2020高中数学第二章平面解析几何初步教案
2020学年高中数学第2章解析几何初步33.3空间两点间的距离公式学案北师大版必修2(最新整理)
3.3 空间两点间的距离公式学习目标核心素养1.会推导和应用长方体对角线长公式.(重点)2。
会推导空间两点间的距离公式.(重点) 3.能用空间两点间的距离公式处理一些简单的问题.(难点)1。
通过推导长方体对角线公式及空间两点间的距离公式提升逻辑推理素养。
2.通过用两点间的距离公式解简单的问题培养数学运算素养。
1.长方体的对角线(1)连线长方体两个顶点A,C′的线段AC′称为长方体的对角线.(如图)(2)如果长方体的长、宽、高分别为a,b,c,那么对角线长d=错误!.2.空间两点间的距离公式(1)空间任意一点P(x0,y0,z0)与原点的距离|OP|=错误!.(2)空间两点A(x1,y1,z1),B(x2,y2,z2)间的距离|AB|=错误!.思考:空间两点间的距离公式与平面两间点的距离公式的区别与联系?提示:平面两点间的距离公式是空间两点间的距离公式的特例:①在平面直角坐标系xOy 中,已知两点A(x1,y1),B(x2,y2),则|AB|=错误!;②在x轴上的两点A,B对应的实数分别是x1,x2,则|AB|=|x2-x1|。
1.空间直角坐标系中,点A(-3,4,0)和点B(2,-1,6)的距离是( )A.243 B.2错误!C.9 D.错误!D [|AB|=错误!=错误!.]2.在空间直角坐标系中,设A(1,2,a),B(2,3,4),若|AB|=3,则实数a的值是()A.3或5 B.-3或-5C.3或-5 D.-3或5A [由题意得|AB|=1-22+2-32+a-42=3,解得a=3或5,故选A.]3.已知点A(4,5,6),B(-5,0,10),在z轴上有一点P,使|PA|=|PB|,则点P 的坐标是________.(0,0,6)[设点P(0,0,z),则由|PA|=|PB|,得0-42+0-52+z-62=错误!,解得z=6,即点P的坐标是(0,0,6).]求空间两点间的距离(1)求△ABC中最短边的边长;(2)求AC边上中线的长度.[解](1)由空间两点间距离公式得|AB|=错误!=3,|BC|=2-32+3-12+4-52=错误!,|AC|=错误!=错误!,∴△ABC中最短边是|BC|,其长度为错误!。
2019-2020学年高中数学 第2章平面解析几何初步复习与小结教案 苏教版必修2.doc
2019-2020学年高中数学第2章平面解析几何初步复习与小结教案
苏教版必修2
教学目标:
1.复习《平面解析几何初步》的相关知识及基本应用;
2.掌握典型题型及其处理方法.
教材分析及教材内容的定位:
本章研究平面直角坐标系中直线与圆的有关知识以及空间直角坐标系,是高中知识的重点内容,也是高考的高频考点;充分体现了高中数学的坐标法方程法的解题思想.
教学重点:
《平面解析几何初步》的知识梳理和题型归类.
教学难点:
《平面解析几何初步》的重点题型的处理方法.
教学方法:
导学点拨法.
教学过程:
一、问题情境
1.情境;
2.问题:本章我们学了哪些内容?
二、学生活动
1.回顾本章所学内容;
2.在教师引导下归纳本章知识结构;
3.在教师引导下做例题和习题.
三、建构数学
1.知识分析;
五、要点归纳与方法小结
本节课学习了以下内容:
1.全章知识总结;
2.题型与方法总结;
3.数形结合、函数与方程、转化与化归、分类讨论等思想总结.。
高中数学 第二章 平面解析几何初步 2.2.4 点到直线的
点到直线的距离 两条平行线间的距离
定义
点到直线的 垂线段的长度
夹在两平行线间的 公垂线段的长度
图示
公式 (或求法)
d=|Ax1+By1+C|
A2+B2
d= |C2-C1|
A2+B2
思考 1 点 P0(x0,y0)到 x 轴、y 轴、与 x 轴平行的直线 y=a(a≠0)、
与 y 轴平行的直线 x=b(b≠0)的距离 d 分别等于什么?
