函数图像课件.ppt

合集下载

正弦函数的图像PPT课件

正弦函数的图像PPT课件
伸长为原来的2倍 图象上各点纵坐标 缩短为原来的一半
缩短为原来的一半
图象上各点横坐标 伸长为原来的2倍
y
1
2 O
3
4 x
1
例3 作函数

的图象。
x
0
1 O 1 y
1
0
-1
0
2
x
三、函数y=sin(x+φ)图象
y
1 O 1 2 x
三、函数y=sin(x+φ)图象
1
2
伸长为原来的多少倍?
例5 作函数
1 O 1

的图象。

2
x
函数y=sin(x +φ) ( >0且≠1)的图象可以看作
是把 y=sin(x +φ) 的图象上所有点的横坐标缩短(当 >1时)或伸长(当0<<1时) 到原来的 变) 而得到的。 倍(纵坐标不
y=sinx 的图象上所有点的横坐标缩短(当>1时)或伸 长(当0<<1时) 到原来的 倍(纵坐标不变) 而得到 的。
练习:作下列函数在长度为一个周期的闭区间上的简图:
法一:
图象上各点纵坐标
图象上各点横坐标
伸长为原来的2倍
缩短为原来的一半
1
2
O

3
4 x
法一: 法二:
图象上各点纵坐标
图象上各点横坐标
y
2 1 2 O 1 2 y=2sinx的图象可以看作是把 y=sinx的图象上所有点 的纵坐标伸长到原来的2倍。 y= sinx的图象可以看作是把 y=sinx的图象上所有点的 纵坐标缩短到原来的 倍。 x
一、函数y=Asinx(A>0)的图象

19.1函数的图像课件1(共16张PPT)

19.1函数的图像课件1(共16张PPT)
0.8 0.6
O8
25 28
58 68 x/min
根据图象回答下列问题:
(5)图书馆离小明家多远?小明从图书馆回家的平均
速度是多少?
八年级(2)班从学校出发去某景点旅游,全班分 成甲、乙两组.甲组乘坐大客车,乙组乘坐小轿车.已 知甲组比乙组先出发,汽车行驶的路程 s(单位:km) 和行驶时间 t(单位:min)之间的函数关系如图所示:
骆驼走得慢,但终能走到目的地
• 学习目标: • 会观察函数图象获取信息,根据图象初步
分析函数的对应关系和变化规律;
下图是自动测温仪记录的图象,它反映了北京的春 季某天气温 T 如何随时间 t 的变化而变化.你从图象中 得到了哪些信息?
T/℃ 8
O
4
14
-3
24 t/时
例1 下图反映的过程是小明从家去食堂吃早餐, 接着去图书馆读报,然后回家.其中x 表示时间,y 表 示小明离家的距离,小明家、食堂、图书馆在同一直线 上. y/km
0.8 0.6
O8
25 28
58 68 x/min
根据图象回答下列问题:
(1)食堂离小明家多远?小明从家到食堂用了多少时
间?
例1 下图反映的过程是小明从家去食堂吃早餐, 接着去图书馆读报,然后回家.其中x 表示时间,y 表 示小明离家的距离,小明家、食堂、图书馆在同一直线 上. y/km
0.8 0.6
ቤተ መጻሕፍቲ ባይዱ
下图为世界总人口数的变化图.根据该图回答: (1)从 1830 年到 1998 年,世界总人口数呈怎样的
变化趋势? (2)在图中,显示哪一段时间中世界总人口数变化
最快?
小明从家里出发,外出散步,到一个公共阅报栏前看了一会报后, 继续散步了一段时间,然后回家.下面的图描述了小明在散步过程 中离家的距离 s(米)与散步所用时间 t(分)之间的函数关系.请 你由图具体说明小明散步的情况.

一次函数图像PPT课件(华师大版)

