππ5π2,322x ⎛⎫+∈ ⎪⎝⎭,由正弦函数sin y u =图象知()y f x =只有1个极值点,由2π3π232x +=,解得5π12x =,即5π12x =为函数的唯一极值点; 对C ,当7π6x =时,2π23π3x +=,7π()06f =,直线7π6x =不是对称轴;对D ,由2π2cos 213y x ⎛⎫'=+=- ⎪⎝⎭得:2π1cos 232x ⎛⎫+=- ⎪⎝⎭,解得2π2π22π33x k +=+或2π4π22π,33x k k +=+∈Z ,从而得:πx k =或ππ,3x k k =+∈Z ,所以函数()y f x =在点⎛ ⎝⎭处的切线斜率为02π2cos 13x k y =='==-,切线方程为:(0)y x =--即y x =-.20.(2022·全国·高考真题)已知函数()f x 及其导函数()'f x 的定义域均为R ,记()()g x f x '=,若322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,则( )A .(0)0f =B .102g ⎛⎫-= ⎪⎝⎭C .(1)(4)f f -=D .(1)(2)g g -=【答案】BC 【解析】 【分析】转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解. 【详解】因为322f x ⎛⎫- ⎪⎝⎭,(2)g x +均为偶函数,所以332222f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即3322f x f x ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,(2)(2)g x g x +=-, 所以()()3f x f x -=,(4)()g x g x -=,则(1)(4)f f -=,故C 正确;函数()f x ,()g x 的图象分别关于直线3,22x x ==对称,又()()g x f x '=,且函数()f x 可导,所以()()30,32g g x g x ⎛⎫=-=- ⎪⎝⎭,所以()(4)()3g x g x g x -==--,所以()(2)(1)g x g x g x +=-+=,所以13022g g ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,()()()112g g g -==-,故B 正确,D 错误;若函数()f x 满足题设条件,则函数()f x C +(C 为常数)也满足题设条件,所以无法确定()f x 的函数值,故A 错误. 故选:BC. 【点睛】关键点点睛:解决本题的关键是转化题干条件为抽象函数的性质,准确把握原函数与导函数图象间的关系,准确把握函数的性质(必要时结合图象)即可得解.21.(2022·全国·高考真题)已知函数3()1f x x x =-+,则( ) A .()f x 有两个极值点B .()f x 有三个零点C .点(0,1)是曲线()y f x =的对称中心D .直线2y x =是曲线()y f x =的切线【答案】AC 【解析】【分析】利用极值点的定义可判断A ,结合()f x 的单调性、极值可判断B ,利用平移可判断C ;利用导数的几何意义判断D. 【详解】由题,()231f x x '=-,令()0f x '>得x >x <令()0f x '<得x <<,所以()f x 在(上单调递减,在(,-∞,)+∞上单调递增,所以x =是极值点,故A 正确;因(10f =>,10f =>,()250f -=-<,所以,函数()f x 在,⎛-∞ ⎝⎭上有一个零点,当x ≥时,()0f x f ≥>⎝⎭,即函数()f x 在⎫∞⎪⎪⎝⎭上无零点, 综上所述,函数()f x 有一个零点,故B 错误;令3()h x x x =-,该函数的定义域为R ,()()()()33h x x x x x h x -=---=-+=-, 则()h x 是奇函数,(0,0)是()h x 的对称中心, 将()h x 的图象向上移动一个单位得到()f x 的图象, 所以点(0,1)是曲线()y f x =的对称中心,故C 正确;令()2312f x x '=-=,可得1x =±,又()(1)11f f =-=,当切点为(1,1)时,切线方程为21y x =-,当切点为(1,1)-时,切线方程为23y x =+, 故D 错误. 故选:AC.三、双空题22.(2022·全国·高考真题)曲线ln ||y x =过坐标原点的两条切线的方程为____________,____________. 【答案】 1ey x = 1e y x =-【解析】 【分析】分0x >和0x <两种情况,当0x >时设切点为()00,ln x x ,求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出0x ,即可求出切线方程,当0x <时同理可得; 【详解】解: 因为ln y x =,当0x >时ln y x =,设切点为()00,ln x x ,由1y x'=,所以001|x x y x ='=,所以切线方程为()0001ln y x x x x -=-,又切线过坐标原点,所以()0001ln x x x -=-,解得0e x =,所以切线方程为()11e e y x -=-,即1ey x =; 当0x <时()ln y x =-,设切点为()()11,ln x x -,由1y x'=,所以111|x x y x ='=,所以切线方程为()()1111ln y x x x x --=-, 又切线过坐标原点,所以()()1111ln x x x --=-,解得1e x =-,所以切线方程为()11e e y x -=+-,即1ey x =-; 故答案为:1ey x =;1e y x =-23.(2022·全国·高考真题(文))若()1ln 1f x a b x++-=是奇函数,则=a _____,b =______. 【答案】 12-; ln 2.【解析】 【分析】根据奇函数的定义即可求出. 【详解】因为函数()1ln 1f x a b x++-=为奇函数,所以其定义域关于原点对称. 由101a x+≠-可得,()()110x a ax -+-≠,所以11a x a +==-,解得:12a =-,即函数的定义域为()()(),11,11,-∞-⋃-⋃+∞,再由()00f =可得,ln 2b =.即()111ln ln 2ln211xf x xx+=-++=--,在定义域内满足()()f x f x -=-,符合题意.故答案为:12-;ln 2.四、填空题24.(2022·全国·高考真题(理))已知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是____________.【答案】1,1e ⎛⎫ ⎪⎝⎭【解析】【分析】由12,x x 分别是函数()22e x f x a x =-的极小值点和极大值点,可得()()12,,x x x ∈-∞⋃+∞时,()0f x '<,()12,x x x ∈时,()0f x '>,再分1a >和01a <<两种情况讨论,方程2ln 2e 0x a a x ⋅-=的两个根为12,x x ,即函数ln x y a a =⋅与函数e y x =的图象有两个不同的交点,构造函数()ln xg x a a =⋅,利用指数函数的图象和图象变换得到()g x 的图象,利用导数的几何意义求得过原点的切线的斜率,根据几何意义可得出答案. 【详解】解:()2ln 2e xf x a a x '=⋅-,因为12,x x 分别是函数()22e x f x a x =-的极小值点和极大值点,所以函数()f x 在()1,x -∞和()2,x +∞上递减,在()12,x x 上递增,所以当()()12,,x x x ∈-∞⋃+∞时,()0f x '<,当()12,x x x ∈时,()0f x '>, 若1a >时,当0x <时,2ln 0,2e 0x a a x ⋅><,则此时()0f x '>,与前面矛盾, 故1a >不符合题意,若01a <<时,则方程2ln 2e 0x a a x ⋅-=的两个根为12,x x , 即方程ln e x a a x ⋅=的两个根为12,x x ,即函数ln x y a a =⋅与函数e y x =的图象有两个不同的交点, ∵01a <<,∴函数x y a =的图象是单调递减的指数函数,又∵ln 0a <,∴ln x y a a =⋅的图象由指数函数x y a =向下关于x 轴作对称变换,然后将图象上的每个点的横坐标保持不变,纵坐标伸长或缩短为原来的ln a 倍得到,如图所示:设过原点且与函数()y g x =的图象相切的直线的切点为()00,ln xx a a ⋅,则切线的斜率为()020ln x g x a a '=⋅,故切线方程为()0020ln ln x x y a a a a x x -⋅=⋅-,则有0020ln ln x x a a x a a -⋅=-⋅,解得01ln x a=, 则切线的斜率为122ln ln eln a a a a ⋅=,因为函数ln x y a a =⋅与函数e y x =的图象有两个不同的交点,所以2eln e a <,解得1e e a <<,又01a <<,所以11ea <<,综上所述,a 的范围为1,1e ⎛⎫⎪⎝⎭.【点睛】本题考查了函数的极值点问题,考查了导数的几何意义,考查了转化思想及分类讨论思想,有一定的难度. 25.(2022·全国·高考真题)若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________. 【答案】()(),40,∞∞--⋃+ 【解析】 【分析】设出切点横坐标0x ,利用导数的几何意义求得切线方程,根据切线经过原点得到关于0x 的方程,根据此方程应有两个不同的实数根,求得a 的取值范围. 【详解】∵()e x y x a =+,∴(1)e x y x a '=++,设切点为()00,x y ,则()000e x y x a =+,切线斜率()001e x k x a =++, 切线方程为:()()()00000e 1e x xy x a x a x x -+=++-, ∵切线过原点,∴()()()00000e 1e x xx a x a x -+=++-,整理得:2000x ax a +-=,∵切线有两条,∴240a a ∆=+>,解得4a 或0a >,∴a 的取值范围是()(),40,-∞-+∞,故答案为:()(),40,-∞-+∞26.(2021·全国·高考真题)已知函数12()1,0,0xf x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______. 【答案】0,1 【解析】 【分析】结合导数的几何意义可得120x x +=,结合直线方程及两点间距离公式可得1A x M =,2B x N =,化简即可得解.【详解】由题意,()1011,0,xx x e x f x e e x <=⎧---≥⎪=⎨⎪⎩,则()0,,0xx x f x e e x ⎧-⎪=<>⎨'⎪⎩,所以点()11,1x A x e -和点()22,1x B x e -,12,x xAM BN k e k e =-=,所以12121,0x xe e x x -⋅=-+=,所以()()111111,0:,11x x x xe e x x e AM e y M x -+=---+,所以1x AM ,同理2B x N ,所以()10,1x e NAM B ===∈. 故答案为:0,1 【点睛】 关键点点睛:解决本题的关键是利用导数的几何意义转化条件120x x +=,消去一个变量后,运算即可得解.27.(2021·全国·高考真题)写出一个同时具有下列性质①②③的函数():f x _______. ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()'f x 是奇函数.【答案】()4f x x =(答案不唯一,()()2*n x N f n x =∈均满足)【解析】 【分析】根据幂函数的性质可得所求的()f x . 【详解】取()4f x x =,则()()()()44421121122x f x f x x x x f x x ===,满足①, ()34f x x '=,0x >时有()0f x '>,满足②, ()34f x x '=的定义域为R ,又()()34f x x f x ''-=-=-,故()f x '是奇函数,满足③.故答案为:()4f x x =(答案不唯一,()()2*n x N f n x =∈均满足)28.(2021·全国·高考真题(理))曲线212x y x -=+在点()1,3--处的切线方程为__________.【答案】520x y -+= 【解析】 【分析】先验证点在曲线上,再求导,代入切线方程公式即可. 【详解】由题,当1x =-时,3y =-,故点在曲线上. 求导得:()()()()222221522x x y x x +--==++',所以1|5x y =-='.故切线方程为520x y -+=. 故答案为:520x y -+=.29.(2021·全国·高考真题)已知函数()()322x xx a f x -=⋅-是偶函数,则=a ______.【答案】1 【解析】 【分析】利用偶函数的定义可求参数a 的值. 