永磁电机磁路结构和设计计算
永磁同步电动机的分析与设计

永磁同步电动机的分析与设计永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)是一种采用永磁材料作为励磁源的同步电机。
相较于传统的感应电机,永磁同步电机具有高效率、高功率因数、高转矩密度和高速控制响应等特点,因此在许多应用领域中得到广泛应用。
本文将介绍永磁同步电机的分析与设计内容。
首先,分析永磁同步电机的基本原理。
永磁同步电机由永磁铁和电磁绕组组成。
当绕组通电后,产生的磁场与永磁铁的磁场相互作用,使电机转子产生旋转力矩。
通过分析电机的磁动特性和电动力学特性,可以得到电机的数学模型和控制方程,为电机设计和控制提供理论依据。
其次,设计永磁同步电机的结构参数。
永磁同步电机的结构参数包括定子绕组的匝数、线圈的截面积和磁链密度等。
这些参数的选择将直接影响电机的性能,如转矩、效率和功率因数等。
通过优化设计,可以使电机在给定的体积和功率范围内获得最佳性能。
然后,进行永磁同步电机的电磁设计。
电磁设计包括计算电机的电磁参数,如磁链、磁势和磁密等。
在设计过程中,需要考虑电机的工作条件和负载要求,选择合适的磁路结构和电磁铁材料,以提高电机的效率和转矩密度。
接下来,进行永磁同步电机的电气设计。
电气设计包括计算电机的电气参数,如电压、电流和功率等。
通过分析电机的电气性能,可以确定电机的绕组参数和功率电路的参数,以满足电机的输出要求和电力系统的特性。
最后,进行永磁同步电机的控制设计。
控制设计是永磁同步电机应用中至关重要的一环。
通过采用合适的控制策略和控制器,可以实现电机的速度、位置和转矩精确控制,提高电机的动态响应和工作效率。
总之,永磁同步电机的分析与设计是实现高效电机控制的关键步骤。
通过对电机的原理分析、结构参数设计、电磁设计、电气设计和控制设计等方面的研究,可以实现电机的优化设计和性能优化,推动永磁同步电机技术在各个领域的应用发展。
永磁电机磁路计算资料

用标么值表示时,直线的回复线(或退磁曲线)表示成:
r / 0 Br Am /( 0 r Am / hMp ) 0 r Br hMp H c hMp Fc
以标么值表示的等效磁路
=1
=1
(a)磁通源等效电路 (b)磁动势源等效磁路
图3-7 以标么值表示的等效磁路
(二)等效磁路的解析解
图 计算
框图
(三)解析法的应用
上述方法推广应用于所有永磁材料 1.对于铁氧体永磁和部分高温下工作的钕铁硼永磁
(1)设计时保证最低工作点 高于拐点,用 替代
计算矫顽力
(2)工作点低于拐点,用 和 替代 和
图 具有拐点的直线型退磁曲线和回复线
计算剩磁密度
2.对于铝镍钴类永磁
曲线型退磁曲线和回复线
用
和
替代
和
必须着重指出,永磁材料的磁性能对温度的敏感性很 大,尤其是钕铁硼永磁和铁氧体永磁,其的温度系数
达-0.126%/K和-(0.18~0.20)%/K。因此实际应用时,不
能直接引用材料生产厂提供的数值,而要根据实测退
磁曲线换算到工作温度时的计算剩磁密度和计算矫顽
力,以此作为基值进行计算。温度不同,Br和Hc随着改
i—气隙极弧系数; —极距;
Lef—电枢计算长度; K—气隙系数; Ks—饱和系数
2、漏磁导
漏磁导的计算较为繁杂
(五)漏磁因数和空载漏磁因数
1、定义
2、空载
二、等效磁路的解析法
(一)等效磁路各参数的标么值
(二)等效磁路的解析解
(三)解析法的应用
(一)等效磁路各参数的标么值
1、基值选取: 磁通基值
磁化强度
内禀磁感应强度
永磁电机设计计算手册

永磁电机设计计算手册第一章永磁电机基础知识概述1.1 永磁电机的发展历史永磁电机是利用永磁材料产生永磁场,通过与电流的相互作用产生转矩从而实现动力传递的一种电动机。
永磁电机的历史可以追溯到 19 世纪初,当时英国科学家 Faraday 通过实验最早发现磁场与导体之间的相互作用。
随后,人们利用永磁材料和电流相互作用的原理,逐渐发展出了永磁电机的原型,并不断进行改进,使其性能不断提升。
20 世纪以来,随着先进材料和技术的不断发展,永磁电机在各个领域都得到了广泛应用,并成为电动机领域的重要一员。
1.2 永磁电机的分类永磁电机可以根据永磁材料的不同以及结构形式的不同进行分类。
按照永磁材料的不同,永磁电机可以分为硬磁永磁电机和软磁永磁电机两大类。
硬磁永磁电机采用永磁材料为NdFeB 等硬磁材料,具有较高的磁场强度和稳定性;而软磁永磁电机采用永磁材料为SmCo 等软磁材料,具有较高的抗腐蚀性和较低的磁场强度。
按照结构形式的不同,永磁电机可以分为平内磁式、平外磁式、内转子外定子式等多种形式。
1.3 永磁电机的工作原理永磁电机的工作原理主要是通过永磁材料产生的永磁场与电流之间的相互作用,产生电磁转矩,从而实现动力传递。
永磁电机一般由定子、转子、永磁体、绕组等部件组成。
当给定子绕组通电产生磁场时,永磁体的永磁场与定子绕组的磁场相互作用,产生电磁转矩,从而驱动转子运动。
1.4 永磁电机的优点与传统的电磁电机相比,永磁电机具有体积小、重量轻、效率高、响应快、寿命长等诸多优点。
首先,永磁电机采用永磁材料产生永磁场,无需外部电流激励,因此没有电励磁损耗,效率更高。
其次,永磁电机由于采用永磁材料,所以具有较小的体积和重量,适合于一些对重量和体积要求较高的场合。
此外,永磁电机具有瞬时响应快、寿命长、维护方便等优点。
因此,在诸如汽车、家电、工业生产等领域得到了广泛应用。
1.5 永磁电机的应用领域永磁电机由于其体积小、重量轻、效率高、响应快等优点,因此在各个领域都得到了广泛应用。
新型永磁电机转子磁路结构设计与分析

