傅里叶变换及其应用TheFourierTransformandItsApplication(精)
傅里叶变换及其应用
傅里叶变换及其应用傅里叶变换(Fourier Transform)是一种重要的数学工具和数学分析方法,广泛应用于信号处理、图像处理、通信系统、量子力学等领域。
通过将一个函数表示成一组正弦和余弦函数的叠加,傅里叶变换能够将时域中的信号转化为频域中的信号,从而使得复杂的信号处理问题变得更加简单。
本文将介绍傅里叶变换的原理、性质以及其在实际应用中的几个重要方面。
一、傅里叶变换的原理和基本定义傅里叶变换是将一个函数f(x)表示成指数函数的叠加的过程。
设f(x)在时域上是以周期T为基本周期的连续函数,那么其傅里叶变换F(k)在频域上将成为以1/T为基本周期的连续函数。
傅里叶变换的基本定义如下:F(k) = ∫[f(x) * e^(-i2πkx/T)]dx其中,i是虚数单位,k是频率变量。
通过这样的变换,我们可以将时域上的函数转换为频域上的函数,从而可以更加清晰地分析信号的频谱特征。
二、傅里叶变换的性质傅里叶变换具有一些重要的性质,这些性质使得傅里叶变换成为一种强大的工具。
1. 线性性质:傅里叶变换具有线性性质,即若f(x)和g(x)的傅里叶变换分别为F(k)和G(k),则对应线性组合的傅里叶变换为aF(k) +bG(k),其中a和b为常数。
2. 时移性质:若f(x)的傅里叶变换为F(k),则f(x - a)的傅里叶变换为e^(-i2πak/T)F(k),即时域上的平移将对频域上的函数进行相位调制。
3. 频移性质:若f(x)的傅里叶变换为F(k),则e^(i2πax/T)f(x)的傅里叶变换为F(k - a),即频域上的平移将对时域上的函数进行相位调制。
4. 尺度变换性质:若f(x)的傅里叶变换为F(k),则f(ax)的傅里叶变换为1/|a|F(k/a),即函数在时域上的尺度变换会对频域上的函数进行缩放。
5. 卷积定理:若f(x)和g(x)的傅里叶变换分别为F(k)和G(k),则f(x) * g(x)的傅里叶变换为F(k)G(k),即在频域上的乘积等于时域上的卷积。
傅里叶变换及其应用
傅里叶变换及其应用傅里叶变换是一种重要的数学工具,广泛应用于信号处理、图像处理、通信、物理学等领域。
它以法国数学家傅里叶的名字命名,是将一个函数分解成一系列正弦和余弦函数的和的过程。
傅里叶变换在这些领域中起到了至关重要的作用。
傅里叶变换的基本思想是将一个函数分解成许多不同频率的正弦和余弦函数,这些函数合在一起就可以表示原始函数。
傅里叶变换将时域的函数转换为频域的函数,可以用于分析信号的频谱特性。
通过傅里叶变换,我们可以得到信号的频率、振幅、相位等信息,从而更好地理解和处理信号。
在信号处理中,傅里叶变换被广泛应用于滤波、降噪、频谱分析等方面。
例如,在音频信号处理中,傅里叶变换可以将时域的声音信号转换为频域的频谱图,从而可以清晰地观察到声音的频率成分,进而进行音频信号的分析和处理。
在图像处理中,傅里叶变换可以将图像转换为频域,通过对频域的处理可以实现图像的压缩、增强、去噪等操作。
在通信领域,傅里叶变换被广泛应用于调制、解调、频谱分析等方面。
例如,在调制过程中,傅里叶变换可以将信号转换到频域,从而实现信号的频谱分析和频率选择。
在解调过程中,傅里叶变换可以将接收到的信号转换到时域,从而实现信号的恢复和解码。
傅里叶变换在通信系统中的应用使得信号的处理更加高效和准确。
在物理学中,傅里叶变换也是一种重要的工具。
例如,在量子力学中,波函数可以通过傅里叶变换表示,从而描述粒子的运动状态。
在光学中,傅里叶变换可以用于描述光的传播和干涉现象。
在电磁学中,傅里叶变换可以用于分析电磁波的传播和衍射现象。
傅里叶变换在物理学中的应用使得对波动现象的研究更加深入和全面。
傅里叶变换作为一种重要的数学工具,在信号处理、图像处理、通信、物理学等领域都有着广泛的应用。
它可以将一个函数分解成许多不同频率的正弦和余弦函数的和,从而实现对信号的频谱特性的分析和处理。
傅里叶变换的应用使得我们能够更好地理解和处理信号,从而推动了相关领域的发展和进步。
数学与物理学中的傅里叶变换及其应用
数学与物理学中的傅里叶变换及其应用傅里叶变换(Fourier Transform)是一种在数学和物理学中广泛应用的数学转换。
它是将一个时域信号(即随时间变化的函数)转换成一个频域信号(即随频率变化的函数)。
这种转换可以有很多应用,在数学和物理学中都非常重要。
最初,傅里叶变换是由法国数学家约瑟夫·傅里叶(Joseph Fourier)于19世纪发明的。
当时,他在研究热传导方程时发现,任何一个周期性函数都可以表示为一些正弦及余弦波的线性组合。
而这种线性组合就可以通过傅里叶变换得到。
傅里叶变换可以将连续时域信号(如音频信号、电信号等)表示成为连续频域信号。
例如,一段时间内的声音可以通过傅里叶变换变成不同频率的声音组合。
同时,傅里叶变换也可以将离散时域信号(如数字信号)表示为离散频域信号。
例如,在数字图像处理中,离散傅里叶变换可以将图像转换为一组频谱信息,从而方便进行图像的处理和分析。
傅里叶变换不仅可以用于信号分析,也可以广泛应用于物理学中的波动问题。
例如,光波、声波、电磁波等都可以通过傅里叶变换进行分析,并可以显示出不同波长和频率的成分。
在量子力学中,傅里叶变换也被广泛用于波函数的计算。
傅里叶变换在实际应用中是非常常见的。
例如,人们通过在电视上观看一部电影时,所看到的影像和声音都是通过傅里叶变换来得到的。
当人们在各种应用中收听音乐、观看电影、处理图像时,傅里叶变换都会被广泛应用。
此外,傅里叶变换在通信技术中也有着非常重要的应用。
通过傅里叶变换可以将信号分解成不同的频率成分,然后通过信号加密、压缩等方式对信号进行处理。
最后,需要指出的是,傅里叶变换并不是万能解决方案。
它只是一种将时域信号转换为频域信号的方法,而不是一种能够解决所有问题的黑盒子。
因此,在应用傅里叶变换时,需要对其能解决的范围进行了解,并针对不同的问题进行处理。
总的来说,傅里叶变换是一种非常重要的数学转换,在数学和物理学的研究和应用中占据着重要的位置。
【论文】傅里叶变换及应用
摘 要线性变换,尤其是傅里叶变换,是众所周知的解决线性系统问题的技术,人们常将变换作为一种数学和物理工具,把问题转到可以解决的域内.在许多科学分支的理论中,傅里叶变换都扮演着重要的角色.就像其它变换一样,它可以单纯的看作数学泛函.在现代数学中,傅里叶变换是一种非常重要的变换,且在频谱信号、波动及热传导等方面有着广泛的应用.本文首先介绍了傅里叶级数以及傅里叶变换的基本概念、性质及发展;其次介绍了傅里叶变换的不同变种以及多种傅里叶变换的定义;最后介绍了傅里叶变换在周期信号、波动这两个方面的具体的应用,在周期信号方面主要介绍的是基于快速傅里叶变换的信号去噪的应用,而在波动方面主要介绍的是海水仿真系统的研究.最后对本文所讨论的内容进行了总结.关键词:傅里叶变换,波动,频谱信号AbstractLinear transforms ,especially those named for Fourier are well know as provide techniques for solving problems in linear systems characteristically, one uses the transformation as a mathematical or physical tool to alter the problem into one that can be solved.Fourier transforms play an important part in the theory of many branches of science while they may be regarded as purely mathematical functional .In modem mathematics, the Fourier transform is a very important transformation. It has a wide range of application in Spectrum Signal Processing, fluctuations and thermal conductivity, etc. This article introduced the Fourier series and Fourier transform of the basic concepts, the nature and development; followed introduced Fourier transform of the different variants and the definition of a variety of Fourier transform. Finally introduced the specific applications in the frequency spectrum, signal fluctuations and thermal conductivity. Fourier transform in different areas, have different forms ,such as modern studies, voice communications, sonar, seismic and even biomedical engineering study of the signal to play an important role in grams. Finally, the scope of our discussion in this article are