【详解】因为()()322x x x a f x -=⋅-,故()()322x xf x x a --=-⋅-,因为()f x 为偶函数,故()()f x f x -=, 时()()332222x x x x x a x a --⋅-=-⋅-,整理得到()()12+2=0x xa --,故1a =, 故答案为:130.(2021·全国·高考真题)函数()212ln f x x x =--的最小值为______. 【答案】1 【解析】 【分析】由解析式知()f x 定义域为(0,)+∞,讨论102x <≤、112x <≤、1x >,并结合导数研究的单调性,即可求()f x 最小值. 【详解】由题设知:()|21|2ln f x x x =--定义域为(0,)+∞, ∴当102x <≤时,()122ln f x x x =--,此时()f x 单调递减; 当112x <≤时,()212ln f x x x =--,有2()20f x x'=-≤,此时()f x 单调递减;当1x >时,()212ln f x x x =--,有2()20f x x'=->,此时()f x 单调递增; 又()f x 在各分段的界点处连续,∴综上有:01x <≤时,()f x 单调递减,1x >时,()f x 单调递增; ∴()(1)1f x f ≥= 故答案为:1. 五、解答题31.(2022·全国·高考真题(文))已知函数1()(1)ln f x ax a x x=--+.(1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围. 【答案】(1)1- (2)()0,+∞ 【解析】 【分析】(1)由导数确定函数的单调性,即可得解; (2)求导得()()()211ax x f x x --'=,按照0a ≤、01a <<及1a >结合导数讨论函数的单调性,求得函数的极值,即可得解. (1)当0a =时,()1ln ,0f x x x x=-->,则()22111x f x x x x -'=-=,当()0,1∈x 时,0f x ,()f x 单调递增; 当()1,x ∈+∞时,0fx,()f x 单调递减;所以()()max 11f x f ==-; (2)()()11ln ,0f x ax a x x x =--+>,则()()()221111ax x a f x a x x x --+'=+-=,当0a ≤时,10-≤ax ,所以当()0,1∈x 时,0f x,()f x 单调递增;当()1,x ∈+∞时,0fx,()f x 单调递减;所以()()max 110f x f a ==-<,此时函数无零点,不合题意; 当01a <<时,11a >,在()10,1,,a ⎛⎫+∞ ⎪⎝⎭上,0f x,()f x 单调递增;在11,a ⎛⎫⎪⎝⎭上,0f x,()f x 单调递减;又()110f a =-<,由(1)得1ln 1x x +≥,即1ln 1x x ≥-,所以ln x x x <<<当1x >时,11()(1)ln 2((2f x ax a x ax a ax a x x=--+>--+>-+则存在2312m a a⎛⎫=+> ⎪⎝⎭,使得()0f m >,所以()f x 仅在1,a ⎛⎫+∞ ⎪⎝⎭有唯一零点,符合题意;当1a =时,()()2210x f x x-'=≥,所以()f x 单调递增,又()110f a =-=,所以()f x 有唯一零点,符合题意; 当1a >时,11a <,在()10,,1,a ⎛⎫+∞ ⎪⎝⎭上,0f x,()f x 单调递增;在1,1a ⎛⎫⎪⎝⎭上,0f x,()f x 单调递减;此时()110f a =->,由(1)得当01x <<时,1ln 1xx>-,1>,所以ln 21x ⎛> ⎝,此时11()(1)ln 2(11)1f x ax a x ax ax x x ⎛=--+<--+-< ⎝ 存在2114(1)n a a=<+,使得()0f n <,所以()f x 在10,a ⎛⎫ ⎪⎝⎭有一个零点,在1,a ⎛⎫+∞ ⎪⎝⎭无零点,所以()f x 有唯一零点,符合题意; 综上,a 的取值范围为()0,+∞. 【点睛】关键点点睛:解决本题的关键是利用导数研究函数的极值与单调性,把函数零点问题转化为函数的单调性与极值的问题.32.(2022·全国·高考真题)已知函数()e e ax x f x x =-. (1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围; (3)设n *∈N21ln(1)n n +>++.【答案】(1)()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)12a ≤(3)见解析 【解析】 【分析】 (1)求出fx ,讨论其符号后可得()f x 的单调性.(2)设()e e 1ax xh x x =-+,求出()h x '',先讨论12a >时题设中的不等式不成立,再就102a <≤结合放缩法讨论()h x '符号,最后就0a ≤结合放缩法讨论()h x 的范围后可得参数的取值范围. (3)由(2)可得12ln t tt<-对任意的1t >恒成立,从而可得()ln 1ln n n +-<*n N ∈恒成立,结合裂项相消法可证题设中的不等式. (1)当1a =时,()()1e xf x x =-,则()e x f x x '=,当0x <时,0f x ,当0x >时,0f x ,故()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)设()e e 1ax xh x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-, 则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->, 因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有0g x ,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立, 证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++, 故()S x 在()0,+∞上为减函数,故()()00S x S <=即()ln 1x x +<成立. 由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤, 故()0h x '≤总成立,即()h x 在()0,+∞上为减函数,。
2020版数学(理)人教A版新设计大一轮课件:第三章 第2节 第2课时 利用导数研究函数的极值、最值
(2)由(1)知,函数的定义域为(0,+∞),f′(x)=1x-a=1-xax(x>0). 当a≤0时,f′(x)>0在(0,+∞)上恒成立, 即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点; 当 a>0 时,当 x∈0,1a时,f′(x)>0, 当 x∈1a,+∞时,f′(x)<0,故函数在 x=1a处有极大值. 综上可知,当a≤0时,函数f(x)无极值点, 当 a>0 时,函数 y=f(x)有一个极大值点,且为 x=1a.
解 (1)当 a=12时,f(x)=ln x-12x,函数的定义域为(0,+∞)且 f′(x)=1x-12=2
令f′(x)=0,得x=2, 于是当x变化时,f′(x),f(x)的变化情况如下表.
x
(0,2)
2
(2,+∞)
f′(x)
+
0
-
f(x)
ln 2-1
故f(x)在定义域上的极大值为f(x)极大值=f(2)=ln 2-1,无极小值.
当 0<v<103 2时,y′<0,函数单调递减;
当 v>103 2时,y′>0,函数单调递增.
若 c<103 2 ,函数在(c,103 2)上单调递减,在(103 2,15)上单调递增, ∴当 v=103 2时,总用氧量最少. 若 c≥103 2,则 y 在[c,15]上单调递增, ∴当v=c时,这时总用氧量最少.
综上可知,a 的取值范围是12,+∞.
考点二 利用导数求函数的最值 【例2】 (2019·广东五校联考)已知函数f(x)=ax+ln x,其中a为常数.
(1)当a=-1时,求f(x)的最大值; (2)若f(x)在区间(0,e]上的最大值为-3,求a的值. 解 (1)易知f(x)的定义域为(0,+∞), 当 a=-1 时,f(x)=-x+ln x,f′(x)=-1+1x=1-x x, 令f′(x)=0,得x=1. 当0<x<1时,f′(x)>0;当x>1时,f′(x)<0. ∴f(x)在(0,1)上是增函数,在(1,+∞)上是减函数. ∴f(x)max=f(1)=-1.∴当a=-1时,函数f(x)在(0,+∞)上的最大值为-1.
利用导数探究函数的零点问题——2021年高考理科数学一轮复习热点题型全归纳与高效训练突破(附解析)
2021年高考理科数学一轮复习:题型全归纳与高效训练突破 专题3.6 高考解答题热点题型(三)利用导数探究函数的零点问题目录一、题型全归纳 (1)题型一 判断、证明或讨论函数零点的个数 ..................................................................................................... 1 题型二 已知零点存在情况求参数范围............................................................................................................. 2 题型三 函数零点性质研究 ................................................................................................................................ 3 二、高效训练突破 (4)一、题型全归纳题型一 判断、证明或讨论函数零点的个数【题型要点】判断函数零点个数的3种方法【例1】(2020年新课标全国三卷)设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直. (1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1.【例2】(2019·高考全国卷Ⅰ)已知函数f (x )=sin x -ln(1+x ),f ′(x )为f (x )的导数,证明:(1)f ′(x )在区间⎪⎭⎫⎝⎛-2,1π存在唯一极大值点; (2)f (x )有且仅有2个零点.题型二 已知零点存在情况求参数范围【题型要点】解决此类问题常从以下两个方面考虑(1)根据区间上零点的个数情况,估计出函数图象的大致形状,从而推导出导数需要满足的条件,进而求出参数满足条件.(2)先求导,通过求导分析函数的单调情况,再依据函数在区间内的零点情况,推导出函数本身需要满足的条件,此时,由于函数比较复杂,常常需要构造新函数,通过多次求导,层层推理得解. 【例1】(2020·重庆调研)设函数f (x )=-x 2+ax +ln x (a ∈R ). (1)当a =-1时,求函数f (x )的单调区间;(2)设函数f (x )在⎥⎦⎤⎢⎣⎡3,31上有两个零点,求实数a 的取值范围.【例2】已知函数f (x )=e x -ax 2. (1)若a =1,证明:当x ≥0时,f (x )≥1;(2)若f (x )在(0,+∞)只有一个零点,求a .题型三 函数零点性质研究【题型要点】本题型包括两个方向:一是与函数零点性质有关的问题(更多涉及构造函数法);二是可以转化为函数零点的函数问题(更多涉及整体转化、数形结合等方法技巧).能够利用等价转换构造函数法求解的问题常涉及参数的最值、曲线交点、零点的大小关系等.求解时一般先通过等价转换,将已知转化为函数零点问题,再构造函数,然后利用导数研究函数的单调性、极值、最值等,并结合分类讨论,通过确定函数的零点达到解决问题的目的. 【例1】 (2019·高考全国卷Ⅰ)已知函数f (x )=ln x -x +1x -1.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线y =e x 的切线.【例2】已知函数f (x )=12x 2+(1-a )x -a ln x ,a ∈R .(1)若f (x )存在极值点为1,求a 的值;(2)若f (x )存在两个不同的零点x 1,x 2,求证:x 1+x 2>2.二、高效训练突破1.已知函数f (x )=e x -ax2.(1)若a =1,证明:当x ≥0时,f (x )≥1; (2)若f (x )在(0,+∞)只有一个零点,求a .2.(2020·武汉调研)已知函数f (x )=e x -ax -1(a ∈R )(e =2.718 28…是自然对数的底数). (1)求f (x )的单调区间;(2)讨论g (x )=f (x )(x -12)在区间[0,1]上零点的个数.3.(2020·长春市质量监测(二))已知函数f (x )=e x +bx -1(b ∈R ). (1)讨论f (x )的单调性;(2)若方程f (x )=ln x 有两个实数根,求实数b 的取值范围.4.(2020·江西八所重点中学联考)已知函数f (x )=12ax -a +1-ln xx (其中a 为常数,且a ∈R ).