新型永磁电机转子磁路结构设计与分析方案计算中采用了二维平面电磁场时步有限元结合场路耦合的方法,采用该计算方法的优点是能够考虑机械运动、导体区域感应涡流产生的集肤效应以及绕组邻近效应的影响,通过合理的简化模型,可以获得较高的计算精度和合理的计算时间[7]。
永磁同步电机电磁场时变问题中的Maxwell方程组表达式为:(2)当考虑到电机铁芯的饱和因素,则非线性时变运动电磁场问题的偏微分方程表达式[8]为:(3)式中:A—矢量磁位;Js—外部强加的源电流密度;v—媒质的磁阻率;V—媒质相对坐标系的运动速度;—媒质的电导率。
3 电磁场仿真计算与分析根据上述分析,针对以上转子磁路结构类型,本文建立了3种磁路结构的模型,分别是表贴式、内置式和本文提出的新磁路结构。
该永磁同步电动机的定子槽数(36槽)及结构尺寸相同。
转子采用不同的磁路结构,即表贴式转子磁路结构、内置式转子磁路结构和本文提出的新型磁路结构。
转子极数为8极。
图3、图4和图5分别为表贴式转子磁路结构、内置式转子磁路结构(转子磁路為一字型结构)、以及本文提出的新型转子磁路结构。
建立有限元仿真模型后,将分别计算3种磁路结构的空载反电动势波形,电机运行转速为1 000rpm,磁钢温度20℃。
图6、图7和图8分别是表贴式转子磁路结构的空载反电动势波形、内置式转子磁路结构的空载反电动势波形和本文提出的新型转子结构的空载反电动势波形。
通过对比图6、图7和图8的有限元仿真计算结果可知,当采用本文提出的新型转子磁路结构时,电机空载反电动势波形具有更高的正弦度,谐波含量最低,其谐波畸变率约为0.3%,远小于表贴式结构的2.6%和内置式转子结构的1.1%。
在空载工况下,对3种磁路结构电机的交直轴电感进行有限元仿真分析,得到电机交、直軸电感随时间的变化波形。
计算结果如图9、图10、图11所示。
图9为表贴式转子结构的交直轴电感仿真结果。
由于表贴式电机的交直轴磁导近似相等,因此仿真曲线中交直轴电感相近,即电机的凸极率近似为1。
永磁发电机原理

1 磁路结构和设计计算永磁发电机与励磁发电机的最大区别在于它的励磁磁场是由永磁体产生的。
永磁体在电机中既是磁源,又是磁路的组成部分。
永磁体的磁性能不仅与生产厂的制造工艺有关,还与永磁体的形状和尺寸、充磁机的容量和充磁方法有关,具体性能数据的离散性很大。
而且永磁体在电机中所能提供的磁通量和磁动势还随磁路其余部分的材料性能、尺寸和电机运行状态而变化。
此外,永磁发电机的磁路结构多种多样,漏磁路十分复杂而且漏磁通占的比例较大,铁磁材料部分又比较容易饱和,磁导是非线性的。
这些都增加了永磁发电机电磁计算的复杂性,使计算结果的准确度低于电励磁发电机。
因此,必须建立新的设计概念,重新分析和改进磁路结构和控制系统;必须应用现代设计方法,研究新的分析计算方法,以提高设计计算的准确度;必须研究采用先进的测试方法和制造工艺。
1.2 控制问题永磁发电机制成后不需外界能量即可维持其磁场,但也造成从外部调节、控制其磁场极为困难。
这些使永磁发电机的应用范围受到了限制。
但是,随着MOSFET、IGBTT等电力电子器件的控制技术的迅猛发展,永磁发电机在应用中无需磁场控制而只进行电机输出控制。
设计时需要钕铁硼材料,电力电子器件和微机控制三项新技术结合起来,使永磁发电机在崭新的工况下运行。
1.3 不可逆退磁问题如果设计和使用不当,永磁发电机在温度过高(钕铁硼永磁)或过低(铁氧体永磁)时,在冲击电流产生的电枢反应作用下,或在剧烈的机械振动时有可能产生不可逆退磁,或叫失磁,使电机性能降低,甚至无法使用。
因而,既要研究开发适合于电机制造厂使用的检查永磁材料热稳定性的方法和装置,又要分析各种不同结构形式的抗去磁能力,以便在设计和制造时采用相应措施保证永磁式发电机不会失磁。
1.4成本问题由于稀土永磁材料目前的价格还比较贵,稀土永磁发电机的成本一般比电励磁式发电机高,但这个成会在电机高性能和运行中得到较好的补偿。
在今后的设计中会根据具体使用的场合和要求,进行性能、价格的比较,并进行结构的创新和设计的优化,以降低制造成本。
永磁同步电动机电磁计算程序

