高中人A数学必修三-第一章学案六 算法案例
2020年最新人教A版高中数学必修3第一章算法初步1.3算法案例教案(1)
《算法案例》教案——辗转相除法与更相减损术教材:课标版高中《数学》必修第章第节设计思路与指导思想:与传统教学内容相比,《算法初步》为新增内容。
算法是数学及其应用的重要组成部分,是计算科学的重要基础。
现代社会,信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,算法思想成为现代人应具备的一种基本数学素养。
本节课是使学生在已经学习算法的初步知识基础上,探究典型的算法案例,理解其中所包含的算法思想,巩固算法三种表示方法。
通过让学生经历分析算法步骤、画出程序框图、编制程序的基本过程,给学生提供探索与交流的活动时间和思维空间,真正使学生经历问题的提出过程、感受知识的形成与发展过程、暴露问题解决的思维过程、体验成功的喜悦过程,培养学生发现问题、解决问题的能力、养成良好的学习习惯、掌握必备的数学知识,从而达到知识与技能、过程与方法、情感与态度三位一体的统一。
教学方法:通过典型实例,使学生经历算法设计的全过程,在解决具体问题的过程中学习一些基本逻辑结构,学会有条理地思考问题、表达算法,并能将解决问题的过程整理成程序框图。
学法指导:在理解最大公约数的基础上去发现辗转相除法与更相减损术中的数学规律,并能模仿已经学过的程序框图与算法语句设计出辗转相除法与更相减损术的程序框图与算法程序。
教学目标()知识与技能.理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析。
.基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序。
()过程与方法.由具体到抽象、观察探究,理解辗转相除法,体会使用算法解决问题的基本过程,体会算法思想,发展有条理思考和表达的能力,培养逻辑思维能力。
.在辗转相除法与更相减损术求最大公约数的学习过程中对比我们常见的约分求公因式的方法,比较它们在算法上的区别,并从程序的学习中体会数学的严谨,领会数学算法计算机处理的结合方式,初步掌握把数学算法转化成计算机语言的一般步骤。
高一数学人必修三课件第一章算法初步算法案例
算法分类及应用领域
数值算法
求解数值问题的算法,如线性方 程组、矩阵运算、函数求值等。
非数值算法
解决非数值问题的算法,如排序 、查找、图形处理等。
算法分类及应用领域
计算机科学
在计算机科学中,算法被广泛应用于 各种软件系统和网络应用中,如操作 系统、数据库管理系统、人工智能等 。
工程领域
数学领域
在数学领域中,算法被用于解决各种 数学问题,如代数、几何、概率统计 等。
06
函数与递归调用算法案例
函数定义及调用方法
函数定义
函数是一段具有特定功能的代码块,它可以 接收输入参数并返回输出结果。在算法中, 函数通常用于实现某个具体的功能或计算任 务。
函数调用
函数调用是指通过函数名及所需参数来执行 函数体内的代码。在调用函数时,需要传递 正确的参数,并获取函数的返回值进行后续 处理。
高一数学人必修三课 件第一章算法初步算 法案例
汇报人:XX 20XX-01-21
contents
目录
• 算法初步概述 • 顺序结构算法案例 • 选择结构算法案例 • 循环结构算法案例 • 数组与矩阵运算算法案例 • 函数与递归调用算法案例
01
算法初步概述
算法定义与特点
算法定义
算法是一组有穷的规则,它们规定了解决某一特定类型 问题的一系列运算步骤。
案例三
判断一个数是否为素数。输入一 个正整数n,输出它是否为素数。 算法步骤为:定义变量n和i;输 入n的值;判断n是否小于等于1 ,如果是则输出“不是素数”, 结束算法;从2到n的平方根范围 内依次判断n能否被i整除,如果 能则输出“不是素数”,结束算 法;如果n不能被2到n的平方根 范围内的任何数整除,则输出“
人教版高中数学必修三 第一章 算法初步算法案例分析
人教版高中数学必修三第一章算法初步算法案例分析算法案例分析自主学习1.算法(algorithm)一词源于算术(algorism),即算术方法,是指一个由已知推求未知的运算过程。
后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法。
广义地说,算法就是做某一件事的步骤或程序。
菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,歌谱是一首歌曲的算法。
在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。
比如解方程的算法、函数求值的算法、作图的算法,等等。
2. 2.算法的重要特征:(1)有限性:一个算法在执行有限步后必须结束;(2)确定性:算法的每一个步骤和次序必须是确定的;(3)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件.所谓0个输入是指算法本身定出了初始条件.(4)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果.没有输出的算法是毫无意义的.师生互动例1解:算法如下:第一步:判断n是否等于2,若n=2,则n是质数;若n>2,则执行第二步。
第二步:依次从2至(n-1)检验是不是n的因数,即整除n的数,若有这样的数,则n不是质数;若没有这样的数,则n是质数。
这是判断一个大于1的整数n是否为质数的最基本算法。