(1)若函数f (x )为减函数,求实数a 的取值范围;(2)若函数f (x )有两个不同的零点,求实数a 的取值范围,并说明理由.5.(2020·唐山模拟)已知函数f (x )=x 22-4ax +a ln x +3a 2+2a (a >0).(1)讨论f (x )的单调性;(2)若f (x )有两个极值点x 1,x 2,当a 变化时,求f (x 1)+f (x 2)的最大值.6.(2019·全国卷Ⅰ)已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数.(1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.7.(2020年新课标全国一卷)已知函数()(2)x f x e a x =-+. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.8.(2020年新课标全国三卷)已知函数32()f x x kx k =-+. (1)讨论()f x 的单调性;(2)若()f x 有三个零点,求k 的取值范围.2021年高考理科数学一轮复习:题型全归纳与高效训练突破 专题3.6 高考解答题热点题型(三)利用导数探究函数的零点问题目录一、题型全归纳 (1)题型一 判断、证明或讨论函数零点的个数 ..................................................................................................... 1 题型二 已知零点存在情况求参数范围............................................................................................................. 2 题型三 函数零点性质研究 ................................................................................................................................ 3 二、高效训练突破 (4)一、题型全归纳题型一 判断、证明或讨论函数零点的个数【题型要点】判断函数零点个数的3种方法【例1】(2020年新课标全国三卷)设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直. (1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1. 【答案】(1)34b =-;(2)证明见解析 【解析】(1)因为'2()3f x x b =+,由题意,'1()02f =,即21302b ⎛⎫⨯+= ⎪⎝⎭则34b =-; (2)由(1)可得33()4f x x x c =-+, '2311()33()()422f x x x x =-=+-, 令'()0f x >,得12x >或21x <-;令'()0f x <,得1122x -<<, 所以()f x 在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c -=--=+=-=+, 若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f ->或(1)0f <,即14c >或14c <-. 当14c >时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=->-=+>=->=+>,又32(4)6434(116)0f c c c c c c -=-++=-<,由零点存在性定理知()f x 在(4,1)c --上存在唯一一个零点0x , 即()f x 在(,1)-∞-上存在唯一一个零点,在(1,)-+∞上不存在零点, 此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 当14c <-时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=-<-=+<=-<=+<,又32(4)6434(116)0f c c c c c c -=++=->,由零点存在性定理知()f x 在(1,4)c -上存在唯一一个零点0x ',即()f x 在(1,)+∞上存在唯一一个零点,在(,1)-∞上不存在零点, 此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 综上,()f x 所有零点的绝对值都不大于1.【例2】(2019·高考全国卷Ⅰ)已知函数f (x )=sin x -ln(1+x ),f ′(x )为f (x )的导数,证明:(1)f ′(x )在区间⎪⎭⎫⎝⎛-2,1π存在唯一极大值点; (2)f (x )有且仅有2个零点.【证明】 (1)设g (x )=f ′(x ),则g (x )=cos x -11+x ,g ′(x )=-sin x +1(1+x )2.当x ∈⎪⎭⎫⎝⎛-2,1π时,g ′(x )单调递减,而g ′(0)>0,⎪⎭⎫ ⎝⎛'2πg <0,可得g ′(x )在⎪⎭⎫ ⎝⎛-2,1π有唯一零点,设为α.则当x ∈(-1,α)时,g ′(x )>0;当x ∈⎪⎭⎫⎝⎛2,πα时,g ′(x )<0. 所以g (x )在(-1,α)单调递增,在⎪⎭⎫⎝⎛2,πα单调递减, 故g (x )在⎪⎭⎫⎝⎛-2,1π存在唯一极大值点,即f ′(x )在⎪⎭⎫ ⎝⎛-2,1π存在唯一极大值点. (2)f (x )的定义域为(-1,+∞).(∈)当x ∈(-1,0]时,由(1)知,f ′(x )在(-1,0)单调递增,而f ′(0)=0,所以当x ∈(-1,0)时,f ′(x )<0, 故f (x )在(-1,0)单调递减.又f (0)=0,从而x =0是f (x )在(-1,0]的唯一零点.(∈)当x ∈⎥⎦⎤ ⎝⎛2,0π时,由(1)知,f ′(x )在(0,α)单调递增,在⎪⎭⎫ ⎝⎛2,πα单调递减,而f ′(0)=0,⎪⎭⎫⎝⎛'2πf <0,所以存在β∈⎪⎭⎫⎝⎛2,πα,使得f ′(β)=0,且当x ∈(0,β)时,f ′(x )>0;当x ∈⎪⎭⎫⎝⎛2,πβ时,f ′(x )<0.故f (x )在(0,β)单调递增,在⎪⎭⎫⎝⎛2,πβ单调递减.又f (0)=0,⎪⎭⎫⎝⎛2πf =1-ln ⎪⎭⎫ ⎝⎛+21π>0,所以当x ∈⎥⎦⎤ ⎝⎛2,0π时,f (x )>0.从而f (x )在⎥⎦⎤⎝⎛2,0π有零点.(∈)当x ∈⎥⎦⎤⎝⎛2,2ππ时,f ′(x )<0,所以f (x )在⎪⎭⎫⎝⎛ππ,2单调递减.而⎪⎭⎫ ⎝⎛2πf >0,f (π)<0,所以f (x )在⎥⎦⎤⎝⎛2,2ππ有唯一零点.(∈)当x ∈()π,+∞时,ln(x +1)>1,所以f (x )<0,从而f (x )在(π,+∞)没有零点. 综上,f (x )有且仅有2个零点.题型二 已知零点存在情况求参数范围【题型要点】解决此类问题常从以下两个方面考虑(1)根据区间上零点的个数情况,估计出函数图象的大致形状,从而推导出导数需要满足的条件,进而求出参数满足条件.(2)先求导,通过求导分析函数的单调情况,再依据函数在区间内的零点情况,推导出函数本身需要满足的条件,此时,由于函数比较复杂,常常需要构造新函数,通过多次求导,层层推理得解. 【例1】(2020·重庆调研)设函数f (x )=-x 2+ax +ln x (a ∈R ). (1)当a =-1时,求函数f (x )的单调区间;(2)设函数f (x )在⎥⎦⎤⎢⎣⎡3,31上有两个零点,求实数a 的取值范围.【解】(1)函数f (x )的定义域为(0,+∞), 当a =-1时,f ′(x )=-2x -1+1x =-2x 2-x +1x ,令f ′(x )=0,得x =12(负值舍去).当0<x <12时,f ′(x )>0.当x >12时,f ′(x )<0,所以f (x )的单调递增区间为⎪⎭⎫ ⎝⎛21,0,单调递减区间为⎪⎭⎫⎝⎛+∞,21.。
第06讲 利用导数研究函数的零点(方程的根) (精讲+精练)(学生版)
第06讲利用导数研究函数的零点(方程的根)(精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:判断、证明或讨论函数零点的个数高频考点二:证明唯一零点问题高频考点三:根据零点情况求参数①利用最值(极值)研究函数零点问题②利用数形结合法研究函数的零点问题③构造函数研究函数零点问题第四部分:高考真题感悟第五部分:第06讲利用导数研究函数的零点(方程的根)(精练)1、函数的零点(1)函数零点的定义:对于函数()y f x=,把使()0f x=的实数x叫做函数()y f x=的零点.(2)三个等价关系方程0)(=xf有实数根⇔函数)(xfy=的图象与x轴有交点的横坐标⇔函数)(xfy=有零点.2、函数零点的判定如果函数()y f x=在区间[,]a b上的图象是连续不断的一条曲线,并且有()()0f a f b⋅<,那么函数()y f x=在区间(,)a b内有零点,即存在(,)c a b∈,使得()0f c=,这个c也就是()0f x=的根.我们把这一结论称为函数零点存在性定理.注意:单调性+存在零点=唯一零点1.(2022·全国·高二)已知函数()f x的定义域为[]15-,,部分对应值如下表:()f x的导函数()y f x='的图象如图所示,则下列关于函数()f x的命题:① 函数()y f x=是周期函数;② 函数()f x在[]02,是减函数;③ 如果当[]1,x t∈-时,()f x的最大值是2,那么t的最大值为4;④ 当12a<<时,函数()y f x a=-有4个零点.其中真命题的个数是A.4个B.3个C.2个D.1个2.(2022·甘肃·金昌市教育科学研究所高三阶段练习(文))已知函数()2e1xf x x a=+-()a R∈有两个极值点,则实数a的取值范围为()A.1,0e⎛⎫- ⎪⎝⎭B.2,0e⎛⎫- ⎪⎝⎭C.1,e⎛⎫-+∞⎪⎝⎭D.2,e⎛⎫-+∞⎪⎝⎭3.(2022·全国·高二)若函数()3239f x x x x m =--+仅有一个零点,则实数m 的取值范围是( )A .()5,-+∞B .(,27)(5,)-∞-⋃+∞C .(,27)-∞D .(,5)(27,)-∞-⋃+∞4.(2022·甘肃武威·模拟预测(文))函数()326f x x x m =-+有三个零点,则实数m 的取值范围是( )A .(﹣4,4)B .[﹣4,4]C .(﹣∞,﹣4]∪[4,+∞)D .(﹣∞,﹣4)∪(4,+∞)5.(2022·江苏淮安·高二期末)已知函数()e x f x =与()1g x x =+,则它们的图象交点个数为( )A .0B .1C .2D .不确定高频考点一:判断、证明或讨论函数零点(根)的个数1.(2022·全国·高二)设函数f (x )=13x -ln x ,则函数y =f (x )( )A .在区间1(,1)e,(1,e )内均有零点 B .在区间1(,1)e,(1,e )内均无零点C .在区间1(,1)e 内有零点,在区间(1,e )内无零点D .在区间1(,1)e 内无零点,在区间(1,e )内有零点2.(2022·全国·高三专题练习(文))已知函数()()12xx e f x e=-+,其中e 为自然对数的底数, 2.7182818e =……,则()f x 的零点个数为( ) A .0B .1C .2D .33.(2022·全国·高三专题练习(理))函数()()1ln 03f x x x x =->的零点个数为( )A .0B .1C .2D .34.(2022·全国·高二课时练习)求函数3()231f x x x =-+零点的个数为( ) A .1B .2C .3D .45.(2022·江苏淮安·高二期末)已知函数()e x f x =与()1g x x =+,则它们的图象交点个数为( )A .0B .1C .2D .不确定6.(2022·江苏苏州·模拟预测)方程3269100x x x -+-=的实根个数是______ .7.(2022·全国·高三专题练习)函数()1x f x e x =-+的零点个数是__________.8.(2022·广东佛山·高二阶段练习)已知函数()()1ln 2af x x a x x=+---,其中R a ∈. (1)若()f x 存在唯一极值点,且极值为0,求a 的值; (2)若2e a <,讨论()f x 在区间2[1,e ]上的零点个数.9.(2022·新疆·乌苏市第一中学高二阶段练习(文))给定函数()()1e xf x x =+.(1)判断函数()f x 的单调性,并求出()f x 的极值; (2)求出方程()()f x a a R =∈的解的个数.高频考点二:证明唯一零点(根)问题1.(2022·山西省长治市第二中学校高二阶段练习)已知函数321()(1)3=-++f x x a x x .(1)若1a =,求()f x 的单调区间及相应区间上的单调性; (2)证明:()f x 只有一个零点.2.(2022·陕西渭南·高二期末(文))已知函数()ln x axf x x+=,R a ∈. (1)若0a =,求()f x 的最大值;(2)若01a <<,求证:()f x 有且只有一个零点.3.