序号名称公式单位一额定数据1额定功率P Nkw2相数m13额定线电压U N1V 额定相电压U NV4额定频率ƒHz5极对数p6额定效率η1N%7额定功率因数cosφ1N8额定相电流I NA9额定转速n Nr/min10额定转矩T NN.m11绝缘等级B级12绕组形式双层二主要尺寸13铁芯材料50W470硅钢片14转子磁路结构形式15气隙长度δcm16定子外径D1cm17定子内径D i1cm永磁同步电动机电磁计算程序以下公式中π取值为3.1418转子外径D2cm19转子内径D i2cm20定、转子铁心长度l1=l2cm21铁心计算长度la=l1cm铁心有效长度l effcm铁心叠压系数K fe净铁心长l Fecm22定子槽数Q1 23定子每级槽数Q p1 24极距τp 25定子槽形梨形槽b s0cmh s0cmb s1cmh s1cmh s2cmrcm26每槽导体数N s1 27并联支路数a1 28每相绕组串联导体数NΦ129绕组线规N11S11mm230槽满率根据N11S11=1.54mm2,线径取d1/d1i=1.4mm/1.46mm,并绕根数N1(1)槽面积s scm2槽楔厚度hcm(2)槽绝缘占面积s icm2h1scm绝缘厚度C icm(3)槽有效面积s ecm2(4)槽满率sf% N1三永磁体计算31永磁材料类型铷铁棚32永磁体结构矩形33极弧系数a p34主要计算弧长b1pcm35主要极弧系数a1p 36永磁体Br温度系数a Br永磁体剩余磁通密度B r20T温度t℃t=80℃时剩余磁通密度B rT37永磁体矫顽力H c20KA/m永磁体H c温度系数a Hct=80℃时矫顽力Hc KA/m 38永磁体相对回复磁导率u ru0H/m39最高工作温度下退磁曲线的拐点b k40永磁体宽度b mcm41永磁体磁化方向厚度h Mcm42永磁体轴向长度l Mcm43提供每级磁通的截面积S M cm2四磁路计算44定子齿距t1cm45定子斜槽宽b skcm46斜槽系数K sk147节距y48绕组系数K dp1(1)分布系数K d1α°q1(2)短距系数K p1β49气隙磁密波形系数K f50气隙磁通波形系数KΦ51气隙系数Kδ52空载漏磁系数σ053永磁体空载工作点假设值b1m054空载主磁通Φδ0W b55气隙磁密Bδ056气隙磁压降δ12cm直轴磁路FδA交轴磁路Fδq 57定子齿磁路计算长度h1t1 58定子齿宽b t159定子齿磁密B t10T60定子齿磁压降F t1A查第2章附录图2E-3得H t10A/cm61定子轭计算高度h1j1cm62定子轭磁路计算长度l1j1cm63定子轭磁密B j10T64定子轭磁压降F j1cm查第2章附录图2C-4得C1查第2章附录图2E-3得H j10A/cm65磁路齿饱和系数K t66每对极总磁压降ΣF adAΣF aqA67气隙主磁导ΛδH68磁导基值ΛbH69主磁导标幺值λδ70外磁路总磁导λ1H71漏磁导标幺值λσ72永磁体空载工作点b m073气隙磁密基波幅值Bδ1T74空载反电动势E0V五参数计算75线圈平均半匝长l zl BcmdcmτycmsinαcosαC s76双层线圈端部轴向投影长f dcm77定子直流电阻R1ΩρΩ.mm2/mS1mm2d1mm78漏抗系数C x79定子槽比漏磁导λS1查第2章附录2A-3得K u1K L1λu1λL 1与假设值误差小于1%,不用重复计算80定子槽漏抗X s181定子谐波漏抗X d1Ω查第2章附录2A-4得ΣS82定子端部漏抗X e1Ω83定子斜槽漏抗X sk1Ω84定子漏抗X1Ω85直轴电枢磁动势折算系数K ad 86交轴电枢磁动势折算系数K aqK q87直轴电枢反应电流X adΩE dVI1dAF adA f1adb madΦδadW b88直轴同步电抗X dΩ89交轴磁化曲线(X aq-Iq)计算六工作性能计算90转矩角θ°91假定交轴电流I1q A92交轴电枢反应电抗X aqΩ见P428页表10-1 Xaq-Iq曲线93交轴同步电抗X qΩ94输入功率P1kwSINθSIN2θCOSθ95直轴电流I d A96交轴电流I q A97功率因数cosφ°ψ°φ°98定子电流I1A99负载气隙磁通ΦδW bEδV 100负载气隙磁密BδT 101负载定子齿磁密B t1T 102负载转子磁密B j2T 103铜耗P cu1W 104鉄耗(1)定子轭重量G j1kg(2)定子齿重量G t1kg(3)单位铁耗查第2章附录2E-4得p t1w/kgp j1w/kg(4)定子齿损耗P t1W(5)定子轭损耗P j1W(6)总损耗P Fe Wk1k2105杂耗P sP sN kw106机械损耗P fw w107总损耗ΣP kw108输出功率P2kw109效率η%110工作特性见P430表10-2111失步转矩倍数K MT max112永磁体额定负载工作点b mNf1adN113电负荷A1A/cmλ1n114电密J1A/mm2115热负荷A1J1(A/cm)(A/mm2)116永磁体最大去磁工作点b mhf1adhI adh Alaobusi算例4.00003.0000360.0000207.846096926.50003.00000.89601.00007.15960155253072.07547170.052314.814.74.8191919.10.9518.053667.7453333330.350.080.680.091.060.443213841.539699259 .4mm/1.46mm,并绕根数N1=11.0449520.20.1572481.150.030.887704 76.8400277610.82 6.4511733330.832911-0.121.22801.13216923-0.12856.544 1.0523700751.26E-063.61.219136.81.290888889 1.678155556 0.9808257135 0.932879761 0.965960169302 0.965753860.8333333331.2300402670.9406348791.2448267171.30.87 0.010365012 0.8411970220.02 1101.610936 833.7137955 1.2966666670.6405444441.793880386233.490 2.576666667 5.344105556 1.114305729 12.980832390.71.735 1.211871535 1347.991769 1080.094628 7.68922E-06 1.50683E-065.1029296776.63380858 1.5308789030.869003789 %,不用重复计算1.034706209201.529426831.682915872327.2568888890.5490852490.8357663494.3414579342.3838305111.7158936780.02171.53861.48.21E-010.9608659780.870.9050.403328710.6744.69E-016.28E-010.02051.65E-015.31E-011.63E+00 0.812981515 0.3251926060.4 6.558622511 193.4528014 1.231451467 158.2920937 0.011846361 0.858709257 0.0099496178.19E+0026.656.312.19根据I1q查表10-1得1.38E+014.44E+000.4483284510.8014937140.8938688943.25E+006.34E+000.9999593942.72E+01-5.17E-017.1248912060.010084516196.07567680.8184327131.7453347461.084150606261.317264623.264103534.2097075396.22.17 26.10018674 50.48310465 166.21667622.52 19.806546740.0227.9841 0.4753245883.97E+008.93E+010.18536125713.360.8611346311.04E-02 176.61978556.643 4.630762516 817.884282 0.4683161174.61E-014.79E+01。
无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例一. 主要技术指标1. 额定功率:W 30P N =2. 额定电压:V U N 48=,直流3. 额定电流:A I N 1<3. 额定转速:m in /10000r n N =4. 工作状态:短期运行5. 设计方式:按方波设计6. 外形尺寸:m 065.0036.0⨯φ二. 主要尺寸的确定 1. 预取效率63.0='η、 2. 计算功率i P '直流电动机 W P K P NNm i 48.4063.03085.0'=⨯==η,按陈世坤书; 长期运行 N i P P ⨯''+='ηη321 短期运行 N i P P ⨯''+='ηη431 3. 预取线负荷m A A s /11000'= 4. 预取气隙磁感应强度T B 55.0'=δ 5. 预取计算极弧系数8.0=i α 6. 预取长径比L/D λ′=27.计算电枢内径m n B A P D N s i i i 23311037.110000255.0110008.048.401.61.6-⨯=⨯⨯⨯⨯⨯=''''='λαδ 根据计算电枢内径取电枢内径值m D i 21104.1-⨯= 8. 气隙长度m 3107.0-⨯=δ 9. 电枢外径m D 211095.2-⨯= 10. 极对数p=111. 计算电枢铁芯长 m D L i 221108.2104.12--⨯=⨯⨯='='λ根据计算电枢铁芯长取电枢铁芯长L= m 2108.2-⨯12. 极距 m p D i 221102.22104.114.32--⨯=⨯⨯==πτ 13. 输入永磁体轴向长m L L m 2108.2-⨯==三.定子结构 1. 齿数 Z=6 2. 齿距 m z D t i 22110733.06104.114.3--⨯=⨯⨯==π3. 槽形选择梯形口扇形槽,见下图;4. 预估齿宽: m K B tB b Fe t t 2210294.096.043.155.010733.0--⨯=⨯⨯⨯==δ ,t B 可由设计者经验得,t b 由工艺取m 210295.0-⨯5. 预估轭高: m B K B a K lB h j Fe i Fe j j 211110323.056.196.0255.08.02.222-⨯=⨯⨯⨯⨯=≈Φ=δδτ1j B 可由设计者经验得,1j h 由工艺取m 210325.0-⨯根据齿宽和轭高作出下图,得到具体槽形尺寸6. 气隙系数 135.1)5()5(2010101=-++=b b t b t K δδδ7.电枢铁心轭部沿磁路计算长度m h ph h D L j ij t i i 2111110064.2)21(2)2(-⨯=+-⨯++=απ8.槽面积2410272.0m S -⨯=电枢铁芯材料确定从数据库中读取电枢冲片材料DW540-50电枢冲片叠片系数96.01=Fe K 电枢冲片材料密度331/1075.7m j ⨯=ρ电枢冲片比损耗kg W p s /16.2)50/10(=四.转子结构1. 转子结构类型:瓦片磁钢径向冲磁2. 永磁体外径m D D i m 211026.12-⨯=-=δ3. 永磁体内径m H D D m m mi 21086.02-⨯=-=4. 永磁体极弧系数8.0=m α5. 紧圈外经D 2=m 21032.1-⨯6. 永磁材料磁化方向截面积24221043.421026.114.3108.28.02m p D L S mm m m ---⨯=⨯⨯⨯⨯⨯==πα7. 永磁材料的选取永磁体材料:钕铁硼 剩磁r B :矫顽力c H :796 kA/m 永磁体材料密度m ρ:cm 38. r B 对应的磁通Wb S B m r r 41087676.4-⨯=⋅=φ 9.c H 对应的磁势A D D H F mim c c 3200)2(2=-= 10. 转子轭材料选择由于转子较细,故转轴、磁轭为一体,选用10号钢 11.转子磁轭等效宽度 m D D D D b i mi i e j 22222221033.02102.01086.022---⨯=⨯-⨯=-=-=12.转子磁轭沿磁路方向长度瓦片m pD D b L mii e j j 222221083.0)21(4)(-⨯=-++=απ五、磁路计算1. 漏磁系数2.1=σ2. 气隙磁通δδδταB L B i 926.4==Φ3.空载电枢齿磁密δδδB B K b t B B Fe t t 588.296.010295.010733.022=⨯⨯⨯⨯==-- 4. 空载电枢轭磁密δδδB B L K h B Fe j j 819.28.296.0325..02926.4211=⨯⨯⨯=Φ=5. 空载转子轭磁密δδδσB B L b B j j 198.38.233.02926.42.1222=⨯⨯⨯=Φ= 6. 气隙磁势A B B B K F 462610127.010135.11007.06.1106.1⨯=⨯⨯⨯⨯⨯=⨯=-δδδδδδ7. 定子齿磁势A H H h H F t t t t t 22109.01045.022--⨯=⨯⨯== 8. 定子轭部磁势A H L H F j j j j 211110064.2-⨯== 9. 转子轭部磁势A H L H F j j j j 222221083.0-⨯== 10. 总磁势∑+++=21j j t F F F F F δ 11. 总磁通Wb B m 410926.42.1-⨯⨯=Φ=Φδδσ12.空载特性曲线计算见表;因为表面磁钢永磁电机电动机负载时气隙的合成磁场与空载时差不多;六.电路计算1. 绕组形式及电子开关形式:两相导通星形三相六状态 2. 绕组系数采用单层集中整距绕组,即 第一节距)(31槽==τy 每极每相槽数12pmZq ==m 是相数;p 为极对数 故绕组系数1=w K3. 预取空载转速m in /120000r n =' 4. 每相绕组串联匝数φW '0.7V U 24.8025.700为管子压降,取匝,∆=Φ'∆-='δφαpn UU W i取匝82W =φ5. 电枢总导体数根4922==φmW N6. 实际每槽导体数N s =N/Z=82根7. 实际空载转速0nmin /11742109039.28217.02488.05.725.7400r pW U U n i=⨯⨯⨯⨯-⨯⨯=Φ∆-=-δφα8. 计算绕组端部长度m pD D pDav l i b 211101.42)2)(2.122.1-⨯=+=='ππ 9. 计算电枢绕组每匝平均长度m l L L bav 2108.13)(2-⨯='+= 10. 预估导线截面积2661007086.01101463.04830m a J U P S aN N c-⨯=⨯⨯⨯⨯=''='η 式中26'/1014m A J a⨯=为预取导线电流密度 1=a 为每相绕组支路数 11. 导线选取选择F 级绝缘导线QZY-2 导线计算截面积26210066.04m d S c c -⨯==π导线最大截面积262max max 10092.04m d S c c -⨯==π导线直径md m d c c 3max 310342.01029.0--⨯=⨯=12. 槽满率计算公式选择35.01042max=⨯⋅=-S c s s S S N K π13. 实际导线电流密度26'/1015m A aS U P J c N Na ⨯==η 14. 每相电枢绕组电阻Ω==⨯=Φ-31022)20(62)20(20cavcava S a l W S ma Nl r ρρ式中)/(0157.02)20(m mm ⋅Ω=ρ为导线的电阻率 设电机绕组的工作温度t 为75C 0,则导线工作温度电阻Ω=⨯-+=65.3])20(1[20t a at p t r r 式中00395.0=t p 为导线的电阻温度系数七.电枢反应计算1. 起动电流 A r UU I atst 77.722=∆-=2. 起动时每极直轴电枢反应最大值A K W I F w st sdm 27643==φ 3. 额定工作时的反电动势 V n W pC N ie 5.39152'==δφφα 4. 额定工作时电枢电流 A r EU U I ata 97.022=-∆-=5. 额定工作时最大直轴去磁磁势A K W I F W a adm 3443==φ 6. 负载工作点:根据sdm F 和adm F ,可在空载永磁体工作图上作出负载和起动时的特性曲线2、3,求负载特性曲线与永磁体去磁曲线的交点,得负载工作点:负载气隙磁感应强度T B 5872.0=δ 负载气隙磁通Wb 4108925.2-⨯=Φδ负载电枢齿磁感应强度t B = 负载电枢轭磁感应强度j B =7. 额定工作时电磁转矩m N I W pT a iem .0366.04==δφφπα8. 起动电磁转矩 m N I C T st T st .293.0=Φ=δ 八. 性能计算1. 电枢铜损W r I p at a Cu 87.622== 2. 电枢铁损W G B G B f p K p j j t t a Fe 11.4)()50)(50/10(12123.1=+= 式中a K ------铁损工艺系数,取2=a K1j G ------定子轭重kg L h D D G j s j 05816.010])2([43211211=⨯--=-πρt G ------定子齿重kg ZL h b G t t s t 0173.0103=⨯=-ρ3. 轴承摩擦损耗W n G K p N p mp mpn 05.1103=⨯=-Kmp=3,p G 为磁钢重 转子轭重 转轴重 传感器转子重的和 3=mp K 为默认情况,可让用户自己指定kg G G G G r g m p 035.0=++=4. 风损W L n D p N mpb 13.01026332=⨯=-5. 机械损耗和铁损W p p p p mpb mpn Fe 29.5=++='6. 考虑到附加损耗后的机械损耗和铁损 W p p 877.63.1='=系数可选 7. 开关管损耗W U I p a 358.12=∆⨯=∆8. 电机总损耗W p p p p Cu 1.15=++=∆∑9. 输入功率W I U P a N 56.461==10. 输出功率W p P P N 46.311=-=∑ 11. 效率%57.67%1001=⨯=P P N η 12. 摩擦转距m N n p T N.00657.056.90== 13. 额定输出转距 m N T T T em .03.002=-=。
永磁直流电机电磁设计算例