离,d=|3×1-2×0+0|=3.
12+02
探究一
探究二
探究三
点评直线方程先化为一般式 Ax+By+C=0,再使用点到直线的距
离公式 d=|������������0+B������0+C|不易出错,当直线与坐标轴平行或重合时,不必使用点
������2+������2
到直线的距离公式,如点 P(3,2)到直线 x=5 与直线 y=-1 的距离分别为 2 与 3.
点评过一定点求直线方程多用待定系数法,且注意验证过该点且
斜率不存在的直线是否满足题意.
探究一
探究二
探究三
探究二 两条平行线之间的距离
对于两平行直线间的距离公式,应注意以下几点: (1)直线的方程必须是一般式,而且方程中 x,y 项的系数分别对应相等, 对于不同系数的应先化为相同后再求距离. (2)两条平行直线间的距离,也可以转化为在一条直线上的一个点到另 一条直线的距离来求,即转化为点到直线的距离. (3)两条平行线间的距离是这两条直线上的点之间的最小距离,也就是 它们的垂线段的长.
探究二
探究三
解:(1)当过点 A(2,1)的直线的斜率不存在时,直线方程为 x=2,此时,直线 到原点的距离为 d=|x-0|=|2-0|=2,所以 x=2 适合要求.
2020高中数学 第2章 平面解析几何初步 2.1.2 直线的方程(第课时)一般式讲义 2
第3课时一般式学习目标核心素养1.了解二元一次方程与直线的对应关系,掌握直线的一般形式.(重点、难点)2.根据确定直线位置的几何要素,探索并掌握直线方程几种形式之间的关系.(易错、易混点)3.能灵活应用直线方程的几种形式求直线方程.(重点)通过学习本节内容来提升学生的数学运算和数学建模核心素养。
1.直线与二元一次方程的关系(1)在平面直角坐标系中,对于任何一条直线,都可以用一个关于x,y的二元一次方程Ax+By+C=0(A,B不全为0)来表示.(2)在平面直角坐标系中,任何一个关于x,y的二元一次方程Ax+By+C=0(A,B不全为0)都表示一条直线.2.直线的一般式方程(1)在平面直角坐标系中,对于任何一条直线,都有一个表示这条直线的关于x,y的二元一次方程;任何关于x,y的二元一次方程都表示直线.方程Ax+By+C=0(A,B不全为0)叫做直线方程的一般式.(2)对于直线Ax+By+C=0,当B≠0时,其斜率为-错误!,在y 轴上的截距为-错误!;当B=0时,在x轴上的截距为-错误!;当AB≠0时,在两轴上的截距分别为-错误!,-错误!.(3)直线一般式方程的结构特征①方程是关于x,y的二元一次方程.②方程中等号的左侧自左向右一般按x,y,常数的先后顺序排列.③x的系数一般不为分数和负数.④虽然直线方程的一般式有三个参数,但只需两个独立的条件即可求得直线的方程.1。
思考辨析(1)在平面直角坐标系中,任何一个关于x,y的二元一次方程Ax+By+C=0都表示一条直线.()(2)直线的点斜式方程、两点式方程都可以化成一般式方程,反之,直线的一般式方程也都可以化成点斜式方程、两点式方程.( )(3)直线方程的一般式同二元一次方程Ax+By+C=0(A,B 不同时为零)之间是一一对应关系.()(4)方程①x+2y-3=0;②x-3=0;③y+1=0均表示直线.( )[答案] (1)×(2)×(3)√(4)√2.过点(1,2),斜率为0的直线对应的二元一次方程为________.y-2=0 [过点(1,2),斜率为0的直线方程为y=2,其对应的二元一次方程为y-2=0.]3.方程错误!-错误!=1,化成一般式为________.2x-3y-6=0 [由错误!-错误!=1,得2x-3y-6=0。
高中数学 第1课时 第二章 平面解析几何初步教学案