(2022·广西玉林·模拟预测(文))已知函数217()ln 4,()2ln 22f x x x xg x x x =-=++. (1)求函数()f x 的最小值;(2)证明:函数()()()h x f x g x =+仅有一个零点.高频考点三:根据零点(根)情况求参数①利用最值(极值)研究函数零点(根)问题1.(2022·重庆市万州第二高级中学高二阶段练习)已知函数32()34f x x ax bx =+++在1x =-时有极值0. (1)求函数()f x 的解析式;(2)记()()21g x f x k =-+,若函数()g x 有三个零点,求实数k 的取值范围.2.(2022·山东师范大学附中高二阶段练习)已知函数()21xx x f x e+-=. (1)求函数()f x 的单调区间;(2)若函数()y f x a =-(a 为常数)有3个不同的零点,求实数a 的取值范围.3.(2022·宁夏六盘山高级中学高二阶段练习(理))已知函数3()91f x ax x =-+,0a >. (1)若3a =,求函数()f x 的极值;(2)若函数()f x 恰有三个零点,求实数a 的取值范围.4.(2022·北京丰台·一模)已知函数()f x = (1)当1a =时,求曲线()y f x =的斜率为1的切线方程; (2)若函数2()()3ag x f x =-恰有两个不同的零点,求a 的取值范围.5.(2022·广西桂林·二模(理))已知函数()()()211e 2xf x x ax a R =--∈ (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求实数a 的取值范围.②利用数形结合法研究函数的零点(根)问题1.(2022·宁夏·银川二中高二期末(理))已知函数ln ()xf x x= (1)填写函数()f x 的相关性质;2.(2022·四川·阆中中学高二阶段练习(文))设函数3()65f x x x x R =-+∈,. (1)求函数()f x 的单调区间;(2)若关于x 的方程()f x a =有三个不等实根,求实数a 的取值范围.3.(2022·全国·信阳高中高三阶段练习(理))已知函数()2e xf x a x =-(R a ∈,e 为自然对数的底数).(1)若()0f x =有两个不相等的实数根,求a 的取值范围;4.(2022·四川·雅安中学高二阶段练习(文))已知函数()322f x x ax bx =++-在2x =-时取得极值,且在点()()1,1f --处的切线的斜率为3- . (1)求()f x 的解析式;(2)若函数()y f x λ=-有三个零点,求实数λ的取值范围.5.(2022·全国·模拟预测(理))已知函数()()2x x f x e ae a =+∈R(1)讨论()f x 的单调性;(2)设()()21x g x a x e x =-+,若方程()()g x f x =有三个不同的解,求a 的取值范围.6.(2022·四川绵阳·二模(文))已知函数()2()ln 1R f x x ax a =+-∈(1)当2a =时,求函数()f x 的单调区间;(2)若函数()f x 有且只有一个零点,求实数a 的取值范围.③构造函数研究函数零点(根)问题1.(2022·江苏宿迁·高二期末)已知函数()e xf x =(e 为自然对数的底数),()sing x a x =(,22x ππ⎡⎤∈-⎢⎥⎣⎦),a R ∈.(1)若直线:l y kx =与函数()f x ,()g x 的图象都相切,求a 的值; (2)若方程()()f x g x =有两个不同的实数解,求a 的取值范围.2.(2022·重庆南开中学高二期末)已知函数()()2ln ,f x x x g x x ax b ==++.(1)若()f x 与()g x 在1x =处有相同的切线,求实数,a b 的取值;(2)若2b =时,方程()()f x g x =在()1,+∞上有两个不同的根,求实数a 的取值范围.3.(2022·四川·成都七中高三阶段练习(理))已知函数()(1)f x a x =-,()e (1)x g x bx =-,R a ∈. (1)当2b =时,函数()()y f x g x =-有两个零点,求a 的取值范围; (2)当b a =时,不等式()()f x g x >有且仅有两个整数解,求a 的取值范围.4.(2022·全国·高三阶段练习)已知函数()()11ln e f x a x x=+++,()()e x g x x a a =++∈R .(1)试讨论函数()f x 的单调性;(2)若当1≥x 时,关于x 的方程()()f x g x =有且只有一个实数解,求实数a 的取值范围.5.(2022·河南·三模(理))已知函数()()ln 1f x x =+,()e 1xg x =-.(1)判断函数()()()h x f x g x =-的零点个数;6.(2022·江苏南京·高三开学考试)已知函数()(1)x f x e a x =+-,()sin cos g x ax x x =++ (1)求函数()f x 的最值;(2)令()()()h x f x g x =-,求函数()h x 在区间(,)4π-+∞上的零点个数,并说明理由.1.(2021·全国·高考真题(理))已知0a >且1a ≠,函数()(0)a x x f x x a=>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围.2.(2021·全国·高考真题)已知函数2()(1)x f x x e ax b =--+. (1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 只有一个零点 ①21,222e a b a <≤>;②10,22a b a <<≤.3.(2021·浙江·高考真题)设a ,b 为实数,且1a >,函数()2R ()x f x a bx e x =-+∈(1)求函数()f x 的单调区间;(2)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围;(3)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点()1221,,x x x x >,满足2212ln 2b b ex x e b>+.(注: 2.71828e =⋅⋅⋅是自然对数的底数)一、单选题1.(2022·江苏·南京师大附中高三开学考试)已知a ∈R ,则函数()()32113f x x a x x =-++零点的个数为( )A .1B .2C .3D .与a 有关2.(2022·浙江省浦江中学高二阶段练习)已知函数()22x f x xe x x m =---在()0,∞+上有零点,则m 的取值范围是( )A .)21ln 2,-+∞⎡⎣B .)2ln 21,--+∞⎡⎣C .)2ln 2,-+∞⎡⎣D .21ln 2,2-+∞⎡⎫⎪⎢⎣⎭3.(2022·全国·高二)函数32()2f x x x x =-++-的零点个数及分布情况为( ) A .一个零点,在1,3⎛⎫-∞- ⎪⎝⎭内B .二个零点,分别在1,3⎛⎫-∞- ⎪⎝⎭,()0,∞+内C .三个零点,分别在1,3⎛⎫-∞- ⎪⎝⎭,1,03⎛⎫- ⎪⎝⎭,()1,+∞内D .三个零点,分别在1,3⎛⎫-∞- ⎪⎝⎭,()0,1,()1,+∞内4.(2022·全国·高二)直线y a =与函数33y x x =-的图象有三个不同的交点,则实数a 的取值范围为( ) A .(2,2)-B .[2,2]-C .[2,)+∞D .(,2]-∞-5.(2022·全国·高二)已知函数20()210x e x f x x x x -⎧≤=⎨--+>⎩,若函数()()g x f x kx =-有两个零点,则实数k 等于(e 为自然对数的底数)( ) A .e -B .1-C .2D .2e6.(2022·河南·襄城高中高二阶段练习(理))已知函数()2ln f x x =,()322g x x ex ax =-+,其中e 为自然对数的底数,若方程()()f x g x =存在两个不同的实根,则a 的取值范围为( ) A .2,e ⎛⎫-∞ ⎪⎝⎭B .22,e e ⎛⎫-∞+ ⎪⎝⎭C .()2,e -∞D .22,e e ⎛⎫-∞- ⎪⎝⎭7.(2022·江西·高三阶段练习(理))已知函数22()2(2)e (1)e x x f x a a x x =+-++有三个不同的零点123,,x x x ,且1230x x x <<<,则3122312222e e e x x x x x x ⎛⎫⎛⎫⎛⎫--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为( )A .3B .6C .9D .368.(2022·全国·高三专题练习)已知方程|ln |2x kx =+在区间()50,e 上恰有3个不等实数根,则实数k 的取值范围是( ) A .5331,e e ⎛⎫ ⎪⎝⎭B .5331,e e ⎡⎫⎪⎢⎣⎭C .4221,e e ⎛⎫ ⎪⎝⎭D .4221,e e ⎡⎫⎪⎢⎣⎭二、填空题9.(2022·河南焦作·二模(理))函数1()e ln 1x f x a x -=--在(0,)+∞上有两个零点,则实数a 的取值范围是_______. 10.(2022·贵州遵义·高三开学考试(文))已知函数()3112,21ln ,2x m x f x x x m x ⎧--<⎪⎪=⎨⎪-≥⎪⎩恰有3个零点,则m 的取值范围是________.11.(2022·浙江·镇海中学高二期末)已知不等式21e 0x x a +-≥有且只有两个整数解,则实数a 的范围为___________.12.(2022·全国·高二)已知函数3211()(2)1()32xf x ax ax e x a R =---+∈在区间1,22⎛⎫ ⎪⎝⎭上有3个不同的极值点,则实数a的取值范围是__________. 三、解答题13.(2022·河南·栾川县第一高级中学高二阶段练习(理))已知()2()e ()x f x x a a =+∈R .(1)若2是函数()f x 的极值点,求a 的值,并判断2是()f x 的极大值点还是极小值点; (2)若关于x 的方程()2ln e x f x x =在1,22⎡⎤⎢⎥⎣⎦上有两个不同的实数根,求实数a 的取值范围.参考数据:ln 20.693≈14.(2022·陕西宝鸡·二模(文))已知函数()1e x f x ax =--,a ∈R . (1)讨论函数()f x 的单调性;(2)若方程()ln f x x x =在(1,e)上有实根,求实数a 的取值范围.15.(2022·河南·沈丘县第一高级中学高二期末(文))已知函数()ln f x x =. (1)当[)1,x ∞∈+时,证明:函数()f x 的图象恒在函数()322132=-g x x x 的图象的下方; (2)讨论方程()0f x kx +=的根的个数.16.(2022·吉林·长春外国语学校高二阶段练习)若函数()32113f x x ax bx =++-,当2x =时,函数()f x 有极值13-.(1)求函数的解析式;(2)若关于x 的方程()f x k =有三个解,求实数k 的取值范围.17.(2022·浙江浙江·二模)已知函数2()ln (2)f x x a x a =+<. (1)若2a =-,求函数()f x 的极小值点;(2)当2(]0,x ∈时,讨论函数()f x 的图象与函数(2)22y a x a =+--的图象公共点的个数,并证明你的结论.。
【高考调研】高考数学一轮复习 专题研究 导数的应用课件 理 新人教版
探究 1 给定解析式求函数的图像是近几年高考重 点,并且难度在增大,多需要利用导数研究单调性知其变 化趋势,利用导数求极值(最值)研究零点.
思考题 1 (2011·安徽文)函数 f(x)=axn(1-x)2 在区间 [0,1]上的图像如图所示,则 n 可能是( )
A.1 C.3
B.2 D.4
探究 2 ①本题是将不等式证明转化为求函数的最 值,体现了函数与不等式之间的联系.
②借助函数单调性、最值、恒成立等知识证明函数不 等式是近几年高考热点.
思考题 2 (2011·辽宁)设函数 f(x)=x+ax2+blnx,曲 线 y=f(x)过 P(1,0),且在 P 点处的切线斜率为 2.
(1)求 a,b 的值; (2)证明:f(x)≤2x-2.
2013届高考一轮数学复习理科课件(人教版)
第三章 导数及其应用
专题研究 导数的应用
题型一 导数与函数图像 例 1 (2011·山东)函数 y=2x-2sinx 的图像大致是( )
【解析】 y′=12-2cosx,令 y′=0,得 cosx=14, 根据三角函数的知识可知这个方程有无穷多解,即函数 y =2x-2sinx 有无穷多个极值点,函数是奇函数,图像关于 坐标原点对称,故只能是选项 C 的图像.
思考题 3 (1)(2011·辽宁文)已知函数 f(x)=ex-2x+a 有零点,则 a 的取值范围是________.
【解析】 由原函数有零点,可将问题转化为方程 ex-2x+a=0 有解问题,即方程 a=2x-ex 有解.
令函数 g(x)=2x-ex,则 g′(x)=2-ex,令 g′(x)=0, 得 x=ln2,所以 g(x)在(-∞,ln2)上是增函数,在(ln2, +∞)上是减函数,所以 g(x)的最大值为:g(ln2)=2ln2- 2.因此,a 的取值范围就是函数 g(x)的值域,所以,a∈(- ∞,2ln2-2].