summarized.Key words: Fourier transform, volatility , the spectrum signal傅里叶变换及应用目 录第一章 前 言 (1)1.1傅里叶变换的发展 (1)1.2 研究傅里叶变换的意义 (1)第二章 傅里叶级数及变换的理论知识 (3)2.1 傅里叶积分 (3)2.2 实数与复数形式的傅里叶积分 (5)2.3 傅里叶变换式的物理意义 (8)第三章 傅里叶变换的性质及变形 (11)3.1 基本性质 (11)3.2 傅里叶变换的不同形式 (12)第四章 傅里叶变换的应用 (15)4.1波动 (15)4.2周期信号中的傅里叶变换 (19)第五章 工作总结及展望 (25)5.1 总结 (25)5.2 展望 (25)参 考 文 献 (26)致 谢 (27)第一章 前 言1.1傅里叶变换的发展傅里叶分析是分析学中的一个重要分支,在数学发展史上,早在18世纪初期,有关三角级数的论述已在D.Bernoulli,D`Alembert,L.Euler等人的工作中出现,但真正重要的一步是由法国数学家J.Fourier迈出的,他在著作《热的解析理论》(1822年)中,系统地运用了三角级数和三角积分来处理热传导问题,此后各国科学家的完善和发展,极大的扩大了傅里叶分析的应用范围,使得这一理论成为研究周期现象不可缺少的工具,特别是现代实用性很强的“小波分析”理论和方法也是从傅里叶分析的思想方法演变出来的,而Fourier变换变换作为Fourier分析中最为重要的内容正是由于其良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用,本文将对傅里叶变换在其中某些领域的应用加以整理和总结.(由于傅里叶在不同的文献中有“傅里叶”和“傅立叶”两种不同的称谓,为了便于阅读,本片论文统一称为“傅里叶”)1.2 研究傅里叶变换的意义从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换.它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分.在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换.根据傅里叶变换的一些特殊性质我们可以发现[1]1. 傅里叶变换是线性算子;2. 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;4.著名的卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;5.离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT)).1在后面的整理中我们可以发现,这些特性的应用为信号周期和波动的研究提供了坚实的基础.2第二章 傅里叶级数及变换的理论知识2.1 傅里叶级数本节简明扼要地复习傅里叶级数的基本内容. 2.1.1 周期函数的傅里叶展开定义2.1.1 傅里叶级数 傅里叶级数展开式 傅里叶系数[4]若函数以为周期,即为)(x f l 2)()2(x f l x f =+的光滑或分段光滑函数,且定义域为[ ,则可取三角函数族]l l ,−,......sin ,.....,2sin ,sin ,.....,cos ,,......,2cos ,cos ,1lx k l x l xlx k l x l xππππππ (2-1)作为基本函数族将展开为傅里叶级数(即下式右端级数))(x f sin cos ()(10l xk b l x k a a x f k k k ππ++=∑∞= (2-2) 式(2-2)称为周期函数的傅里叶级数展开式(简称傅氏级数展开),其中的展开系数称为傅里叶系数(简称傅氏系数).)(x f 函数族(2-1)是正交的.即为:其中任意两个函数的乘积在一个周期上的积分等于零,即⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=====∫∫∫∫∫−−−−−l llllll l lldx l x n l x k dx lx n l x k dx l x n l x k dx l x k dx lx k 0sin .cos .10sin .sin .10cos .cos .10sin .10cos .1ππππππππ 利用三角函数族的正交性,可以求得(2.1.3)的展开系数为⎪⎪⎩⎪⎪⎨⎧==∫∫−−l l k l l kk dx l x k x f l b dx l x k x f l a )sin()(1)cos()(1ππδ (2-3) 3其中⎩⎨⎧≠==)0( 1)0( 2k k k δ关于傅里叶级数的收敛性问题,有如下定理: 定理 2.1.1狄利克雷(Dirichlet )若函数满足条件:)(x f (1)处处连续,或在每个周期内只有有限个第一类间断点;(2)在每个周期内只有有限个极值点,则级数(2-3)收敛,且在收敛点有:∑∞=++=10)sin cos ()(k k k l xk b l x k a a x f ππ在间断点有:∑∞=++=−++10)sin cos ()]0()0([21k k k l xk b l x k a a x f x f ππ2.1.2 奇函数及偶函数的傅里叶展开 定义 2.1.2 傅里叶正弦级数 傅里叶余弦级数[2]若周期函数是奇函数,则由傅里叶系数的计算公式(2-3)可见,所有 均等于零,展开式(2-2)成为)(x f k a a ,0∑∞==1sin )(k k l xk b x f π (2-4) 这叫作傅里叶正弦级数.容易检验(2-4)中的正弦级数在l x x ==,0处为零.由于对称性,其展开系数为∫=lk dx lx k x f l b 0)sin()(2π若周期函数是偶函数,则由傅里叶系数计算公式可见,所有均等于零,展开式(2-2)成为)(x f k b ∑∞=+=10cos)(k k lxk a a x f π (2-5) 这称为傅里叶余弦级数.同样由于对称性,其展开系数为∫=lk k dx l x k x f l a 0)cos()(2πδ (2-6)由于余弦级数的导数是正弦级数,所以余弦级数的导数在l x x ==,0处为零.而对于定义在有限区间上的非周期函数的傅里叶级数展开,需要采用类似于高等数学中的延拓法,使其延拓为周期函数.)(x g 42.1.3复数形式的傅里叶级数 定义2.1.3 复数形式的傅里叶级数[8]取一系列复指数函数 ,....,...,,,1,,,..., (22)x k ilx ilxilxilx ilx k i eeeeeeππππππ−−− (2-7)作为基本函数族,可以将周期函数展开为复数形式的傅里叶级数)(xf 利用复指数函数族的正交性,可以求出复数形式的傅里叶系数∫∫−−−==lll x k i l l l xk i k dx e x f l dx e x f l C **])[(21])[(21ππ (2-9)式中“*”代表复数的共轭.上式(2- 9)的物理意义为一个周期为2L 的函数 可以分解为频率为)(x f l n π,复振幅为 的复简谐波的叠加.n c ln π称为谱点,所有谱点的集合称为谱.对于周期函数而言,谱是离散的.尽管是实函数,但其傅里叶系数却可能是复数,且满足:)(x f )(x f *kk C C =−或k k C C =− (2-10) 2.2 实数与复数形式的傅里叶积分上一节我们讨论了周期函数的傅里叶级数展开,下面讨论非周期函数的级数展开. 2.2.1 实数形式的傅里叶积分[6]定义 2.2.1 实数形式的傅里叶变换式 傅里叶积分 傅里叶积分表示式设非周期函数为一个周期函数当周期)(x f )(x g ∞→l 2时的极限情形.这样,的傅里叶级数展开式)(x g ∑∞=++=10)sin cos()(k k k l x k b lxk a a x g ππ (2-11)在时的极限形式就是所要寻找的非周期函数的傅里叶展开.面我们研究这一极限过程:设不连续的参量∞→l )(x f lk l k k k k k πωωωπω=−=Δ==−1,...),2,1,0(故(2-11)为(2-12)∑∞=++=10)sin cos ()(k k k k k x b x a a x g ωω傅里叶系数为5⎪⎪⎩⎪⎪⎨⎧==∫∫−−l l k k l l k k k xdx x f l b xdx x f l a ωωδsin )(1cos )(1 (2-13) 代入到 (2-12),然后取∞→l 的极限.对于系数,有限,则0a ∫−ll dx x f )(lim ∫−∞→∞→==l l l l x f l a 0)(21limlim 0而余弦部分为当0,→=Δ∞→ll kπω,不连续参变量k ω变为连续参量,以符号ω代替.对的求和变为对连续参量k ω的积分,上式变为ωωωπxd xdx x f cos ]cos )(1[0∫∫∞∞−∞ 同理可得正弦部分ωωωπxd xdx x f sin ]sin )(1[∫∫∞∞−∞若令⎪⎪⎩⎪⎪⎨⎧==∫∫∞∞−∞∞−xdxx f B xdx x f A ωπωωπωsin )(1)(cos )(1)( (2-14) 式(2-14)称为的(实数形式)傅里叶变换式.故(2-12)在时的极限形式变为(注意到))(x f ∞→l )()(x f x g →∫∫∞∞+=0sin )(cos )()(ωωωωωωxd B xd A x f (2-15)上式(2-15)右边的积分称为(实数形式)傅里叶积分.(2-15)式称为非周期函数的(实数形式)傅里叶积分表示式.