钢结构轴心受力构件
轴心受力构件
第4章 轴心受力构件4.1 概述轴心受力构件广泛地应用于钢结构承重构件中,如钢屋架、网架、网壳、塔架等杆系结构的杆件,平台结构的支柱等。
这类构件,在节点处往往做成铰接连接,节点的转动刚度在确定杆件计算长度时予以适当考虑,一般只承受节点荷载。
根据杆件承受的轴心力的性质可分为轴心受拉构件和轴心受压构件。
一些非承重构件,如支撑、缀条等,也常常由轴心受力构件组成。
轴心受力构件的截面形式有三种:第一种是热轧型钢截面,如图4-1(a )中的工字钢、H 型钢、槽钢、角钢、T 型钢、圆钢、圆管、方管等;第二种是冷弯薄壁型钢截面,如图4-1(b )中冷弯角钢、槽钢和冷弯方管等;第三种是用型钢和钢板或钢板和钢板连接而成的组合截面,如图4-1(c )所示的实腹式组合截面和图4-1(d ) 所示的格构式组合截面。
轴心受力构件的截面必须满足强度、刚度要求,且制作简单、便于连接、施工方便。
因此,一般要求截面宽大而壁厚较薄,能提供较大的刚度,尤其对于轴心受压构件,承载力一般由整体稳定控制,宽大的截面因稳定性能好从而用料经济,但此时应注意板件的局部屈曲问题,板件的局部屈曲势必影响构件的承载力。
4.2 轴心受力构件的强度轴心受力构件的强度计算是以构件的净截面达到屈服应力为限ynf A N ==σ根据概率极限状态设计法,N 取设计值(标准值乘以荷载分项系数),yf 也去设计值(除以抗力分项系数087.1=Rγ)即f,钢材设计强度见附表1.1,P313。
表达式为fA N n≤ (4.1)nA 为轴心受力构件的净截面面积。
在螺栓连接轴心受力构件中,需要特别注意。
4.3 轴心受力构件的刚度为满足正常使用要求,受拉构件(包括轴心受拉、拉弯构件)、受压构件(轴心受压构件、压弯构件)不宜过分细长,否则刚度过小,制作、运输、安装过程中易弯曲(P118列出四种不利影响)。
受拉和受压构件的刚度通过长细比λ控制][),max(max λλλλ≤=y x (4.4) 式中x x x i l /0=λ,yy y i l /0=λ;][λ为容许长细比,见表4.1,4.2。
钢结构设计原理 第四章-轴心受力构件
因此,失稳时杆件的整个截面都处于加载的过 程中,应力-应变关系假定遵循同一个切线模量 Et,此时轴心受压杆件的屈曲临界力为:
N cr ,t
2 Et I
2 二、实际的轴心受压构件的受力性能
在钢结构中,实际的轴压杆与理想的直杆受力性能之间差别很大,实 际上,轴心受压杆的屈曲性能受许多因素影响,主要的影响因素有:
一、理想轴压构件的受力性能 理想轴压构件是指满足下列4个条件: o杆件本身绝对直杆; o材料均质且各向同性; o无荷载偏心且在荷载作用之前无初始应力; o杆端为两端铰接。 在轴心压力作用下,理想的压杆可能发生三种形式的屈曲: 弯曲屈曲、扭转屈曲、弯扭屈曲——见教科书P97图4–6 轴心受压构件具体以何种形式失稳,主要取决于截面的形式 和尺寸、杆的长度以及杆端的支撑条件。
l N 2 EI 对一无残余应力仅存在初弯曲的轴压杆,杆件中点截面边缘开始 式中 N l2 NE 屈服的条件为:
0
1
经过简化为:
N N vm v0 v0 fy v m v0 v 1 1 N NE A W N N v0 N E fy A W NE N
An—构件的净截面面积_