导数与函数图像的关系分析
导数与函数图像的关系分析导数是微积分中的重要概念,它描述了函数在某一点的变化率。
而函数图像则是函数在平面上的可视化展示。
导数与函数图像之间存在着密切的关系,通过对导数与函数图像的分析,我们可以深入理解函数的性质与行为。
一、导数的定义与计算方法导数的定义是函数在某一点的变化率,可以通过极限的概念进行定义。
对于函数f(x),其在点x处的导数可以表示为f'(x),即f'(x) = lim Δx→0 (f(x+Δx) - f(x))/Δx。
这个定义可以理解为当Δx趋近于0时,函数在x点附近的变化率。
计算导数的方法有多种,其中最常见的是使用导数的基本公式。
对于常见的函数类型,我们可以通过这些公式来计算导数。
例如,对于多项式函数f(x) = ax^n,其中a为常数,n为整数,其导数为f'(x) = anx^(n-1)。
对于指数函数f(x) = e^x,其导数为f'(x) = e^x。
对于对数函数f(x) = ln(x),其导数为f'(x) = 1/x。
二、导数与函数的增减性导数与函数的增减性密切相关。
通过导数的正负可以判断函数在某一点的增减性。
当导数大于0时,函数在该点上是递增的;当导数小于0时,函数在该点上是递减的;当导数等于0时,函数在该点上取得极值。
通过导数与函数的增减性,我们可以推导出函数的极值点和拐点。
当函数的导数从正变为负时,函数在该点上取得极大值;当函数的导数从负变为正时,函数在该点上取得极小值。
而函数的拐点则是导数的变号点,即导数从正变为负或从负变为正的点。
三、导数与函数的凹凸性导数还可以用来判断函数的凹凸性。
通过导数的二阶导数可以判断函数的凹凸性。
二阶导数表示导数的导数,可以表示为f''(x)。
当二阶导数大于0时,函数在该点上是凹的;当二阶导数小于0时,函数在该点上是凸的;当二阶导数等于0时,函数在该点上可能是拐点。
通过导数与函数的凹凸性,我们可以推导出函数的凹凸区间和拐点。
利用导数研究函数的极值与最值(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)
考向16 利用导数研究函数的极值与最值【2022·全国·高考真题(理)】当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( ) A .1- B .12-C .12D .1【2022·全国·高考真题(文)】函数()()cos 1sin 1f x x x x =+++在区间[]0,2π的最小值、最大值分别为( )A .ππ22-,B .3ππ22-, C .ππ222-+,D .3ππ222-+,1.由图象判断函数()y f x =的极值,要抓住两点:(1)由()y f x '=的图象与x 轴的交点,可得函数()y f x =的可能极值点;(2)由导函数()y f x '=的图象可以看出()y f x '=的值的正负,从而可得函数()y f x =的单调性.两者结合可得极值点.2.已知函数极值,确定函数解析式中的参数时,要注意:(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)因为导数值等于0不是此点为极值点的充要条件,所以用待定系数法求解后必须检验.3.求函数()f x 在闭区间[],a b 内的最值的思路(1)若所给的闭区间[],a b 不含有参数,则只需对函数()f x 求导,并求()0f x '=在区间[],a b 内的根,再计算使导数等于零的根的函数值,把该函数值与()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.(2)若所给的闭区间[],a b 含有参数,则需对函数()f x 求导,通过对参数分类讨论,判断函数的单调性,从而得到函数()f x 的最值.(1)若函数()f x 在区间D 上存在最小值()min f x 和最大值()max f x ,则 不等式()f x a >在区间D 上恒成立()min f x a ⇔>; 不等式()f x a ≥在区间D 上恒成立()min f x a ⇔≥; 不等式()f x b <在区间D 上恒成立()max f x b ⇔<; 不等式()f x b ≤在区间D 上恒成立()max f x b ⇔≤;(2)若函数()f x 在区间D 上不存在最大(小)值,且值域为(),m n ,则不等式()()()f x a f x a >≥或在区间D 上恒成立m a ⇔≥.不等式()()()f x b f x b <≤或在区间D 上恒成立m b ⇔≤.(3)若函数()f x 在区间D上存在最小值()min f x 和最大值()max f x ,即()[],f x m n ∈,则对不等式有解问题有以下结论:不等式()a f x <在区间D 上有解()max a f x ⇔<; 不等式()a f x ≤在区间D 上有解()max a f x ⇔≤; 不等式()a f x >在区间D 上有解()min a f x ⇔>; 不等式()a f x ≥在区间D 上有解()min a f x ⇔≥;(4)若函数()f x 在区间D 上不存在最大(小)值,如值域为(),m n ,则对不等式有解问题有以下结论:不等式()()()a f x f x <≤或a 在区间D 上有解a n ⇔< 不等式()()()b f x f x >≥或b 在区间D 上有解b m ⇔>(5)对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≤⇔≤;(6)对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≥⇔≥;(7)若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≤⇔≤;(8)若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≥⇔≥;(9)对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212max min f x g x f x g x ≤⇔≤;(10)对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212min max f x g x f x g x ≥⇔≥;(11)若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min max f x g x f x g x ≤⇔≤(12)若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max min f x g x f x g x ≥⇔≥.1.函数的极值函数()f x 在点0x 附近有定义,如果对0x 附近的所有点都有0()()f x f x <,则称0()f x 是函数的一个极大值,记作0()y f x =极大值.如果对0x 附近的所有点都有0()()f x f x >,则称0()f x 是函数的一个极小值,记作0()y f x =极小值.极大值与极小值统称为极值,称0x 为极值点.求可导函数()f x 极值的一般步骤 (1)先确定函数()f x 的定义域; (2)求导数()f x '; (3)求方程()0f x '=的根;(4)检验()f x '在方程()0f x '=的根的左右两侧的符号,如果在根的左侧附近为正,在右侧附近为负,那么函数()y f x =在这个根处取得极大值;如果在根的左侧附近为负,在右侧附近为正,那么函数()y f x =在这个根处取得极小值.注①可导函数()f x 在点0x 处取得极值的充要条件是:0x 是导函数的变号零点,即0()0f x '=,且在0x 左侧与右侧,()f x '的符号导号.②0()0f x '=是0x 为极值点的既不充分也不必要条件,如3()f x x =,(0)0f '=,但00x =不是极值点.另外,极值点也可以是不可导的,如函数()f x x =,在极小值点00x =是不可导的,于是有如下结论:0x 为可导函数()f x 的极值点0()0f x '⇒=;但0()0f x '=⇒0x 为()f x 的极值点.2.函数的最值函数()y f x =最大值为极大值与靠近极小值的端点之间的最大者;函数()f x 最小值为极小值与靠近极大值的端点之间的最小者.导函数为21212()()()()f x ax bx c a x x x x m x x n =++=--<<<(1)当0a >时,最大值是1()f x 与()f n 中的最大者;最小值是2()f x 与()f m 中的最小者.(2)当0a <时,最大值是2()f x 与()f m 中的最大者;最小值是1()f x 与()f n 中的最小者.一般地,设()y f x =是定义在[]m n ,上的函数,()y f x =在()m n ,内有导数,求函数()y f x =在[]m n ,上的最大值与最小值可分为两步进行: (1)求()y f x =在()m n ,内的极值(极大值或极小值); (2)将()y f x =的各极值与()f m 和()f n 比较,其中最大的一个为最大值,最小的一个为最小值.注①函数的极值反映函数在一点附近情况,是局部函数值的比较,故极值不一定是最值;函数的最值是对函数在整个区间上函数值比较而言的,故函数的最值可能是极值,也可能是区间端点处的函数值;②函数的极值点必是开区间的点,不能是区间的端点; ③函数的最值必在极值点或区间端点处取得.1.(2022·山西太原·三模(文))已知函数()e e xf x =⋅(1)若()()()g x f x kx k k =--∈R 在1x =-时取得极小值,求实数k 的值; (2)若过点(,)a b 可以作出函数()y f x =的两条切线,求证:()0b f a <<2.(2022·湖北·模拟预测)已知函数()21ln 2f x x x mx =++,(m R ∈). (1)若()f x 存在两个极值点,求实数m 的取值范围; (2)若1x ,2x 为()f x 的两个极值点,证明:()()()212122228f x f x m x x f +++⎛⎫-> ⎪⎝⎭.3.(2022·河南郑州·高三阶段练习(文))已知函数()21xf x x a-=+. (1)若0a =,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若()f x 在1x =-处取得极值,求()f x 的单调区间及其最大值与最小值.4.(2022·全国·高三专题练习(理))已知函数()ln f x x mx =+,其中m ∈R . (1)讨论()f x 的单调性;(2)若(0,)∀∈+∞x ,2()2f x x x ≤-,求m 的最大值.5.(2022·山东菏泽·高三期末)设函数()22cos f x x x =+.(1)求曲线()y f x =在点(,())22f ππ处的切线与两坐标轴围成的三角形的面积;(2)求函数()f x 在区间[]0,π上的最大值和最小值.6.(2022·北京市第九中学模拟预测)已知()sin 2f x k x x =+. (1)当2k =时,判断函数()f x 零点的个数; (2)求证:()sin 2ln 1,(0,)2x x x x π-+>+∈.1.(2022·内蒙古·乌兰浩特一中模拟预测(文))已知函数()()ln 2,ln xxe f x xe x x g x x x x=---=+-的最小值分别为,m n ,则( )A .m n <B .m n >C .m n =D .,m n 的大小关系不确定2.(2022·北京·北大附中三模)如图矩形,6ABCD AB =,沿PQ 对折使得点B 与AD 边上的点1B 重合,则PQ 的长度可以用含α的式子表示,那么PQ 长度的最小值为( )A .4B .8C .62D 933.(2022·安徽·合肥一六八中学模拟预测(文))已知函数()f x 为定义在R 上的增函数,且对,()()1x R f x f x ∀∈+-=,若不等式()(ln )1f ax f x +-≥对(0,)∀∈+∞x 恒成立,则实数a 的取值范围是( ) A .(0,e]B .(,e]-∞C .10,e ⎛⎤⎥⎝⎦D .1,e ∞⎡⎫+⎪⎢⎣⎭4.(2022·江西省丰城中学模拟预测(文))已知函数()2e 2xf x ax ax =++在()0,x ∈+∞上有最小值,则实数a 的取值范围为( ) A .1,2⎛⎫+∞ ⎪⎝⎭B .e 1,22⎛⎫-- ⎪⎝⎭C .()1,0-D .1,2⎛⎫-∞- ⎪⎝⎭5.(2022·广东深圳·高三阶段练习)已知函数()32f x x ax x a =+-+有两个极值点12,x x ,且1223x x -=,则()f x 的极大值为( ) A 3B 23C 3D 36.(2022·广东广州·三模)设()f x '为函数()f x 的导函数,已知()()()21ln ,12x f x xf x x f '==-'+,则( )A .()xf x 在()0,∞+单调递增B .()xf x 在()0,∞+单调递减C .()xf x 在()0,∞+上有极大值12D .()xf x 在()0,∞+上有极小值127.(2022·全国·模拟预测(文))下列结论正确的是( )A .设函数()3f x x ax b =++,其中a ,b ∈R ,当a =-3,2b >时,函数有两个零点B .函数()()e 0xa f x a x=>没有极值点C .关于x 的方程32230x x a -+=在区间[]22-,上仅有一个实根,则实数a 的取值范围为[)(]4,01,28-D .函数()()e 0e xxx a f x a -=<有两个零点8.(2022·全国·高三专题练习)已知函数()321132f x x ax x =-+在区间1,32⎛⎫⎪⎝⎭上既有极大值又有极小值,则实数a 的取值范围是( ) A .()2,+∞B .[)2,+∞C .52,2⎛⎫ ⎪⎝⎭D .102,3⎛⎫ ⎪⎝⎭9.(2022·安徽·蒙城第一中学高三阶段练习(文))已知m 为常数,函数()2ln 2f x x x mx=-有两个极值点,其中一个极值点0x 满足01x >,则()0f x 的取值范围是( ) A .(),0∞-B .()0,∞+C .1,2⎛⎫-∞- ⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭10.(多选题)(2022·湖南·湘潭一中高三阶段练习)已知函数21()e xx x f x +-=,则下列结论正确的是( )A .函数()f x 只有一个零点B .函数()f x 只有极大值而无极小值C .当e 0k -<<时,方程()f x k =有且只有两个实根D .若当[,)x t ∈+∞时,max 25()e f x =,则t 的最大值为2 11.(多选题)(2022·重庆八中模拟预测)设函数()f x 的定义域为R ,()000x x ≠是()f x 的极小值点,以下结论一定正确的是( ) A .0x 是()f x 的最小值点 B .0x 是()f x -的极大值点 C .0x -是()f x -的极大值点 D .0x -是()f x --的极大值点12.