事实上,上式(2-15)还可以进一步改写为)(x f )](/)(arctan[)(),()()()](cos[)()(]sin )(cos )([)(220ωωωϕωωωϕωωωωωωωA B B A x f d x x C x f d x B x A x f =+=−=+=∫∫∫∞∞∞(2-16)上式(2-16)的物理意义为:称为的振幅谱,ωc )(x f ωϕ称为的相位谱.可以对应于物理现象中波动(或振动).我们把上述推导归纳为下述严格定理: )(x f 1.傅里叶积分定理[7]定理2.1.1 傅里叶积分定理 :若函数在区间上满足条件)(x f ),(∞−∞(1)在任一有限区间上满足狄利克雷条件;)(x f (2)在上绝对可积,则可表为傅里叶积分形式(2-15),且在 )(x f ),(∞−∞)(x f )(x f 6的不连续点处傅里叶积分值= 2]0[]0([−++x f x f .2.奇函数的傅里叶积分定义 2.1.2 实数形式的傅里叶正弦积分 傅里叶正弦变换若为奇函数,我们可推得奇函数的傅里叶积分为傅里叶正弦变换:)(x f )(x f ∫∞=0sin )()(ωωωxd B x f (2-17)式(2-1)满足条件其中0)0(=f )(ωB 是的傅里叶正弦变换:)(x f ∫∞=0sin )()(ωωωxd x f B (2-18)3. 偶函数的傅里叶积分定义 2.1.3 实数形式的傅里叶余弦积分 傅里叶余弦变换[8]若为偶函数,的傅里叶积分为傅里叶余弦积分:)(x f )(x f ∫∞=0cos )(2)(ωωωπxd A x f (2-19)式(2-3)满足条件.其中0)0(=′f )(ωB 是的傅里叶余弦变换:)(x f ∫∞=0cos )(2)(ωωπωxd x f A (2-20)上述公式可以写成另一种对称的形式⎪⎪⎩⎪⎪⎨⎧==∫∫∞∞00sin )(2)(sin )(2)(xdx x f B xd B x f ωπωωωωπ (2-21)⎪⎪⎩⎪⎪⎨⎧==∫∫∞∞00cos )(2)(cos )(2)(xdxx f A xd A x f ωπωωωωπ (2-22) 4 复数形式的傅里叶积分定义2.1.4 复数形式的傅里叶积分下面我们讨论复数形式的傅氏积分与变换,而且很多情形下,复数形式(也称为指数形式)的傅氏积分变换使用起来更加方便.利用欧拉公式则有 )(21sin ),(21cos x i x i x i x i e e ix e e x ωωωωωω−−−=+=7代入式(2-15)得到ωωωωωωωωd e iB A d e iB A x f x i x i −∞∞++−=∫∫)]()([21)]()([21)(00将右端的第二个积分中的ω换为ω−,则上述积分能合并为∫∞∞−=ωωωd e F x f x i )()( (2-23)其中⎩⎨⎧<+≥−=0)( ,2/)]()([0)( ,2/)]()([)(ωωωωωωωiB A iB A F将(2-14)代入上式可以证明无论对于0≥ω,还是0<ω均可以合并为∫∞∞−=dx e x f F x i *])[(21)(ωπω (2-24)证明:(1) 0≥ω时∫∫∞∞−∞∞−=−=dx e x f dx x i x x f F x i *])[(21)]sin())[cos((21)(ωπωωπω (2) 0<ω时 ∫∫∞∞−∞∞−=+=dx e x f dx x i x x f F x i *])[(21)]sin())[cos((21)(ωπωωπω ∫∫∞∞−∞∞−−==dx e x f dx e x f x i x i *])[(21)(21ωωππ 证毕.(2-23)是的复数形式的傅里叶积分表示式,(2-24)则是的复数形式的傅里叶变换式.述变换可以写成另一种对称的傅氏变换(对)形式)(x f )(x f ⎪⎪⎩⎪⎪⎨⎧==∫∫∞∞−−∞∞−ωπωωωπωωd e x f F d e F x f x i x i )(21)()(21)( (2-25) 2.3 傅里叶变换式的物理意义傅里叶变换和频谱[2,8]有密切的联系.频谱这个术语来自于光学.通过对频谱的分析,可以了解周期函数和非周期函数的一些基本性质.若已知是以T 为周期的周期函数,且满足狄利克雷条件,则可展成傅里叶级数)(x f )sin cos ()(10x b x a a x f n n n n n ωω++=∑∞= (2-26)其中Tn n n πωω2==,我们将x b x a n n n n ωωsin cos +称为的第次谐波,)(x f n n ω称为第n 次谐波的频率.由于)cos(sin cos 22n n n n n n x b a x b x a ϕωωω−+=+其中abarctan =ϕ称为初相,22b a +称为第次谐波的振幅,记为,即n n A 0022 1,2,...)(n a A b a A n ==+= (2-27)若将傅里叶级数表示为复数形式,即(2-28)∑∞−∞==n xi nn e C x f ω)(其中22212||||n n n n n b a A C C +===−恰好是次谐波的振幅的一半.我们称为复振幅.显然n 次谐波的振幅与复振幅有下列关系:n n c n n C A 2= ,...)2,1,0(=n (2-29)当取这些数值时,相应有不同的频率和不同的振幅,所以式(2-14)描述了各次谐波的振幅随频率变化的分布情况.频谱图通常是指频率和振幅的关系图.称为函数的振幅频谱(简称频谱).若用横坐标表示频率.....3,2,1,0=n n A )(x f n ω,纵坐标表示振幅,把点n A .....3,2,1,0),,(=n A n n ω用图形表示出来,这样的图形就是频谱图.由于,所以频谱的图形是不连续的,称之为离散频谱......3,2,1,0=n n A 2.3.1 傅里叶变换的定义[7]由上一节对实数和复数形式的傅里叶积分的讨论,最后我们以简洁的复数形式(即指数形式)作为傅里叶变换的定义. 定义2.3.1 傅里叶变换若满足傅氏积分定理条件,称表达式)(x f (2-30)∫∞∞−−=dx e x f F x i ωω)()( 为的傅里叶变换式,记作.我们称函数)(x f )]([)(1ωF F x f −=)(ωF 为的傅里叶变换,简称傅氏变换(或称为像函数). )(x f 定义2.3.2 傅里叶逆变换 如果∫∞∞−=dxe F xf x i ωωπ)(21)( (2-31)则上式为的傅里叶逆变换式,记为,我们称为)(x f )]([)(1ωF F x f −=)(x f )(ωF (或称为像原函数或原函数)的傅里叶逆变换,简称傅氏逆变换.由(2-30)和(2-31)知傅里叶变换和傅里叶逆变换是互逆变换,即有)()]([)]]([[)]([111x f x f F F x f F F F F ===−−−ω (2-32)或者简写为)()]([1x f x f F F =− 2.3.2多维傅氏变换在多维(n 维)情况下,完全可以类似地定义函数的傅氏变换如下:),,,(21n x x x f L )],...,,([),...,,(2121n n x x x f F F =ωωωn x x x i n dx dx dx e x x x f n n ...),...,,(....21)...(212211∫∫+∞∞−∞∞−+++−=ωωω它的逆变换公式为:()n x x x i n n n d d d e F x x x f n n ωωωωωωπωωω...),...,,(. (21)),...,,(21)...(21212211∫∫+∞∞−∞∞−+++−=2.3.3傅里叶变换的三种定义式在实际应用中,傅里叶变换常常采用如下三种形式,由于它们采用不同的定义式,往往给出不同的结果,为了便于相互转换,特给出如下关系式: 1.第一种定义式∫∞∞−−=dx e x f F xi ωπω)(21)(1,,)(21)(1∫∞∞−=ωωπωd e F x f x i 2.第二种定义式∫∞∞−−=dx e x f F xi ωω)()(2,∫∞∞−=ωωπωd e F x f x i )(21)(2 3.第三种定义式∫∞∞−−=dx e x f F x i πωω23)()(,∫∞∞−=ωωπωd e F x f x i 23)()(三者之间的关系为)2(21)(21321πωπωπF F F ==三种定义可统一用下述变换对形式描述:⎩⎨⎧==−)]([)()]([)(1ωωF F x f x f F F 特别说明:不同书籍可能采用了不同的傅氏变换对定义,所以在傅氏变换的运算和推导中可能会相差一个常数倍数,比如ππ21,21.本文采用的傅氏变换(对)是大量书籍中常采用的统一定义,均使用的是第二种定义式.第三章 傅里叶变换的重要特性傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)的积分的线性组合.在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换.3.1 基本性质[1,8]1.线性性质两函数之和的傅里叶变换等于各自变换之和.数学描述是:若函数和的傅里叶变换和都存在,)(x f )(x g )(f F )(g F α和β为任意常系数,][][][g F f F g f F βαβα+=+. 2.平移性质若函数存在傅里叶变换,则对任意)(x f 实数0ω,函数也存在傅里叶变换,且F x i e x f 0)(ω=])([0x i e x f F ω)(o ωω−. 3.微分关系若函数当)(x f ∞→x 时的极限为0,而其导函数的傅里叶变换存在,则有 ,即导函数的傅里叶变换等于原函数的傅里叶变换乘以因子)(x f )]([)](['x f F i x f F ω=ωi .更一般地,若,且存在,则,即k阶0)(....)()()1('=±∞==±∞=±∞−k f f f )]([)(x f F k ][)()]([)(f F i x f F k k ω=导数的傅里叶变换等于原函数的傅里叶变换乘以因子.k i )(ω4.