一次函数图像PPT课件(华师大版)
一次函数的性质(1)
说一说:
1、一次函数的一般式。 y=kx+b(k,b为常数,k≠0)
2、一次函数的图象是什么?
一条直线。
1.掌握一次函数y=kx+b(k≠0)的性质。 2.能根据k与b的值说出函数的有关性质。
y 2 x 1 3
x0 y10
y 3x 2 y 2 x 1 3
y增大 x增大
解(: 1)当m+1>Байду номын сангаас即m>-1时y随x的增大而增大;
(2)当m+1<0即m<-1时y随x的增大而减小。
例试2比、较已m知和点n(的2,m大)小、。(-你3,n能)都想在出直几线种y 判16断x 的1 上, 方法?
解:方法一 把两点的坐标代入函数关系式
当 x=2 时, m= 当 x= -3 时, n=
(2) 当k<0时,y随x的增大而减___小__,这时函 数的图象从左到右降__落___.
试一试
1、下列一次函数中,y的值随x的增大而减小 的有_(_1_)_、__(3_)_
y 2x 2
(1) 这个函数中,随 着x的增大,y将增大 还是减小?它的图象 从左到右怎样变化?
(增的大图2)而象当从_减_k左_<小_到_0,时右这降,__时y_落随_函_x数.的
(1)当k>0时,y随x的增大而增大, 这时函数的图象从左到右上升;
y x 2
y x 2
(增的大图2)而象当从_减_k左_小<_到_0,时右降这,__时y落_随_函_x数.的
y减少
x增大
概括
一次函数y=kx+b有下列性质: (1) 当k>0时,y随x的增大而增大,这时函 数的图象从左到右上升;
所以 m > n。

函数图像ppt课件

函数图像ppt课件

03
描点法
根据函数表达式,在坐标 系中逐个描出对应的点(x, y),然后用平滑的曲线将 这些点连接起来。
计算法
利用数学软件或计算器, 输入函数表达式,自动生 成函数图像。
表格法
根据函数表达式和已知数 据,制作表格,然后在坐 标系中根据表格数据绘制 出函数图像。
函数图像的观察与分析
观察图像形状
通过观察函数的图像,可以初 步判断函数的类型(如一次函 数、二次函数、三角函数等)
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
06
复合函数的图像
复合函数的定义与性质
总结词
理解复合函数的定义与性质是绘制和分 析其图像的基础。
VS
详细描述
复合函数是由两个或多个函数的组合而成 的函数。它具有一些特殊的性质,如复合 函数的导数、极限等。了解这些性质有助 于更好地绘制和分析复合函数的图像。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
二次函数的图像
二次函数的定义与性质
总结词
二次函数的定义、性质和 表达式
二次函数的定义
二次函数是指形式为 y=ax^2+bx+c(其中a、 b、c为常数,且a≠0)的 函数。
二次函数的性质
二次函数具有开口方向、 顶点、对称轴等性质,这 些性质决定了函数图像的 形状和位置。
复合函数图像的绘制
总结词
掌握绘制复合函数图像的方法是理解其性质 和应用的必要手段。
详细描述
绘制复合函数图像需要使用数学软件或绘图 工具,如Matlab、GeoGebra等。在绘制 过程中,需要注意函数的定义域、值域以及 函数的单调性、奇偶性等性质。

函数图像专题PPT课件图文

函数图像专题PPT课件图文
答案 B
2.(2011·福州质检)函数y=log2|x|的图象大致是( ) 答案 C 解析 函数y=log2|x|为偶函数,作出x>0时y=log2x的图象,图象关于y轴对称,应选C.
答案 A
4.(08·山东)设函数f(x)=|x+1|+|x-a|的图象关于直线x=1对称,则a的值为( ) A.3 B.2 C.1 D.-1 答案 A 解析 ∵函数f(x)图象关于直线x=1对称,∴f(1+x)=f(1-x),∴f(2)=f(0).即3+|2-a|=1+|a|,用代入法知选A.
思考题1 将函数y=lg(x+1)的图象沿x轴对折,再向右平移一个单位,所得图象的解析式为________. 【答案】 y=-lgx
题型二 知式选图或知图选式问题 例2 (2011·合肥模拟)函数f(x)=loga|x|+1(0<a<1)的图象大致为( )
【解析】 首先分析奇偶性,知函数为偶函)=1,∴选A.
1.函数图象的三种变换 (1)平移变换:y=f(x)的图象向左平移a(a>0)个单位,得到y=f(x+a)的图象;y=f(x-b)(b>0)的图象可由y=f(x)的图象向右平移b个单位而得到;y=f(x)的图象向下平移b(b>0)个单位,得到y=f(x)-b的图象;y=f(x)+b(b>0)的图象可由y=f(x)的图象向上平移b个单位而得到.总之,对于平移变换,记忆口诀为:左加右减上加下减.
【答案】 C
题型三 函数图象的对称性 例3 (1)已知f(x)=ln(1-x),函数g(x)的图象与f(x)的图象关于点(1,0)对称,则g(x)的解析式为________________. (2)设函数y=f(x)的定义域为实数集R,则函数y=f(x-1)与y=f(1-x)的图像关于( ) A.直线y=0对称 B.直线x=0对称 C.直线y=1对称 D.直线x=1对称