(多选题)(2022·全国·高三专题练习)(多选)已知函数32()247f x x x x =---,其导函数为()'f x ,给出以下命题正确的是( ) A .()f x 的单调递减区间是2,23⎛⎫- ⎪⎝⎭B .()f x 的极小值是15-C .当2a >时,对任意的2x >且x a ≠,恒有()()()()f x f a f a x a '>+-D .函数()f x 有且只有一个零点13.(多选题)(2022·全国·模拟预测)已知函数()312x f x x +=+,()()42e xg x x =-,若[)120,x x ∀∈+∞,,不等式()()()()2221e e t g x t f x +≤+恒成立,则正数t 的取值可以是( )A .6eB .(27eC .(23eD .2e14.(多选题)(2022·全国·模拟预测)已知()()323ln 21f x x x x =--,则( ) A .()f x 的定义域是1,2⎡⎫+∞⎪⎢⎣⎭B .若直线y m =和()f x 的图像有交点,则3,ln 22m ⎛⎤∈-∞- ⎥⎝⎦C .723ln 16< D .()32ln22129> 15.(2022·福建·福州三中高三阶段练习)如果两个函数存在零点,分别为,αβ,若满足n αβ-<,则称两个函数互为“n 度零点函数”.若()()ln 2f x x =-与()2ln g x ax x =-互为“2度零点函数”,则实数a 的最大值为___________.16.(2022·浙江湖州·模拟预测)设(){}(){}0,0P f Q g ααββ====,若存在,R αβ∈∈R ,使得||n αβ-<,则称函数()f x 与()g x 互为“n 度零点函数”.若2()log 1f x x =-与()2x g x x a =-⋅互为“1度零点函数”,则实数a 的取值范围为_____________.17.(2022·河南省杞县高中模拟预测(理))实数x ,y 满足()23e 31e x y x y -≤--,则3xy -的值为______.18.(2022·河南新乡·高三期末(文))已知函数()322161f x x m x mx m =+-+-在x =2处取得极小值,则m =______.19.(2022·全国·高三专题练习(理))若函数()e (sin )x f x x a =-在区间()0,π上存在极值,则实数a 的取值范围是________.20.(2022·全国·高三专题练习(理))已知x =1e是函数()ln()1f x x ax =+的极值点,则a =________.21.(2022·江苏无锡·模拟预测)已知函数()e (1ln )x f x m x =+,其中m >0,f '(x )为f (x )的导函数,设()()ex f x h x '=,且5()2h x ≥恒成立.(1)求m 的取值范围;(2)设函数f (x )的零点为x 0,函数f '(x )的极小值点为x 1,求证:x 0>x 1.22.(2022·青海·海东市第一中学模拟预测(理))已知函数())1(ln f x x x ax x=+-,0a >.(1)若2a =,求函数()f x 的极值; (2)设()()21e 2=-+axg x ax ax ,当0x >时,()()f x g x '≤(()g x '是函数()g x 的导数),求a 的取值范围.23.(2022·广东·大埔县虎山中学高三阶段练习)已知函数()(0)bf x ax c a x=++>的图象在点()()1,1f 处的切线方程为1y x =-.(1)若3c =,求a ,b ;(2)若()ln ≥f x x 在[)1,+∞上恒成立,求a 的取值范围.24.(2022·河南·开封市东信学校模拟预测(文))已知函数()ln (0)f x x ax a a =-+>. (1)当2a =时,求()f x 的单调区间; (2)设函数()f x 的最大值为m ,证明:0m ≥.25.(2022·全国·郑州一中模拟预测(理))已知函数()()ln 0f x ax x a =≠. (1)讨论函数()f x 的单调性;(2)当1a =时,证明:()e sin 1xf x x <+-.26.(2022·广东深圳·高三阶段练习)已知函数()(0).e xaxf x a =≠ (1)若对任意的x ∈R ,都有1()ef x ≤恒成立,求实数a 的取值范围;(2)设,m n 是两个不相等的实数,且e m n m n -=.求证: 2.m n +>27.(2022·山东师范大学附中高三期中)设函数()1ln f x x a x x=-+ (1)当3a =时,求()f x 的单调区间;(2)任意正实数12,x x ,当122x x +=时,试判断()()12f x f x +与()2122a --的大小关系并证明28.(2022·山东·德州市教育科学研究院三模)已知函数ln ()1a xf x x =+,曲线()y f x =在(1,(1))f处的切线与直线20x y +=垂直.(1)设()(1)()x g x x f x =+,求()g x 的单调区间; (2)当0x >,且1x ≠时,ln 1()1x k f x x x->+-,求实数k 的取值范围.29.(2022·北京市大兴区兴华中学三模)设函数()e 1x f x a x =--,a R ∈.(1)当1a =时,求()f x 在点()()0,0f 处的切线方程;(2)当x ∈R 时,()0f x ≥恒成立,求a 的取值范围; (3)求证:当()0,x ∈+∞时,2e 1e x x x->.1.(2022·全国·高考真题(理))当1x =时,函数()ln b f x a x x =+取得最大值2-,则(2)f '=( )A .1-B .12-C .12 D .12.(2022·全国·高考真题(文))函数()()cos 1sin 1f x x x x =+++在区间[]0,2π的最小值、最大值分别为( )A .ππ22-,B .3ππ22-,C .ππ222-+,D .3ππ222-+, 3.(2021·全国·高考真题(理))设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则( )A .a b <B .a b >C .2ab a <D .2ab a > 4.(2022·全国·高考真题(理))已知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是____________.5.(2021·全国·高考真题)函数()212ln f x x x =--的最小值为______.6.(2022·全国·高考真题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.7.(2022·全国·高考真题(文))已知函数1()(1)ln f x ax a x x=--+. (1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围.8.(2021·北京·高考真题)已知函数()232x f x x a-=+. (1)若0a =,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若()f x 在1x =-处取得极值,求()f x 的单调区间,以及其最大值与最小值.9.(2021·天津·高考真题)已知0a >,函数()x f x ax xe =-.(I )求曲线()y f x =在点(0,(0))f 处的切线方程:(II )证明()f x 存在唯一的极值点(III )若存在a ,使得()f x a b ≤+对任意x ∈R 成立,求实数b 的取值范围.10.(2021·全国·高考真题(理))设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点.(1)求a ;(2)设函数()()()x f x g x xf x +=.证明:()1g x <.。
利用导数作函数图象
利用导数作函数图象
1.在初等数学中,用描点法可描绘一些简单函数的图象,由于描点法是通过有限个离散点连成图象,这样很可能将一些关键性的点,如极值点、拐点等漏掉,并且曲线的单调性、凸凹性等一些重要性质也不一定反映出来。
因此用描点往往不能真实、全面地反映函数图象的特点,而利用导数所作出的函数的图象。
就能比较准确地反映出函数的单调性、凸凹性、拐点、极值点及渐近线等重要性质。
一般来说,描绘函数图象可按下列步骤进行:
(1)确定函数y=f(x)的定义域,即确定图象范围;
(2)研究函数y=f(x)的奇偶性、周期性;
(3)求出函数y=f(x)的单调区间、极值点、极值,列成表;
(4)求出函数y=f(x)的拐点、凸凹区间,列成表;
(5)研究函数y=f(x)的渐近线(垂直渐近线、斜渐近线、水平渐近线,见§3.5予备知识);
(6)求出一些特殊点,如曲线y=f(x)与两坐标轴交点,以及容易计算函数值的一些点。
2.拐点
若函数y=f(x)在点c可导,且在点c的一侧是凸(凹),而另一侧是凹(凸),则称c是函数y=f(x)的拐点,有时也称点M(c,f(c)))是曲线y=f(x)的拐点。
2015年高考理科数学新课标全国1卷 逐题解析
2015年高考理科数学试卷全国卷1(解析版)1.设复数z 满足11zz+-=i ,则|z|=( )(A )1 (B (C (D )2 【答案】A 【解析】由11z i z +=-得,11i z i-+=+=(1)(1)(1)(1)i i i i -+-+-=i ,故|z|=1,故选A. 考点:本题主要考查复数的运算和复数的模等. 2.o o o o sin 20cos10cos160sin10- =( )(A )(B (C )12- (D )12【答案】D【解析】原式=o o o o sin 20cos10cos 20sin10+ =o sin30=12,故选D. 考点:本题主要考查诱导公式与两角和与差的正余弦公式. 3.设命题p :2,2nn N n ∃∈>,则p ⌝为( )(A )2,2nn N n ∀∈> (B )2,2nn N n ∃∈≤(C )2,2nn N n ∀∈≤ (D )2,=2nn N n ∃∈【答案】C【解析】p ⌝:2,2nn N n ∀∈≤,故选C.考点:本题主要考查特称命题的否定4.投篮测试中,每人投3次,至少投中2次才能通过测试。
已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) (A )0.648 (B )0.432 (C )0.36 (D )0.312 【答案】A【解析】根据独立重复试验公式得,该同学通过测试的概率为22330.60.40.6C ⨯+=0.648,故选A.考点:本题主要考查独立重复试验的概率公式与互斥事件和概率公式5.已知M (00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF •<,则0y 的取值范围是( )(A )(-3,3) (B )(-6,6)(C )(223-,223) (D )(233-,233) 【答案】A【解析】由题知12(3,0),(3,0)F F -,220012x y -=,所以12MF MF •= 0000(3,)(3,)x y x y ---•-- =2220003310x y y +-=-<,解得03333y -<<,故选A.考点:双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法. 6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
新课标全国卷高考数学考点汇总(理科)
先用数列第n项与前n项和的关系求出数列{}的递推公式,可以判断数列{}是等差数列,利用等差数列的通项公式即可写出数列{}的通项公式;(Ⅱ)根据(Ⅰ)数列{}的通项公式,再用拆项消去法求其前n项和.
解三角形
18
立几(锥体、垂直、二面角)
分段函数、概率及分布列(分段函数解析式的求法;有限个值得离散型随机变量的概率分布和数学期望)
考察建立函数解析式及函数的图像,意在考察学生的识图、用图的能力
圆锥的体积公式及生活常识
由三视图求面积、体积
7
双曲线(离心率、与直线位置关系)
三视图、空间几何体体积
数列:等差数列
考察程序框图(循环结构),意在考察运算求解能力
平面向量的线性运算及共线的表示
函数的图象
8
二项式定理(两个乘积、特殊项)
双曲线、抛物线的性质(抛物线的准线、直线与双曲线的位置关系)
立体几何:线线垂直证明线面角
考察频率分布直方图、平均数及方差的运算考察用样本估计总体、正态分布等知识,意在考察学生的应用能力
空间面面垂直判定与性质;异面直线所成角的计算;空间想象能力,推理论证能力
与二面角有关的立体几何综合题
19
统计概率(分布列)
立体几何线线垂直、二面角(空间直线与直线、直线与平面、平面与平面的位置关系;二面角的概念和计算)
统计与概率:独立重复试验概率、分布列
考察空间中的线面关系及其二面角的求解,意在考查空间想象能力及运算求解能力
由散点图所给的函数图像进行非线性拟合;线性回归方程求法;利用回归方程进行预报预测
离散型随机变量及其分布列
20
解析几何与函数(轨迹、导数)
高三数学专项训练:函数与导数,解析几何解答题(二)(理科)
(2)过右焦点 的直线与椭圆交于不同的两点 、 ,则 内切圆的圆面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
35.某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中 、 是过抛物线 焦点 的两条弦,且其焦点 , ,点 为 轴上一点,记 ,其中 为锐角.
(3)求证: .
4.已知函数 .
(Ⅰ)若函数 的值域为 ,若关于 的不等式 的解集为 ,求 的值;
(Ⅱ)当 时, 为常数,且 , ,求 的取值范围.
5.已知函数 ,函数 .
(I)试求f(x)的单调区间。
(II)若f(x)在区间 上是单调递增函数,试求实数a的取值范围:
(III)设数列 是公差为1.首项为l的等差数列,数列 的前n项和为 ,求证:当 时, .
41.(13分) 已知椭圆C的中心在原点,离心率等于 ,它的一个短轴端点点恰好是抛物线 的焦点。
(1)求椭圆C的方程;
(2)已知P(2,3)、Q(2,-3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点,
①若直线AB的斜率为 ,求四边形APBQ面积的最大值;
②当A、B运动时,满足 = ,试问直线AB的斜率是否为定值,请说明理由。
(2)点Q(x0,y0)(-2<x0<2)是曲线C上的动点,曲线C在点Q处的切线为 ,点P的坐标是(0,-1), 与PA,PB分别交于点D,E,求△QAB与△PDE的面积之比.
27.已知两点 及 ,点 在以 、 为焦点的椭圆 上,且 、 、 构成等差数列.
(Ⅰ)求椭圆 的方程;
(Ⅱ)如图,动直线 与椭圆 有且仅有一个公共点,点 是直线 上的两点,且 ,
. 求四边形 面积 的最大值.