点评:通过例1明确算法具有两个主要特点:有限性和确定性。
练1解:第一步:把水注入电锅;第二步:打开电源把水烧开;第三步:把烧开的水注入热水瓶.点评:在日常生活中做任何一件事情,者是按照一定规则,一步一步进行,比如在工厂中生产一部机器,先把零件一道道工序进行加工,多面手一,又把各种零件按一定法则组装成一产,了完整机器,它们的工艺流程就是算法;在农村,种庄稼有耕地、播种、育苗、施肥、中耕、收割等各个环节,这些栽培技术也是算法。
总之,在任何这些数值计算或非数值计算的过程中所采取的方法和步骤,都称之为算法。
例2。
解:8251=6105×1+2146显然8251的最大公约数也必是2146的约数,同样6105与2146的公约数也必是8251的约数,所以8251与6105的最大公约数也是6105与2146的最大公约数。
高中数学 第一章 算法初步教案 (教师用) 新人教A版必修3
新人教A版数学必修3全套教案第一章算法初步一、课标要求:1、本章的课标要求包括算法的含义、程序框图、基本算法语句,通过阅读中国古代教学中的算法案例,体会中国古代数学世界数学发展的贡献。
2、算法就是解决问题的步骤,算法也是数学及其应用的重要组成部分,是计算机科学的基础,利用计算机解决问需要算法,在日常生活中做任何事情也都有算法,当然我们更关心的是计算机的算法,计算机可以解决多类信息处理问题,但人们必须事先用计算机熟悉的语言,也就是计算能够理解的语言(即程序设计语言)来详细描述解决问题的步骤,即首先设计程序,对稍复杂一些的问题,直接写出解决该问题的程序是困难的,因此,我们要首先研究解决问题的算法,再把算法转化为程序,所以算法设计是使用计算机解决具体问题的一个极为重要的环节。
3、通过对解决具体问题的过程与步骤的分析(如二元一次方程组的求解等问题),体会算法的思想,了解算法的含义。
理解程序框图的三种基本逻辑结构:顺序结构、条件结构、循环结构。
理解并掌握几种基本的算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句。
进一步体会算法的基本思想。
4、本章的重点是体会算法的思想,了解算法的含义,通过模仿、操作、探索,经过通过设计程序框图解决问题的过程。
点是在具体问题的解决过程中,理解三种基本逻辑结构,经历将具体问题的程序框图转化为程序语句的过程,理解几种基本的算法语句。
二、编写意图与特色:算法是数学及其应用的重要组成部分,是计算科学的重要基础。
随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。
需要特别指出的是,中国古代数学中蕴涵了丰富的算法思想。
在本模块中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力。
高中数学 第一章 算法初步教案 新人教A版必修3
第一章算法初步1.1算法与程序框图第一课时算法的概念教学目标1.通过实例体会算法思想,了解算法的含义与主要特点;2.能按步骤用自然语言写出简单问题的算法过程;3.培养学生逻辑思维能力与表达能力.教学重点将问题的解决过程用自然语言表示为算法过程.教学难点用自然语言描述算法.教学过程一.序言算法不仅是数学及其应用的重要组成部分,也是计算机理论和技术的核心.在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机几乎渗透到了人们生活的所有领域.那么,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始.同时,算法有利于发展有条理的思考与表达的能力,提高逻辑思维能力.在以前的学习中,虽然没有出现算法这个名词,但实际上在数学教学中已经渗透了大量的算法思想,如四则运算的过程、求解方程的步骤等等,完成这些工作都需要一系列程序化的步骤,这就是算法的思想.二、数学运用 1.算法描述举例例1.给出求1+2+3+4+5的一个算法. 解: 算法1 按照逐一相加的程序进行. 第一步:计算1+2,得到3;第二步:将第一步中的运算结果3与3相加,得到6; 第三步:将第二步中的运算结果6与4相加,得到10; 第四步:将第三步中的运算结果10与5相加,得到15.算法2 运用公式123n ++++=2)1(+n n 直接计算.第一步:取=5;第二步:计算()21+n n ;第三步:输出运算结果.说明:一个问题的算法可能不唯一 例2.给出求解方程组274511x y x y +=⎧⎨+=⎩的一个算法.分析:解线性方程组的常用方法是加减消元法和代入消元法,这两种方法没有本质的差别,为了适用于解一般的线性方程组,以便于在计算机上实现,我们用高斯消元法(即先将方程组化为一个三角形方程组,在通过回代过程求出方程组的解)解线性方程组.解:用消元法解这个方程组,步骤是:第一步:方程①不动,将方程②中的系数除以方程①中的系数,得到乘数422m ==;第二步:方程②减去乘以方程①,消去方程②中的项,得到2733x y y +=⎧⎨=-⎩; 第三步:将上面的方程组自下而上回代求解,得到1y =-,4x =.所以原方程组的解为41x y =⎧⎨=-⎩2、算法概念算法:在数学中,算法通常是指按照一定规则解决某一个或一类问题的明确和有限的步骤。
人教A版高中数学必修3第一章算法初步1.3算法案例教案(6)
A .16 和 12 的最大公约数是 4 C.85 和 357 的最大公约数是 34
B.78 和 36 的最大公约数是 6 D.105 和 315 的最大公约数是 105
精品文档
【解析】: C 用更相减损术求它们的最大公约数 .