正比例函数图像课件ppt

正比例函数图像课件ppt

正比例函数的应用场景
总结词
正比例函数在现实生活中有许多应用场景,如速度-时间关系 、加速度-时间关系等。
详细描写
在物理学中,速度和时间是成正比的,可以用正比例函数表 示。同样地,加速度和时间的关系也可以用正比例函数表示 。此外,在经济学、统计学等领域中也有许多应用场景,如 收入与工作时间的关系等。
k值变化时
当k的值产生变化时,图像的斜率也 会相应变化,但始终保持垂直于x轴 。
03 正比例函数图像的性质
函数的单调性
单调递增
当比例系数大于0时,随着x的增大 ,y的值也增大。
单调递减
当比例系数小于0时,随着x的增大,y 的值减小。
函数的对称性
关于原点对称
正比例函数的图像总是经过原点,并且关于原点对称。
正比例函数的基本性质
总结词
正比例函数具有一些基本性质,包括斜率固定、过原点、y 随 x 增大而增大或 减小等。
详细描写
正比例函数的斜率为 k,即当 x 增加时,y 会以 k 的比例增加或减少。如果 k>0,则函数图像为增函数;如果 k<0,则函数图像为减函数。由于图像过原 点,因此当 x=0 时,y=0。
解决代数问题
正比例函数是线性函数的一种特殊情势,通过正比例函数图像可以直观地表示函数的增减性、交点等性质,有助 于解决代数方程、不等式等问题。
在物理中的应用
描写光强与距离的关系
在光学中,光强与光源的距离成正比。通过正比例函数图像,可以表示光强与距离之间的关系,进而 分析光学现象。
描写声音强度与距离的关系
续的学习打下坚实的基础。
提高练习题
总结词:深化理解
详细描写:提高练习题是在学生掌握正比例函数的基本概念后,进一步深化对正 比例函数的理解。这些练习题将涉及更复杂的函数情势、参数变化对函数图像的 影响等内容,有助于培养学生的思维能力和解决问题的能力。

函数及其图像(课堂PPT)

函数及其图像(课堂PPT)
aM, aM, A {a1 , a2 , , an } 有限集(列举表示) M { x x所具有的特征} 无限集(命题式表示)
集合:A,B,C…表示;元素:a,b,c…表示
函数与极限
4
2.实数与数轴
实数R有理数Q分 整数 数(Z12负非, 整 负86 ,数 整)( 数(1,自2然,数集nN,:0),1,2, )
f
(
x
3)
1 2
0 x31 1 x32
1 2
3 x 2 2 x 1
故定义域是[-3, -1].
函数与极限
28
例3 脉冲发生器产生一个单三角脉冲,其波形如图
所示,写出电压U与时间t(t 0)的函数关系式.
解 当 t [0, ]时, 2
U
E
t
2E t;
2 当 t ( , ]时,
2. 函数中根式,要求负数不能开偶次方
3. 函数中有对数式,要求真数必须大于零
4. 函数中有对数式和反三角函数式,要求符合它们定义域
5. 若函数式是上述各式的混合式,则应取各部分定义域
的交集
函数与极限
20
例1 求下列函数的定义域
(1()1(y)1y)y44411x1x22x2 xxx222; ;
((22()2)y)yylglgxlxg11;x; 1 ; x x22x 2
2
U
( , E)
2
E
o
(,0) t
2
单三角脉冲信号的电压
U 0
(t )
E
0
2
即U 2E (t )
函数与极限
29
当 t (,) 时, U 0.
U
( , E)
2

函数图像PPT课件

函数图像PPT课件
y),均在其图象上 。
2.函数图象的画法
函数图象的画法有两种常见的方法:一是描点法;二
是图象变换法
描点法:描点法作函数图象是根据函数解析式,列出函数
中x,y的一些对应值表,在坐标系内描出点,最后用平滑
的曲线将这些点连接起来.利用这种方法作图时,要与研
究函2数021/4的/8 性质结合起来
2
图象变换法:常用变换方法有三种,即平移变换、伸缩 变换和对称变换。
y=f(x) y=f(y不变) 纵坐标伸长(A>1)或 缩短(0<A<1)到原来的A倍(x不变)
y=f(ω x) y=Af(ω x)
2021/4/8
4
;找致富项目 好致富项目 / 致富项目 致富网 致富门路
第八讲 函数的图象
2021/4/8
1
一、 知识要点:
1.函数的图象
在平面直角坐标系中,以函数y=f(x)中的x为横坐标, 函数值y为纵坐标的点(x,y)的集合,就是函数y=f(x)的图 象.图象上每一点的坐标(x,y)均满足函数关系y=f(x), 反过来,满足y=f(x)的每一组对应值x、y为坐标的点(x,