第一课时 第二章 平面解析几何初步一、知识结构二、重点难点 重点:直线的斜率和倾斜角的概念,过两点的直线的斜率的计算公式;直线的方程的几种形式,会根据已知条件选择恰当的形式表示直线;两点间的距离公式,点到直线的距离公式,会求两条平行线间的距离;根据斜率判定两直线的平行或垂直关系,会求两直线的交点坐标;圆的标准方程与一般方程的概念,会根据条件选择恰当的形式求圆的方程;能根据给定直线与圆的方程,判断直线与圆、圆与圆的位置关系;会用空间直角坐标系刻画点的位置,会用距离公式求空间两点间的距离. 难点:几种形式的直线方程的推导;圆的标准方程的推导;直线与圆、圆与圆的位置关系中有关问题的探索. 第1课 直线的斜率(1) 【学习导航】知识网络学习要求1.理解直线的斜率的概念;2.掌握过两点的直线斜率的计算公式.自学评价1.直线的斜率:已知两点1122(,),(,)P x y Q x y ,如果x 1≠ x 2那么,直线PQ 的斜率为k = ;此时,斜率也可看成是.【精典范例】例1:如图,直线123,,l l l 都经过点(3,2)P ,又123,,l l l 分别经过点12(2,1),(4,2)Q Q ---,3(3,2)Q -,试计算直线123,,l l l 的斜率. 【解】直线直线方程两直线位置关系1l :11y k x b =+ 2l :22y k x b =+平行于坐标轴平行于x 轴y b =平行于y 轴x a =直线方程的点斜式 斜截式 两点式 截距式垂直k 1k 2= -1平行 k 1=k 2 相交 k 1≠k 2求交点点到直线的圆的方程标准方程:222()()x a y b r -+-= 一般方程:220x y Dx Ey F ++++=直线与圆的位置关系 圆与圆的位置关系相交、相切、相离相离、相交、外切、内切、内含空间直角坐标系空间直角坐标系中点的坐标表示空间两点间的距离公式直线的斜率 计算公式概念例2:已知直线l 经过点(,2)A m 、2(1,2)B m +,求直线l 的斜率. 【解】例3:经过点(3,2)画直线,使直线的斜率分别为:(1)34;(2)45-. 【解】思维点拔:任何直线都有倾斜角和斜率吗? 追踪训练1.ABC ∆的三个顶点(3,2),(4,1)A B -,(0,1)C -,写出ABC ∆三边所在直线的斜率:AB k = ,BC k = ,AC k = .2. 求证:(1,5),(0,2),(2,8)A B C 三点共线.3.已知过点(1,2)m -,(,3)m m -+的直线l 的斜率为3,则实数m 的值为 .4、设点A(-1,1),B(x ,2),C(-2,y)为直线l 上三点,已知直线的 斜率k=2,则x= . 教后感:。
2020学年高中数学第2章平面解析几何初步章末复习课讲义苏教版必修2(2021-2022学年)
第2章平面解析几何初步值为1,求这两条直线的方程.思路探究:考虑直线斜率是否存在,不存在时可直接求出,存在时设方程利用截距关系求k.[解](1)当两条直线的斜率不存在时,两条直线的方程分别为x=-1,x=0,它们在x轴上截距之差的绝对值为1,满足题意;(2)当直线的斜率存在时,设其斜率为k,则两条直线的方程分别为y=k(x+1),y=kx+2.令y=0,分别得x=-1,x=-\f(2,k).由题意得错误!=1,即k=1.则直线的方程为y=x+1,y=x+2,即x-y+1=0,x-y+2=0。
ﻬ综上可知,所求的直线方程为x=-1,x=0,或x-y+1=0,x-y+2=0。