永磁直流电机电磁设计算例假设我们要设计一个功率为500W的永磁直流电机,额定电压为24V。
首先,我们需要确定电机的转矩常数和电机的转速范围。
转矩常数表示电机在给定电压下的输出转矩大小。
常用的永磁直流电机转矩常数一般在0.02-0.06Nm/A之间。
假设我们选择一个转矩常数为0.04Nm/A的永磁直流电机。
根据功率和转矩常数的关系,我们可以计算出电机的额定电流为500/0.04=12.5A。
接下来,我们需要确定电机的磁路尺寸和磁路材料。
磁路尺寸决定了电机的体积和重量,而磁路材料的选择直接影响电机的性能和效率。
常见的磁路材料包括硅钢片、铁氧体和软磁合金等。
这里我们选择硅钢片作为磁路材料。
根据电机的功率和额定电流,我们可以计算出电机的额定转矩为500/12.5=40Nm。
接下来,我们需要根据额定转矩和转矩常数计算出永磁体的磁通。
磁通是永磁体产生的磁场大小,它与电机的转矩和电压密切相关。
磁通的计算公式为磁通=转矩/转矩常数=40/0.04=1000Wb。
接下来,我们需要计算出电机的磁场密度和磁力线密度。
磁场密度表示单位面积内的磁场大小,而磁力线密度表示单位长度内的磁场线条数。
根据磁场强度和磁路材料的磁导率,我们可以计算出磁场密度和磁力线密度。
最后,我们需要设计电机的线圈和定子参数。
根据额定电流和电压,我们可以计算出电机的线圈匝数和线圈直径。
定子参数的计算需要根据电机的磁通和磁场密度来决定。
综上所述,永磁直流电机的电磁设计是一个复杂的过程,需要根据电机的功率、转矩和工作条件来选择合适的磁路材料和定子参数。
设计过程需要综合考虑电机的性能、效率和成本等因素,从而确保电机的稳定运行和长寿命。
永磁电机2-永磁体2013