徐州刺史 景登禅灵寺门 无出其前 乃密启武帝停军 睿不许 梁其代终 齿皆流血 而齐军大至 于夜逃亡 都督缘淮诸军事 在钟离数为劫盗 顾而叹曰 睿徐掷得卢 轻舟奔杜龛 与乡人共入魏武庙 事若无成 亦可以济舟 至衡州 睿遣报昌义之 众军乘胜前顿城父 乃云 天之历数 东昏假伯之节 得文牒 辞讼 拜黄门侍郎 元英自率众来战 求棺无所得 魏克江陵 将兵仁爱 至南洲 众军乘之 今日见君之心 五年卒 邃以援绝拔还 谓仲礼曰 去就不已 本州别驾 又破行台孙腾 子之礼嗣 任约等引齐军济江 "若从公言 五年 邃遂随众北徙 晚致倾覆 能得其死力 魏大将军费穆帅众奄至 元帝遣召之

《函数的图像》PPT课件

《函数的图像》PPT课件

y/米
y/米
y/米
y/米
1500
1500
1500
1500
1000
1000
1000
1000
500
500
x/分 O 10 20 30 40 50
x/分 O 10 20 30 40 50
500
x/分 O 10 20 30 40 50
500
x/分 O 10 20 30 40 50
A.
B.
C.
D.
3.李华和弟弟进行百米赛跑,李华比弟弟跑得快,如果两人同 时起跑,李华肯定赢.现在李华让弟弟先跑若干米,图中,分 别表示两人的路程与李华追赶弟弟的时间的关系,由图中信息
可知,下列结论中正确的是( B ) .
A.李华先到达终点 B.弟弟的速度是8米/秒 C.弟弟先跑了10米 D.弟弟的速度是10米/秒
s/米
t/秒
中考实战
甲,乙两同学骑自行车从A地沿同一条路到B地,已知
乙比甲先出发.他们离出发地的距离s/km和骑行时间
t/h之间的函数关系如图所示,给出下列说法:
A.他们都骑了20km;
(1)注水、加热和淋浴分别用了多少 时间? (2)水箱的最大贮水量是多少升? (3)当淋浴开始后15min,水箱中还 有水多少升?
2.小芳今天到学校参加初中毕业会考,从家里出 发走10分到离家500米的地方吃早餐,吃早餐用 了20分;再用10分赶到离家1000米的学校参加考 试.下列图象中,能反映这一过程的是 ( D ).
3.平面直角坐标系:在平面内画两条互相垂直而且有公共原点的数 轴,水平的一条叫做x轴或横轴,习惯上取向 右 的方向为正方 向, 铅直 的一条叫做 y轴 或 纵轴,取向上的方向为正方向,这就 组成了平面直角坐标系.

函数的图像课件

函数的图像课件

6
1、作出函数y= x (x>0) 的图象。
解(1)列表: X ┅ 0.5 1 1.5 2 2.5 3 3.5 4 5 6 ┅ (2)描点: y ┅ 12 6 4 3 2.4 2 1.7 1.5 1.2 1 ┅ (3)连线:
-----精品文档------
归纳
函数图象的画法: 1、列表 列出自变量与函数的对应值表。
2
C
D
1.1
AB
O
0
15 25 37 -----精品文档------
55
E
80 x/分
八年级 数学
第十四章 一次函数
14.1.3 函数的图象(2)
应用举例
问题4:小明给玉米地锄草用了多少时间?
y/千米
解:由横坐标看出,小明给玉米地锄草用了18分钟。
2
C
D
1.1
A
B
O0
15 25 37 -----精品文档------
注意:自变量的值(满足取值范围), 并取适当.
2、描点 建立直角坐标系,以自变量的值为横坐标,
相应的函数值为纵坐标,描出表格中数值 对应的各点
3、连线 按照横坐标从小到大的顺序把描出的点用
平滑曲线依次连接起来
-----精品文档------
-----精品文档------
15 25
37
D
55
E
80 x/分
八年级 数学
第十四章 一次函数
14.1.3 函数的图象(2)
应用举例
问题1:菜地离小明家多远?小明走到解菜(1)地由纵坐标看
用了多少时间?
出,菜地离小明 家1.1千米;由横
y/千米
坐标看出小明走 到菜地用了15分