N fy r f R An
P94式4-2
(1)当轴力构件采用普通螺栓连接时 螺栓为并列布置:
n1 n2 n3
按最危险的截面Ⅰ-Ⅰ 计算,3个截面净截面面积 相同,但 Ⅰ-Ⅰ截面受力最大。
N n
Ⅰ-Ⅰ:N Ⅱ-Ⅱ:N-Nn1/n Ⅲ-Ⅲ:N-N(n1+n2)/n
Ⅰ Ⅱ Ⅲ
2 2
从上面两式我们可以看出,绕不同轴屈曲时,不仅临界力不同,且残余 应力对临界应力的影响程度也不同。因为k1,所以残余应力对弱轴的 影响比对强轴的影响严重的多。
钢结构轴心受力构件计算
钢结构轴心受力构件计算3.1 轴心受力构件概述在钢结构中,轴心受力构件的应用十分广泛,如桁架、塔架和网架、网壳等杆件体系。
这类结构的节点通常假设为铰接,当无节间荷载作用时,杆件只受轴向力(轴向拉力或轴向压力)的作用,称为轴心受力构件(轴心受拉构件或轴心受压构件)。
图3-1所示为轴心受力构件在工程上应用的一些实例。
图3-1 轴心受力构件在工程中的应用(a)桁架;(b)塔架;(c)网架轴心受力构件常用的截面形式可分为实腹式和格构式两大类。
(1)实腹式构件制作简单,与其他构件的连接也比较方便,常用的截面形式很多,可直接选用轧制型钢截面,如圆钢、钢管、角钢、工字钢、H 型钢、T 型钢等[图3-2(a)];也可选用由型钢或钢板组成的组合截面[图3-2(b)];在轻型结构中则可采用冷弯薄壁型钢截面[图3-2(c)]。
以上这些截面中,截面紧凑(如圆钢)或对两主轴刚度相差悬殊者(如单槽钢、工字钢),一般适用于轴心受拉构件,而受压构件通常采用较为开展、组成板件宽而薄的截面。
(2)格构式构件[图3-2(d)]容易使压杆实现两主轴方向的稳定性。
这种构件的刚度大、抗扭性好,用料较省。
格构式截面一般由两个或多个型钢肢件组成,肢件之间采用缀条或缀板连成整体,缀条和缀板统称为缀材。
图3-2 轴心受力杆件的截面形式(a)轧制型钢截面;(b)焊接实腹式组合截面;(c)冷弯薄壁型钢截面;(d)格构式截面3.2 轴心受力构件的强度及刚度轴心受拉构件的设计除根据结构用途、构件受力大小和材料供应情况选用合理的截面形式外,还要对所选截面进行强度和刚度验算。
强度要求就是使构件截面上的最大正应力不超过钢材的强度设计值,刚度要求就是使构件的长细比不超过容许长细比。
轴心受压构件在设计时,除使所选截面满足强度和刚度要求外,还应使其满足构件整体稳定性和局部稳定性的要求。
整体稳定性要求是使构件在设计荷载作用下不致发生屈曲而丧失承载能力;局部稳定性要求一般是使组成构件的板件宽厚比不超过规定限值,以保证板件不会屈曲,或者使格构式构件的分肢不发生屈曲。
钢结构第四章轴心受力构件
虑初弯曲和初偏心的影响,再考虑不同的截面形状和尺寸、不 同的加工条件和残余应力分布及大小及不同的屈曲方向后,采
用数值分析方法来计算构件的Nu值。
令 n/( E/ fy) Nu /(Afy)
绘出~λn曲线(算了200多条),它们形成了相当宽的
三、轴心受力构件的工程应用 平面桁架、空间桁架(包括网架和塔架)
结构、工作平台和其它结构的支柱等。 四、截面选型的原则
用料经济;形状简单,便于制做;便于与 其它构件连接。 五、设计要求
满足强度和刚度要求、轴心受压构件还应 满足整体稳定和局部稳定要求。
★思考问题:强度破坏和整体失稳有何异同??