专题11 用导数求切线高考真题赏析(解析版)-2021年高考数学导数中必考知识专练
专题11:用导数求切线高考真题赏析(解析版)一、单选题1.2020年全国统一高考数学试卷(理科)(新课标Ⅰ)函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A .21y x =-- B .21y x =-+ C .23y x =- D .21y x =+【答案】B 【分析】求得函数()y f x =的导数()f x ',计算出()1f 和()1f '的值,可得出所求切线的点斜式方程,化简即可. 【详解】()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+. 故选:B. 【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题 2.2020年全国统一高考数学试卷(理科)(新课标Ⅲ) 若直线l 与曲线y和x 2+y 2=15都相切,则l 的方程为( ) A .y =2x +1 B .y =2x +12C .y =12x +1 D .y =12x +12【答案】D 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案. 【详解】设直线l在曲线y =(0x ,则00x >,函数y =y '=,则直线l的斜率k =, 设直线l的方程为)0y x x =-,即00x x -+=,由于直线l 与圆2215x y +== 两边平方并整理得2005410x x --=,解得01x =,015x =-(舍), 则直线l 的方程为210x y -+=,即1122y x =+. 故选:D. 【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题. 3.2018年全国普通高等学校招生统一考试文科数学(新课标I 卷)设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =- B .y x =-C .2y x =D .y x =【答案】D 【详解】分析:利用奇函数偶次项系数为零求得1a =,进而得到()f x 的解析式,再对()f x 求导得出切线的斜率k ,进而求得切线方程.详解:因为函数()f x 是奇函数,所以10a -=,解得1a =, 所以3()f x x x =+,2()31x f 'x =+, 所以'(0)1,(0)0f f ==,所以曲线()y f x =在点(0,0)处的切线方程为(0)'(0)y f f x -=, 化简可得y x =,故选D.点睛:该题考查的是有关曲线()y f x =在某个点00(,())x f x 处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得'()f x ,借助于导数的几何意义,结合直线方程的点斜式求得结果.4.2014年全国普通高等学校招生统一考试理科数学(全国Ⅱ卷) 设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a= ( ) A .0 B .1C .2D .3D试题分析:根据导数的几何意义,即f′(x 0)表示曲线f (x )在x=x 0处的切线斜率,再代入计算. 解:,∴y′(0)=a ﹣1=2, ∴a=3. 故答案选D .考点:利用导数研究曲线上某点切线方程.5.2019年全国统一高考数学试卷(文科)(新课标Ⅲ)已知曲线e ln xy a x x =+在点()1,ae 处的切线方程为2y x b =+,则( )A .,1a e b ==-B .,1a e b ==C .1,1a e b -==D .1,1a e b -==-【答案】D 【分析】通过求导数,确定得到切线斜率的表达式,求得a ,将点的坐标代入直线方程,求得b . 【详解】详解:ln 1,xy ae x '=++1|12x k y ae ='==+=,1a e -∴=将(1,1)代入2y x b =+得21,1b b +==-,故选D . 【点睛】本题关键得到含有a ,b 的等式,利用导数几何意义和点在曲线上得到方程关系. 6.2019年全国统一高考数学试卷(文科)(新课标Ⅱ) 曲线y =2sin x +cos x 在点(π,–1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+=【答案】C 【分析】当x π=时,2sin cos 1y =π+π=-,即点(,1)π-在曲线2sin cos y x x =+上.2cos sin ,y x x '=-2cos sin 2,x y πππ=∴=-=-'则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=.故选C .【点睛】本题考查利用导数工具研究曲线的切线方程,渗透了直观想象、逻辑推理和数学运算素养.采取导数法,利用函数与方程思想解题.学生易在非切点处直接求导数而出错,首先证明已知点是否为切点,若是切点,可以直接利用导数求解;若不是切点,设出切点,再求导,然后列出切线方程.二、填空题7.2018年全国普通高等学校招生统一考试理数(全国卷II ) 曲线2ln(1)y x =+在点(0,0)处的切线方程为__________.【答案】2y x = 【分析】先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程. 【详解】2222101y k y x x =∴==∴=+'+ 【点睛】求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点. 8.2018年全国卷Ⅲ理数高考试题文曲线()1e xy ax =+在点()01,处的切线的斜率为2-,则a =________. 【答案】3- 【分析】求导,利用导数的几何意义计算即可. 【详解】解:()y 1xxae ax e =++'所以3a =- 故答案为-3. 【点睛】本题主要考查导数的计算和导数的几何意义,属于基础题. 9.2016年全国普通高等学校招生统一考试理科数学(新课标2卷) 若直线是曲线的切线,也是曲线的切线,则. 【答案】 【解析】试题分析:对函数求导得,对求导得,设直线与曲线相切于点,与曲线相切于点,则,由点在切线上得,由点在切线上得,这两条直线表示同一条直线,所以,解得.【考点】导数的几何意义【名师点睛】函数f (x )在点x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,y 0)处的切线的斜率.相应地,切线方程为y−y 0=f ′(x 0)(x−x 0). 注意:求曲线切线时,要分清在点P 处的切线与过点P 的切线的不同. 10.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ)已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a= . 【答案】8试题分析:函数ln y x x =+在(1,1)处的导数为111|1|2x x y x===+=',所以切线方程为;曲线2(2)1y ax a x =+++的导函数的为,因与该曲线相切,可令,当时,曲线为直线,与直线平行,不符合题意;当时,代入曲线方程可求得切点,代入切线方程即可求得.考点:导函数的运用.【方法点睛】求曲线在某一点的切线,可先求得曲线在该点的导函数值,也即该点切线的斜率值,再由点斜式得到切线的方程,当已知切线方程而求函数中的参数时,可先求得函数的导函数,令导函数的值等于切线的斜率,这样便能确定切点的横坐标,再将横坐标代入曲线(切线)得到纵坐标得到切点坐标,并代入切线(曲线)方程便可求得参数.11.2019年全国统一高考数学试卷(文科)(新课标Ⅰ) 曲线23()e xy x x =+在点(0,0)处的切线方程为___________. 【答案】30x y -=. 【分析】本题根据导数的几何意义,通过求导数,确定得到切线的斜率,利用直线方程的点斜式求得切线方程 【详解】详解:/223(21)3()3(31),x x xy x e x x e x x e =+++=++所以,/0|3x k y ===所以,曲线23()e xy x x =+在点(0,0)处的切线方程为3y x =,即30x y -=. 【点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.12.2020年全国统一高考数学试卷(文科)(新课标Ⅰ曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为______________. )【答案】2y x =设切线的切点坐标为00(,)x y ,对函数求导,利用0|2x y '=,求出0x ,代入曲线方程求出0y ,得到切线的点斜式方程,化简即可. 【详解】设切线的切点坐标为001(,),ln 1,1x y y x x y x=++'=+, 00001|12,1,2x x y x y x ='=+===,所以切点坐标为(1,2), 所求的切线方程为22(1)y x -=-,即2y x =. 故答案为:2y x =. 【点睛】本题考查导数的几何意义,属于基础题.13.2017年全国普通高等学校招生统一考试文科数学(新课标1卷) 曲线21y x x=+在点(1,2)处的切线方程为______________. 【答案】1y x =+ 【解析】设()y f x =,则21()2f x x x'=-,所以(1)211f '=-=, 所以曲线21y x x=+在点(1,2)处的切线方程为21(1)y x -=⨯-,即1y x =+.点睛:求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出斜率,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 为切点的切线方程是000()()y y f x x x '-=-.若曲线()y f x =在点00(,())P x f x 处的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =.14.2016年全国普通高等学校招生统一考试文科数学(新课标3卷)已知()f x 为偶函数,当0x ≤ 时,1()ex f x x --=-,则曲线()y f x =在点(1,2)处的切线方程是_________. 【答案】2y x =试题分析:当0x >时,0x -<,则1()e x f x x --=+.又因为()f x 为偶函数,所以1()()e x f x f x x -=-=+,所以1()e 1x f x -='+,则(1)2f '=,所以切线方程为22(1)y x -=-,即2y x =.【考点】函数的奇偶性、解析式及导数的几何意义【知识拓展】本题题型可归纳为“已知当0x >时,函数()y f x =,则当0x <时,求函数的解析式”.有如下结论:若函数()f x 为偶函数,则当0x <时,函数的解析式为()y f x =-;若()f x 为奇函数,则函数的解析式为()y f x =--.15.2015年全国普通高等学校招生统一考试文科数学(新课标Ⅰ)已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则a = .【答案】1 【解析】 试题分析:()()2'31'131,(1)2:(2)(31)(1)7(2)f x ax f a f a l y a a x a =+⇒=+=+⇒-+=+-⇒-+(31)(21)1a a =+-⇒=.考点:1、导数的几何意义;2、直线方程.【方法点晴】本题考查导数的几何意义、直线方程,涉及分特殊与一般思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 首先求导可得()()2'31'131,(1)2:(2)(31)(1)7(2)f x ax f a f a l y a a x a =+⇒=+=+⇒-+=+-⇒-+(31)a =+ •(21)1a -⇒=.。
导数交点问题(函数图像)
例1(福建理科第21题)已知函数f(x)=-x 2+8x,g(x)=6lnx+m(Ⅰ)求f(x)在区间[t,t+1]上的最大值h(t);(Ⅱ)是否存在实数m ,使得y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点? 若存在,求出m 的取值范围;,若不存在,说明理由。
解:(Ⅰ)略(II )∵函数y=f(x)的图象与y=g(x)的图象有且只有三个不同的交点,∴令f(x)= g(x) ∴g(x)-f(x)=0∵x>0 ∴函数ϕ(x)=g(x)-f(x) = 2x-8x+6ln x+m 的图象与x 轴的正半轴有且只有三个不同的交点。
∵262862(1)(3)'()28(0),x x x x x x x x x xϕ-+--=-+==> 当x ∈(0,1)时,)(1x ϕ〉0,)(x ϕ是增函数;当x ∈(1,3)时,)(1x ϕ〈0,)(x ϕ是减函数;当x ∈(3,+∞)时,)(1x ϕ〉0,)(x ϕ是增函数;当x=1或x=3时,)(1x ϕ=0。
∴ϕ(x )极大值=ϕ(1)=m -7, ϕ(x )极小值=ϕ(3)=m+6ln 3-15.∵当x →0+时,ϕ(x)→∞-,当x +∞→时,ϕ(x)+∞→ ∴要使ϕ(x)=0有三个不同的正实数根,必须且只须⎩⎨⎧<-=>-=,0153ln 6)(,07)(+极小值极大值m x m x ϕϕ ∴7<m<15-6ln 3.所以存在实数m ,使得函数y=f(x)与y=g(x)的图象有且只有三个不同的交点,m 的取值范围为(7,15—6ln 3). (分析草图见下图1)图1 图引申1:如果(Ⅱ)中“有且只有三个不同的交点”变为“有且只有一个不同的交点”怎么解答呢?前面相同,只需把后面改为=极小值)(x ϕm+6In3-15>0或=极大值)(x ϕm-7<0,即m>15-6In3 或m<7时,函数y=f(x)与y=g(x)的图象有且只有一个不同的交点(分析草图见图2和图3)。
函数f(x)=x^x的图象与性质
函数()x f x x =的图像与性质
一些同学对于该函数的图像与性质非常好奇,理科的同学刚刚学习完高中阶段的导数知识之 后,我们正好可以应用导数的知识来研究它的图像和性质。
一、定义域
虽然当x 取某些负数时,该形式仍然有意义,但是类比规定指数函数定义域的办法,我们规 定其定义域为{|0}x x >.
二、单调性
等号两边同时取自然对数,得
ln ()ln f x x x =
等号两边同时求关于x 的导数,得
'()ln 1()
f x x f x =+ 整理得,'()()(ln 1)(ln 1)x f x f x x x x =+=+⋅.