卷积特性若函数及都在上)(x f )(x g ),(+∞−∞绝对可积,则卷积函数∫+∞∞−−=ξξξd g x f g f )()(*的傅里叶变换存在,且][].[]*[g F f F g f F =.卷积性质的逆形式为)]([*)]([)]()([111ωωωωG F F F G F F −−−=即两个函数乘积的傅里叶逆变换等于它们各自的傅里叶逆变换的卷积. 5.Parseval 定理若函数)(x f 可积且平方可积,其中)(ωF 是的傅里叶变换.(查正确性) )(x f 则∫∫+∞∞−+∞∞−=ωωπd F dx x f 22)(21)( 3.2傅里叶变换的不同变种1.连续傅里叶变换[8]一般情况下,若“傅里叶变换”一词的前面未加任何限定语,则指的是“连续傅里叶变换”.“连续傅里叶变换”将平方可积的函数表示成复指数函数的积分或级数形式.)(t f ∫∞∞−−==dt e t f t f F F t i ωπω)(21)]([)(这是将频率域的函数)(ωF 表示为时间域的函数的积分形式. 连续傅里叶变换的逆变换(inverse Fourier transform )为)(t f ∫∞∞−−==ωωπωωd e F F F t f t i )(21)]([)(1即将时间域的函数表示为频率域的函数)(t f )(ωF 的积分.一般可称函数为)(t f 原函数,而称函数)(ωF 为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair ).除此之外,还有其它型式的变换对,以下两种型式亦常被使用.在通讯或是讯号处理方面,常以πω2=f 来代换,而形成新的变换对 : ∫∞∞−−==dt e t x t x F f X fti π2)()]([)( ∫∞∞−−==df e f X f X F t x ft i π21)()]([)( 或者是因系数重分配而得到新的变换对:∫∞∞−−==dt e t f t f F F t i ωω)()]([)(∫∞∞−−==ωωπωωd eF F F t f ti )(21)]([)(12.离散傅里叶变换定义3.2.1[1]给定一组数据序列{}1.....2,1,0,−==N n y y n ,离散傅里叶变换为序列:10,][10/2−≤≤==∑−=−N n e y y F y N n N kn i n n k π离散傅里叶逆变换为:10,1][1/2−≤≤==∑−=N k ey Ny F y N k Nkn i k k n π定理3.1 对于离散傅里叶变换,以下性质成立.1.移位或平移.若且n s y ∈1+=k k y z ,那么,这里 j j j y F z F ][][ω=n i e /2πω=2.卷积.若且,那么下面的序列n s y ∈n s z ∈∑−=−=10]*[n j j k j k z y z y也在中.序列称为和的卷积.n s z y *y z 3.若是一实数序列,那么n s y ∈k k n k k n y y n k y F y F ))=≤≤=−− 0 , ][][或. 3.快速傅里叶变换快速傅氏变换(FFT),是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。
什么是傅里叶变换及其应用
傅里叶变换(Fourier Transform)是一种重要的数学工具,被广泛应用于信号处理、图像处理、物理学、通信工程、计算机科学等领域。
它将一个函数表示为不同频率的正弦和余弦波的叠加,从而可以分析信号的频域特性。
本文将介绍傅里叶变换的定义、性质以及一些常见的应用。
傅里叶变换的定义是将一个函数表示为其频域分量的和,相当于将一个函数从时域转换到频域。
对于一个连续函数f(t),它的傅里叶变换F(ω)定义如下:F(ω) = ∫ f(t) * e^(-iωt) dt其中,e^(-iωt)表示复指数函数,ω为频率参数,可以是实数或复数。
傅里叶变换的逆变换为:f(t) = (1/2π) * ∫ F(ω) * e^(iωt) dω傅里叶变换的一个重要性质是线性性。
如果g(t)是另一个函数,a和b是任意实常数,那么对于函数f(t)的傅里叶变换F(ω)和g(t)的傅里叶变换G(ω),有以下性质:1.线性性质:F[a f(t) + b g(t)] = a F(ω) + b G(ω)另一个重要的性质是平移性。
如果f(t)的傅里叶变换是F(ω),那么f(t-a)的傅里叶变换是e^(-iωa)*F(ω)。
这意味着在时域上平移函数相当于在频域上引入相位变化。
傅里叶变换在实际应用中有广泛的应用。
其中最常见的是信号分析。
通过将信号从时域转换为频域,我们可以分析信号的频率成分,找到信号中的周期性特征,并通过滤波器设计、频谱分析等方法对信号进行处理和识别。
傅里叶变换在音频处理、图像处理、视频压缩和信号处理等领域中都是不可或缺的工具。
在图像处理中,傅里叶变换可以将图像表示为频域分量的和,可以用于图像去噪、图像增强、特征提取等任务。
通过对图像的频率域进行滤波,可以去除噪声,提高图像的质量。
同时,傅里叶变换还可以用于图像压缩,通过保留较低频率的分量并去掉高频噪声,可以实现图像的有损和无损压缩。
在通信工程中,傅里叶变换被广泛应用于调制、解调和信道估计等领域。
Fourier变换及其应用
∫k( x - ∞
+ ∞
y ) f ( y ) d y , - ∞ < x < ∞ , 其中 g , k 是已知函数,
并假设它们具有足以使以下推导能成立的条件。 解 : 用 F , G , K 分别表示 f , g , k 的 F ourier 变换。 将求解的积分方程表成 f ( x ) = g ( x ) + k * f ( x ) , G( # ) 两端作 Fo ur ier 变换 , 由上述定理得到 F ( # ) = g( # ) + K(# ) F( # ) F(# ) = 1K(# ) + ∞ 1 G ( # ) - i# x 对上式作 F ourier 逆变换 , 得到: f ( x ) = 2∀ - ∞ 1 - K ( # ) e d# + ∞ 1 - , 0 ≤ ≤ 1 例 4 解积分方程 f ( x ) co s x d x = 0 0 , > 1 解 : 由于 f ( x ) 只定义在 ( 0, + ) 上 , 所以对 f ( x ) 作偶延拓, 则 f ( x ) 的傅氏变换
+ ∞ d + ∞ d d +∞ 证明: d ! ( ) = d - ∞f ( t) e - i t d t = - ∞ d [ f ( t) e - i t ] d t = - ∞( - it) f ( t) e- i t d t = - i F [ t f ( t ) ] 在上述证明过程中, 我们把求导和积分运算交换了次序 , 当然 , 这需要满足一定条件, 在这类问题 dn F ( ) = ( - i ) n F [ tn f ( t) ] , 这个性质表明 , 若已知 f ( t ) 的 Fo urier 中 , 总假定可以交换次序。 一般地, 有 d n n 变换, 则 t f ( t) 的 F our ier 变换也可求出。
傅里叶变换及其应用
傅里叶变换及其应用傅里叶变换(Fourier Transform)是一种将一个函数(或信号)从时域(时间域)转换为频域的数学技术。
它是由法国数学家傅里叶(Jean-Baptiste Joseph Fourier)提出的,因此得名。
傅里叶变换在信号处理、图像处理、通信等领域有广泛的应用,并且为这些领域的发展做出了重大贡献。
一、傅里叶变换的定义和性质傅里叶变换可以将一个连续函数表示为正弦和余弦的加权和,它的数学公式如下:F(ω) = ∫[f(t) * e^(-iωt)] dt其中,F(ω)表示频域上的函数,f(t)表示时域上的函数,e^(-iωt)是复指数函数。
傅里叶变换有一些重要的性质,如线性性、时移性、频移性、对称性等。
这些性质使得傅里叶变换成为一种非常有用的工具,在信号处理中广泛应用。
二、傅里叶级数与傅里叶变换的关系傅里叶级数是傅里叶变换的一种特殊形式,主要用于分析周期性信号。
傅里叶级数可以将一个周期为T的函数展开成正弦和余弦函数的和。
而傅里叶变换则适用于非周期性信号,它可以将一个非周期性函数变换为连续的频谱。
傅里叶级数和傅里叶变换之间存在着密切的关系,它们之间可以相互转换。
傅里叶级数展开的周期函数可以通过将周期延拓到无穷大,得到其对应的傅里叶变换。
而傅里叶变换可以通过将频谱周期化,得到其对应的傅里叶级数。
三、傅里叶变换的应用1. 信号处理傅里叶变换在信号处理中有着重要的应用。
通过将信号从时域转换到频域,我们可以分析信号的频谱特性,如频率成分、幅度、相位等。
这对于音频、图像、视频等信号的处理非常有帮助,例如音频信号的降噪、图像的去噪、视频的压缩等。
2. 图像处理傅里叶变换在图像处理中也有广泛的应用。
通过对图像进行傅里叶变换,可以将图像从时域转换为频域,进而进行频域滤波和频域增强等操作。
这些操作可以实现图像的模糊处理、边缘检测、纹理分析等。
3. 通信在通信领域中,傅里叶变换是无线通信、调制解调、信道估计等技术的基础。
傅里叶变换的性质与应用
傅里叶变换的性质与应用傅里叶变换(Fourier Transform)是一种在信号和图像处理领域中广泛应用的数学工具。
它通过将一个函数表示为一系列正弦和余弦函数的线性组合来描述时域和频域之间的关系。
在本文中,我们将探讨傅里叶变换的性质以及其在各个领域中的应用。
一、傅里叶变换的性质1. 线性性质傅里叶变换具有线性性质,即对于任意常数a和b以及函数f(t)和g(t),有以下等式成立:F(af(t) + bg(t))= aF(f(t))+ bF(g(t))其中F(f(t))表示对函数f(t)进行傅里叶变换后得到的频域函数。
2. 对称性质傅里叶变换具有一系列对称性质。