第二节 轴心受力构件的强度和刚度计算
h ix /1
b iy /2
根据所需A、h、b 并考虑局部稳定要求 和构造要
求(h≥b),初选截面尺寸A、h、b 、t、tw。通常取h0 和b为10mm的倍数。对初选截面进行验算调整。由
于假定的不一定恰当,一般需多次调整才能获得较
满意的截面尺寸。
三、格构式轴心受压构件设计
1. 格构式轴心受压构件的整体稳定承载力 (1) 绕实轴的整体稳定承载力
h0/tw(2 50.5m)ax 23 /fy 5
式中λmax为两方向 长细比的较大值
当构件的承载力有富 裕时,板件的宽厚比可适 当放宽。
第五节 轴心受压构件设计
一、设计原则 1.设计要求 应满足强度、刚度、整体稳定和局部稳定要求。 2.截面选择原则 (1)尽量加大截面轮廓尺寸而减小板厚,以获得
也板称的作局局部部稳与定整计体算等,稳《定规准范则》。采用了σcr板σcr整体的设计准则, σcr板—板的临界应力,主要与板件的宽厚比有关。 《规范》采用限制板件宽厚比的方法来满足局部稳定。根据设 计准则分析并简化后得到的局部稳定计算公式为:
钢结构原理-第4章轴心受力构件
存在,且都是变量,再 加上材料的弹塑性,轴 压构件属于极值点失稳, 其极限承载力Nu很难用 解析法计算,只能借助 计算机采用数值法求解。
《钢结构原理》 第4章 轴心受力构件
缺陷通常只考虑影响最大的残余应力和初弯曲(l/1000)。 采用数值法可以计算出轴压构件在某个方向(绕 x 或 y 轴)的 柱子曲线,如下图,纵坐标为截面平均应力与屈服强度的比值, 横坐标为正则化长细比。
《钢结构原理》 第4章 轴心受力构件
4.1 概述
4.1.1 定义:构件只承受轴心力的作用。 承受轴心压力时称为轴心受压构件。 承受轴心拉力时称为轴心受拉构件。
N
N
N
N
《钢结构原理》 第4章 轴心受力构件
4.1.2 轴心受力构件的应用 平面及空间桁架(钢屋架、管桁架、塔桅、网架等); 工业及民用建筑结构中的一些柱; 支撑系统;等等。
(a) N
(b) N
Hale Waihona Puke (c) NNN
N
《钢结构原理》 第4章 轴心受力构件
4.4.3 理想轴心受压构件的弯曲屈曲 4.4.3.1 弹性弯曲屈曲
取隔离体,建立平衡微分方程
EyIN y0
用数学方法解得:N 的最 小值即分岔屈曲荷载 Ncr,又称 为欧拉荷载 NE 。
Ncr2EI/l2
对应的临界应力为:
《钢结构原理》 第4章 轴心受力构件
4.4 轴心受压构件的整体稳定
概念:在压力作用下,构件的外力必须和内力相平衡。 平衡有稳定、不稳定之分。当为不稳定平衡时,轻微的扰 动就会使构件产生很大的变形而最后丧失承载能力,这种 现象称为丧失稳定性,简称失稳,也称屈曲。 特点:与强度破坏不同,构件整体失稳时会导致完全 丧失承载能力,甚至整体结构倒塌。失稳属于承载能力极 限状态。与混凝土构件相比,钢构件截面尺寸小、构件细 长,稳定问题非常突出。只有受压才有稳定问题。
钢结构轴心受力构件
t<80mm t≥80mm
焊接工字 形形截面
翼缘为焰切边 翼缘为轧制或剪切边
y x
板件宽厚比大于20 焊接箱形截面
板件宽厚比小于等于20
对x轴 b类 c类 b类 c类 b类
c类
对y轴 c类 d类 b类 d类 b类 c类
钢柱与钢压杆
(2)构件长细比的确定
①截面为双轴对称或极对称构件:
y
y
x lox ix
f
(2)求两主轴方向的回转半径:
ix
l0 x
;
iy
l0 y
钢柱与钢压杆
(3)由截面面积A和两主轴方向的回转半径ix,iy,优先
选用轧制型钢,如工字钢、H型钢等。型钢截面不能满足 时,选用组合截面,组合截面的尺寸可由回转半径确定。
h ix ;
1
b iy
2
α1、α2为系数,表示h、b和回转半径之间的近似数值关系。
钢柱与钢压杆
表2 各种截面回转半径的近似值
截面
y
y
y
y
b
b
b
x
hx
hx
hx
hx
hx
hx
h
b
b
b
b=h
y
y
y
ix 1h 0.43h
iy 2b 0.24b
0.38h 0.44b
0.38h 0.60b
0.40h 0.30h 0.28h 0.40b 0.215b 0.24b
0.32h 0.20b
(4)由求得的A、h、b,综合考虑构造、局部稳定、钢 材规格等,确定截面尺寸。
钢柱与钢压杆
(5)构件验算:
①截面有削弱时,需进行强度验算。 N f
钢结构轴心受力构件