(85, 357) → (85, 272) → (85,187) → (85,102) → (85,17) → (68,17) → (51,17) → (34,17) → (17,
∴51 是 459 与 357 的最大公约数 .
(三)课后作业
基础型自主突破 1.用更相减损术求 36 与 134 的最大公约数,第一步为 ( )
A .134-36=98
B.134= 3×36+ 26
C.先除以 2,得到 18 与 67
D.134÷36=3(余 26)
【解析】: C 更相减损术的算法第一步要求若两数均为偶数则要用 2 约简,故选 C
解:错因:本题结果虽正确,但解题过程是错误的.错误的根源在于没有完全掌握更相减损术的
规则.更相减损术要求若两数均为偶数则要用 2 约简.本题出错正是忽略这一过程所致.
正确解法:∵ 36 和 20 都是偶数,
∴两次用 2 约简得 9 和 5.
用更相减损的步骤如下:
9- 5= 4,
5- 4= 1,
4- 1= 3,
INPUT m, n DO
r=m MOD n m=n n=r LOOP UNTIL r=0 PRINT m END
A .84
B.12
C.168
D.252
【解析】: A ∵1764=840×2+ 84,840= 84×10,∴ 1764 与 840 的最大公约数为 84.
高中数学人教A版必修三1.3【教学课件】《算法案例》人教版
第一章 · 算法初步
第一课时
《 1.3 秦九韶算法与进位制》
人民教育出版社 | 必修三
新课导入
设计求多项式 f ������ = 2������ 5 − 5������ 4 − 4������ 3 + 3������ 2 − 6������ + 7 当 x=5 时的值的算法程序。 x=5
人民教育出版社 | 必修三
思考1:怎么用秦九韶算法求多项式的值。
通过
������0 = ������������ ������������ = ������������−1 ������ + ������������ −������
(k=1,2,……n)这是一个在秦九韶算
法中反复执行的步骤,因此可用循环结构来实现。
一般地,对于一个n次多项式 然后由内向外逐层计算一次多项式的值,即
������2 = ������1 ������ + ������������−2 , ������3 = ������2 ������ + ������������−3 ,…������������ = ������������−1 ������ + ������0
人民教育出版社 | 必修三
思考4:十进制数怎么转化成k进制数? 其方法是除k取余法,用十进制数除以k进制 数,将各步所得的余数从下到上排列,就会 得到相应的k进制数。
人民教育出版社 | 必修三
例题讲解
例1: 求多项式 ������ ������ = ������ 5 − ������ 3 + 2������ 2 − 3 在 ������ = 5 时的函数值。 解:原多项式先化为:
y=2*x^5-5*x^4-4*x^3+3*x^2-6*x+7
高中数学人教A版必修3第一章算法案例PPT全文课件
〖研探新知〗 高中数学【人教A版必修】3第一章算法案例PPT全文课件【完美课件】
1.辗转相除法: 例1 求两个正数8251和6105的最大公约数。
分析:8251与6105两数都比较大,而且没 有明显的公约数,如能把它们都变小一点,根 据已有的知识即可求出最大公约数. 解:8251=6105×1+2146
(3)、程序:
INPUT “m,n=“;m,n DO
r=m MOD n m=n n=r LOOP UNTIL r=0 PRINT m END
高 中 数 学 【 人教A版 必修】 3第一 章算法 案例PP T全文课 件【完 美课件 】
4. 辗转相除法的程序框图及程序: 高中数学【人教A版必修】3第一章算法案例PPT全文课件【完美课件】
显然8251与6105的最大公约数也必是2146 的约数,同样6105与2146的公约数也必是8251 的约数,所以8251与6105的最大公约数也是 6105与2146的最大公约数。
高 中 数 学 【 人教A版 必修】 3第一 章算法 案例PP T全文课 件【完 美课件 】
〖研探新知〗
1.辗转相除法: 例1 求两个正数8251和6105的最大公约数。 解:8251=6105×1+2146;
1.3算法案例
案例1 辗转相除法与更相减损术
一、三维目标 (a)知识与技能
1.理解辗转相除法与更相减损术中蕴含的数学原 理,并能根据这些原理进行算法分析。
2.基本能根据算法语句与程序框图的知识设计完 整的程序框图并写出算法程序。 (b)过程与方法
在辗转相除法与更相减损术求最大公约数的学习 过程中对比我们常见的约分求公因式的方法,比较它 们在算法上的区别,并从程序的学习中体会数学的严 谨,领会数学算法计算机处理的结合方式,初步掌握 把数学算法转化成计算机语言的一般步骤。
人教A版数学必修三课件:第一章 1.3 第1课时算法案例(共49张PPT)