令'()0f x >得, 1x e >,所以()f x 在1(+)e
∞,上单调递增; 令'()0f x <得,10x e <<,所以()f x 在1(0)e
,上单调递减. 三、极值与最值 由上述推导函数单调性的过程可知,当1x e
=时,函数取得极小值111()()e f e e =. 又()f x 在其定义域上只有唯一极值,所以函数的最小值1min 11()()()e f x f e e
==. 显然,当x →+∞时,()f x →+∞,所以函数无最大值. 函数的值域为11{|()}e y y e
≥ 四、函数图象
当0x →+时,()1f x →-; 当1x e
=时,函数取得极小值1
11()()e f e e =; 当x →+∞时,()f x →+∞. 结合函数的单调性,可得函数的大致图象如下:
x y。
重难点08 导数在研究函数图像与性质中的综合应用—2023年高考数学(原卷版)
重难点08 导数在研究函数图像与性质中的应用一.导数的计算二.切线方程的求法(1)已知切点A (x 0,f (x 0))求切线方程,可先求该点处的导数值f ′(x 0),再根据y -f (x 0)=f ′(x 0)(x -x 0)求解.(2)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f (x 1),y 0-y 1=f ′(x 1)(x 0-x 1)求解即可. 3.求切点坐标已知切线方程(或斜率)求切点的一般思路是先求函数的导数,再让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标. 三.求参数的值(范围)1.利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围. 2.求解与导数的几何意义有关问题时应注意的两点(1)注意曲线上横坐标的取值范围. (2)谨记切点既在切线上又在曲线上. 四.解决两曲线的公切线问题的方法(1)利用其中一曲线在某点处的切线与另一曲线相切,列出关系式求解;(2)是设公切线l 在y =f (x )上的切点P 1(x 1,f (x 1)),在y =g (x )上的切点P 2(x 2,g (x 2)),则f ′(x 1)=g ′(x 2)=f (x 1)-g (x 2)x 1-x 2.2023年高考仍然重点考查利用导数的几何意义求函数的切线、利用导数研究函数的单调性、极值与最值问题,难度可以基础题,也可为中档题,也可为难题,题型为选择、填空或解答题.(建议用时:40分钟)一、单选题1.已知曲线y =24x -3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D .122.已知曲线e ln x y a x x =+在点()1,ae 处的切线方程为2y x b =+,则 A .,1a e b ==-B .,1a e b ==C .1,1a e b -==D .1,1a e b -==-3.函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A .21y x =-- B .21y x =-+ C .23y x =-D .21y x =+4.曲线y=x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( ) A .﹣9B .﹣3C .9D .155.曲线324y x x =-+在点(1,3)处的切线的倾斜角为( ) A .30︒B .45︒C .60︒D .120︒6.已知f (x )=x ln x ,若0()2f x '=,则x 0=( ) A .e 2B .eC .ln 22D .ln27.若直线l 与曲线y x x 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +128.若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a < B .e a b < C .0e b a <<D .0e a b <<9.曲线sin 1y sin cos 2x x x =-+在点(,0)4M π处的切线的斜率为( )A .12-B .12C .2-D .210.已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-11.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则=a A .2B .12C .12-D .2-12.曲线2e 1x y -=+在点 ()0,2处的切线与直线0y =和 y x =围成的三角形的面积为 A .13B .12C .23D .1二、填空题 13.曲线2x 1y x 2-=+在点()1,3--处的切线方程为__________. 14.若曲线()e x y x a =+有两条过坐标原点的切线,则a 的取值范围是________________. 15.曲线3y x =在点3(,)(0)a a a ≠处的切线与x 轴、直线x a =所围成的三角形的面积为16,则=a ________.16.过原点作曲线x y e =的切线,则切点的坐标为______,切线的斜率为______.三、解答题17.设函数32()33f x x ax bx =-+的图象与直线12x +y -1=0相切于点(1,-11). (1)求a 、b 的值.(2)讨论函数f (x )的单调性.18.已知函数()e cos x f x x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间π[0,]2上的最大值和最小值.。
导数专题:利用导数研究函数零点的4种常见考法(原卷版)
导数专题:利用导数研究函数零点的4种常见考法一、函数零点问题常规求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图象与x 轴(或y=k)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图象;第三步:结合图象判断零点或根据零点分析参数。
二、利用导数确定函数零点的常用方法1、图象法:根据题目要求画出函数的图象,标明函数极(最)值的位置,借助数形结合的思想分析问题(画草图时注意有时候需要使用极限);2、利用函数零点存在定理:先用该定理判定函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数。
三、利用函数的零点求参数范围的方法1、分离参数(a=g(x))后,将原问题转化为y=g(x)的值域(最值)问题或转化为直线y=a 与y=g(x)的图象的交点个数问题(优先分离、次选分类)求解;2、利用函数零点存在定理构造不等式求解;3、转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解。
四、导函数的零点不可直接求时的应对策略1、“特值试探法”:当导函数的零点不可求时,可尝试利用特殊值试探,此时特殊值的选取应遵循一下原则:①当含有ln x 的函数中,通常选取k x e =,特别的,选当0k =时,1x =来试探;②在含有x e 的函数中,通常选取ln x k =,特别的,选取当1k =时,0x =来试探,在探得导函数的一个零点后,结合导函数的单调性,确定导函数在零点左右的符号,进而确定原函数的单调性和极值,使问题得到解决。
2、“虚设和代换法”:当导函数()f x '的零点无法求出显性的表达式时,我们可以先证明零点的存在,再虚设为0x ,接下来通常有两个方向:①由0()0f x '=得到一个关于0x 的方程,再将这个关于0x 的方程的整体或局部代入0()f x ,从而求得0()f x ,然后解决相关的问题;②根据导函数()f x '的单调性,得出0x 两侧导函数的正负,进而得出原函数的单调性和极值,使问题得解。
4.2.2利用导数研究函数的极值、最值-2021届高三数学(新高考)一轮复习课件(共23张PPT)
(2)若 x=-2 是函数 f(x)=(x2+ax-1)ex-1 的极值点,则 f(x)的极小 值为( )
A.-1 B.-2e-3 C.5e-3 D.1
答案:A 解析:∵f(x)=(x2+ax-1)ex-1,∴f′(x)=(2x+a)ex-1+(x2+ax- 1)ex-1=[x2+(a+2)x+a-1]ex-1.又 x=-2 是函数 f(x)=(x2+ax-1)ex-1 的极值点,所以-2 是 x2+(a+2)x+a-1=0 的根,所以 a=-1.∴f′(x) =(x2+x-2)ex-1=(x+2)(x-1)ex-1,令 f′(x)=0 得 x=-2 或 x=1, 令 f′(x)<0 得-2<x<1,所以 f(x)在(-∞,-2)上单调递增,在(-2,1) 上单调递减,在(1,+∞)上单调递增,所以当 x=1 时,f(x)取得极小 值,且 f(x)极小值=-1.
当 m>0 时,令 f′(x)>0 得 0<x<2mm,令 f′(x)<0 得 x>2mm,
所以
f(x)在0,
2mm上单调递增,在
2mm,+∞上单调递减.
(2)由(1)知,当 m≤0 时,f(x)无最大值;
当
m>0
时,f(x)在0,
2mm上单调递增,在
2mm,+∞上单调递减.
所以
f(x)max=f
2mm=ln
2mm-2m·41m-n=-ln
2-12ln
m-12-n=
-ln 2,所以 n=-12ln m-12,所以 m+n=m-12ln m-12,
令 h(x)=x-12ln x-12(x>0),则 h′(x)=1-21x=2x2-x 1,
所以 h(x)在0,12上单调递减,在21,+∞上单调递增. 所以 h(x)min=h12=12ln 2,所以 m+n 的最小值为12ln 2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用导数研究函数的图像
设a <b,函数2()()y x a x b =--的图像可能是
若函数()y f x =的导函数...
在区间[,]a b 上是增函数,则函数()y f x =在区间[,]a b 上的图象可能是
A .
B .
C .
D .
利用导数解决函数的单调性问题
已知函数32()1f x x ax x =+++,a ∈R .
(Ⅰ)讨论函数()f x 的单调区间;
(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭
,内是减函数,求a 的取值范围.
a b a b a o x o x o x y o x
y
y
【变式1】若函数()()112
13123+-+-=x a ax x x f 在区间()4,1上是减函数,在区间()+∞,6上是增函数,求实数a 的取值范围.
【变式2】已知函数()()022
1ln 2≠--=a x ax x x f 存在单调递减区间,求a 的取值范围;
【变式3】已知函数32()(1)(2)f x x a x a a x b =+--++ (,)a b ∈R .若函数()f x 在
区间(1,1)-上不单调...
,求a 的取值范围.
利用导数的几何意义研究曲线的切线问题
若存在过点(1,0)的直线与曲线3y x =和21594
y ax x =+
-都相切,则a 等于 A .1-或25-64 B .1-或214 C .74-或25-64 D .74
-或7
【变式】设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦
,,则点P 横坐标的取值范围为( ) A .112⎡⎤--⎢⎥⎣
⎦, B .[]10-, C .[]01, D .112⎡⎤⎢⎥⎣⎦
, 利用导数求函数的极值与最值
已知函数22()(23)(),x f x x ax a a e x R =+-+∈其中a R ∈
(1) 当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率;
(2) 当23
a ≠
时,求函数()f x 的单调区间与极值。
已知函数432()2f x x ax x b =+++(x R ∈),其中R b a ∈,.若函数()f x 仅在0
x =
处有极值,求a 的取值范围.
已知a 是实数,函数2
()()f x x x a =-. (Ⅰ)若'(1)3f =,求a 的值及曲线()y f x =在点(1,(1))f 处的切线方程;
(Ⅱ)求()f x 在区间[]2,0上的最大值.
已知函数.2
3)32ln()(2x x x f -+= (I )求f (x )在[0,1]上的极值;
(II )若关于x 的方程b x x f +-=2)(在[0,1]上恰有两个不同的实根,求实数b 的取
值范围.
利用导数研究函数的图像
设a <b,函数2()()y x a x b =--的图像可能是
若函数()y f x =的导函数...
在区间[,]a b 上是增函数, 则函数()y f x =在区间[,]a b 上的图象可能是
A .
B .
C .
D .
利用导数解决函数的单调性问题
已知函数32()1f x x ax x =+++,a ∈R .
(Ⅰ)讨论函数()f x 的单调区间;
a b a b a o x o x o x y o x
y
y
(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭
,内是减函数,求a 的取值范围.
【变式1】若函数()()112
13123+-+-=x a ax x x f 在区间()4,1上是减函数,在区间()+∞,6上是增函数,求实数a 的取值范围.
【变式2】已知函数()()022
1ln 2≠--=a x ax x x f 存在单调递减区间,求a 的取值范围;
【变式3】已知函数32()(1)(2)f x x a x a a x b =+--++ (,)a b ∈R .若函数()f x 在
区间(1,1)-上不单调...
,求a 的取值范围.
利用导数的几何意义研究曲线的切线问题
若存在过点(1,0)的直线与曲线3y x =和21594
y ax x =+
-都相切,则a 等于 A .1-或25-64 B .1-或214 C .74-或25-64 D .74
-或7
【变式】设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦
,,则点P 横坐标的取值范围为( ) A .112⎡⎤--⎢⎥⎣
⎦, B .[]10-, C .[]01, D .112⎡⎤⎢⎥⎣⎦
, 利用导数求函数的极值与最值
已知函数22()(23)(),x f x x ax a a e x R =+-+∈其中a R ∈
(3) 当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率;
(4) 当23
a ≠
时,求函数()f x 的单调区间与极值。
已知函数432()2f x x ax x b =+++(x R ∈),其中R b a ∈,.若函数()f x 仅在0x =处有极值,求a 的取值范围.
已知a 是实数,函数2
()()f x x x a =-. (Ⅰ)若'(1)3f =,求a 的值及曲线()y f x =在点(1,(1))f 处的切线方程;
(Ⅱ)求()f x 在区间[]2,0上的最大值.
已知函数.2
3)32ln()(2x x x f -+= (I )求f (x )在[0,1]上的极值;
(II )若关于x 的方程b x x f +-=2)(在[0,1]上恰有两个不同的实根,求实数b 的取
值范围.。