钢结构轴心受力构件在钢结构的世界里,轴心受力构件是其中一类至关重要的组成部分。
它们在建筑结构、桥梁工程以及各类工业设施中都扮演着不可或缺的角色。
那么,什么是钢结构轴心受力构件呢?简单来说,就是在承受外力作用时,构件的截面形心与外力的作用线重合,从而使构件沿着其轴线方向承受拉力或压力的钢结构部件。
钢结构轴心受力构件主要包括轴心受拉构件和轴心受压构件两种类型。
先来说说轴心受拉构件。
这类构件在实际应用中非常常见,比如钢结构中的吊车梁、屋架中的下弦杆等。
当构件受到拉力作用时,其内部的应力分布相对均匀,主要承受拉应力。
在设计轴心受拉构件时,我们需要重点考虑的是材料的抗拉强度。
因为一旦拉力超过了材料的抗拉极限,构件就会发生破坏。
为了保证轴心受拉构件的可靠性和安全性,我们在选材上要格外谨慎。
一般会选择高强度的钢材,以充分发挥其抗拉性能。
同时,在连接节点的设计上也不能马虎,要确保连接牢固,避免出现松动或断裂的情况。
接下来谈谈轴心受压构件。
轴心受压构件在钢结构中也有着广泛的应用,例如柱子、桁架中的受压弦杆等。
与轴心受拉构件不同,轴心受压构件的受力情况要复杂得多。
当受到压力作用时,构件可能会发生整体失稳或者局部失稳的现象。
整体失稳是指整个构件突然发生弯曲变形,失去承载能力。
而局部失稳则是指构件的某个局部区域出现了屈曲现象。
为了防止这些失稳情况的发生,我们在设计轴心受压构件时,需要考虑很多因素。
首先,要合理选择构件的截面形状和尺寸。
常见的截面形状有圆形、方形、矩形等。
对于较大的压力,通常会选择回转半径较大的截面形状,以提高构件的稳定性。
其次,要控制构件的长细比。
长细比是指构件的计算长度与截面回转半径的比值。
长细比越大,构件越容易失稳。
因此,在设计时要通过合理的布置和支撑,减小构件的计算长度,从而降低长细比。
此外,还需要考虑材料的抗压强度和屈服强度。
在实际工程中,为了提高轴心受压构件的稳定性,常常会采用一些加强措施,比如设置纵向加劲肋、横向加劲肋等。
钢结构设计原理4轴心受力构件
轧制普通工字钢,腹板较薄,热轧后首先冷却;翼缘在
冷却收缩过程中受到腹板的约束,因此翼缘中产生纵向
残余拉应力,而腹板中部受到压缩作用产生纵向压应力
。轧制H型钢,由于翼缘较宽,其端部先冷却,因此具
有残余压应力,其值为=0.3
f
左右,残余应力在翼缘宽
y
度上的分布,常假设为抛物线或取为直线。翼缘是轧制
边或剪切边的焊接工字形截面,其残余应力分布情况与
Ncrx
2EIx 2
x
I ex Ix
2EIx 2
x
2t(kb)h2 / 4 2tbh2 / 4
2EIx 2
x
k
N cry
2EI y 2
y
I ey Iy
2EI y 2
y
2t(kb)3 /12 2tb3 /12
2EI y 2
y
k3
由于k<l.0,故知残余应力对弱轴的影响比对强轴的影 响要大得多 。
N f
An
采用高强度螺栓摩擦型连接的构件,验算净截面强度时 应考虑一部分剪力已由孔前接触面传递,验算最外列螺 栓处危险截面的强度时,应按下式计算
N' f
An
N ' N (1 0.5 n1 ) n
摩擦型连接的拉杆,除验算净截面强度外,还应验算毛 截面强度
N f
A
4.2.2轴心受力构件的刚度计算 为满足正常使用要求,构件应具有一定的刚度,保证构 件不会在运输和安装过程中产生弯曲或过大的变形,以 及使用期间因自重产生明显下挠,还有在动力荷载作用 下发生较大的振动。
GIt
1 i02
2E 2z
A
z
I
/ l2
Ai02 GIt
钢结构基本原理第五章轴心受力构件
y
缀板柱
x
y (实轴)
l01 =l1
柱肢
l0 l 1
格构式柱
缀条柱
实腹式截面
格构式截面
5.1.4 轴心受力构件的计算内容 轴 心 受 力 构 件 强度 (承载能力极限状态) 轴心受拉构件 刚度 (正常使用极限状态) 强度 (承载能力极限状态) 轴心受压构件 稳定 刚度 (正常使用极限状态)
第5.2节 轴心受力构件的设计 本节目录
I
并列布置
II I N
An
II I
错列布置
例: 一块—400×20的钢板用两块拼接板—400×12进 行拼接.螺栓孔径为22mm,排列如图所示钢板轴心受拉, N=1350 kN(设计值)。钢材为Q235钢,解答下列问题: (1)钢板1—1截面的强度够否? (2)假定N力在13个螺栓中平均分配,2—2截面应如何验算? (3)拼接板的强度是否足够?