1.直线方程的五种形式及其选取直线方程的五种形式各有优劣,在使用时要根据题目条件灵活选择,尤其在选用四种特殊形式的方程时,注意其适用条件,必要时要对特殊情况进行讨论.2.两条直线的平行与垂直两条直线的平行与垂直是解析几何中两条直线最基本的位置关系,其判定如下:1.求经过两直线2x-3y-3=0和x+y+2=0的交点且与直线3x-y-1=0平行的直线l的方程.[解]法一:由方程组错误!得错误!未定义书签。
∵直线l和直线3x-y-1=0平行,∴直线l的斜率k=3,∴根据点斜式有y-错误!=3错误!未定义书签。
.即所求直线方程为15x-5y+2=0。
法二:∵直线l过两直线2x-3y-3=0和x+y+2=0的交点,∴可设直线l的方程为:2x-3y-3+λ(x+y+2)=0,即(λ+2)x+(λ-3)y+2λ-3=0.∵直线l与直线3x-y-1=0平行,∴错误!未定义书签。
=错误!≠错误!未定义书签。
,解得λ=错误!.从而所求直线方程为15x-5y+2=0.ﻬ122+(y-5)2=4。
(1)若直线l过点A(4,0),且被圆C1截得的弦长为2错误!未定义书签。
,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P 的坐标.思路探究:(1)设出方程,求出弦心距,由点到直线的距离公式求k。
人教版高中必修2(B版)第二章平面解析几何初步课程设计
人教版高中必修2(B版)第二章平面解析几何初步课程设计一、课程简介本课程是人教版高中必修2(B版)第二章平面解析几何初步课程。
本章的内容主要包括向量、点、直线、平面以及它们之间的关系和运算。
本课程的目的是使学生掌握平面解析几何的基本概念、基本方法和基本技能,培养学生的逻辑思维能力、数学分析能力和解决问题的能力。
二、教学目标1.了解平面解析几何基本概念和基本原理;2.掌握向量的概念、性质和加减法运算;3.掌握点、直线、平面的定义、性质和基本运算;4.掌握平面解析几何的基本定理;5.能够解决平面解析几何问题,提高数学分析和逻辑思维能力。
三、教学内容及教学方法1. 向量的概念与运算向量是平面解析几何的基本概念之一,掌握向量的概念和运算对于后面的学习非常重要。
教学方法:讲解+练习2. 点、直线、平面的方程点、直线、平面的方程是平面解析几何的另一个重要内容,掌握方程的表示方法和解题方法可以应对各种不同情况的问题。
教学方法:讲解+练习3. 一次函数和二次函数一次函数和二次函数是数学中非常基本的概念,也是平面解析几何中的重要内容。
在本章中,我们将学习一次函数和二次函数的基本性质和图像。
教学方法:讲解+练习4. 直线的性质直线是平面解析几何中非常重要的概念,学生需要掌握直线的基本性质、相交和平行线的判定方法以及直线方程的求法。
教学方法:讲解+练习5. 角的概念和性质角是平面几何中的基本概念,掌握角的概念和性质可以应对各种不同情况的问题。
教学方法:讲解+练习6. 平面的性质平面是平面解析几何中的基本概念之一,学生需要掌握平面的基本性质和平面方程的求法。
教学方法:讲解+练习四、教学进度和安排本课程共涉及6个知识点,每个知识点需要2小时完成,总共需要12个小时的教学时间。
第1~2课时:向量的概念与运算第3~4课时:点、直线、平面的方程第5~6课时:一次函数和二次函数第7~8课时:直线的性质第9~10课时:角的概念和性质第11~12课时:平面的性质五、教学评价方法1.课堂测试课堂测试可以考查学生对本节课程知识的掌握程度,测试内容包括选择题、填空题、计算题等。
高中数学第2章平面解析几何初步时空间两点间的距离教学案(无答案)苏教版2
第15课时空间两点间的距离
教学目标:
1.掌握空间两点间的距离公式及中点坐标公式;
2.理解推导公式的方法;
3.通过空间两点间距离公式的推导,使学生经历从易到难,从特殊到一般的认识过程.