其中最为重要的对称性质为奇偶对称性。
当函数f(t)为实函数并满足奇偶对称时,其傅里叶变换具有如下关系:F(-t)= F(t)(偶对称函数)F(-t)= -F(t)(奇对称函数)3. 尺度变换性质傅里叶变换可以对函数的尺度进行变换。
对于函数f(a * t)的傅里叶变换后得到的频域函数为F(w / a),其中a为正数。
二、傅里叶变换的应用1. 信号处理傅里叶变换在信号处理中被广泛应用。
它可以将时域信号转换为频域信号,使得信号的频率成分更加明确。
通过傅里叶变换,我们可以分析和处理各种信号,例如音频信号、图像信号和视频信号等。
在音频领域中,傅里叶变换可以用于音乐频谱分析、滤波器设计和音频压缩等方面。
在图像处理领域中,傅里叶变换可以用于图像增强、图像去噪和图像压缩等方面。
2. 通信系统傅里叶变换在通信系统中具有重要的应用。
通过傅里叶变换,我们可以将信号转换为频域信号,并根据频域特性进行信号调制和解调。
傅里叶变换可以用于调制解调器的设计、信道估计和信号的频谱分析等方面。
在无线通信系统中,傅里叶变换也广泛应用于OFDM(正交频分复用)技术,以提高信号传输效率和抗干扰性能。
3. 图像处理傅里叶变换在图像处理中有广泛的应用。
通过将图像转换到频域,我们可以对图像进行滤波、增强和去噪等操作。
傅里叶变换及其应用
2.1 Fourier 变换及其应用我们将用Fourier 变换法求解热传导方程的柯西问题.为此我们将着重介绍Fourier 变换的基本知识.Fourier 变换在许多学科中是重要使用工具. 可积函数,设)(x f f =是定义在),(+∞-∞上的函数, 且对任意A B <,()f x 在[,]A B 上可积,若积分⎰+∞∞-dx x f )(收敛,则称)(x f 在),(+∞-∞上绝对可积。
将),(+∞-∞上绝对可积函数形成的集合记为),(1+∞-∞L 或),(+∞-∞L ,即{}∞<=+∞-∞=+∞-∞⎰+∞∞-dx x f f L L )(|),(),(1,称为可积函数空间.连续函数空间: ),(+∞-∞上全体连续函数构成的集合,记为),(+∞-∞C ,{}上连续在),(|),(+∞-∞=+∞-∞f f C , {}上连续在),(,|),(1+∞-∞'=+∞-∞f f f C 。
定义2.1 若),(+∞-∞∈L f ,那么积分),(ˆ)(21λπλf dx e x f x i =⎰+∞∞-- (2.2)有意义,称为Fourier 变换, )(ˆλf 称为)(x f 的Fourier 变式(或Fourier 变换的象). ⎰+∞∞--==dx e x f f Ff x i λπλλ)(21)(ˆ)(定理2.1 (Fourier 积分定理)若),(),(1+∞-∞⋂+∞-∞∈C L f ,那么我们有 ),()(ˆ21limx f d e f NNx i N =⎰+-∞→λλπλ (2.3)公式(2.3)称为反演公式.左端的积分表示取Cauchy 主值. 通常将由积分)()(21x g d e g x i ∨+∞∞-=⎰λλπλ所定义的变换称为Fourier 逆变换.因此(2.3)亦可写成()f f =∨ˆ即一个属于),(),(1+∞-∞⋂+∞-∞C L 的函数作了一次Fourier 变换以后,再接着作一次Fourier 逆变换,就回到这个函数本身.在应用科学中经常把)(ˆλf 称为)(x f 的频谱.Fourier 变换的重要性亦远远超出求解偏微分方程的范围,它在其它应用科学中,如信息论,无线电技术等学科中都有着极为广阔的应用.它是近代科学技术中得到广泛应用的重要数学工具.定理2.1的证明在经典书中都能查到(如姜礼尚,陈亚浙,<<数学物理方程讲义>>)定理2.2 设),(+∞-∞∈L f ,⎰+∞∞--=dx e x f fx i λπλ)(21)(ˆ,则)(ˆλf 是有界连续函数,且 .0)(ˆlim =∞→λλf在运用Fourier 变换求解定解问题以前,我们先来介绍一些Fourier 变换的性质.Fourier 变换的性质: 1.(线性性质) 若.2,1,),,(=∈+∞-∞∈j C L f j j α则(),ˆˆ22112211f f f f αααα+=+∧2.(微商性质)若),,(),()(),(+∞-∞⋂+∞-∞∈'L C x f x f 则.ˆf i dx df λ=⎪⎭⎫⎝⎛∧证明 由假设),,(),()(),(+∞-∞⋂+∞-∞∈'L C x f x f 故0)(lim =∞→x f x ,事实上由),()(+∞-∞∈'C x f ,则dt t f f x f x⎰'+=0)()0()(,因为),()(+∞-∞∈'L x f ,故有⎰±∞±±∞→'+==0)()0()(lim dt t f f a x f x又因),()(+∞-∞∈L x f ,必有0=±a . 由0)(lim =∞→x f x ,利用分部积分公式⎰∞+∞--∧'=⎪⎭⎫⎝⎛dx e x f dx df x i λπ)(21⎥⎦⎤⎢⎣⎡--=⎰+∞∞--∞+∞--dx e i x f e x f x i x i ))(()(21λλλπ).(ˆ)(2λλπλλf i dx e x f i x i ==⎰+∞∞--附注 这个性质说明微商运算经Fourier 变换转化为乘积运算,因此利用Fourier 变换可把常系数微分方程简化为函数方程,或把偏微分方程简化为常微分方程,正是由于这个原因,Fourier 变换成为解微分方程的重要工具. 3.(乘多项式)若),()(),(+∞-∞∈L x xf x f 则有[])(ˆ)(λλf d d ix xf =∧.证明 由于),()(),(+∞-∞∈L x xf x f ,故)(ˆλf 是λ的连续可微函数,且有 []∧+∞∞---=-=⎰)()())((21)(ˆx xf i dx e ix x f f d d x i λπλλ附注 作为性质2,3的推论,若),,(),()(),(),()(+∞-∞⋂+∞-∞∈'L C x f x f x f m 则())1(,)(ˆ≥=⎪⎪⎭⎫ ⎝⎛∧m f i dx fd m m m λλ 若),,()(),(),(+∞-∞∈L x f x x xf x f m则[])1(,)(ˆ)(≥=∧m f d d i x f x mm mmλλ4.(平移性质)若),,()(+∞-∞∈L x f 则[])1()(ˆ)(≥=--∧m f e a x f a i λλ证明[])(ˆ)(21)(21)()(λππλλλf e dy e y f ya x dx e a x f a x f a i a y i x i -∞+∞-+-+∞∞--∧==--=-⎰⎰5.(伸缩性质)若),,()(+∞-∞∈L x f 则[])0(,)(ˆ1)(≠=∧k kf k kx f λ证明 无妨设,0<k 由定义[])(ˆ11)(1211)(21)(21)(kf k dy ke yf k dy k ey f y kx dxe kxf kx f kyi kyi x i λπππλλλ=⎪⎭⎫ ⎝⎛-===⎰⎰⎰∞+∞--∞-∞+-+∞∞--∧6.(对称性质)若),,()(+∞-∞∈L x f 则 ,)(ˆ)(λλ-=∨f f证明⎰+∞∞-∨=dx e x f f x i λπλ)(21)(⎰+∞∞---=dxe xf x i )()(21λπ.)(ˆλ-=f7.(卷积定理)若),,()(),(+∞-∞∈L x g x f ⎰+∞∞--=*dt t g t x f x g f )()()(称为f 与g 的卷积,则),()(+∞-∞∈*L x g f ,且有()).(ˆ)(ˆ2)(λλπλgf g f =*∧证明 由积分交换次序定理⎰⎰⎰+∞∞-+∞∞-+∞∞--=*dx dt t g t x f dx x g f |)()(|)(⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-≤dt dx t g t x f )()(⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=dt dx t x f t g )()(⎰⎰+∞∞-+∞∞-⋅=dt t g dx x f )()( 故),()(+∞-∞∈*L x g f ,又由积分交换次序定理()()()().ˆˆ2)(21)(212)()(21)()(21)(λλππππππλλλλλλgf dye yf dt e tg dxe t xf dt e tg dtt g t x f dx e g f y i t i t x i t i x i =⋅⋅=-=-=*⎰⎰⎰⎰⎰⎰∞+∞-∞+∞---∞+∞-∞+∞----+∞∞-+∞∞--∧下面作为例子,我们根据Fourier 变换的定义与性质求一些具体函数的Fourier 变换.例1 设 ⎪⎩⎪⎨⎧>≤=Ax A x x f ,0,1)(1,(其中常数0>A ).求)(ˆ1λf . 解 由定义⎰⎰----==AAx i AAx i dx e dx e x f f λλππλ21)(21)(ˆ11AA x i e i --⎪⎭⎫ ⎝⎛-=λλπ121λλπA sin 2=. 例2 设⎩⎨⎧<≥=-0,00,)(2x x e x f x , 求)(ˆ2λf . ⎰+∞--=221)(ˆdx e e f x i x λπλ⎰+∞+-=)1(21dx e x i λπ∞++-⎪⎭⎫ ⎝⎛+-=0)1(1121x i e i λλπλπi +=1121. 例3 设,)(3xex f -=求)(ˆ3λf⎰+∞∞---=dx ee f xi xλπλ21)(ˆ3⎥⎦⎤⎢⎣⎡+=⎰⎰∞--+∞+-0)1(0)1(21dx e dx e x i xi λλπ ⎪⎭⎫⎝⎛-++=λλπi i 11112121221λπ+=. 