函数的图像初中数学原创课件

 函数的图像初中数学原创课件

馆用了3min.
y/km 0.8 0.6
O
8
25 28
58
(4)小明读报用了多长时间?
68 x/min
(4)由横坐标看出,58-38=20,
小明读报用了20min.
y/km 0.8 0.6
O
8
25 28
58 68 x/min
(5)图书馆离小明家多远?小明从图书馆回家的平 均速度是多少?
(5)由纵坐标看出,图书馆离小明家 0.8km;由横 坐标看出,68-58=10,小明从图书馆回家用了 10min.由此算出平均速度是0.08km/min.
内,他每小时生产零件的个数.
解:
甲在4至7h的生产速度最快,∵
40-10 10 7-4
∴他在这段时间内每小时生产零件10个.
作业布置
教材79页练习1、2、3题
S x2
用平滑曲 线去连接 画出的点
一般地,对于一个函数,如果把自变 量与 的每对对应值分别作为点的横、 纵坐标,那么坐标平面内由这些点组成的 图形,就是这个函数的图象.
如右图中的曲线就叫函数S=x2(x> 0)的图象.
由此,通过图象,我们可以数形结合地研究函数.
活动2、如图是自动测温仪记录的图象,它反映了北京的
58 68 x/min
(2)小明在食堂吃早餐用了多少时间?
(2)由横坐标看出,25-8=17,
小明吃早餐用了17min.
y/km 0.8 0.6
O
8
25 28
58 68 x/min
(3)食堂离图书馆多远?小明从食堂到图书馆用了多少
时间?
(3)由纵坐标看出,0.8-0.6=0.2,食堂离图书馆
0.2km;由横坐标看出,28-25=3,小明从食堂到图书
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
描出的点越多,图象越精确.有时不能把所有的点 都描出,就用光滑的曲线连结画出的点,从而得到 函数的近似的图象.
通常,用光滑曲线依次把这些点连起 来,便可得到这个函数的图象,如图 所示
这里画函数图象的方法, 可以概括为列表、描点、 连线三步,通常称为描 点法.
分析 用描点法画函数图象的步骤:分为列表、描点、 连线三步. 解 列表: 描点:
用光滑曲线连线:
(2)判断下列各有序实数对是不是函数y=2x-1的 自变量x与函数y的一对对应值,如果是,检验一 下具有相应坐标的点是否在你所画的函数图象上:
(-2.5,-4),(0.25,-0.5),(1,3),(2.5,4).
四、交流反思
由函数解析式画函数图象,一般按下列步骤 进行:
1.列表:列表给出自变量与函数的一些对应值;
2.描点:以表中对应值为坐标,在坐标平面内描出 相应的点;
3.连线:按照自变量由小到大的顺序,把所描各点 用光滑的曲线连结起来.
实质上给出了某日的气温T (℃)与时间t(时)的函
数关系.例如,上午10时的气温是2℃,表现在气温 曲线上,就是可以找到这样的对应点,它的坐标是 (10,2).实质上也就是说,当t=10时,对应的函数值 T=2.气温曲线上每一个点的坐标(t,T),表示时间 为t时的气温是T.
问题2 如图,这是2004年3月23日上证指数 走势图,你是如何从图上找到各个时刻的 上证指数的
一、创设情境 问题1 在前面,我们曾经从如图所示的气温曲线 上获得许多信息,回答了一些问题.现在让我们 来回顾一下.
图 17.1.1
二、探究归纳
先考虑一个简单的问题:你是 如何从图上找到各个时刻的气 温的?
分析 图中图 17,.1.1有一个直角坐标系,它的横轴是t轴,表 示时间;它的纵轴是T轴,表示气温.这一气温曲线
解 取自变量x的一些值,例如x=-3,-2,-1,0, 1,2,3 …,计算出对应的函数值.为表达方便, 可列表如下:
由这一系列的对应值,可以得到一系列的有 序实数对:…,(-3,-2),(-2,-1),(- 1,0),(0,1),(1,2),(2,3),(3,4),…
在直角坐标系中,描出这些有序实数对(坐标) 的对应点,如图所示
上面气温曲线和指数走势图是用图象表示函数的两个实际例 子.一般来说,函数的图象是由直角坐标系中的一系列点组 成的图形.图象上每一点的坐标(x,y)代表了函数的一对对应 值,它的横坐标x表示自变量的某一个值,纵坐标y表示与它 对应的函数值.
Байду номын сангаас 三、实践应用
例1 画出函数y=x+1的图象
分析 要画出一个函数的图象,关键是要画出图象上的一些点, 为此,首先要取一些自变量的值,并求出对应的函数值.
相关文档
最新文档