教材分析及教材内容的定位:
本节是在学习了空间直角坐标系的基础上来研究空间两点间的距离问题,是空间直角坐标系的加深与拓宽,进一步让学生体会用坐标法来解决问题的思想.
教学重点:
空间两点间的距离公式.
教学难点:
空间两点间的距离公式的推导.
教学方法:。
高中数学 第2章 平面解析几何初步 2.1.2 直线的方程(第2课时)两点式高一数学教案
第2课时 两点式已知直线过两点P 1(x 1,y 1),P 2(x 2,y 2),则其方程y -y 1y 2-y 1=x -x 1x 2-x 1(x 1≠x 2且y 1≠y 2),称为直线的两点式方程.2.直线的截距式方程若直线过点A (a ,0),B (0,b ),其中a 叫做直线在x 轴上的截距,b 叫做直线在y 轴上的截距,则直线方程x a +y b=1(a ≠0,b ≠0),称为直线的截距式方程.1.思考辨析(1)两点式y -y 1y 2-y 1=x -x 1x 2-x 1,适用于不垂直于x 轴和y 轴的任何直线.( ) (2)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)·(y 2-y 1)表示.( )(3)不经过原点的直线都可以用方程x a +y b=1表示. ( )(4)方程y -y 1=y 2-y 1x 2-x 1(x -x 1)和y -y 1y 2-y 1=x -x 1x 2-x 1表示同一图形. ( )[答案] (1)√ (2)√ (3)× (4)×2.过点P 1(1,1),P 2(2,3)的直线方程为________. 2x -y -1=0 [由直线方程的两点式得y -31-3=x -21-2,即2x -y -1=0.]3.经过M (3,2)与N (6,2)两点的直线方程为________. y =2 [由M ,N 两点的坐标可知,直线MN 与x 轴平行,所以直线方程为y =2.]4.过点P 1(2,0),P 2(0,3)的直线方程为________. x 2+y 3=1 [∵P 1(2,0),P 2(0,3)都在坐标轴上,因此过这两点的直线方程为x 2+y3=1.] 直线的两点式方程及其应用 1),求三角形三条边所在的直线方程.思路探究:已知直线上的两点,可利用两点式求方程,也可利用两点先求斜率,再利用点斜式写直线方程.[解] ∵A (2,-1),B (2,2),A ,B 两点横坐标相同,直线AB 与x 轴垂直,故其方程为x =2.∵A (2,-1),C (4,1),由直线方程的两点式可得AC 的方程为y -1-1-1=x -42-4,即x -y -3=0. 同理可由直线方程的两点式得直线BC 的方程为y -21-2=x -24-2,即x +2y -6=0.∴三边AB ,AC ,BC 所在的直线方程分别为 x =2,x -y -3=0,x +2y -6=0.当已知两点坐标,求过这两点的直线方程时,首先要判断是否满足两点式方程的适用条件,若满足即可考虑用两点式求方程.在斜率存在的情况下,也可以先应用斜率公式求出斜率,再用点斜式写方程.1.已知三角形的三个顶点A (-4,0),B (0,-3),C (-2,1),求:(1)BC 边所在的直线方程;(2)BC 边上中线所在的直线方程.[解] (1)直线BC 过点B (0,-3),C (-2,1),由两点式方程得y +31+3=x -0-2-0,化简得2x +y +3=0. (2)由中点公式得,BC 的中点D的坐标为⎝ ⎛⎭⎪⎫0-22,-3+12,即D (-1,-1),又直线AD 过点A (-4,0),由两点式方程得y +10+1=x +1-4+1,化简得x +3y +4=0. 直线的截距式方程 的直线l 的方程.思路探究:[解] 设直线l 在x 轴,y 轴上的截距分别为a ,b .