例4 设,)(24x ex f -=求)(ˆ4λf⎰+∞∞---=dx e e f x i x λπλ221)(ˆ4⎰∞+∞---'⎪⎭⎫ ⎝⎛-=dx e i e x i xλλπ1212⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=⎰∞+∞---∞+∞---dx e xe i e e i x i x x x i λλλλπ222121[]∧-=22x xe iλ)(ˆ24λλλf d d -= , 上面最后一个等式应用了性质3. 因为)(ˆ4λf 作为λ的函数适合下面常微分方程初值问题:⎪⎪⎩⎪⎪⎨⎧==-=⎰∞+∞--2121)0(ˆ,)(ˆ2)(ˆ2444dx e f f d f d x πλλλλ, 解之得44221)(ˆλλ-=ef .例5 设,)(25Ax e x f -=(0>A ),求)(ˆ5λf .由性质5()()Ae AA f A x A f x f f 44455221)(ˆ1)()()(ˆλλλ-∧∧====.例6 ),()(4622Bx f eex f B x Bx ===⎪⎪⎭⎫ ⎝⎛--(0>B )()446622)/1(ˆ/11()(ˆλλλB eB Bf Bx f f -∨===.()()⎰+∞∞-∨*=*λλπλd e g f x g f xi )(21)( ⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=λλπλd e dy y g y f x i )()(21dy d e y g y f x i ⎰⎰+∞∞-+∞∞-⎪⎭⎫ ⎝⎛-=λλπλ)()(21dy d e y f e y g x y i iyx ⎰⎰+∞∞-+∞∞--⎪⎭⎫ ⎝⎛-=λλπλ)()()(21 )()(2x g x f ∨∨=π,()()g f gfg f ⋅==⎪⎪⎭⎫ ⎝⎛*∨∨∨∧∧ˆˆ22121πππ,于是()∧∧∧*=⋅g f g f π21,因为()gf g f ˆˆ2⋅=*∧π, 所以()()[]g f g f g f *=*=⋅∨∧∨ππ2121ˆˆ.傅里叶变换和傅里叶积分公式 例1求单个矩形脉冲⎪⎩⎪⎨⎧><=2||,02||,)(ττx x h x f ,(其中常数0,0>≠τh )的傅里叶变换和傅里叶积分公式。
傅立叶变换的原理、意义和应用
傅立叶变换的原理、意义和应用1概念:编辑傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。
许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅里叶变换用正弦波作为信号的成分.参考《数字信号处理》杨毅明著p.89,机械工业出版社2012年发行。
定义f(t)是t的周期函数,如果t满足狄里赫莱条件:在一个周期内具有有限个间断点,且在这些间断点上,函数是有限值;在一个周期内具有有限个极值点;绝对可积。
则有下图①式成立。
称为积分运算f(t)的傅里叶变换,②式的积分运算叫做F(ω)的傅里叶逆变换。
F(ω)叫做f(t)的像函数,f(t)叫做F(ω)的像原函数。
F(ω)是f(t)的像。
f(t)是F(ω)原像。
①傅里叶变换②傅里叶逆变换中文译名Fourier transform或Transformée de Fourier有多个中文译名,常见的有“傅里叶变换”、“付立叶变换"、“傅立叶转换”、“傅氏转换”、“傅氏变换"、等等。
为方便起见,本文统一写作“傅里叶变换”。
应用傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值谱——显示与频率对应的幅值大小)。
相关* 傅里叶变换属于谐波分析.* 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;*正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;*卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;* 离散形式的傅立叶变换可以利用数字计算机快速地算出(其算法称为快速傅里叶变换算法(FFT))。
傅里叶变换的物理意义
傅里叶变换的物理意义(物理系物理学1101班姓名:李海涛学号:20110502126) 摘要:傅里叶变换是数字信号处理领域的一种很重要的算法,要想知道傅里叶变换的意义,就要知道傅里叶变换的实质,傅里叶变换的原理,以及图像傅里叶变换的原理和傅里叶变换与傅里叶级数的关系。
关键词:傅里叶变换傅里叶变换实质傅里叶级数正文:傅里叶变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——但有密度上的差别,你可以对比概率论中的概率密度来思考一下——落到每一个点的概率都是无限小,但这些无限小是有差别的,所以,傅里叶变换之后,横坐标即为分离出的正弦信号的频率,纵坐标对应的是加权密度。
对于周期信号来说,因为确实可以提取出某些频率的正弦波成分,所以其加权不为零——在幅度谱上,表现为无限大——但这些无限大显然是有区别的,所以我们用冲激函数表示。
傅里叶变换把信号由时域转为频域,因此把不同频率的信号在时域上拼接起来进行傅里叶变换是没有意义的,实际情况下,我们隔一段时间采集一次信号进行变换,才能体现出信号在频域上随时间的变化。
1、为什么要进行傅里叶变换,其物理意义是什么?傅立叶变换是数字信号处理领域一种很重要的算法。
要知道傅立叶变换算法的意义,首先要了解傅立叶原理的意义。
傅立叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的无限叠加。
而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。
和傅立叶变换算法对应的是反傅立叶变换算法。
该反变换从本质上说也是一种累加处理,这样就可以将单独改变的正弦波信号转换成一个信号。
因此,可以说,傅立叶变换将原来难以处理的时域信号转换成了易于分析的频域信号(信号的频谱),可以利用一些工具对这些频域信号进行处理、加工。
傅里叶变换应用
傅里叶变换应用傅里叶变换(Fourier Transform)是一种重要的数学工具,广泛应用于信号处理、图像处理、通信系统等领域。
在现代科学与技术中,傅里叶变换的应用越来越广泛,对于实现信号频谱分析、滤波处理以及数据压缩等方面具有重要意义。
本文将就傅里叶变换在音频处理、图像处理和通信系统中的应用进行探讨。
一、音频处理中的音频处理是傅里叶变换的一个重要应用领域。
在音频处理中,傅里叶变换常被用来分析音频信号的频谱特征,并基于频谱特征进行音频信号的降噪、修正等处理。
例如,对于音频文件的降噪处理,可以通过傅里叶变换将音频信号转化为频域信号,进而分析频域特征,检测和滤除噪声干扰。
傅里叶变换还可以实现音频信号的频谱平衡,消除信号中的失真和干扰。
二、图像处理中的傅里叶变换在图像处理中也发挥着重要的作用。
通过傅里叶变换,可以将图像信号转化为频域信号,从而实现图像的频谱分析和滤波处理。
在图像压缩方面,傅里叶变换可以将图像信号转化为频域信号,通过对频域信号进行处理,将高频部分进行削减,从而实现图像的压缩。
常见的JPEG图像压缩算法中就采用了傅里叶变换。
此外,傅里叶变换还可以实现图像锐化、平滑处理等功能。
通过对图像进行傅里叶变换,可以将频域信号进行处理,从而实现对图像的增强和改善。
三、通信系统中的在通信系统中,傅里叶变换被广泛应用于信号处理和频谱分析。
傅里叶变换可以将时域信号转化为频域信号,通过频域分析,可以对信号进行滤波处理、频谱分析和调制解调等操作。
例如,在无线通信系统中,傅里叶变换常被用于调制解调过程中的频域分析和信号恢复。
同时,傅里叶变换还可以用于多路复用、调频、解扩等信号处理过程中。
总结:傅里叶变换是一种重要的数学工具,在音频处理、图像处理和通信系统中都有广泛的应用。
在音频处理中,傅里叶变换可以实现降噪、修正等功能;在图像处理中,傅里叶变换可以实现图像压缩、增强等功能;在通信系统中,傅里叶变换可以实现信号处理、频谱分析等功能。
浅谈傅里叶变换及其应用(小论文)
傅里叶变换及其应用一. 傅里叶变换傅里叶变换(Fourier 变换)是一种线性的积分变换。
因其基本思想首先由法国学者约瑟夫·傅里叶系统地提出,所以以其名字来命名以示纪念。
傅里叶变换是一种线性的积分变换,在物理学、声学、光学、结构动力学、数论、组合数学、概率论、统计学、信号处理、密码学、海洋学、通讯等领域都有着广泛的应用。
傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。
在不同的研究领域,傅里叶变换具有多种不同的变体形式,如快速傅里叶变换和离散傅里叶变换。
正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解。
在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取。
二. 计算方法连续傅里叶变换将平方可积的函数f (t )表示成复指数函数的积分或级数形式。
这是将频率域的函数F(ω)表示为时间域的函数f (t )的积分形式。
可以把傅里叶变换也成另外一种形式:t j e t f F ωπω),(21)(= 可以看出,傅里叶变换的本质是内积,三角函数是完备的正交函数集,不同频率的三角函数的之间的内积为0,只有频率相等的三角函数做内积时,才不为0。
)(2,21)(2121Ω-Ω==⎰Ω-ΩΩΩπδdt e e e t j t j t j下面从公式解释下傅里叶变换的意义因为傅里叶变换的本质是内积,所以f(t)和t j e ω求内积的时候,只有f(t)中频率为ω的分量才会有内积的结果,其余分量的内积为0。