目标再远大,终离不开信念去支撑。 路,是自己走出来的;机会是自己创造出来的。 勤奋是学习的枝叶,当然很苦,。——《论语》 并非神仙才能烧陶器,有志的人总可以学得精手艺。
君子看人背后,小人背后看人。远离那些背后说别人坏话的人,请记住,他(她)能说别人坏话,就能在暗地说你坏话!这就是俗话说的, 不怕真小人,就怕伪君子! 要想成为强乾,决不能绕过挡道的荆棘也不能回避风雨的冲刷。 崇高的理想就象生长在高山上的鲜花。如果要搞下它,勤奋才能是攀登的绳索。 吃别人吃不了的苦,忍别人受不了的气,付出比别人更多的,才会享受的比别人更多。 假如你从来未曾害怕受窘受伤害,那就是你从来没有冒过险。 用自己的双手去创造生活,用辛勤的汗水实现人生的梦想。 只有坚持才能获得最后的成功。 要做的事情总找得出时间和机会;不愿意做的事情也总能找得出借口。 每一发奋努力的背后,必有加倍的赏赐。 没有不会做的事,只有不想做的事。 不论你在什么时候结束,重要的是结束之后就不要悔恨。 只要更好,不求最好!奋斗是成功之父。 发光并非太阳的专利,你也可以发光,真的。 好习惯的养成,在于不受坏习惯的诱惑。 重要的不是知识的数量,而是知识的质量,有些人知道很多很多,但却不知道最有用的东西。
最新人教版高中数学必修3第一章《第一章算法初步》示范教案
示范教案整体设计教学分析前面学习了算法、程序框图与几种算法语句,本节课作为本章的小结,旨在和学生一起站在全章的高度,以算法思想为灵魂,以问题解决为主线,以典型例题为操作平台,以巩固知识、发展能力、提高素养为目的对本章作全面的复习总结,帮助学生进一步提高对算法的理解和认识,优化知识结构.三维目标1.对本章知识形成知识网络,提高学生的逻辑思维能力,培养学生的归纳能力.2.熟练应用算法、程序框图与基本算法语句来解决问题,培养学生的分析问题和解决问题的能力,逐步学会用数学方法去认识世界、改造世界.重点难点教学重点:应用算法、程序框图与基本算法语句解决问题.教学难点:形成知识网络.课时安排1课时教学过程导入新课思路1(情境导入).大家都熟悉围棋高手“石佛”李昌镐吧,他曾经打遍天下无敌手,你知道他最令人可怕的地方吗?他的技术很全面,但他最厉害的技术是“官子”,他的“官子”层次分明,可以说滴水不漏,堪称世界第一.我们的这次复习也要像围棋中的“官子”,也要做到层次分明、滴水不漏.思路2(直接导入).前面我们学习了算法、程序框图与基本算法语句等内容,今天我们对本章知识、方法、数学思想进行全面、系统的总结与复习.推进新课新知探究提出问题(1)请同学们自己梳理本章知识结构.(2)回顾算法的定义及特征.(3)回忆程序框图的三种逻辑结构.(4)总结算法语句.讨论结果:(1)本章知识结构如下图.(2)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.算法的特征:①确定性:算法的每一步都应当做到“准确无误、不重不漏”“不重”是指不是可有可无的、甚至无用的步骤,“不漏”是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣、分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(3)顺序结构、条件分支结构、循环结构.(4)赋值语句:变量=表达式.输入语句:变量=input.输出语句:print(%io(2),变量).条件语句:格式1:if表达式语句序列1;else语句序列2;end格式2:if表达式语句序列1;end循环语句:for语句:for循环变量=初值:步长:终值循环体;endwhile语句:while表达式循环体;end应用示例例1如下图所示,该程序框图输出的结果为________.解:该程序框图的运行过程是:A=1;S=1;S=1+9=10;A=1+1=2;A≤2,成立;S=10+9=19;A=2+1=3;A=3≤2,不成立;输出S=19.答案:19点评:解决同一个问题,可以有多种算法,那么就有多种程序框图和语句,再就是不同版本的教材算法语句的语言形式也不相同,因此高考试题中通常不会考查画程序框图或编写程序.由于学习本章的目的是体会算法的思想,所以已知程序框图或程序,判断其结果是高考考查本章知识的主要形式,这也是课程标准和考试说明对本章的要求.其判断方法是具体∴y =π2×2-5=π-5. 例2到银行办理个人异地汇款(不超过100万元),银行收取一定的手续费.假设汇款额不超过100元,收取1元手续费;超过100元但不超过5 000元,按汇款额的1%收取;超过5 000元,一律收取50元手续费.试用程序框图描述汇款额为x 元时,银行收取手续费y 元的过程.分析:这是一个实际问题,故应先建立数学模型,y =⎩⎪⎨⎪⎧ 1(0<x ≤100),0.01x (100<x ≤5 000),50(5 000<x ≤1 000 000).由此看出,要求手续费,需先判断x 的范围.解:程序框图如下图:点评:条件分支结构经常与分段函数有密切的关联;判断框里要写明分支的条件,从而决定下一步该作出怎样的选择.