①当a ≠0,b ≠0时,设l 的方程为x a +y b=1. ∵点(4,-3)在直线上,∴4a +-3b=1, 若a =b ,则a =b =1,直线方程为x +y =1.若a =-b ,则a =7,b =-7,此时直线的方程为x -y =7.②当a =b =0时,直线过原点,且过点(4,-3),∴直线的方程为3x +4y =0.综上所述,所求直线方程为x +y -1=0或x -y -7=0或3x +4y =0.当所给条件涉及直线的横、纵截距求直线方程时,可考虑用直线的截距式方程.但要特别注意截距式使用的条件是横纵截距都存在且不为零.2.求过点A (5,2),且在坐标轴上的截距互为相反数的直线l 的方程.[解] 当直线l 在坐标轴上的截距为0时,设方程为y =kx ,又l 过点A (5,2),得2=5k ,即k =25,故方程为 y =25x ,即2x -5y =0. 当直线l 在坐标轴上的截距不为0时,设直线l 的方程为x a +y -a=1,即x -y =a .又因为直线l过点A(5,2),所以5-2=a,a=3.所以直线l的方程为x-y-3=0.综上所述,直线l的方程为2x-5y=0或x-y-3=0.直线方程的综合应用[探究问题]1.直线方程的四种特殊形式及其适用范围.[提示]方程名称方程形式已知条件适用范围1.点斜式y-y1=k(x-x1)点P(x1,y1)和斜率k 斜率存在的直线2.斜截式y=kx+b 斜率k和在y轴上的截距b斜率存在的直线3.两点式y-y1y2-y1=x-x1x2-x1P1(x1,y1),P2(x2,y2)其中x1≠x2,y1≠y2斜率存在且不为0的直线4.截距式xa+yb=1在x,y轴上的截距分别为a,b,且a≠0,b≠0斜率存在且不为0,不过原点的直线2.“截距”与“距离”的关系.[提示]截距是直线与y轴(或x轴)交点的纵坐标(横坐标),它不是距离,是有向线段的数量,可正、可负,可为0.距离不能为负值.3.求直线在坐标轴上截距的方法.[提示]令x=0,所得y值是直线在y轴上的截距;令y=0,所得x值是直线在x轴上的截距.【例3】如图,已知正方形ABCD的边长是4,它的中心在原点,对角线在坐标轴上,则正方形边AB,BC所在的直线方程分别为________________.对称轴所在直线的方程为________.思路探究:根据已知条件,灵活选择适当形式求直线方程.x+y-22=0,x-y+22=0 y=±x,y=0,x=0.[如题图,由正方形ABCD的边长为4知A(22,0),B(0,22),C(-22,0),∠AOM=45°,∠AOP=135°.由截距式方程,得直线AB方程为x22+y22=1,即x+y-22=0,直线BC方程为x-22+y22=1,即x-y+22=0.由点斜式方程得,直线MN方程为y=x.直线PQ方程为y=-x.由A,C在x轴上得直线AC方程为y=0.由B,D在y轴上,得直线BD方程为x=0.]直线方程的选择技巧(1)已知一点的坐标,求过该点的直线方程,一般选取点斜式方程,再由其他条件确定直线的斜率.(2)若已知直线的斜率,一般选用直线的斜截式,再由其他条件确定直线的一个点或者截距.(3)若已知两点坐标,一般选用直线的两点式方程,若两点是与坐标轴的交点,就用截距式方程.(4)不论选用怎样的直线方程,都要注意各自方程的限制条件,对特殊情况下的直线要单独讨论解决.3.三角形的顶点是A(-4,0),B(3,-3),C(0,3),求这个三角形三边所在的直线的方程.[解]∵直线AB过点A(-4,0),B(3,-3)两点,由两点式方程得y -0-3-0=x -(-4)3-(-4),整理得3x +7y +12=0, ∴直线AB 的方程为3x +7y +12=0.