可以理解为f(t)在t j eω上的投影,积分值是时间从负无穷到正无穷的积分,就是把信号每个时间在ω的分量叠加起来,可以理解为f(t)在t j eω上的投影的叠加,叠加的结果就是频率为ω的分量,也就形成了频谱。
傅里叶逆变换的公式为下面分析傅里叶逆变换的意义对一个信号做傅里叶变换,然后直接做逆变换,这样做是没有意义的,在傅里叶变换和傅里叶逆变换之间有一个滤波的过程。
介绍傅里叶定律的书 -回复
介绍傅里叶定律的书-回复
以下是几本介绍傅里叶定律的书:
1. 《傅里叶分析导论》(Introduction to Fourier Analysis) - 这本书由
E. B. Saff和A. D. Snider合著,为读者提供了对傅里叶分析的详细介绍,并涵盖了傅里叶级数和傅里叶变换的基本理论和应用。
2. 《傅里叶分析及其应用》(A First Course in Fourier Analysis and Wavelets) - 由B. P. Demidovich和I. A. Maron合著,该书系统地介绍了傅里叶分析和小波分析的基本概念和推导方法,适合初学者阅读。
3. 《傅里叶级数》(Fourier Series) - 这本书由Georgi P. Tolstov撰写,详细阐述了傅里叶级数的定义、性质和应用,以及它们在数学分析和工程学中的重要性。
4. 《傅里叶变换与其应用》(The Fourier Transform and its Applications) - 由Ronald N. Bracewell所著,这本书清晰地介绍了傅里叶变换的基本原理和应用领域,包括信号处理、图像处理和通信系统等。
这些书籍将为读者提供深入了解傅里叶定律及其应用的知识,并有助于进一步研究该领域。
傅里叶变换相关参考书籍
傅里叶变换相关参考书籍1.《傅里叶分析导论》(An Introduction to Fourier Analysis and Generalized Functions) - William P. Ziemer2.《傅立叶分析与信号处理》(Fourier Analysis and Signal Processing) - P. Raja Rao3.《傅里叶变换与其应用》(Fourier Transforms and Its Applications) - J.K. Pati4.《傅里叶分析与其应用》(Fourier Series and Boundary Value Problems) - James Ward Brown, Ruel V. Churchill5.《数值傅里叶分析方法》(Numerical Fourier Analysis: Fourier-禸unk, Fast Fourier, Wavelets) - Lazarus6.《傅里叶分析与信号处理》(Fourier Analysis and Signal Processing) - Mourad Barkat7.《实用傅里叶变换分析》(Applied Fourier Transform Analysis) - Hwei Hsu8.《数学分析的复化数据结构》(Using Complex Data Structures in Computer Science and Mathematics, Volume 2: Fourier Analysis, Kettenübergagänge, Polynomielle Approximation) - J.Güting, S.M. Mehlhorn9.《傅里叶分析与泛函之应用》(Applications of Fourier Analysis) - Narayanaswami Balakrishnan, Konstantinos Efstathiou, Giovanni Peccati, Murad S. Taqqu10.《基于傅里叶变换的图像处理与分析》(Image Processing and Analysis Based on Fourier Transform) - Jianmin Jiang, Wenlu Zhang上述书籍都是关于傅里叶变换及相关主题的经典参考书,适合对傅里叶变换有一定了解基础,并希望进一步提升知识和应用的读者阅读。
傅里叶变换和拉普拉斯变换的应用
傅里叶变换和拉普拉斯变换的应用积分变换的理论和方法是简化问题的一种重要而有效的数学方法,它不仅应用于许多数学分支,而且在物理与工程技术上都有广泛应用,特别是在自动控制和电信技术上,积分变换是分析问题的重要而有效的手段。
本文将就积分变换中最常用的傅里叶变换和拉普拉斯变换在实际中的应用进行简略的阐述。
傅里叶变换的应用傅里叶变换在物理学、电子类学科、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用。
傅里叶变换分为离散变换和连续变换,由于实际生活中所获取的信号一般都是离散的,所以离散型的傅里叶变换更为我们所接受,连续傅里叶变换通常只做实验研究。
下面只就傅里叶变换的几个重要应用作简要分析。
在图像处理中的应用(1)图像增强与图像去噪绝大部分噪音都是图像的高频分量,通过低通滤波器来滤除高频噪声; 边缘也是图像的高频分量,可以通过添加高频分量来增强原始图像的边缘;(2)图像分割之边缘检测提取图像高频分量。
(3)图像特征提取:形状特征:傅里叶描述子纹理特征:直接通过傅里叶系数来计算纹理特征其他特征:将提取的特征值进行傅里叶变换来使特征具有平移、伸缩、旋转不变性(4)图像压缩可以直接通过傅里叶系数来压缩数据;常用的离散余弦变换是傅立叶变换的实变换。
在数字信号领域的应用离散傅里叶变换在数字信号领域的作用已经不言而喻。
它就是让更多没有规律的信号变得更加容易识别,更加容易变成人们熟知的某种信号。
在我们现代的通讯中,人们的声音信号就是离散的,它可以转换成为离散的数字信号,然后通过信号传输达到交流效果,这就是离散时间信号的傅里叶变换。
在交通方面,离散傅里叶变换也起着非常重要的作用。
具体来说,我们要采集到每个路口每分钟的车流量,这不可能让人站在路口守着一辆一辆数,这需要数字传感器。
但是传感器传来的数据是分散的,这时候,技术人员可以通过运用傅里叶变换来处理这些数据,从而得知车流量,我们的交通部门就可以针对不同的路口设置交通灯的时间,确保路况在最佳情况下运行。
傅里叶变换和transformer 结合
傅里叶变换(Fourier Transform)作为一种信号处理和频域分析的重要方法,在通信、音频处理、图像处理等领域得到了广泛的应用。
而近年来,随着深度学习的发展,transformer模型在自然语言处理和语音识别等领域也取得了巨大的成功。
本文将探讨傅里叶变换和transformer模型的结合,探讨其在信号处理和语音识别等领域的应用。
一、傅里叶变换概述傅里叶变换是一种将时域信号转换成频域信号的数学工具,它能够将任意时域信号分解成不同频率的正弦和余弦信号的叠加。
通过傅里叶变换,我们可以获得信号的频谱信息,进而进行频域分析和滤波处理。
二、transformer模型概述transformer是一种基于注意力机制的深度学习模型,它在自然语言处理如机器翻译和语音识别等任务中取得了突出的成绩。
transformer 模型将输入序列通过多层自注意力机制和前向神经网络进行编码和解码,能够捕捉长距离依赖关系,并在序列建模任务中表现优异。
三、傅里叶变换与transformer的结合在某些领域,信号处理和深度学习的任务需要同时考虑时域和频域的信息,传统的信号处理方法往往无法充分利用时频信息,而transformer模型可以有效地捕捉时域信息和频域信息,因此结合傅里叶变换和transformer模型能够在一定程度上提高信号处理和语音识别的性能。
四、傅里叶变换与transformer的应用案例1. 语音信号的频谱建模传统的傅里叶变换能够将语音信号从时域转换到频域,但无法建模长时序依赖关系,而transformer模型可以有效地捕捉长距离依赖关系,因此可以结合傅里叶变换和transformer模型来建模语音信号的频谱。
2. 图像信号的频域分析图像处理领域常常需要对图像进行频域分析和滤波处理,传统的傅里叶变换能够将图像信号转换到频域,但无法对频域信息进行进一步的处理,而transformer模型可以在频域上进行自注意力计算,因此可以结合傅里叶变换和transformer模型进行图像信号的频域分析。
傅里叶变换和拉普拉斯变换的性质及应用
傅⾥叶变换和拉普拉斯变换的性质及应⽤1.前⾔背景利⽤变换可简化运算,⽐如对数变换,极坐标变换等。
类似的,变换也存在于⼯程,技术领域,它就是积分变换。
积分变换的使⽤,可以使求解微分⽅程的过程得到简化,⽐如乘积可以转化为卷积。
什么是积分变换呢即为利⽤含参变量积分,把⼀个属于A函数类的函数转化属于B函数类的⼀个函数。
傅⾥叶变换和拉普拉斯变换是两种重要积分变换。
分析信号的⼀种⽅法是傅⽴叶变换,傅⾥叶变换能够分析信号的成分,也能够利⽤成分合成信号。
可以当做信号的成分的波形有很多,例如锯齿波,正弦波,⽅波等等。
傅⽴叶变换是利⽤正弦波来作为信号的成拉普拉斯变换最早由法国数学家天⽂学家(拉分。
Pierre Simon Laplace普拉斯)(1749-1827)在他的与概率论相关科学研究中引⼊,在他的⼀些基本的关于拉普拉斯变换的结果写在他的著名作品《概率分析理论》之中。
即使在19世纪初,拉普拉斯变换已经发现,但是关于拉普拉斯变换的相关研究却⼀直没什么太⼤进展,直⾄⼀个英国数学家,物理学家,同时也是⼀位电⽓⼯程师的Oliver Heaviside奥利弗·亥维赛(1850-1925)在电学相关问题之中引⼊了算⼦运算,⽽且得到了不少⽅法与结果,对于解决现实问题很有好处,这才引起了数学家对算⼦理论的严格化的兴趣。
之后才创⽴了现代算⼦理论。
算⼦理论最初的理论依据就是拉普拉斯变换的相关理论,拉普拉斯变换相关理论的继续发展也是得益于算理理论的更进⼀步发展。