第一讲 永磁材料及其磁路计算
2.3.2.永磁电机外部磁路
–
永磁电机中永磁体向外部磁路提供磁通,外部磁路计算方法与 以前相同,只是注意一些特殊之处。 主磁路 主磁通 主磁导(通过主磁路计算) 漏磁路 漏磁通 漏磁导(漏磁导难以准确计算,通常以漏磁系数表示)
漏磁系数
总磁通 1 主磁通
永磁电机漏磁系数分为极间漏磁系数和端部漏磁系数,对磁 路计算的准确性有重要影响,漏磁场分出复杂,准确估算困 难,一般按照磁极结构凭经验选取或通过电磁场有限元求取
Fm Rm
第一讲 永磁材料及其磁路计算
2.3.1.永磁体的等效磁路
–
永磁体在整个磁路中相当于一个带内磁阻的磁源 (压源或流源)
0 r S m
hm Hhm r Fm Rm
m BSm Br S m 0 r HSm r r Br S m 称为虚拟内禀磁通
永磁体安放在定子上,(永磁直流电机) 永磁体安放在转子上,无槽(永磁同步电机) 永磁体安放在转子上,有槽(异步启动永磁同步电机)
第一讲 永磁材料及其磁路计算
2.3.5.永磁电机的等效磁路:
外磁路的等效磁路:
永磁电机的等效磁路:
第一讲 永磁材料及其磁路计算
1.3主要永磁材料的性能:稀土钴
第一讲 永磁材料及其磁路计算
1.3主要永磁材料的性:稀土钴
第一讲 永磁材料及其磁路计算
1.3.主要永磁材料的性能:钕铁硼
第一讲 永磁材料及其磁路计算
主要永磁材料的性能:钕铁硼
第一讲 永磁材料及其磁路计算
1.3主要永磁材料的性能:钕铁硼
3.气隙系数的确定:
永磁直流电机电磁设计算例

永磁直流电机电磁设计算例首先,我们需要确定设计要求和工作条件。
假设设计要求如下:-输出功率:10kW- 额定转速:3000 rpm-额定电压:220V-额定电流:45A-永磁材料:NdFeB- 公称气隙长度:0.5 mm接下来,我们将按照电磁设计的步骤进行计算。
第一步:确定磁路尺寸和参数。
根据设计要求和参数,我们可以计算出磁路的尺寸和参数。
以磁路长度为1.2 m为例,根据磁路长度和气隙长度,可以得到铁心尺寸为1.2 m - 0.5 mm = 1.1995 m。
铁心截面积可以按照功率因数为0.9进行计算,即铁心截面积为:第二步:气隙设计。
气隙长度的设计需要考虑铁心饱和程度和磁通的分布。
一般情况下,气隙长度的选择可以按照公式δ=0.25*(0.0015+0.005*B_r)进行计算,其中δ为气隙长度(m),B_r为永磁体的剩余磁感应强度(T)。
假设永磁体的剩余磁感应强度为1.15T,则气隙长度为:δ=0.25*(0.0015+0.005*1.15)=0.0023m。
第三步:磁通计算。
根据设计要求和参数,我们可以计算出磁通的大小。
磁通的计算可以按照公式Φ=(A*B_g)/(K*1000)进行,其中Φ为磁通(Wb),A为铁心截面积(m^2),B_g为气隙磁感应强度(T)。
假设气隙磁感应强度为0.78T,则磁通为:第四步:磁场分析。
接下来,我们需要进行磁场分析,确定永磁体的形状和尺寸。
根据设计要求和参数,可以计算出永磁体的尺寸和相关参数。
以永磁体的长度为0.1m为例,根据磁通和永磁体长度,可以得到永磁体截面积为:第五步:定子绕组计算。
根据设计要求和参数,我们可以计算出定子绕组的尺寸和参数。
以定子的槽数为36槽,每槽两匝为例,根据公式可以计算得到定子槽的宽度为:b=(A_m*K)/(n_s*h_s)=(0.0125*1)/(36*0.025)=0.0111m。
至此,根据设计要求和参数,我们完成了永磁直流电机的电磁设计。
永磁同步伺服电机电磁计算流程