例3已知函数y =⎩⎪⎨⎪⎧ 2x -1,x ≤-1,log 3(x +1),-1<x<2,x 4,x ≥2,试设计一个算法,输入x 的值,求对应的函数值.分析:对输入x 的值与-1和2比较大小,即分类讨论.解:算法如下:S1 输入x 的值;S2 当x ≤-1时,计算y =2x -1,否则执行下一步;S3 当x ≥2时,计算y =x 4,否则执行下一步;S4 计算y =log 3(x +1);S5 输出y.点评:分段函数是高考考查的重点,在考虑算法步骤时,要用到分类讨论思想,这为复习程序框图和算法语句打好了基础.知能训练1.下面程序框图输出的结果是( )A .11B .12C .132D .1 320分析:该程序框图的运行过程是:i =12;s =1;i =12≥10,成立;s =1×12=12;i =12-1=11;i =11≥10,成立;s =12×11=132;i =11-1=10;i =10≥10,成立;s =132×10=1 320;i =10-1=9;i =9≥10,不成立;输出s =1 320.答案:D2.下图是表示求解方程x 2-(a +1)x +a =0(a ∈R ,a 是常数)过程的程序框图.请在标有序号(1)(2)(3)(4)处填上你认为合适的内容将框图补充完整.(1)____________;(2)____________;(3)____________;(4)____________.解析:所解方程是一元二次方程,先计算判别式Δ=(a +1)2-4a =(a -1)2,所以(1)处填(a -1)2;计算判别式Δ的大小后,再判断其符号,由于Δ=(a -1)2,则只需判断a 是否等于1即可,则(2)有两种填法a =1或a ≠1,当(2)处填a =1时,(3)处填x 1=x 2=1,(4)处填x 1=a ,x 2=1;当(2)处填a ≠1时,(3)处填x 1=a ,x 2=1,(4)处填x 1=x 2=1.答案:(1)(a -1)2 (2)a =1 (3)x 1=x 2=1 (4)x 1=a ,x 2=1或(1)(a -1)2 (2)a ≠1(3)x 1=a ,x 2=1 (4)x 1=x 2=13.下列程序的功能是________.s =0;for i =1:1:100s =s +1/i ;endprint(%io(2),s);解析:该程序的执行过程是:s =0;i =1,s =0+11=1; i =2,s =1+12;i =3,s =1+12+13; ……i =100,s =1+12+13+…+1100. 答案:计算1+12+13+…+1100的值 拓展提升数学的美是令人惊异的!如三位数153,它满足153=13+53+33,即这个整数等于它各位上的数字的立方的和,我们称这样的数为“水仙花数”.请您设计一个算法,找出大于100,小于1 000的所有“水仙花数”.(1)写出算法步骤;(2)画出程序框图.分析:由于需要判断大于100,小于1 000的整数是否满足等于它各位上的数字的立方的和,所以需要用循环结构.解:(1)算法步骤如下:S1 i =101;S2 如果i 不大于999,则执行第3步,否则算法结束;S3 若这个数i 等于它各位上的数字的立方的和,则输出这个数;S4 i =i +1,返回第2步.(2)程序框图如下图所示.课堂小结(1)复习了本章知识,形成了知识网络.(2)判断算法的功能或输出结果.作业本章小结Ⅲ.巩固与提高 4、5.设计感想本节通过大量生动活泼的例题对本章进行系统的总结,通过精彩的点评渗透算法的基本思想,使学生的知识得到进一步巩固,使学生的思想方法不断升华.备课资料人机大战的启示人类的许多进步之所以产生,多半是发明了一个更好、更有力的工具.物质工具使工作速度加快并使人们从重体力劳动中解脱出来,而信息工具则扩大人们的智力.物质工具如犁、起重机、推土机、内燃机、电动机等等,是人的四肢的延伸,而计算机是人的大脑的延伸.它最初只能进行数值计算,但随着其发展,应用范围不断扩大.它不仅能够进行计算,还能进行记忆、判断、推理、设计、控制、自动化处理等等.一句话,只要是能输入计算机里的信息,它都能按照人的要求对信息进行迅速而圆满的处理.因此,计算机也被称为电脑.在短短十几年的时间里,我们经历了计算机深入生活每一个角落的过程,深深感受到了计算机多方面的强大的功能.其中,国际象棋大师卡斯帕罗夫与IBM“深蓝”的人机大战的结果曾引起世人瞩目和激烈讨论,留下了有关计算机与人的关系的种种思考.1989年,美国IBM公司成立了“深蓝”(Deep Blue)项目小组,开始着手研究有关计算机下棋方面的技术,其实就是设计下棋的算法.其目的是证明它具有能够处理复杂博弈模式的能力,而真正的意图是,以此作为一个模型,将并行技术深入到其他各种复杂应用领域.1988年,“深蓝”的前身“深思”(Deep Thought)在华裔科学家许峰雄等人的开发下,已经具备与人进行国际象棋比赛的能力.“深蓝”在开始设计时就以超越“深思”为目的,特别在运算速度与处理能力部分.经过不断的努力,1996年2月,当今最优秀的国际象棋棋手、世界冠军卡斯帕罗夫与“深蓝”计算机展开了第一次真正的角逐.比赛为六局对抗赛.