I N
I
截面无削弱
N —轴心力设计值; A—构件的毛截面面积; f —钢材抗拉或抗压强度设计值。
截面有削弱
计算准则:轴心受力构件以截面上的平均应
力达到钢材的屈服强度。
N
s0
sm = s0
ax
N
N
N
I N
3
fy
(a)弹性状态应力
有孔洞拉杆的截面应力分布
(b)极限状态应力
I
截面有削弱
计算准则:轴心受力构件以截面上的平均应
第5.1节
5.1.1 轴心受力构件类型
概述
概念 轴心受力构件是指承受通过截面形心轴线的轴向力作 用的构件。 轴心受力构件包括: 轴心受拉构件和轴心受压构件
轴心受拉 :桁架、拉杆、网架、塔架(二力杆)
《钢结构轴心受力》课件
03
轴心受力构件的设计
截面设计
01
02
03
截面形式
根据受力特点,选择合适 的截面形式,如实腹式、 格构式等。
截面尺寸
根据承载力要求,计算截 面的尺寸,确保构件的承 载能力。
截面材料
选择合适的材料,如钢材 、混凝土等,以满足承载 力和耐久性要求。
连接设计
连接方式
根据构件的连接要求,选 择合适的连接方式,如焊 接、螺栓连接等。
保持钢结构轴心受力构件的清洁 ,定期清除表面污垢和尘埃,防
止腐蚀。
防腐涂层保护
定期检查并重新涂覆防腐涂层,以 增强钢结构的耐久性和防腐蚀能力 。
紧固件检查
定期检查所有连接螺栓、铆钉等紧 固件,确保其紧固且无松动。
定期检测与评估
外观检查
定期对钢结构轴心受力构件进行 外观检查,观察是否有变形、裂
纹、锈蚀等现象。
《钢结构轴心受力》 PPT课件
目录
• 钢结构轴心受力概述 • 轴心受力构件的特性 • 轴心受力构件的设计 • 轴心受力构件的施工与安装 • 轴心受力构件的维护与检测
01
钢结构轴心受力概述
定义与特点
定义
轴心受力是指钢结构的受力状态 ,其中力的作用线与杆件轴线重 合,使杆件既不发生弯曲也不发 生扭曲。
04
轴心受力构件的施工与安装
施工方法选择
施工方法选择应根据工程实际情况和设计要求进行,综合考虑安全、质量、进度和 成本等因素。
常用的施工方法包括预制施工法、整体吊装法、高空拼装法等,选择时应根据构件 的尺寸、重量、安装高度和场地条件等因素进行选择。
施工方法的确定还应考虑施工机械设备的性能和数量,以及施工人员的技能水平。
钢结构轴心受力构件
{(惯性矩越大越强)实腹式格构式弱轴实轴(轴线通过分肢)虚轴(轴线通过缀材)轴心受力构件截面形式失稳的三种形式:1.弯曲失稳(双轴对称截面)2.扭转失稳(抗扭刚度差的截面如十字型截面)3.弯扭失稳(单轴对称截面:绕对称轴发生弯扭失稳绕非对称轴发生弯曲失稳)轴的长细比表示绕下标x x x :λ。
减小λ的方法:跟两端支承相关构件的计算长度.0l :l l 210=两固,l l l l 7.0,00==一固一绞两绞 l l 20=一固一自ycrf σϕ=:整体稳定系数。
柱子的曲线类别值的确定:.3.2.1λϕy fϕ通过查表求得:1判定截面类型(对于组合截面对X 轴Y 轴均取b 类)2计算235/235/y y y x f f λλ3查表得min ϕ代入 等稳定性:{yx y x x ϕϕλλ==实腹式:为虚轴格构式)(:0当整体稳定不满足时增加柱间支撑,支撑作用:改变计算长度。
加在弱轴方向局部稳定:在外压力作用下截面的某些部分不能继续维持平面平衡而出现凸曲现象。
构件丧失局部稳定后还可能继续维持这整体的平衡状态,但由于部份板件屈曲后退出工作,使构件的有效面积减少,会加速构件整体失稳而丧失承载能力。
等强度原则:局部cr y f σ≤2.使构件整体屈曲前其板件不发生局部屈曲等稳定原则:局部整体cr cr σσ≤注:1对短柱更为合理,2与λ相关对中长构件更为合理,规范采取原则2验算公式中,b :翼缘板自由外伸宽度(减去腹板厚度)腹板的计算长度0h[]max x y λλλ,=当高厚比不满足要求时:纵向加劲肋屈曲后强度.3.2.1↑t 纵向加劲肋作用:减少腹板的计算长度。