电机计算与磁场分析1.1 计算程序及算例注:计算采用手算和MathCAD 计算结合使用的方法所以计算结果保留到小数点后三位。
一、 额定数据1.额定功率 5KW N P =2.相数 3m =3.额定电压 直流输出电压 40V d U =额定相电压 217.949V 2.34d N U U +== 三相桥整流考虑二极管压降4.功率因数 cos 0.8ϕ= sin 0.6ϕ=5.额定相电流 310116.071A cos N N N P I m U ϕ⨯==⋅⋅ 6.效率 0.9N η=7.额定转速 100000rpm N n = 8.预取极对数 2p =9.频率 3333Hz 60N pnf ==10.冷却方式 空气冷却 11.转子结构 径向套环12.电压调整率 20%N U ∆≤二、永磁材料选择13.材料牌号 NSC27G 烧结钐钴材料,主要考虑到高温工作环境 该材料高温下退磁小。
14.预计温度 T= 250C 15.剩余磁通密度 20 1.0T r B =0.03%B r rB α=----的温度系数 0r I L B =---的不可逆损失率工作温度下 201(20)(1)0.931T100100Br r r IL B t B α⎡⎤=+--=⎢⎥⎣⎦ 16.计算矫顽力 20760kA/m c H =工作温度下 201(20)(1)707.56KA/m 100100Br C r IL H t H α⎡⎤=+--=⎢⎥⎣⎦17.相对回复磁导率 3010 1.047rr C B H μμ-=⨯=式中 70410H /m μπ-=⨯ 三、永磁体尺寸18.永磁体磁化方向长度 0.35cm M h =19.永磁体宽度 1.56cm M b =20.永磁体轴向长度 5.35cm M L = 21.永磁体段数 1W =22.永磁体每极截面积 28.346cm M M M A L b == 23.永磁体每对极磁化方向长度 20.7cm MP M h h == 24.永磁体体积 311.684cm m M MP V PA h == 25.永磁体质量 31095.812g m m m V ρ-=⨯= 稀土钴材料密度 38.2g/cm ρ=四、转子结构尺寸26.气隙长度 10.19cm δδ=∆+= 均匀气隙空气隙长度10.03cm δ= 非磁性套环长度 0.16cm ∆=27.转子外径 2 3.0cm D = 28.轴孔直径 2 1.0cm i D =29.转子铁心长度 2 5.35cm M L L ==30.衬套厚度 222()0.49cm 2i M h D D h h --∆+==31.极距 2(2)2.105cm 2D pπτ-∆== 径向瓦片形32.极弧系数 0.74p α=33.极间宽度 2(1)0.547cm p b ατ=-= 五、定子绕组和定子冲片34.定子外径 1 4.8cm D =35.定子内径 1212 3.06cm i D D δ=+= 36. 定子铁心长度 1 5.35cm M L L ==长径比λ=1.7537.每极每相槽数 1q =38. 定子槽数 212Q mpq ==39.绕组节距 3y = 整距绕组,影响下面一些系数40. 短距系数 180sin 12p K β==41. 分布因数 1d K = 42.斜槽因数 1sk K =43.绕组因数 1dp d p sk K K K K ==波形系数 sin()20.91.024i iK φαπα⋅==44.预估永磁体空载工作点 '00.67m b = 工作点范围在0.55-0.75Br 内但高速电机应取小一些。
永磁电动机计算公式大全精讲

永磁电动机计算公式大全精讲
1.电磁计算公式
a.磁通计算公式
磁通(Φ)是永磁电动机中一个重要的参数,可以根据磁感应强度(B)和磁路面积(A)进行计算,计算公式为:
Φ=B*A
b.磁动势计算公式
磁动势(F)是永磁电动机中另一个重要的参数,可以根据磁通(Φ)和磁路长度(l)进行计算,计算公式为:
F=Φ*l
c.磁感应强度计算公式
磁感应强度(B)是永磁电动机中磁场的一个参数,可以根据磁动势(F)和磁路长度(l)进行计算,计算公式为:
B=F/l
d.磁场强度计算公式
磁场强度(H)是永磁电动机中另一个磁场参数,可以根据磁动势(F)和磁路截面积(S)进行计算,计算公式为:
H=F/S
e.磁阻计算公式
磁阻(Rm)是永磁电动机中磁路的一个参数,可以根据磁动势(F)和磁通(Φ)进行计算,计算公式为:
Rm=F/Φ
f.霍尔电流计算公式
If=Ic*Kh
2.机械计算公式
a.功率计算公式
功率(P)是用来表示电动机的输出能力的参数,可以根据电流(I)和电压(V)进行计算,计算公式为:
P=I*V
b.转速计算公式
转速(N)是永磁电动机中旋转的速度,可以根据输入电压(V)和电磁转矩系数(k.Tm)进行计算,计算公式为:
N=V/(k*Tm)
c.负载计算公式
负载(TL)是指电动机所承受的外部负荷,可以根据输出功率(P)和转速(N)进行计算,计算公式为:
TL=P/N
以上是永磁电动机的计算公式的简要介绍,涵盖了电磁计算和机械计算的关键公式。
根据具体的设计要求和参数,可以使用这些公式进行计算和分析,以便更好地理解和优化永磁电动机的性能。
永磁体磁路设计

永磁体磁路设计永磁设计材料从研制角度而言,是希望性能尽可能地优越。
但从使用角度考虑,对已研制出的材料,如何合理利用以期获得最大的收益则显得更为重要。
具体到永磁材料,则涉及到磁体的选用和磁路的设计。
下面对永磁磁路设计做简单介绍。
·永磁磁路的基本知识磁路:最简单的永磁磁路由磁体、极靴、轭铁、空气隙组成。
磁路之所以采用路的说法,是从电路借用而来,所以传统意义上的磁路设计是与电路设计相类似的,为了更明了地说明这个问题,简单比较如下图:磁路的基本类型有并联磁路、串联磁路,其形式同于电路。
静态磁路基本方程:静态磁路有两个基本方程:其中k f为漏磁系数,k r为磁阻系数,Bm、Hm、Am、Lm分别为永磁体工作点、面积和高度;Bg、Hg、Ag、Lg为气隙的磁通密度、磁场强度、气隙面积和长度。
由以上两式可得:上式中Vm=Am.Lm表示永磁体体积,Vg=Ag.Lg表示气隙的体积,(HmBm)是永磁体工作点的磁能积。
·永磁体磁路设计的一般步骤:(1)根据设计要求(Bg Ag、Lg的值由要求提出),选择磁路结构的磁体工作点。
在选择磁路结构时,需要结合磁体性能来考虑磁体的尺寸,设法使磁体的位置尽量靠近气隙,磁轭的尺寸要够大,以便通过其中的磁通不至于使磁轭饱和,即φ=B轭A轭,式中的B轭最好相当于最大磁导率相对应的磁通密度。
如果B轭等于饱和磁通密度的话,则磁轭本身的磁阻增加很多,磁位降加大,或者说磁动势损失太大。
(2)估计一个Kf和Kr,利用初步算出磁体尺寸Am 、 Lm;(3)根据磁体尺寸、磁轭尺寸,算出整个磁路的总磁导P(其中关键是漏磁系数Kf的计算),再将原工作点代入下式:Bg=F/[KfAg(r+R+1/P)](4)据总磁导P、漏磁系数Kf、磁体内阻r和磁轭的磁阻R,看Bg是否与要求相符,否则再从头起设计。
在已知气隙要求(Bg、Ag、Lg)和磁体工作点的情况下,欲求磁体的尺寸(Lm、Am),则需要知道漏磁系数Kf和磁阻系数Kr。
新型永磁电机转子磁路结构设计与分析