虽然卡斯帕罗夫最终以4∶2的比分取胜,但今天计算机所达到的能力,也着实让全世界吃了一惊.尤其是第一局,“深蓝”以获胜来了个“开门红”.卡斯帕罗夫在赛后承认,“深蓝”是必须认真对待的劲敌,他说:“我没有料到它如此难以对付,我输掉第一局非常幸运,因为那是给我发出的最严重警告.”由于卡斯帕罗夫战胜“深蓝”,他预言“在严肃、经典的比赛中,计算机在本世纪没有赢棋的机会.”然而,卡斯帕罗夫对计算机技术的飞速发展估计错了.仅仅一年后,“深蓝”就战胜了这位大师.1997年5月人机大战重开.前五局战平,5月11日第六局决胜局的比赛,卡斯帕罗夫仅走了19步便向“深蓝”认输.“深蓝”的重量达1.4吨,拥有32个节点,每一节点有8块专门为进行国际象棋对弈设计的处理器,从而拥有每秒运算超过2亿步的惊人速度.为了使“深蓝”能拥有更多的资源规划棋步,开发小组汇集了一个开放棋局的数据库,输入了100年来世界顶级棋手的棋局,此外还有残局数据库,即最后五步时的走法,形成了汇集10亿个棋局的数据库.自1996年在输给卡斯帕罗夫之后,美国特级大师本杰明加盟“深蓝”,将他对象棋的理解编成语句输入“深蓝”,且在1997年的比赛中,每场对局结束后,小组都会根据卡斯帕罗夫的情况相应地修改特定的参数.“深蓝”在比赛中,不会疲倦、不会有心理和情绪上的起伏,只是不动声色地进行高速准确的运算.因此,卡斯帕罗夫的对手并不是“深蓝”主机,而是一群人如何运用电脑的硬、软件来向一个人的智慧和反应挑战.电脑的胜利说到底是人脑的胜利.但是“深蓝”的这次胜利,毕竟标志着计算机技术又上了一个新台阶,更准确地说,这次“深蓝”胜利,是人脑经过电脑胜过人脑.它也反过来让人们思考,什么是思维的本质?它第一次让人类如此真切地感受到了电脑与人的相异却又能够与人对抗的能力,这种力量还会从人们今后的努力中得到滋养从而不断壮大.有人曾将人机大战称为捍卫人类尊严的比赛,此次“深蓝”获胜,绝不意味人类的尊严丧失殆尽.许峰雄博士说得好:“棋王卡斯帕罗夫的胜利是为人类的过去赢了一盘棋;今年,‘深蓝’胜卡斯帕罗夫,是为人类的未来赢了一盘棋.”另外,深具意义的是,“深蓝”证明了人类的极限.超越人类的极限是一件很大的事情,人类就是在不断超越自己的极限中而进步的.。
高中数学 第一章 算法初步 教案新 新人教A版必修3
算法教学内容:一、基本要求内容与要求1.算法初步(约12课时)(1)算法的含义、程序框图①通过对解决具体问题过程与步骤的分析(如二元一次方程组求解等问题),体会算法的思想,了解算法的含义。
②通过模仿、操作、探索,经历通过设计程序框图表达解决问题的过程。
在具体问题的解决过程中(如三元一次方程组求解等问题),理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。
(2)基本算法语句③经历将具体问题的程序框图转化为程序语句的过程,理解几种基本算法语句--输入语句、输出语句、赋值语句、条件语句、循环语句,进一步体会算法的基本思想。
(3)④通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。
何谓经历?了解——经历——理解——掌握——运用——灵活运用说明与建议1.算法是高中数学课程中新内容,其思想是非常重要的,但并不神秘。
例如,运用消元法解二元一次方程组、求最大公因数等的过程就是算法。
本模块中的算法内容是将数学中的算法与计算机技术建立联系,形式化地表示算法,在条件允许的学校,使其能在计算机上实现。
为了有条理地、清晰地表达算法,往往需要将解决问题的过程整理成程序框图;为了能在计算机上实现,还需要将自然语言或程序框图翻译成计算机语言。
本模块的主要目的是使学生体会算法的思想,提高逻辑思维能力。
不要将此部分内容简单处理成程序语言的学习和程序设计。
2.算法教学必须通过实例进行,使学生在解决具体问题的过程中学习一些基本逻辑结构和语句。
有条件的学校,应鼓励学生尽可能上机尝试。
3.算法除作为本模块的内容之外,其思想方法应渗透在高中数学课程其他有关内容中,鼓励学生尽可能地运用算法解决相关问题。
不同的程序语言有不同的语言形式。
教材A版中使用的是类语言。
B版使用的是scilab 语言。
算法是数学及其应用的重要组成部分,是计算科学的重要基础。
随着现代信息技术飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想已经成为现代人应具备的一种数学素养。
人教A版高中数学必修3第一章算法案例课件_5
人教A版高中数学必修3第一章算法案 例课件_ 5
总结辗转相除法方法
• 用大数除以小数得到商和余数,接着用除 数除以余数得到商和余数,依次计算下去, 直到余数为零,最后式子的除数是所求的 最大公约数。
人教A版高中数学必修3第一章算法案 例课件_ 5
2.更相减损术: 我国早期也有解决求最大公约数问题的算
第一章 算法初步 1.3 算法案例
〖创设情景,揭示课题〗
案例1 辗转相除法与更相减损术
[问题1]:在小学,我们已经学过求最大公约数 的知识,你能求出18与30的最大公约数吗?