横向加劲肋作用:提高柱的抗扭刚度。
2.w z w z t t t b 75.0,10≥≥外伸宽度(腹板厚度w t )15,4030,300ss s h t h b h a ≥+≥≤4.轴心受压实腹式柱的纵向焊缝受力很小不必计算,可按构造要 求确定焊缝尺寸 实腹式柱的设计:截面形式:双轴对称截面,以避免弯扭失稳只发生弯曲失稳设计原则:1.面积的分布尽量开展,以增加截面的惯性矩和回转半径,提高柱的整 体稳定和刚度;2.使两个主轴方向等稳定性,即使y x ϕϕ=,以达到经济效果;3.便于与其他构件进行连接;4.尽可能构造简单,制造省工,取材方便。
钢结构轴心受力构件
2. 残余应力影响下短柱的- 曲线
以热扎H型钢短柱为例:
0.3fy
(A)
fy σ=0.7fy
0.3fy 0.3fy
(B)
fy 0.7fy<σ<fy
σ=N/A
fy C
B
fp
A
σr
fy-σr
σr=0.3fy
(C)
fy σ=fy
0.3fy
0
ε
当N/A<0.7fy时,截面上的应力处于弹性阶段。
当N/A=0.7fy时,翼缘端部应力达到屈服点,该点称为有效比例极限fp=fy-r
y
当>fp=fy-r时,截面出现塑性区,应力分布如图。 临界应力为:
t
h
cr
Ncr A
2EI
l2A
Ie I
2E 2
Ie I
(6.3.8)
x
x
t
柱屈曲可能的弯曲形式有两种:沿强轴(x轴)和
沿弱轴(y轴)因此:
b
对x x轴屈曲时:
b
Etx
EIex Ix
2t(b)h2 4
E 2tbh2 4
E
对y y轴屈曲时:
轴心压力N较小
干扰力除去后,恢复到 原直线平衡状态
N增大
干扰力除去后,不能恢复到原直 线平衡状态,保持微弯状态
N继续增大
干扰力除去后,弯曲变形仍然迅 速增大,迅速丧失承载力
第6章轴心受力构件 理想的轴心受压构件(杆件挺直、荷载无偏心、无初始 应力、无初弯曲、无初偏心、截面均匀等)的失稳形式分为:
弯曲失稳 扭转失稳 弯扭失稳
y
N
力学模型 N
v
v1 y z
y
第6章轴心受力构件
钢结构设计原理-轴心受力构件
所以在验算轴心受力构件强度时,不必考虑残余应力的 影响。
钢结构设计原理
铜仁学院 土木工程专业
§5.2.2 轴心受力构件的刚度计算
1) 进行刚度计算的原因
因此轴心受力构件是以截面的平均应力达到钢材的屈服强 度fy作为强度计算准则的,而不是fu。
钢结构设计原理
铜仁学院 土木工程专业
2) 有截面削弱时的极限状态
对有孔洞等削弱的轴心受力构件,存在应力集中现象。孔 壁边缘的应力可能达到构件毛截面平均应力的3倍。
继续加载,孔壁边缘应力达到材料的屈服强度以后,应力 不再继续增加而截面发展塑性变形,应力渐趋均匀。到达极 限状态时,净截面上的应力为均匀屈服应力。
N cr
2 EIe
l2
cr
N cr A
2 EI Ie
l2A I
1947年Shanley指出切线模量临界应力是轴心受压构件弹 塑性屈曲应力的下限,双模量临界应力是其上限,切线模 量临界应力更接近实际的弹塑性屈曲应力。因此,切线模 量理论更有实用价值。
钢结构设计原理
铜仁学院 土木工程专业
§5.3.3 力学缺陷对轴心受压构件弯曲屈曲的影响
1) 残余应力的产生与分布规律
①热轧型钢截面,如圆钢、圆管、方管、角钢、工字钢、 T型钢、宽翼缘H型钢和槽钢等,最常用工字形或H形截面;
②第二种是冷弯型钢截面,如卷边和不卷边的角钢或槽 钢与方管;
③第三种是型钢或钢板连接而成的组合截面。
钢结构设计原理
铜仁学院 土木工程专业 格构式构件:一般由两个或多个分肢用缀件联系组成,采 用较多的是两分肢格构式构件。 通过分肢腹板的为实轴,通过分肢缀件的为虚轴。 分肢采用轧制槽钢或工字钢。缀件的作用是将各分肢连成 整体,使其共同受力,并承受绕虚轴弯曲时产生的剪力。 缀件有缀条或缀板两种。 缀条由斜杆组成、或斜杆与横杆共同组成,缀条常采用单 角钢,与分肢翼缘组成桁架体系,使承受横向剪力时有较 大的刚度。缀板常采用钢板,与分肢翼缘组成刚架体系, 刚度略低。