∵直线AC 过点A (-4,0)和C (0,3)两点,由截距式方程得x -4+y 3=1,整理得3x -4y +12=0. ∴直线AC 的方程为3x -4y +12=0.∵直线BC 过点B (3,-3)和C (0,3)两点,由两点式得y -(-3)3-(-3)=x -30-3,整理得2x +y -3=0. ∴直线BC 的方程为2x +y -3=0.1.本节课的重点是了解直线方程的两点式的推导过程,会利 用两点式求直线的方程,掌握直线方程的截距式,并会应用.难点是直线方程两点式的推导.2.本节课要重点掌握的规律方法(1)求直线的两点式方程的策略.(2)直线的截距式方程应用的注意点.(3)应用直线截距式方程求面积问题.3.本节课的易错点是在截距相等时求直线方程易漏掉直线过原点的情况.1.过两点(-2,1)和(1,4)的直线方程为( )A .y =-x +3B .y =x -3C .y =x +3D .y =-x -3 C [代入两点式得直线方程y -14-1=x +21+2,整理得y =x +3.] 2.经过P (4,0),Q (0,-3)两点的直线方程是________.x 4-y 3=1 [因为由两点坐标知直线在x 轴,y 轴上截距分别为4,-3,所以直线方程为x 4+y-3=1.] 3.直线x a 2-y b 2=1在y 轴上的截距是________. [答案] -b 24.直线l 经过点A (2,1)和点B (a ,2),求直线l 的方程.[解] ①当a =2时,直线的斜率不存在,直线上每点的横坐标都为2,所以直线方程为x =2; ②当a ≠2时,由y -21-2=x -a 2-a,得x +(2-a )y +a -4=0. 综上,当a =2时,所求直线方程为x =2;当a ≠2时,所求直线方程为x +(2-a )y +a -4=0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由两点间的距离公式得出圆的半径,从而得到圆的标准方程.其实求圆的标准方程,就是求圆的圆心和半径,有时借助于弦心距、圆半径之间的关系计算,可大大简化计算的过程与难度.如果用待定系数法求圆的方程,则需要三个独立的条件,“选标准,定参数”是解题的基本方法,其中选标准是根据已知条件选择恰当的圆的方程形式,进而确定其中三个参数.
变式训练
求经过两点A(-1,4)、B(3,2)且圆心在y轴上的圆的标准方程.
解:方法一:设圆心C(a,b),∵圆心在y轴上,∴a=0.设圆的标准方程为x2+(y-b)2=r2.∵该圆经过A、B两点,∴.所以圆的方程是x2+(y-1)2=10.
方法二:线段AB的中点为(1,3),kAB==-,∴弦AB的垂直平分线方程为y-3=2(x-1),即y=2x+1.由,得.故点(0,1)为所求圆的圆心.由两点间距离公式得圆半径r=.所求圆的方程为x2+(y-1)2=10.
思路2
例3自点A(-3,3)发出的光线l射到x轴上,被x轴反射,其反射光线所在的直线与圆x2+y2-4x-4y+7=0相切,求光线l所在的直线的方程.
解:(待定系数法)
设光线l所在直线的方程为y-3=k(x+3),
则反射点的坐标为(-,0)(k存在且k≠0).
∵光线的入射角等于反射角,
∴反射线l′所在直线的方程为y=-k[x+],
即l′:y+kx+3(1+k)=0.
∵圆(x-2)2+(y-2)2=1,且l′与圆相切,
∴圆心到l′的距离d==1.
∴k=-或k=-.
∴光线l所在直线的方程为3x+4y-3=0或4x+3y+3=0.
点评:本题是方程思想的典例,方法较多,无论那种方法都是设出适当的未知数,列出相应的方程求解,对光线问题的解决,一般利用对称的方法解题,往往会收到意想不到的结果.
变式训练
知能训练1.如果直线。