2 18 30 3 9 15 35
∴18和30的最大公约数是2×3=6.
先用两个数公有的质因数连续去除,一直除到所 得的商是互质数为止,然后把所有的除数连乘起 来.
例2 用更相减损术求98与63的最大公约数. 解:由于63不是偶数,把98和63以大数
减小数,并辗转相减,
即:98-63=35; 63-35=28; 35-28=7; 28-7=21; 21-7=14; 14-7=7.
所以,98与63的最大公约数是7。
练习2:用更相减损术求两个正数84与72的最大
公约数。 (12)
法,就是更相减损术。 更相减损术求最大公约数的步骤如下:可
半者半之,不可半者,副置分母、子之数,以 少减多,更相减损,求其等也,以等数约之。
翻译出来为:第一步:任意给出两个正数; 判断它们是否都是偶数。若是,用2约简;若不是, 执行第二步。
第二步:以较大的数减去较小的数,接着把 较小的数与所得的差比较,并以大数减小数。继 续这个操作,直到所得的数相等为止,则这个数 (等数)就是所求的最大公约数。
人教A版高中数学必修3第1章 1 算法案例牛老师
=(…((anx+an-1)x+an-2)x+…+a1)x+a0. 设 v1=_a_nx_+__a_n_-_1_, v2=v1x+an-2, v3=v2x+an-3, …… vn=_v_n_-_1x_+__a_0_.
设计程序框图,用秦九韶算法求多项式的值,所选用的结构是( )
A.顺序结构
B.条件结构
[再练一题]
4.用秦九韶算法求多项式 f(x)=4x5-x2+2 当 x=3 时的值时,需要进行的
乘法运算和加法运算的次数分别为( )
A.4,2
B.5,3
C.5,2
D.6,2
【解析】 f(x)=4x5-x2+2=((((4x)x)x-1)x)x+2,需 5 次乘法运算和 2 次
加法运算. 【答案】 C
把“五进制”数 1234(5)转化为“十进制”数,再把它转化为“八进 制”数.
【精彩点拨】 k 进制化十进制时,利用求各位上的数与 k 的幂的乘积后再 相加的方法,十进制化其他进制可采用除 k 取余法.
【尝试解答】 ∵1 234(5)=1×53+2×52+3×51+4×50=194,而
∴1 234(5)=194(10)=302(8).
阶
阶
段
段
一
三
1.3 算法案例
学
业Leabharlann 阶 段 二分 层测
评
1.会用辗转相除法与更相减损术求两个数的最大公约数.(易错易混点) 2.会用秦九韶算法求多项式的值.(难点) 3.会在不同进位制间进行相互转化.(重点)
[基础·初探] 教材整理 1 辗转相除法与更相减损术 阅读教材 P34~P36 例 1 前的内容,完成下列问题. 1.辗转相除法 (1)辗转相除法是用于求_两__个__正__整__数__的__最__大__公__约__数__的一种算法,这种算法是 由欧几里得在公元前 300 年左右首先提出的,因而又叫_欧__几__里__得__算__法___. (2)所谓辗转相除法,就是对于给定的两个数,用_较__大__的__数__除以_较__小__的__数__. 若余数不为零,则将_余__数__和__较__小__的__数__构成新的一对数,继续上面的除法,直到 大数被小数除尽,则这时_较__小__的__数__就是原来两个数的最大公约数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
356;1356
5 36
1306;1306
5 36
356,
即
416,343
,2
2 9
的最大公约数是
15 36
.
【评析】本题考查更相减损术.
精品课件
返回
2.用更相减损之术求98和63的最大公约数.
【分析】由于63不是偶数,把98和63以大数减小数,并 辗转相减.
【解析】98-63=35,63-35=28,35-28=7,287=21,21-7=14,14-7=7.所以98和63的最大公约数为7.
343-147=196, 196-147=49,
147-49=98, 98-49=49.
所以147与343的最大公约数是49.
再求49与133的最大公约数:
133-49=84, 84-49=35,
49-35=14,
35-14=21,
21-14=7,
14-7=7.
所以147,343,133的最大公约数为7.
精品课件
返回
学点二 更相减损术
1它.有们甲分、别乙全、部丙装三入种小溶瓶液中,,分每别个重小瓶4 装16kg入, 液k体3g43的, 重k量g2.相先92 同要.将 问:每瓶最多装多少?