钢结构基础第六章 轴心受力构件
杆长中点总挠度为:
v0 m 0 1 N NE
根据上式,可得理想无 限弹性体的压力挠度曲 线如右图所示。实际压 杆并非无限弹性体,当
具有初弯曲压杆的压力挠度曲线
N达到某值时,在N和N∙v的共同作用下,截面边缘开始屈
服,进入弹塑性阶段,其压力—挠度曲线如虚线所示。
第六章 轴心受力构件
便于和相邻的构件连接
截面开展而壁厚较薄
第六章 轴心受力构件
6.2 轴心受拉构件的受力性能和计算
承载极限: 截面平均应力达到fu ,但缺少安全储备
毛截面平均应力达fy ,结构变形过大
计算准则:
毛截面平均应力不超过fy
钢材的应力应变关系
第六章 轴心受力构件
应力集中现象
孔洞处截面应力分布
应用:主要承重结构、平台、支柱、支撑等 截面形式 热轧型钢截面
热轧型钢截面
第六章 轴心受力构件
冷弯薄壁型钢截面
冷弯薄壁型钢截面
第六章 轴心受力构件
型钢和钢板的组合截面
实腹式组合截面
格构式组合截面
第六章 轴心受力构件
对截面形式的要求 能提供强度所需要的截面积 制作比较简便
1数值积分法2有限单元法6324稳定极限承载能力第六章轴心受力构件稳定问题的相关性6325稳定问题的多样性整体性和相关性第六章轴心受力构件64理想轴心受压构件的整体稳定性不考虑构件初弯曲初偏心对轴心受压构件整体稳定性的影响不考虑焊接残余应力对轴心受压构件整体稳定性的影响第六章轴心受力构件641理想轴心受压构件的整体稳定弯曲屈曲轴心受压柱的实际承载力实际轴心受压柱不可避免地存在几何缺陷和残余应力同时柱的材料还可能不均匀
μ—计算长度系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.3.3.2 初偏心对轴心受压构件整体稳定性的影响
v
ymax
e0
sec
2
N NE
1
其压力—挠度曲线如图:
曲线的特点与初弯曲压杆相同,
只不过曲线过圆点,可以认为
初偏心与初弯曲的影响类似,
但其影响程度不同,初偏心的
影响随杆长的增大而减小,初
弯曲对中等长细比杆件影响较
5
4.2 轴心受力构件的强度和刚度
4.2 .1轴心受力构件的强度
无孔洞削弱的轴心受力构件 有孔洞削弱的轴心受力构件
N
f
A
N
f
An
对于摩擦型高强度螺栓连接
N
f
An
6
4.2 轴心受力构件的强度和刚度
4.2 .2轴心受力构件的刚度
4.2.2.1 原因 4.2.2.2 刚度要求 通常采用长细比衡量
7
4.3 轴心受压构件的整体稳定
4.3.0 材料力学回顾
1)稳定平衡状态:一理想直杆,当轴心压力小于某值时,杆件 处于直杆平衡状态,这时如果由于任意偶然外力的作用而发生弯 曲,当偶然外力停止作用,杆件立即回复到直杆平衡状态, 2)临界状态:当偶然外力停止作用,杆件不恢复到直杆状态而 处于微微弯曲的平衡状态。直杆平衡状态←→弯曲平衡状态 3)理想轴心压杆:杆件本身绝对直杆;材料均质、各向同性; 无偏心荷载,且在荷载作用之前无初始应力;杆端为两端铰支。 4)欧拉公式 5)理想轴心压杆非弹性稳定问题:1947年香莱 研究了“理想压 杆”的非弹性稳定→香莱理论
大。
有初偏心压杆的 压力挠度曲线
15
4.3 轴心受压构件的整体稳定
4.3.3缺陷对理想轴心受压杆临界力的影响
4.3.3.3 残余应力对轴心受压构件整体稳定性的影响 实测的残余应力分布较复杂而离散,分析时常采用其
简化分布图(计算简图):
典型截面的残余应力
16
4.3 轴心受压构件的整体稳定
4.3.3缺陷对理想轴心受压杆临界力的影响
9
4.3 轴心受压构件的整体稳定
10
4.3 轴心受压构件的整体稳定
11
4.3 轴心受压构件的整体稳定
4.3.3缺陷对理想轴心受压杆临界力的影响
4.3.3.1初弯曲对轴心受压构件整体稳定性的影响
假定:两端铰支压杆的初弯曲曲线为:
x