新型永磁电机转子磁路结构设计与分析【摘要】近年来,我国的工业化建设发展迅速,本文针对新型的永磁电机转子的磁路结构进行分析,分析了内置式转子磁路结构、表贴式转子磁路结构的优缺点,并分析该结构下平行充磁的径向充磁效果,希望能够为优化磁路设计,让电机的转子磁路接近于表贴式的磁钢结构效能,保证电机的控制效果更加简单可行奠定基础。
现针对本次设计的磁钢结构、充磁方式、电机反电势波形等内容进行以下分析研究。
【关键词】:永磁电机;转子;磁路结构;设计分析永磁同步电动机由定子、转子和端盖等部件构成。
对比传统的电励磁同步电机,永磁同步电机的整体使用效益高且结构简单,体积小,重量较轻,从整体的控制效果和控制表现来看,永磁同步电机的转矩特性和直流电机较为类似,因此具有调速范围宽、控制结构较为简单且操作十分快速迅捷等特点。
该技术在航空航天以及伺服传动、新能源驱动方面运用较为广泛,也在很多相关领域运营显著。
结合永磁同步电机的磁钢安装表现来看,可见现有的永磁同步电机分为表贴式和内置式两种模式,其中内置式特点在于将磁感镶嵌在铁芯的内部,可以保证转子的结构稳定,保护磁钢,减少其受到高转速的冲击和影响;但是内置式控制系统的结构十分复杂,内部的交直轴磁路之间也存在交叉影响,导致了操作系统的直交轴的电感不相等。
此外,表贴式的永磁电机的磁钢是贴在转子的表面,其固定方式较为简单,但是可靠性不高,在实际的操作中容易受到振动影响,虽然可以采用绑扎等方式固定转子,但是整体也会增加气隙效果,直接影响电机的运行功能。
现针对两种模型的特点进行分析,总结其优缺点,并创新设计兼容性的新型永磁同步电机转子磁路,兼顾内置式和表贴式的结构特点,后经过有限元分析和样机测试后,验证了该方法的可行性。
1.简述数学模型本次设计的模型选用永磁同步电机转子磁路,有表贴式磁路结构和内置式磁路结构两种。
首先,表贴式的磁路结构需要将磁钢固定在转子的表面,由于磁钢的导磁率和空气的导磁率接近,因此磁路结构属于隐蔽式结构,且电机的交直轴的电感接近;其次,内置式转子结构的磁钢的导磁率和硅钢片的磁导率之间有一定的差异,磁路结构属于凸极结构形式,且电机的直轴电感也比交轴电感小一些。
永磁同步电机以及直流无刷电机的电磁设计

其中 D 为电枢直径;
l e f 为等效铁心长度;
(2)相同的电磁负荷, 相同转速,电机体积越大
n 为电机的额定点转速; P ' 为电机的计算功率; 可实现的功率也越大;
' p
为电机计算极弧系数;
K n m 为电机气隙磁场的波形系数; K d p 为电机的绕组系数; A 为电机的线负荷;
电流矢量应满 足的两条件
T em / is
id
0
T em / is
iq
0
IPM
Tem
Is
3p[miq(LdLq)idiq]
2 id2iq2
电
id
m
m 2 412L2dL2q 21Ld
id
0
T em / is
iq
0
Tem
Is
3p[miq(LdLq)idiq]
2 id2iq2
SPM
表贴式永磁电机: Ld=Lq
电 机
可推出结论:Id=0
SPM电机的定子电流矢量轨迹
13
4.2 最大转矩/电流控制
最大转矩/电流控制也称单位电流输出最大转矩的控制,是凸极式永磁同步电动 机用的较多的一种电流控制策略。对于隐极式永磁同步电机(大多数表贴式永磁电 机)来说,最大转矩/电流控制就是id=0控制。
磁场定向控制时的相量图
12
4.2 最大转矩/电流控制
最大转矩/电流控制也称单位电流输出最大转矩的控制,是凸极式永磁同步电动 机用的较多的一种电流控制策略。对于隐极式永磁同步电机(大多数表贴式永磁电 机)来说,最大转矩/电流控制就是id=0控制。
永磁同步电机磁链计算

永磁同步电机磁链计算永磁同步电机是一种使用永磁体作为励磁源的同步电机。
它具有高效率、高功率因数、高转矩密度等优点,在工业应用中得到广泛使用。
磁链计算是永磁同步电机设计过程中的重要环节,它关系到电机的性能和工作效果。
磁链是指通过电机磁路的磁力线,它是永磁同步电机的重要特性之一。
磁链的大小和分布对电机的性能有着直接的影响。
在永磁同步电机的设计中,磁链的计算是非常重要的一步。
永磁同步电机的磁链计算可以通过磁路分析的方法来实现。
磁路分析是一种通过计算磁路中磁通量的方法,来确定磁场分布和磁链大小的技术手段。
在磁路分析中,首先需要确定永磁体的磁场分布。
永磁体是永磁同步电机中的关键部件,它产生了稳定的磁场,为电机的正常运行提供了磁力。
在磁路分析中,可以通过永磁体的磁场分布来计算磁链的大小。
需要确定电机的磁路参数。
磁路参数包括电机的磁导率、磁阻和磁通量等。
通过计算这些参数,可以得到电机磁路中的磁链分布。
根据电机的工作条件和要求,可以确定磁链的大小和分布。
磁链的大小可以通过磁链密度来表示,它是单位面积上的磁通量。
磁链的分布可以通过磁场线来表示,磁场线是磁力线的可视化展示。
在永磁同步电机的设计中,磁链的计算是一个复杂的过程。
它需要考虑到电机的工作条件、磁路参数、永磁体的特性等因素。
同时,磁链的计算也需要考虑到电机的性能和效果,使得电机能够在设计要求下正常运行。
永磁同步电机的磁链计算是电机设计过程中的重要环节。
通过磁路分析的方法,可以确定电机磁路中的磁链分布,从而为电机的设计和性能提供参考。
磁链的计算需要考虑多个因素,包括电机的工作条件、磁路参数和永磁体的特性等。
只有在计算准确的基础上,才能设计出满足要求的永磁同步电机。
现代永磁电机调速理论第3章 磁路计算