【分析】本题考查更相减损术的计算步骤及思想.根据 题意,每个小瓶装的溶液的质量应是三种溶液质量的最大公 约数.先求任意两个数的最大公约数,然后再求这个数与第 三个数的最大公约数.
值,即v1=
anx+,然an后-1由内向外逐层计算一次多项式的
值,即
v2= v3=
v1x+an-2 v2x+an-3
, ,
…
vn= vn-1x+a0 ,
精品课件
返回
这样,求n次多项式f(x)的值就转化为
求n个一次多项式的值
.Leabharlann 上述方法称为秦九韶算法.观察上述秦九韶算法中的n个一次式,可见vk的计算要
【评析】等值算法是当大数减去小数的差等于小数时 停止减法,较小的数就是所求的最大公约数.
精品课件
返回
有甲、乙、丙三种溶液分别重147 kg,343 kg,133 kg,现
要将它们分别全部装入小瓶中,每个小瓶装入液体的质量相
同,问每瓶最多装多少?
解:由题意,每小瓶装的溶液的质量应是三种溶液质量
的最大公约数,先求147与343的最大公约数:
精品课件
返回
【评析】辗转相除法是当大数被小数除尽时,结束 除法运算,较小的数就是最大公约数;更相减损术是当大 数减去小数的差等于小数时停止减法,较小的数就是最 大公约数.
精品课件
返回
用辗转相除法求80与36的最大公约数,并用更相减损术检 验所得结果.
解:用辗转相 除:80=36×2+8,36=8×4+4,8=4×2+0;用更相减损术 检验:80-36=44,44-36=8,36-8=28,28-8=20, 20-8=12,12-8=4,8-4=4.故80和36的最大公约数是4.
精品课件
开始
学点一 学点二 学点三 学点四
精品课件
1.《九章算术》中的“更相减损术”求两个数的最大
公约数.翻译为现代汉语如下:
第一步,任意给定两个正整数,判断它们是否是偶数,
若是,用2约简;若不是,执行第二步.
第二步,用两数中较大的数减去较小的数,再用 差数. 和 较小的构数成新的一对数,再用大数减小数,以同样的操作
a1x+ a0改写成如下形式:
f(x)= anxn+an-1xn-1+…+a1x+a0 =(anxn-1+an-1xn-2+…+a1)x+a0 .
=((anxn-2+an-1xn-3+…+a2)x+a1. )x+a0
=…
=(…((anx+an-1)x+ an-2 )x+…+. a1)x+a0
求多项式的值时,首先计算最内层括号内一次多项式的
376513563660;366013563465;346513563360;336013561356.
精品课件
返回
即
4
1 6
和
3
3 4
的最大公约数是 15
36
.
8 30 61 35 63 66 5;3 66 51 35 63 56 0;3 56 01 35 63 36 5;3 36 51 35 63 26 0;3 26 01 35 6
用到vk-1的值.若令v0=an,我们可以得到公式:
vo=an vk=vk-1x+an-k(k=1,2,…,n).
这是一个在秦九韶算法中反复执行的步骤,因此可用
循环结构来实现.
精品课件
返回
学点一 辗转相除法 用辗转相除法求90与36的最大公约数.
【分析】本题考查辗转相除法求两个数的最大公约
数的步骤.使用辗转相除法求90与36的最大公约数时,先 用90除以36,余数为18,用36除以18,余数为0,18就是 90与36的最大公约数.顺便提示一下,两个数a,b的最大 公约数一般写成(a,b),如90与36的最大公约数为18,写 成(90,36)=18.
一直做下去,直到产生
一对相等的为数止,这个数(等数)
或这个数与约简的数的乘积就是最大公约数.
2.古希腊求两个正整数的最大公约数的方法是:
辗转相除法 :用较大的数除以较小的数所得的 余数 和
较小的数 构成新的一对数,继续做上面的除法,直到大数
被小数除尽,这个较小的数就是最大公约数.
精品课件
返回
3.把一个n次多项式f(x)=anxn +an-1xn-1+…+
【解析】令m=90,n=36,m=2n+18,r=18. 令m=36,n=18. 又有36=18×2,即m=2n,
精品课件
返回
此时r=0. 令m=18,n=0. 故90与36的最大公约数为18. 程序步骤如下: INPUT m=;n=; m=90;n=36; DO r=m MOD n m=n n=r LOOP UNTIL r=0 PRINT “90与36的最大公约数为:”;m END
【解析】4 1 6 2 6 1 5 3; 3 5 6 4 3 1 0 4 1 5 3; 2 3 6 9 2 2 5 9 8 3 0 ; 1 3 0 6 5 1 6 30 3 65
1 3 ; 1 3 5 6 1 3 3 6 1 3 5 6 5 ; 1 3 2 6 1 3 2 6 0 1 3 5 6 0 ; 1 3 0 6 1 3 0 6 5 3 9 5 6 5 ; 3 9 6 0 1 3 6 0 3 7 5 6 ;6 5
故每瓶最多装7 kg.
精品课件