式挠式中度中:。: υy00—v0 长v0 度长sin中度点l中最点大最大初始挠度。 令: N作用下规的范挠规度定的:增v加0 l 1000 值为y, 由力矩平衡得:
第4章 轴心受力构件
4.1 概述 4.2 轴心受力构件的强度和刚度 4.3 轴心受力构件的整体稳定性 4.4 轴心受压构件的局部稳定 4.5 实腹式轴心受压构件的的截面设计和构造要求 4.6梁与轴心受压柱的连接 4.7柱头和柱脚的构造设计
1
4.1 概述
4.1.1基本概念
轴心受力构件:只受通过构件截面形心轴线的轴向力作 用的构件。 轴心受拉构件:轴向力为拉力时称轴心受拉构件。 轴心受压构件:当轴向力为压力时称轴心受压构件 。 柱:用来支承梁、桁架等构件并将荷载传递给基础的受 压构件。它由柱头、柱身、柱脚组成。 拉弯构件:同时受拉和受弯的构件称为拉弯构件。 压弯构件:同时受压和受弯的构件称为压弯构件。
细比(λ)来保证:
4
4.1 概述
4.1.4 轴心受力构件的常用截面形式
第一种是热轧型钢截面,如图 (a)中的圆钢、圆管、方管、角钢、 工字钢、T形钢、槽钢和H形钢等。第二种是冷弯薄壁型钢截面, 如图 (b)中的带有卷边或不卷边的角钢或槽钢和方管等。第三种 是用型钢或钢板连接而成的组合截面。(c)是实腹式组合截面,(d) 是格构式组合截面。
4.3.3.3 残余应力对轴心受压构件整体稳定性的影响 ❖ 从短柱段看残余应力对压杆的影响
以双轴对称工字型钢短柱为例:
残余应力对短柱段的影响
17
4.3 轴心受压构件的整体稳定
4.3.3缺陷对理想轴心受压杆临界力的影响
4.3.3.3 残余应力对轴心受压构件整体稳定性的影响
显然,由于残余应力的存在导致比例极限 f p 降为:
f p f y rc
rc —截面中绝对值最大的残余应力。
根据压杆屈曲理论,当 N A f p f y rc 或
p E f p 时,可采用欧拉公式计算临界应力;
8
4.3 轴心受压构件的整体稳定
4.3.1概述
失稳类型:弯曲屈曲,扭转屈曲, 弯扭屈曲。
一般钢结构中采用的截面形式(如工字 形、箱形、H型、T型)只发生弯曲屈曲, 只有薄壁型钢截面可能发生弯曲屈曲或 弯扭屈曲,如角钢、槽钢等在杆件绕截 面的对称轴弯曲的同时,必然会伴随扭 转变形,产生弯扭屈曲,但对于用两个 角钢组成的单轴对称T形截面,它的弯 扭屈曲临界力接近弯曲屈曲临界力,也 可按照弯曲屈曲临界力来计算。因此, 弯曲屈曲是确定轴心压杆稳定承载力的 主要依据。
EIy
将式 y0 v0
上式,得:
式中:v0
Nsinyxy0代 入
l 长度中点最大初始挠度具。有初弯曲的轴心压杆
12
4.3 轴心受压构件的整体稳定
4.3.3缺陷对理想轴心受压杆临界力的影响
4.3.3.1初弯曲对轴心受压构件整体稳定性的影响
y
N
y
v0
sin
x
l
0
杆长中点总挠度为:
m
0
1
v0 N
NE
根据上式,可得理想无
限弹性体的压力挠度曲
线如右图所示。实际压 杆并非无限弹性体,当
具有初弯曲压杆的压力挠度曲线
N达到某值时,在N和N∙v的共同作用下,截面边缘开始屈
服,进入弹塑性阶段,其压力—挠度曲线如虚线所示。 13
4.3 轴心受压构件的整体稳定
4.3.3缺陷对理想轴心受压杆临界力的影响
2
4.1 概述
4.1.2轴心受力构件的实际应用
轴心受力构件分为轴心受拉构件和轴心受压构件,它们 广泛应用于桁架网架、塔架和支撑等结构中。
3
4.1 概述
4.1.3轴心受力构件的极限状态 承载能力极限状态
轴心受拉构件 只需进行强度验算 轴心受压构件 除强度验算还有稳定问题
正常使用极限状态 轴心受力构件通过限制构件的长
4.3.3.2 初偏心对轴心受压构件整体稳定性的影响
微弯状态下建立微分方程:
EIy Ny e0 0
引入k 2 N EI,得:
y k 2 y k 2e0
解微分方程,即得:
y
e0
sec
kl 2
1
所以,压杆长度中点(x=l/2)
最大挠度υ:
具有初偏心的轴心压杆
14
4.3 轴心受压构件的整体稳定