这篇⽂章就是针对傅⾥叶变换和拉普拉斯变换的相关定义,相关性质,以及相关应⽤做⼀下简要讨论,并且分析傅⾥叶变换和拉普拉斯变换的区别与联系。
预备知识定理(傅⾥叶积分定理)若在(-∞,+∞)上,函数满⾜⼀下条件:(1)在任意⼀个有限闭区间上⾯满⾜狄利克雷条件;(2),即在(-∞,+∞)上绝对可积;则的傅⾥叶积分公式收敛,在它的连续点处在它的间断点处为的傅⾥叶变换,记作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 引言
L. kelvin 说:傅里叶理论不仅是现代分析中最美妙的结果之一,而且可以说,它为现代物理中每一 个深奥问题的处理提供了一件必不可少的工具。随着近代物理的飞速发展,越来越多的实际问题需要用 偏微分方程的理论来解决。如尖端的激光理论,生物数学和非线性科学中的许多问题等。为了求解这些 复杂的方程,得到它们解的表达式,傅里叶变换成了主要的工具,它在庞大的偏微分理论系统中闪耀着 光芒。傅里叶变换是一类重要的积分变换,而积分变换能够将分析运算转化为代数运算,正是由于积分 变换这一特性,在微分方程、偏微分方程的求解中成为重要的方法之一。用傅里叶变换求解偏微分方程 就如同用对数变换计算数量的乘积或商一样简便,在这种变换下,偏微分方程可以减少自变量的个数直 至变成常微分方程。
1 ,即: 2π
F [ f1 ⋅= f2 ]
1 F [ f1 ] × F [ f 2 ] 。 2π
5) 若 f ( x ) 及 xf ( x ) 都可以进行傅里叶变换,那么:
d F F( f )。 −ixf ( x ) = dλ
6) 平移性质 设 f ( x ) 的傅里叶变换为 e − iaλ F ( λ ) 。 证明:
Keywords
Fourier Transformation, Partial Differential Equation
傅里叶变换及其应用
曹瑞华
山西师范大学数学与计算机科学学院,临汾 Email: caoruihua0056@ 收稿日期:2014年6月14日;修回日期:2014年7月12日;录用日期:2014年7月19日
∂ 由问题的物理意义知 lim u ( x, t ) 0, lim u ( x, t ) 0 ,利用傅里叶变换的微分性质得 = = x →±∞ x →±∞ ∂x
∂ 2u ∂ 2u 2 ˆ ( λ , t ) = −a 2 λ 2u ˆ (λ, t ) , F 2 = a 2 F 2 = a 2 ( λi ) u ∂t ∂x
3.2. 求解热传导方程
例 2. 求解二维热传导方程的初值问题
2 ∂u ∂ 2u 2∂ u − a 2 += 0 ∂y 2 ∂t ∂x = u ( x, y, 0 ) ϕ ( x, y )
3.1. 求解波动方程
例 1. 已知两端无界弦振动的初始位移为 u = f ( x ) ,初始速度为 0,试求弦在任一时刻 t 的纵向位移
u ( x, t ) ,即解以下偏微分定解问题:
140
傅里叶变换及其应用
2 ∂ 2u 2 ∂ u = 2 a ∂x 2 ∂t = u ( x, 0 ) f ( x ) ∂u 0 = ∂t t = 0
( −∞ < x < +∞, t > 0 ) ( −∞ < x < +∞ ) ( −∞ < x < +∞ )
ˆ ˆ= 解:对 x 作傅里叶变换,令 = F (λ, t ) , F u ( x, t ) u f ( x ) f ( λ ) ,则
ˆ (λ, t ) ∂u +∞ ∂u − iλ x ∂ +∞ ∂ ∂u F ∫= e dx u= F , = u ( x, t ) ( x , t ) e − i λ x dx = ∫ −∞ −∞ ∂t ∂t ∂t ∂t ∂t , ∂ 2u ∂ 2 ˆ (λ, t ) F 2 = 2 u ∂t ∂t
4) f1 ( n ) 与 f 2 ( n ) 乘积的傅里叶变换等于 f1 ( n ) 与 f 2 ( n ) 的傅里叶变换的卷积乘以
F ( f1 ⋅= f2 )
1 F ( f1 ) × F ( f 2 ) . N
1 ,即: N
3. 傅里叶变换在求解偏微分方程中的应用
在求偏微分方程的解时,如果当自变量 x 的取值范围是无穷区间 ( −∞, +∞ ) 时可以考虑对方程中的 x 采用傅里叶变换,这时被变换的函数还应满足当 x → ∞ 时趋于 0,而且对二阶的方程还要求被变换的函 数的一阶导数也趋于 0。 用傅里叶变换求解偏微分方程的步骤大致为:1) 对定解问题作傅里叶变换;2) 求解象函数;3) 对 象函数作傅里叶逆变换得到原问题的解。
0= t 0
ˆ (λ ) d u ˆ = f dt
ˆ (λ ) cos aλ t ˆ (λ, t ) = = 0⇒u f
ˆ ( λ ) = F f ( x ) ,得到 再由傅里叶逆变换公式 f +∞ 1 1 1 i ( x − at ) λ ˆ ˆ ( λ , t )= u ( x, t= = f ( x + at ) + f ( x − at ) dλ ) F −1 u 2π ∫−∞ f ( λ ) e 2 2
其中 α , β 为常数。 2) 微分性质 如果 f ( x ) , f ′ ( x ) 都是可以进行傅里叶变换的,设 f ( x ) 的傅里叶变换为 F ( λ ) ,而且当 x → ∞ 时,
f ( x ) → 0 ,则有 F f ′ ( x ) = iλ f ( x ) 。 3) 卷积性质
2) 平移性质 对任意的 f ( k ) ,则:
F e − iλ a F f ( k − a ) = f ( k )
3) f1 ( n ) 与 f 2 ( n ) 卷积的离散的傅里叶变换等于 f1 ( n ) 与 f 2 ( n ) 的傅里叶变换的乘积,即:
F ( f1 × f 2 = ) F ( f1 ) ⋅ F ( f 2 )
F a ) f (x −=
−i x − a λ − iλ x = dx ∫−∞ f ( x − a ) e ( ) e − iλ x d ( x − a) ∫−∞ f ( x − a ) e = +∞ +∞
e − iaλ F ( λ )
此性质表明平移后的傅里叶变换等于未作平移的傅里叶变换乘以 e −iaλ 。
1
2.2. 离散傅里叶变换的概念
定义:设 f ( k ) 为周期为 N 的周期序列,则称和式 F = = ( λ ) fˆ (λ ) 离散傅里叶变换。并称 f ( k ) =
N −1 k =0
∑ f ( k ) e−iλ k ( k 为整数)为 f ( k ) 的
1 N
N −1
λ =0
∑ F ( λ ) eiλ k 为 F ( λ ) 的离散的傅里叶逆变换。
139
傅里叶变换及其应用
于 f1 ( x ) 和 f 2 ( x ) 的傅里叶变换的乘积,即: F [ f1 × f 2 ] = F [ f1 ] ⋅ F [ f 2 ] 。
设 f1 ( x ) 和 f 2 ( x ) 的傅里叶变换分别为 F1 ( λ ) 和 F2 ( λ ) ,证明: f1 ( x ) 和 f 2 ( x ) 的卷积的傅里叶变换等 4) f1 ( x ) 和 f 2 ( x ) 乘积的傅里叶变换等于 f1 ( x ) 和 f 2 ( x ) 的傅里叶变换的卷积乘以
2.3. 连续傅里叶变换的性质
1) 线性性质 设 f1 ( x ) 和 f 2 ( x ) 的傅里叶变换分别为 F1 ( λ ) 和 F2 ( λ ) ,则:
F αF α F1 ( λ ) + β F2 ( λ ) α f1 ( x ) + β f 2 ( x ) = f1 ( x ) +βF f2 ( x ) =
The Fourier Transform and Its Application
Ruihua Cao
School of Mathematics and Computer Science, Shanxi Normal University, Linfen Email: caoruihua0056@ Received: Jun. 14 , 2014; revised: Jul. 12 , 2014; accepted: Jul. 19 , 2014 Copyright © 2014 by author and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). /licenses/by/4.0/
Pure Mathematics 理论数学, 2014, 4, 138-143 Published Online July 2014 in Hans. /journal/pm /10.12677/pm.2014.44021
th th th
Abstract
Fourier transformation is not only a very important integral transformation, but also is an important mathematics method. In many branches of Mathematics, Fourier transformation plays an important role, such as partial differential equations, probability, complex variable functions and mathematical analysis. Firstly, this paper simply introduces the concept of Fourier transform and its basic nature, whereafter the author introduces its application in partial differential equation.