第3章永磁电机的磁路设计与计算•简单磁路分析法•磁网络分析法常用电机分析方法有有限元法,简单磁路法和磁网络法。
1. 有限元法(Finite element analysis )可以准确计算电机的静态特性,但是这种方法仍较为复杂,需用较长的计算时间。
2. 简单等效磁路法(Simplified magnetic circuit )建立电机的局部等效磁路,磁路构成简单,计算精度较差,但计算耗时少,可应用于电机的定性分析。
3. 磁网络法(Magnetic network )建立整个电机的磁网络模型,通过编程对铁芯饱和进行迭代计算,计算精度接近有限元法,计算耗时接近等效磁路法,非常适合电机的初始设计阶段。
缺点是建模过程较为复杂。
永磁电机的常用计算方法永磁励磁与电励磁的差别电励磁永磁励磁m m h H H 111-=δδ磁势不随外磁路而改变,保持常数mm h H H 222-=δδNI H =δδ0=+m m h H H δδ•永磁磁势随外磁路的改变而改变,不是常数mr m H B B 0μ+=永磁励磁与电励磁的差别)(δR R l H F m m m m +Φ==)(00δδμ+μΦ=A A l m m 1. 简单磁路法1.1 永磁体等效方法H B B r r μμ-=0rc B H H μμ-=0(a) 稀土永磁(b)铁氧体永磁(c)铝镍钴永磁对于图c ,r r B B '=对于图b 、c ,cc H H '=mmmr r m r m r m Hh h A HA A B B A μμ-Φ=μμ-=00乘以永磁体截面积用磁通和磁动势表示Φr ——虚拟内禀磁通Φm ——永磁体向外磁路提供的总磁通Φ0——虚拟自退磁(内漏磁)磁通mmmr m r Hh h A HA μμ=μμ=Φ000m r m ir r A B A B ==Φ0Φ-Φ==Φr m m BA 1. 简单磁路法1.1 永磁体等效方法mF 0Λ=磁通源(电流源)mc r m F F 000Λ-Λ=Φ-Φ=Φ0ΛΦ-=m c m F F mc c h H F =磁动势源(电压源)1. 简单磁路法1.1 永磁体等效方法永磁体磁通Φ01. 简单磁路法1.1 永磁体等效方法ΦδΦσ主磁通——主磁通Φδ漏磁通——Φσ⎩⎨⎧Λ→Λ→σσδδΦΦΦm1. 简单磁路法1.1永磁体等效方法——空载外磁路永磁体等效磁路空载时外磁路δ0δδσδn σδΛΛΛΛΛΛΛΛΛσ=+==+='0aσδδaδσσaa 111σFΛΛΛF ΛΛΛF F =+=+='主磁通——气隙磁通Φδ漏磁通——Φσ直轴电枢反应磁动势F a σ0空载漏磁系数戴维南等效变换1. 简单磁路法1.1永磁体等效方法——负载外磁路磁通源磁动势源主磁导:与磁路的饱和程度有关漏磁导:Λσ取决于关系。
永磁同步电动机电磁计算程序

Λδ Λb λδ λ1 λσ
cm A
T A A/cm cm cm T cm
23.26410353 4.209707539
6.2
2.17 26.10018674 50.48310465 166.2166762
2.5 2
19.80654674 0.02
27.9841 0.475324588
3.97E+00 8.93E+01
0.185361257 13.36
0.861134631 1.04E-02
cm
Ksk1
y
Kdp1 Kd1
α
°
q1
Kp1
β
Kf
KΦ
Kδ
σ0
b1m0
Φδ0
Wb
Bδ0
56 气隙磁压降
直轴磁路 交轴磁路 57 定子齿磁路计算长度 58 定子齿宽 59 定子齿磁密 60 定子齿磁压降 查第2章附录图2E-3得 61 定子轭计算高度 62 定子轭磁路计算长度 63 定子轭磁密 64 定子轭磁压降 查第2章附录图2C-4得 查第2章附录图2E-3得 65 磁路齿饱和系数 66 每对极总磁压降
38 永磁体相对回复磁导率
ss
cm2
h
cm
si
cm2
h1s
cm
Ci
cm
se
cm2
sf
%
N1
铷铁棚 矩形
ap b1p a1p aBr Br20 t Br Hc20 aHc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 磁路结构和设计计算
永磁发电机与励磁发电机的最大区别在于它的励磁磁场是由永磁体产生的。
永磁体在电机中既是磁源,又是磁路的组成部分。
永磁体的磁性能不仅与生产厂的制造工艺有关,还与永磁体的形状和尺寸、充磁机的容量和充磁方法有关,具体性能数据的离散性很大。
而且永磁体在电机中所能提供的磁通量和磁动势还随磁路其余部分的材料性能、尺寸和电机运行状态而变化。
此外,永磁发电机的磁路结构多种多样,漏磁路十分复杂而且漏磁通占的比例较大,铁磁材料部分又比较容易饱和,磁导是非线性的。
这些都增加了永磁发电机电磁计算的复杂性,使计算结果的准确度低于电励磁发电机。
因此,必须建立新的设计概念,重新分析和改进磁路结构和控制系统;必须应用现代设计方法,研究新的分析计算方法,以提高设计计算的准确度;必须研究采用先进的测试方法和制造工艺。
1.2 控制问题
永磁发电机制成后不需外界能量即可维持其磁场,但也造成从外部调节、控制其磁场极为困难。
这些使永磁发电机的应用范围受到了限制。
但是,随着MOSFET、IGBTT等电力电子器件的控制技术的迅猛发展,永磁发电机在应用中无需磁场控制而只进行电机输出控制。
设计时需要钕铁硼材料,电力电子器件和微机控制三项新技术结合起来,使永磁发电机在崭新的工况下运行。
1.3 不可逆退磁问题
如果设计和使用不当,永磁发电机在温度过高(钕铁硼永磁)或过低(铁氧体永磁)时,在冲击电流产生的电枢反应作用下,或在剧烈的机械振动时有可能产生不可逆退磁,或叫失磁,使电机性能降低,甚至无法使用。
因而,既要研究开发适合于电机制造厂使用的检查永磁材料热稳定性的方法和装置,又要分析各种不同结构形式的抗去磁能力,以便在设计和制造时采用相应措施保证永磁式发电机不会失磁。
1.4成本问题
由于稀土永磁材料目前的价格还比较贵,稀土永磁发电机的成本一般比电励磁式发电机高,但这个成会在电机高性能和运行中得到较好的补偿。
在今后的设计中会根据具体使用的场合和要求,进行性能、价格的比较,并进行结构的创新和设计的优化,以降低制造成本。
无可否认,现正在开发的产品成本价格比目前通用的发电机略高,但是我们相信,随着产品更进一步的完美,成本问题会得到很好的解决。
美国DELPHI(德尔福)公司的技术部负责人认为:“顾客注重的是每公里瓦特上的成本。
”他的这一说法充分说明了交流永磁发电机的市场前景不会被成本问题困扰。
1.5永磁转子特点:
结构1:
并联磁场结构;转采用采用铸造压制而成,里面嵌放永磁体,能量大、重量轻、体积小、整体结构牢固可靠,最大工作转速大于15000转/分。
专利号;ZL96 2 47776.1
结构2:
串联磁场式结构;转子采用钢结构,表面按顺序嵌放永磁铁,转子表面磁通强、重量轻、体积小、整体结构牢固可靠,最大工作转速大于15000转/分。
专利号:ZL98 2 33864.3
整机稳压系统特点:
采用可控硅和二极管组成半控桥式整流电路。
稳压系统是一种斩波调制型稳压装置,其稳压精度为正负0.1v,故该发电机具有能瞬间承受较大电流、运行可靠和耐用等特点,又因可直接利用发电机发出的交流电的反向电压使可控硅自行关断,故无需加关断电路,使电路结构简单、可靠。
2、永磁发电机的优点。